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A B S T R A C T   

Large-scale investigations of maize kernel traits important to researchers, breeders, and processors require high 
throughput methods, which are presently lacking. To address this bottleneck, we developed a novel flatbed 
platform that automatically acquires and analyzes multiwavelength near-infrared (NIR hyperspectral) images of 
maize kernels precisely enough to support robust predictions of protein content, density, and endosperm vit
reousness. The upward facing-camera design and the automated ability to analyze the embryo or abgerminal 
sides of each individual kernel in a sample with the appropriate side-specific model helped to produce a superior 
combination of throughput and prediction accuracy compared to other single-kernel platforms. Protein was 
predicted to within 0.85% (root mean square error of prediction), density to within 0.038 g/cm3, and endosperm 
vitreousness percentage to within 6.3%. Kernel length and width were also accurately measured so that each 
kernel in a rapidly scanned sample was comprehensively characterized.   

1. Introduction 

The chemical composition and structural characteristics of a maize 
(Zea mays) kernel determine how well suited it is for its various indus
trial uses. For example, wet millers prefer kernels with softer endosperm 
because they require less steeping time and allow better starch-protein 
separation while dry millers desire hard endosperms (Wu & Bergquist, 
1991). The differences between hard and soft endosperms are mostly 
due to differences in how densely the starch granules are embedded 
within a complex protein matrix (Gustin et al., 2013) and to differences 
in the physicochemical properties of the starch itself (Xu et al., 2019). 
Hard endosperms have high vitreousness, referring to their glass-like 
optical properties while soft endosperms generally scatter light more 
and therefore appear opaque. Supplemental Fig. 1 displays the visible 
differences between hard (vitreous) and soft (opaque) endosperms. 

In the case of livestock feed, the bioavailability of starch in the 
endosperm is highly dependent on endosperm hardness (Dias Junior 
et al., 2016; Philippeau & Michalet-Doreau, 1997) because the protein 
matrix may affect how microorganisms in the rumen gain access to the 

starch granules (McAllister, Phillippe, Rode, & Cheng, 1994). Further
more, endosperm vitreousness has been shown to affect resilience dur
ing harvest, storage, resistance to insects and fungi, and other practical 
characteristics (Holding & Larkins, 2006). Unfortunately, this important 
trait is difficult to measure directly. 

Measuring vitreousness percentage typically requires manually 
removing the pericarp and embryo and then laboriously dissecting the 
floury soft endosperm from the vitreous hard portion to calculate a mass 
ratio. Alternative methods range from visually ranking light trans
mission of samples on a light box to quantifying resistance to grinding as 
a proxy for this trait (Gustafson & de Leon, 2010). Endosperm vitre
ousness is highly correlated with total kernel density (Correa, Shaver, 
Pereira, Lauer, & Kohn, 2002), which can be measured by determining 
the volume of gas or liquid a known mass of kernels can displace, or by 
determining the percentage of kernels that float on a salt solution having 
a known specific gravity (Bergquist & Thompson, 1992). Both methods 
are low throughput, which limits the feasibility of evaluating the num
ber of samples needed for large-scale studies. Reliable, automated, non- 
invasive measurement of vitreousness percentage would enable larger- 
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scale investigations of endosperm quality. 
Near-infrared (NIR) spectroscopy has been widely used to infer 

chemical composition and physical properties of maize kernels. The 
methodology relies on collecting transmitted or reflected light at 
wavelengths between 780 nm and 2500 nm and applying chemometric 
methods that exploit the inherent property of the C–H, O–H, N–H and 
S–H organic bonds to absorb NIR light through overtone vibrations 
(Siesler, Ozaki, Kawata, & Heise, 2008). NIR spectra from biological 
material have multiple overlapping absorbance patterns due to the 
complex mixture of organic compounds therefore multivariate statistical 
approaches are required to build the equations that can predict the trait 
given the spectrum (Hacisalihoglu et al., 2016; Spielbauer et al., 2009)). 
To study cereal grains, spectra are typically measured from fine ground 
powders or bulk whole grain samples (Orman & Schumann, 1991). NIR 
spectroscopy and properly calibrated equations can produce useful 
predictions of major seed constituents like starch, oil and proteins 
quickly and inexpensively (Fox & Manley, 2014). Ngonyamo-Majee 
et al. (2008) used NIR spectroscopy to develop vitreousness prediction 
equations for maize kernels by scanning powder from ground kernels. 
Although accurate predictions were attained, sample preparation is 
time-consuming and destructive. 

Commercially available NIR analyzers acquire spectra from bulk 
grain samples. These units capture a spectrum representing an average 
of many intact kernels in unknown orientations within the sample. The 
spectra contain features that can predict kernel composition traits. At 
least one study of intact kernels identified two spectral features that 
correlated well with endosperm hardness (Robutti, 1995). Alternatively, 
custom-built NIR reflectance spectrometers can capture a spectrum as a 
seed tumbles down a tube, displaying different positions to the sensor 
(Hacisalihoglu et al., 2016; Spielbauer et al., 2009). These units cannot 
produce information about how composition varies between grain tis
sues such as the starchy endosperm and oil-rich embryo, which is rela
tively large in maize. Studies have shown that the germinal or 
abgerminal side of the kernel reflect different NIR spectra (Orman & 
Schumann, 1992; Weinstock, Janni, Hagen, & Wright, 2006). 

Hyperspectral imaging combines NIR spectroscopy with pixel-based 
imaging (Feng et al., 2019). Hyperspectral imaging has been used to 
study maize and wheat kernels (Caporaso, Whitworth, & Fisk, 2018; 
Williams & Kucheryavskiy, 2016; Zhao et al., 2018) and to associate 
spectral signatures with specific tissues (Miao et al., 2020). The hyper
spectral imaging work presented here is based on previous work 
demonstrating that maize kernels with categorically distinct degrees of 
endosperm hardness could be separated by analyzing NIR hyperspectral 
images (McGoverin & Manley, 2012; Williams, Geladi, Fox, & Manley, 
2009). The novel flatbed imaging platform we describe acquired 
multiwavelength NIR images of large numbers of maize kernels that 
properly trained algorithms could process to predict endosperm vitre
ousness, kernel density, and kernel protein content while simulta
neously measuring morphometric features such as kernel length and 
width. 

2. Materials and methods 

2.1. Seed population and genetic relationships 

WiDiv-942 is a panel of 942 maize inbred lines that produce physi
ologically mature kernels in the Midwest region of the United States 
(Mazaheri et al., 2019). Using a subset of 501 lines from the full WiDiv 
population, Renk et al. (2021) demonstrated that this population con
tains a significant amount of variation in kernel composition phenotypes 
such as carbohydrates, oil, and protein. Thus, this population is appro
priate for building models that can predict composition traits from NIR 
spectral information. 

All kernels were produced in 2018 in a field at the University of 
Wisconsin, West Madison Agricultural Research Station (WMARS) using 
one-row plots of 3.7 m length and 0.76 m spacing and arranged ac
cording to a randomized complete block design. Plants were self- 
pollinated to avoid any potential xenia effect of foreign pollen. The 
uppermost ear was harvested from five plants per row after plants 
reached physiological maturity, the ears were then dried with forced air 
until approximately 12% moisture and stored indoors. The genetic re
lationships between inbred members of a population can be visualized 
by performing principal components analysis (PCA) on sets of DNA 
sequence features called single nucleotide polymorphisms (SNPs). To 
show the relationships between members of WiDiv-942 used here, PCA 
was performed on a set of 5000 SNPs evenly sampled from the 899,784 
SNPs Mazaheri et al. (2019) originally identified. The principal com
ponents scores were computed using the package ‘PCAtools’ version 
1.2.0 (Blighe, 2019) in R version 3.6.3 (R Core Team (2020), 2020). 
Supplemental Fig. 2 shows the distribution of the samples selected to 
build each prediction equation within the full WiDiv-942 space. 

Three sets of genotypes were used to build and test prediction models 
for endosperm vitreousness, kernel protein, and kernel density. The 
three sets were formed with members of the WiDiv-942 population 
because of the diversity it displays for the traits under study and because 
of future intentions to use it in genetic studies of the compositional 
phenotypes. A preliminary investigation explored variation in vitre
ousness levels enough to indicate which genotypes may represent an 
even sampling of the range of values across the population. This infor
mation was used to create Set 1, comprising 1428 kernels from 149 
genotypes used to build a model that predicts vitreousness. To select 
lines for building the protein prediction equations, the full WiDiV-942 
population was scanned as powder using a commercial NIR analyzer 
(NIRS DS 2500, FOSS, Hilleroed, Denmark) and a model provided by the 
manufacturer. These results were used to select Set 2, comprising 479 
kernels from 150 lines used to create a protein prediction model. The 
results of the preliminary vitreousness survey were used to guide ge
notype selection for density because density correlates highly with vit
reousness. Set 3 refers to the 448 kernels extracted from 150 lines 
(Table 1) to create a density prediction model. Set 3 was also used to 
build weight and volume prediction models as those traits were directly 
measured for density calculations. Ten kernels per genotype were used 
for vitreousness and three kernels for protein and density. The total 
number of kernels shown in Table 1 is not exactly the product of ge
notypes and kernels per genotype because a few samples were discarded 

Table 1 
Composition statistics of maize kernels used for calibration and validation.  

Cross-validation External validation 

Trait Set Genotypes (n) Kernels (n) Mean SD CV Range Genotypes (n) Kernels (n) Mean SD CV Range 

Vitreousness (%) 1 99 949  66.97  12.09  0.18 35.08-95.8 50 479  68.36  9.48  0.14 41.33-89.87 
Protein (%) 2 107 320  12.51  2.13  0.17 8.17-19.45 53 159  12.32  2.1  0.17 8.02-18.2 
Density (g/cm3) 3 104 302  1.18  0.06  0.05 1.0-1.35 52 146  1.19  0.05  0.04 1.07-1.34 
Volume (cm3) 3 104 302  0.21  0.05  0.23 0.07-0.39 52 146  0.22  0.04  0.18 0.13-0.33 
Weight (g) 3 103 299  0.25  0.06  0.23 0.08-0.42 53 149  0.27  0.05  0.18 0.14-0.41 

SD = standard deviation, CV = coefficient of variation. 
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during laboratory analysis. 

2.2. Ground truth measurements of traits 

2.2.1. Endosperm vitreousness 
The 10 kernels from each of the lines in Set 1 that were scanned and 

then dissected for ground truth measurement of vitreousness following 
the methods described in Correa et al. (2002) and Ngonyamo-Majee 
et al. (2008) were not selected randomly. Instead, for each line, 100 
kernels were randomly selected and sorted into groups of 10 kernels that 
were visually most like each other. One kernel was randomly chosen 
from each of the 10 groups to make the final sample. This process pro
duced a representative sample set that reduced bias toward a particular 
size or shape. After scanning the germinal and abgerminal sides in the 
grid configuration, each kernel was soaked in distilled water for three 
minutes, then the pericarp and embryo were removed with a scalpel. 
The complete endosperm thus isolated was weighed on an electronic 
analytical balance (Ohaus AX224/E, Parsippany, New Jersey, USA). The 
floury endosperm component was manually removed using an electric 

rotary tool equipped with a 1/16 in. round engraving accessory with the 
aid of magnifying glasses. After all the floury endosperm was carefully 
removed, the weight of the remaining vitreous endosperm was recorded 
to calculate vitreousness as a percentage of the total endosperm weight. 

2.2.2. Density 
The density of 3 kernels randomly selected from each of the lines in 

Set 3 was determined by measuring buoyant force with an analytical 
balance according to the Archimedes principle. Supplemental Fig. 3 
shows the apparatus used. A 50 mL beaker containing 30 mL of distilled 
water at 22 ◦C was placed on a microbalance (Ohaus AX224/E, Par
sippany, NJ, USA). A kernel attached to a needle was submerged using a 
drill press stand to control the motion. The balance recorded an increase 
in mass after the kernel and a marked section of the needle were sub
merged. The known volume of the submerged section of the needle was 
subtracted from the total displaced volume. The measured weight of the 
fluid that the kernel displaces was converted to a volume (specific 
density of water is 0.998 g mL−1 at 22 ◦C). Dividing the mass of the 
kernel, measured separately, by the measured volume gives kernel 

Fig. 1. Acquisition and processing of hyperspectral 
images of maize kernels. A. Diagram of the flatbed 
hyperspectral scanner. B. The scanner produces a 
stack of 224 images, the pixels in each one registering 
the amount of light in a different narrow band of 
wavelengths between 950 nm and 1700 nm. C. 
Binarization produces a mask with kernel pixels set to 
1 and background pixels set to 0. D. The length and 
maximum width of each separate kernel is directly 
measured from the binarized image. E. The spectrum 
of each pixel in each kernel object is obtained from 
the stack depicted in B. The spectra from each pixel in 
the kernel object are averaged. To determine if the 
averaged spectra are from the germinal side of the 
kernel, or its abgerminal side, the average spectrum of 
pixels at the center of the kernel is used as an input to 
a PLS-DA classifier that is trained to distinguish be
tween the two sides. The up or down label and the 
kernel’s average spectrum are the inputs to a PLSR 
model that is trained to predict the indicated kernel 
traits.   
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density. The accuracy of the method was determined to be greater than 
99% by measuring kernel-sized pieces of pure minerals of known den
sities (pyrite, quartz, fluorite, aventurite and hematite). 

2.2.3. Protein 
Three kernels from each of the lines in Set 2 were randomly selected 

for total C and N analysis, from which total protein was calculated. Each 
kernel was ground using a mortar and pestle and transferred to a 2 mL 
microcentrifuge tube. The powder was dried at 60 ◦C for 48 h and stored 
in borosilicate glass desiccators. A microbalance (Mettler-Toledo XP6, 
Columbus, Ohio, USA) was used to prepare tin foil capsules containing 
10 mg of powder, which were combusted in an elemental analyzer (CE 
Elantech EA1112, Lakewood, New Jersey, USA). BBOT (2,5-Bis (5-tert- 
butyl-benzoxazol-2-yl) thiophene) and Atropine were used as calibra
tion standards as recommended by the manufacturer. Total protein was 
calculated as N × 6.25 expressed on a dry weight basis. 

2.2.4. Dimensions 
The length and width of 480 kernels in Set 2 were measured with a 

precision digital caliper (Mitutoyo 500, Aurora, Illinois) to determine 
the accuracy of the automated image processing-based measurements. 
Kernel length was measured from the kernel tip to the center of the cap. 
Kernel width was defined as the largest distance perpendicular to kernel 
length axis. 

2.3. Hyperspectral imaging device 

The data in this study were acquired with a hyperspectral imaging 
device developed in collaboration with Middleton Spectral Vision 
(Middleton, Wisconsin, USA). The device uses a 12-bit NIR line-scan 
camera (Specim model FX17e, Oulu, Finland) to collect images of 
samples placed above it on a horizontal 16 × 107 cm glass plate. A bank 
of eight broadband quartz halogen lamps provided full spectrum illu
mination (Fig. 1A). When the camera is fitted with a 33-mm focal length 
lens, its line of 640 pixels covers 102 mm, resulting in a spatial resolu
tion of 0.16 mm. The camera and lamps are mounted beneath the 
rectangular glass sample bed, facing upward. A motor translates the 
upward-facing camera and lamps along the long axis of the sample bed 
at 16.5 mm s−1 as the camera acquires lines (frames) at a rate of 100 s−1. 
Each pixel in the line registers the energy in 224 wavelength bands 
between 950 nm and 1700 nm, corresponding to a spectral resolution of 
3.3 nm. 

The scanner and software automatically scanned a dark and white 
reference image to normalize each pixel value when processing the data. 
A piece of porous white polytetrafluoroethylene was added to the 
beginning of the scanning region to collect a “white reference”. A 
baseline “dark” reference was acquired by closing the camera shutter for 
0.6 s. The spectra at each pixel in subsequent scans of biological material 
were corrected according to Equation (1). 

I0 − Id

I = Iw − Id
(1)  

where I is the corrected image, I0 is the raw image, Id is the dark refer
ence image, and Iw is the white reference image. 

The maize kernels to be scanned were either scattered randomly on 
the glass sample bed or placed in a 5 × 24 grid fixture with one kernel 
per cell (Supplemental Fig. 4). In both sample configurations, individual 
kernels were the analyzed unit. The grid arrangement allows a single 
indexed kernel to be retrieved for a posterior use such as destructive 
ground-truth measurement. The scattered arrangement is much faster, 
but it does not allow a particular kernel to be chosen for a future use. 
When the grid was used, each kernel was scanned twice - once with the 
embryo (germinal side) facing the camera and then the kernel was 
flipped to capture the abgerminal side. A model was trained to distin
guish between the two sides of a kernel (section 2.6). When kernels were 

scattered on the device, this model was used to determine which side of 
each kernel faced the camera. The two types of sample presentation 
served different purposes. The grid was used to associate image data 
with the same kernel used for destructive ground-truth measurements, 
which is necessary for building predictive models. The scattered kernel 
method was used in a high-throughput manner to make model-based 
inferences from many genotypes. 

2.4. Computational methods and feature extraction pipeline 

The raw images the device produces are multichannel images, which 
means they are m × n × z matrices where m and n are the width and 
length of the image in pixels and z is the number of wavelength bins (224 
in this work) at which the photon fluence has been measured. The 
following image processing steps were coded in the MATLAB (version 
R2019b) computer language to extract information from these hyper
spectral images of kernels in either the gridded or scattered 
configurations.  

i. Raw images that were spectrally corrected with white and dark 
reference scans using Eq.1 were converted to absorbance values 
using Eq. (2). 

Absorbance = log10(
1

reflectance
) (2)    

ii. Sweeping a line-scan camera does not necessarily produce square 
pixels. Absorbance images were resized using a bicubic interpo
lation method (imresize in MATLAB) and the inner distance of the 
first cell of the grid as a reference.  

iii. Each pixel having an absorbance value at 1090 nm less than 1.4 
was set to zero. This threshold value, determined by inspection, 
accurately segmented the kernels from the background to create a 
binary mask.  

iv. Small objects in the binary image, those containing fewer than 
700 pixels, were dust or debris and therefore removed from the 
binary mask.  

v. The average absorbance of a 3 × 3 pixels square region centered 
at the kernel’s center of mass was calculated for each wavelength 
in the absorbance array. These data were used to determine if a 
kernel in a scattered sample was germinal-facing or abgerminal- 
facing as explained in section 2.6.  

vi. For each object in a size-filtered binary mask (i.e., kernel), the 
absorbance at each wavelength (absorption spectra) were aver
aged across pixels to create an average absorption spectrum. This 
average spectrum was associated with a unique center-of-mass 
coordinate pair.  

vii. Kernel length, width and area were extracted based on the size- 
filtered binary mask using the methods Miller et al. (2017) pre
viously developed. Briefly, analysis of contour curvature initiates 
a process that identifies the tip of the kernel, which marks one 
end of the major axis (kernel length) and the longest orthogonal 
segment is kernel width.  

viii. For each scanned image containing many kernels, the averaged 
absorbances were exported to the R programing environment 
were the orientation and PLSR predicted traits (vitreousness, 
protein, density, weight and volume) were calculated with 
methods described in 2.5. 

2.5. Prediction model construction, calibration, and validation. 

Models to predict vitreousness, protein, density, weight, and volume, 
were built and tested using the ‘pls’ package version 2.8–0 (Liland, 
Mevik, & Wehrens, 2021) in R. Separate models were created for 
germinal-facing images and abgerminal facing images. The dependent 
variables were spectral data extracted from hyperspectral images 
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obtained in the grid configuration and the independent variables were 
trait measurements (section 2.2) made on the same kernels. For each 
trait, two-thirds of the kernels (n = 320 for protein, n = 302 for density, 
and n = 949 for vitreousness) were used for building the partial least 
squares regression (PLSR) model and one third (n = 159 protein, n = 146 
for density, and n = 479 for vitreousness) was held out to validate the 
model. The Kennard-Stone algorithm (Kennard & Stone, 1969) was used 
to partition the raw spectral data into these training and validation sets 
using the ‘prospectr’ package version 0.2.1 (Stevens & Ramirez-Lopez, 
2020) in R. Samples from the same genotype were assigned to one 
group or the other but not both to reduce associations between the 
calibration and validation data sets that could inflate prediction 
accuracy. 

After partitioning the raw spectral data into training and validation 
sets, each spectrum was subjected to one of 13 filters included in the 
‘waves’ package (Hershberger & Gore, 2020). This step determines the 
spectral filtering and smoothing pretreatment that enables a PLSR model 
to produce the most accurate predictions. To guard against overfitting, 
cross-validation with the “one-sigma heuristic” strategy included in the 
‘selectNcomp’ function of the ‘pls’ package was used to determine the 
lowest number of latent factors the model could use before the error of 
prediction (RMSEP) increased more than one standard error from the 
best result achievable using any number of factors. The selected model 
was used to perform an external validation using the remaining one 
third of the kernels. Performance statistics were calculated for the cross- 
validation of the calibration set and the external validation set (Table 1). 
For each trait-kernel orientation (germinal/abgerminal) combination, 
the pretreatment method with the lowest Root Mean Square Error of 
Prediction (RMSEP) was chosen. 

2.6. Kernel side classification 

Because composition differs between grain tissues, separate models 
were created for predicting traits from germinal-side and abgerminal- 
side images. To apply the correct model to each kernel in a scattered 
kernel image, the orientation of each kernel must be analytically 
determined. Partial least squares discriminant analysis (PLS-DA), a type 
of supervised learning (Barker & Rayens, 2003; Lee, Liong, & Jemain, 
2018; Ruiz-Perez, Guan, Madhivanan, Mathee, & Narasimhan, 2020), 
was used to classify each kernel in an image as germinal or abgerminal 
based on spectral information obtained from the 3 × 3 pixel square 
section at the center of mass. Images from kernel Set 3 (protein) were 
used to train and test the PLS-DA model using the function ‘plsda’ from 
the package ‘mdatools’ version 0.11.3 (Kucheryavskiy, 2020) using the 
“SIMPLS” algorithm in R. Four hundred and eighty (480) individualized 
kernels were scanned using the grid. The kernels were scanned in both 
orientations generating 8 images with 120 kernels each were the 

spectral data was extracted from each kernel. From a total of 960 
manually classified kernels (480 germinal side and 480 abgerminal 
side), half were randomly selected to train the algorithm. The optimal 
number of latent variables was determined using the ‘leave one out 
cross-validation’ (LOOCV) scheme. The lowest RMSECV value deter
mined the optimal number of latent variables (LV). Finally, the 
computed model was used to predict samples in the held-out validation 
set. To test the effect of spectral pretreatments on model performance, 
the same 13 spectral pretreatments evaluated during construction of the 
PLSR models were applied and subsequently submitted to PLS-DA cali
bration and cross-validation. The pretreatment with the highest classi
fication accuracy defined as the number of correct predictions divided 
by the total number of predictions was selected and used. Classification 
accuracy with the validation set was calculated to generate a confusion 
matrix, along with specificity and sensitivity rates (Supplemental 
Table 1). 

2.7. Complete pipeline 

The processes, measurements, and analyses described in Sections 
2.3-2.6 were combined to produce a pipeline shown in Fig. 1B-E. All of 
the code created to execute the analyses is available in this repository, 
https://github.com/jivarelao/Hyperspectral_Scanner. 

3. Results and discussion 

3.1. Variability of maize kernel traits in ground-truth sets 

Directly measured traits ranged widely across the kernel samples 
(Table 1). Kernel volume displayed the largest range (5.6-fold). Kernel 
weight was second at 5-fold, followed by vitreousness (2.7-fold), protein 
(2.4-fold) and density (1.4-fold). The protein range of 8.02%–19.45% 
agreed reasonably well with a previous single-kernel study (Baye, 
Pearson, & Settles, 2006), and a density range of 1.0–1.35 g cm−3 was in 
accord with the single-kernel findings of Gustin et al. (2013). The ranges 
were also consistent with values from commercial hybrids (Correa et al., 
2002). The range of kernel weight (0.08–0.42 g) and volume (0.07–0.39 
cm3) were likewise as expected for a diverse collection of inbred lines 
(Gustin et al., 2013). The large phenotypic diversity found in WiDiv-942 
produced a large range of endosperm vitreousness (35%-95%), compa
rable to previous studies of this trait (Correa et al., 2002; Ngonyamo- 
Majee et al., 2008). This amount of variation represented in a sample 
of more than 1400 kernels endowed the training data with enough vit
reousness variation to be generally useful in studies of maize. 

Table 2 
Performance of the PLS model for five kernel traits and two orientations using the optimal spectral pretreatment.     

Spectra pretreatment       

Kernel trait Set Kernel Orientation PLS factors Cross-validation External validation     

RMSE PRESS R2 RMSE R2 

Vitreousness (%) 1 Abgerminal SG.D1W11 13 7.42 52361.7 0.62 6.3 0.56   
Germinal SG 14 7.1 48611.9 6.5 6.6 0.51 

Protein (%) 2 Abgerminal SNV1D 11 1.06 360.9 0.75 0.85 0.84   
Germinal SNVSG 17 1.06 358.3 0.76 0.92 0.79 

Density (g/cm3) 3 Abgerminal SG 7 0.036 0.41 0.67 0.038 0.43   
Germinal SNV 8 0.042 0.53 0.52 0.04 0.52 

Volume (cm3) 3 Abgerminal Raw 17 0.029 0.26 0.63 0.027 0.54   
Germinal Raw 12 0.029 0.24 0.67 0.022 0.69 

Weight (g) 3 Abgerminal Raw 17 0.032 0.31 0.68 0.032 0.57   
Germinal SG.D1W11 9 0.033 0.34 0.66 0.027 0.69 

RMSE, Root mean square error of prediction; R2, Coefficient of determination; PRESS, Predicted residual sum of squares. 
Spectral pretreatments: SG.D1W11, Savitzky-Golay + 1st derivative using windows size of 11; SG, Savitzky-Golay; SNV1D, Standard Normal Variate + 1st derivative; 
SNVSG, Standard Normal Variate + Savitzky-Golay; SNV, Standard Normal Variate. 
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Fig. 2. Scatter plots of observed (ground truth) measurement versus spectral-based model predictions or direct measurements of dimensions. (A) kernel protein, (B) 
endosperm vitreousness, (C) kernel density, (D) kernel volume, (E) kernel weight. A-E, NIR-predicted and lab measured kernel and endosperm traits. (F) image-based 
kernel length versus hand measured kernel length. Each panel displays values for the external validation. The blue line represents the linear regression line based on 
the equation on the upper left. The dotted line shows the perfect agreement. R2, Coefficient of determination; RMSEP, root mean square error of prediction. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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3.2. Single kernel predictions based on NIR absorbance. 

The first derivative of the Standard Normal Variate (SNV) scatter 
correction method was found to be the best pretreatment for protein 
prediction. With it, we obtained a RMSEP of 0.85% and an r2 of 0.84 
when predicting protein from the abgerminal-side spectra. The effects of 
different spectral pretreatments on the model’s performance are 
compared in Supplemental Fig. 5. The highest accuracy obtained from 
abgerminal side agrees with the results reported by Jiang et al., 2007 
who also scanned maize kernels from both orientations to predict pro
tein using NIR. Our protein results closely agreed with Gustin et al., 
2013 who obtained an r2 of 0.86 and SEP = 0.89 using a single kernel 
NIR based prediction models. The protein results reported here also 
performed very similar to the ones shown by Spielbauer et al., 2009 who 
obtained SEP = 0.81 and r2 = 0.91 when scanning maize kernels in a 
custom made NIR machine. 

Only moderate r2 (0.43) but very low RMSEP (0.038 g/cm3) was 
achieved when total kernel density was predicted given abgerminal-side 
spectral pretreated with the Savitzky-Golay smoothing filter (Table 2). 
Gustin et al. (2013) reported SEP for single seed NIR prediction of total 
kernel density of 0.067 g cm−3 using microcomputed tomography as the 
reference method. Our low r2 value may be due to the narrow distri
bution of density values in the subset of the diversity panel selected. By 
contrast, NIR studies of maize kernels oftentimes include endosperm 
mutants or genotypes that have undergone selection for extreme endo
sperm characteristics, which may extend the range in a way that raises 
r2, a statistic that is highly dependent on the range of the validation set 
(Davies & Fearn, 2006). 

Moderately high r2 (0.56) was achieved for endosperm vitreousness 
(Fig. 2) using the abgerminal side and using the Savitzky-Golay 
smoothing and first order derivative with a windows size of 11. An 
RMSEP of 6.3% shows that this system compares favorably in terms of 
throughput and accuracy with previous reports. Ngonyamo-Majee et al. 
(2008) reported a prediction accuracy of 6.04 % for this trait, but used 
pre-processed ground kernels as the sample. An early application of NIR 
hyperspectral imaging to infer endosperm quality in intact kernels 
(Williams et al., 2009) proved the principle by showing that nonde
structive analyses could distinguish different categories of hardness. The 
results in Fig. 2 show how the present platform predicted continuous 
values of endosperm vitreousness from spectral images of intact kernels 
to produce results that could be used in quantitative genetics and gene 
mapping studies. 

Vitreousness is defined as a mass ratio of two completely separable 
solid phases, which sometimes is difficult to achieve, at least with the 
currently available mechanical separation methods. Oftentimes there is 
as a very thin transition zone of hard floury to vitreous area rather than a 
completely distinguishable boundary between a floury and vitreous 
part. Despite this potential source of noise in the ground truth data, the 
RMSEP (~6%) indicates this non-destructive method that takes kernel 
orientation into account will be effective and broadly applicable in 
studies of vitreousness. 

Fig. 2 shows that our models for predicting total kernel volume and 
weight showed moderate-high r2 (0.69 both) and low RMSEP values 
(0.022 cm3 and 0.027 g, respectively,) that were very similar to previ
ously reported predictions based on single-kernel spectra (Spielbauer 
et al., 2009). 

Correlation between the genotypic means of vitreousness, kernel 
protein and kernel density were calculated for the genotypes that are 
shared in the three Sets (Supplemental Fig. 6). A positive significant 
Pearson’s correlation coefficient of 0.67 (pval < 0.001) was found be
tween endosperm vitreousness and kernel density. This result agrees 
with the value reported by Correa et al., 2002 who found a positive 
significant correlation between these two traits (r = 0.87) and suggested 
that density may be a reliable tool for screening large maize data sets for 
vitreousness. Total protein was positively correlated (r = 0.39, pval <
0.01) with endosperm vitreousness, in close agreement with the r = 0.41 

found by Ngonyamo-Majee et al. (2008). 

3.3. Kernel position detection based on embryonic reflectance for high 
throughput scanning in bulk configuration 

When scattering the kernels over the scanning region, they will 
randomly land with either the germinal side (embryo) or abgerminal 
side facing the camera. In order to use the most accurate NIR model 
developed in section 3.2 without manually orienting each kernel, we 
explored using PLS-DA to classify the orientation of each kernel in the 
image based on NIR absorbance information. We hypothesized that a 
successful orientation classifier could be based on a reliable difference in 
some regions of the NIR spectra between the embryo and the endosperm 
(Orman & Schumann, 1992). To test this, 80 kernels from Set 3 were 
randomly chosen and the average absorbance for both positions was 
plotted. The region in the vicinity of 1200 and 1720 nm has distin
guishable higher absorbances for the embryo compared to endosperm as 
shown in Fig. 3. Osborne, Fearn, and Hindle (1993) has described that 
the major absorption band in oil is due to a long chain fatty acid moiety 
that gives rise to CH2 second overtone at 1200 nm and the band near 
1180 nm has been assigned as the second overtone of the fundamental 
C–H absorption of pure fatty acids containing cis double bonds such as 
oleic acid (Sato, Kawano, & Iwamoto, 1991). Cho and Iwamoto (1989) 
correlated the absorption bands at 1710 and 1725 nm to linoleic and 
oleic acids, respectively. The larger absorbances observed in the afore
mentioned regions in our study could, therefore, be correlated to the two 
dominant fatty acids presents in corn, which are mostly presented in the 
embryonic region (Barrera-Arellano, Badan-Ribeiro, & Serna-Saldivar, 
2019). 

Instead of using the average absorbance of the whole kernel exposed 
to the camera as input to train the classification algorithm, a 3 × 3 pixel 
square at the center of mass was sampled. This region invariably over
laid the embryo when it faced the camera, and the endosperm when the 
abgerminal side faced down. Absorbance data from this centrally- 
located group of pixels provided a substantially clearer signal than 
averaging the whole region. Absorbance data of Set 3 were used to 
calibrate and test the PLS-DA algorithm (section 2.6). Half of the 
manually classified samples were randomly selected for calibration 
while the other half was used for validation. Almost perfect classifica
tion accuracy was achieved with over 99.5% of correct position identi
fication in both the calibration and validation dataset (Supplemental 
Table 1). 

The previously developed PLS-DA model (section 2.6) was included 

Fig. 3. Reflectance spectra in the NIR region for 80 maize kernel samples. Half 
of the samples were manually oriented with the germinal (embryo) side facing 
the camera (red lines, n = 40) and the other half with the abgerminal side 
facing the camera (light blue lines, n = 40). The vertical dotted lines indicate 
spectral regions that differed most between the two sides of the kernel. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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in the high throughput NIR processing pipeline to classify each kernel 
(Fig. 1E) so its orientation can determine which trait-specific NIR pre
diction model is used (Fig. 4). 

3.4. Single kernel morphometric feature extraction based on image 
analysis 

The binary mask used to extract NIR absorbances from individual 
kernels was also used to measure kernel length and width (Fig. 1D). 
Measuring the kernel length (major axis) and width (minor axis) de
pends on correctly identifying the kernel tip. The algorithm developed 
by Miller et al. (2017) was slightly modified to measure kernel length 
and width from the images this novel flatbed NIR scanner produces. The 
correlation between hand and image-based measurements of kernel 
length was 0.95 (Fig. 2F) and 0.9 for kernel width. In general, this 
correlation may be limited by inaccuracy of hand measurements or 
inability of the image processing algorithm to correctly identify the tip 
of each kernel, particularly in kernels having imperfectly flat faces and 
rounded edges. 

4. Conclusions 

This upward-focused flatbed hyperspectral imaging scanner gener
ated data that custom models used to predict important maize kernel 
traits with high throughput (75 kernels nondestructively prepared and 
measured in approximately 60 s). Endosperm vitreousness of a single 

kernel was predicted to a useful degree across a wide range of kernel 
types, indicating that this automated alternative to a laborious manual 
method would be generally useful rather than population dependent. 
Accuracy of kernel protein and density predictions, which are relevant 
to multiple grain markets, were similar to or greater than previous re
ports. The imaging capabilities of the platform allowed germinal or 
abgerminal side-specific models to be applied, which improved accuracy 
for some traits, and it enabled kernel size dimensions to be measured at 
the same time. These features could make the platform described here 
useful to food processors, livestock feed producers, maize researchers, 
and breeders. The platform may prove useful in the study of other seed 
crops. 
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