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Abstract: Alteration of natural surface flow paths across South Florida has been detrimental to the environmental health and sustainability
of the Everglades and surrounding ecosystems. As part of the Comprehensive Everglades Restoration Plan (CERP), predicting flows into
Everglades National Park (ENP) is a central concern of effective management strategies. Management efforts have established weekly target
flows into Everglades National Park through optimization of numerically intensive hydrological models. These target flows are focused spe-
cifically on flows across US Highway 41, also known as the Tamiami Trial. To aide in timely management assessments in response to current or
predicted hydrologic conditions, the Tamiami Trail Flow Formula (TTFF) was developed previously to predict weekly target flows based on
linear regression of six theorized flow drivers. It is known that these drivers exhibit nonlinear dynamics, suggesting that there is room for
improvement in relation to the strictly linear TTFF. We used empirical dynamic modeling (EDM), a nonparametric modeling paradigm for
forecasting and analyzing nonlinear time series, to show that prediction accuracy is improved when nonlinearity is accounted for. This method
relies on weighted linear regressions that depend on specific environmental conditions or system states, i.e., in which the regression gives
greater weight to input variables that have values that are more similar to the current state. Surprisingly, we found that only two of the six
standard TTFF variables are required in the nonlinear weekly forecast model (upstream and downstreamwater levels), and thus the EDMmodel
not only improves accuracy but also greatly simplifies hydrologic forecasting. DOI: 10.1061/(ASCE)WR.1943-5452.0001598. This work is
made available under the terms of the Creative Commons Attribution 4.0 International license, https://creativecommons.org/licenses/by/4.0/.

Introduction

Many analytic approaches use equation-based models as approxi-
mations of real-world systems to test hypothesized mechanisms or
to predict future outcomes. However, real-world systems often are
nonlinear and multidimensional, which can render explicit para-
metric approaches intractable. Empirical approaches, which extract
information from the data instead of relying on hypothesized equa-
tions, represent a natural and flexible approach to modeling com-
plex, nonlinear systems such as managed water resources.

Empirical dynamic modeling (EDM) is a nonparametric frame-
work for modeling nonlinear systems based on the mathematical
theory of reconstructing attractors (vector fields that can show how
variables interact though time) from time-series data (Takens
1981). EDM initially was intended to address problems in ecol-
ogy (Sugihara and May 1990; Sugihara 1994; Dixon et al. 1999;

Sugihara et al. 2012; Deyle et al. 2016; Ye and Sugihara 2016).
However, its applications have extended to many areas such as cli-
mate change (van Nes et al. 2015), atmospheric sciences (Sugihara
et al. 1999), neuroscience (Segundo et al. 1998), studying the dy-
namics of infant heart rhythms (Sugihara et al. 1996), identifying
the drivers of influenza outbreaks (Deyle et al. 2016), and classi-
fying complex behaviors in the nematode C. elegans (Lorimer et al.
2021; Saberski et al. 2021). To our knowledge, EDM has not yet
been used specifically to map hydrologic dynamics. Here, we intro-
duce the use of EDM as a tool for forecasting managed water flows
in Everglades National Park (ENP) as a component of the Compre-
hensive Everglades Restoration Plan (CERP). A lucid and acces-
sible introduction to EDM was provided by Chang et al. (2017).

Managed Flows: Everglades Restoration

The Florida Everglades originally consisted of 3 million acres of
marsh draining the Kissimmee River Basin and Lake Okeechobee
southward into Florida Bay. Starting in the late nineteenth century,
ambitious plans to drain the Everglades to produce arable and hab-
itable lands were initiated, eventually coalescing in 1948 under the
Congressionally authorized Central and Southern Florida (C&SF)
Project under auspices of the USACE. Design goals were to provide
flood control and agricultural sustainability, and major features in-
cluded the Herbert Hoover dike impounding Lake Okeechobee,
creation of a large agricultural area along the southern lake border,
a levee along the eastern boundary of the Everglades, and im-
poundment of three water conservation areas (WCAs) linking Lake
Okeechobee to Everglades National Park and the southern coast
(National Research Council 2008).

The result of these water control efforts was a fundamental al-
teration of the natural flow paths and hydroperiods (Fig. 1), which
eventually was recognized as being detrimental to the environmental
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health and sustainability of the Everglades and its ecosystem serv-
ices. Recognition of these changes led to the Congressionally
mandated Comprehensive Everglades Restoration Plan in 2000,
a framework for restoring, preserving, and protecting the South
Florida ecosystem. The CERP originally was designed with 68
project components expected to take 30 years at an estimated cost
of $8 billion. Over the last 2 decades, it has been recognized that
the CERP and state restoration efforts must encompass an adaptive
management approach. Therefore, the restoration today is a com-
plex, adaptive collaboration that is continuing to evolve (National
Academies of Sciences 2018).

A central tenet of the CERP is to increase water flows and hydro-
periods within Everglades National Park. A fundamental barrier to
this was construction of the Tamiami Trail (US Highway 41) in the
early twentieth century. The trail acts as a levee preventing natural
flow from the upstream WCAs and natural areas. Flows from the
upstreamWCAs are managed primarily through the S-12 gated weirs
(Fig. 2), with both upstream and downstream regulation limits.

A recent adaptation of restoration water management is the
redevelopment of flow targets for releases into Everglades National
Park as part of the Combined Operational Plan (COP) (USACE
2017). These targets serve as goals for maintaining healthy water
levels throughout the greater Everglades system based on multiple
environmental variables such as weekly rainfall and estimated evap-
oration, and are recalculated on a weekly basis. Because these flow
targets are derived from up-to-date environmental conditions, future
flow targets cannot be determined exactly without knowing the fu-
ture environmental state. In order to best prepare for these weekly
targets, the Tamiami Trail Flow Formula (TTFF) (SFWMD 2020b)
was developed recently to forecast future flow targets. A diagram of
the inputs and outputs to these models is presented in Fig. 3. The
goal of the TTFF is not to predict the following week’s flow into the
ENP, but to forecast the following week’s target flow. This subtle dif-
ference has huge implications: although the following week’s target
will guide what the managed flow into the system will be, predicting
the target is fundamentally different than predicting the raw flow.

(a) (b)

Fig. 1. (Color) Schematic of flow paths in South Florida: (a) predrainage; and (b) modern. In the predevelopment era, the Kissimmee Valley
floodplain drained into Lake Okeechobee, which then overflowed its southern rim in a river of grass to the southern peninsula. Postdevelopment,
flow paths were channelized, represented by arrows, and the remaining segments of the Everglades were impounded with levees and canals. (Base
map courtesy of South Florida Natural Resources Center.)
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The quality of the forecasts made by the TTFF are particularly
critical because the system must be managed as a whole, taking into
account both the desired downstream conditions and the upstream
storage capacity. Upstream basins are large and respond slowly
to changes in operational efforts. Thus, considerable lead time is
needed to adjust basin water levels. Forecasting next week’s target
flow is extremely important because it can provide valuable lead
time for managers to prepare the upstream basin level appropriately
to meet the future desired target effectively.

Setting the incoming flow volumes appropriately is critical for
acieving projected deliveries through Tamiami Trail and not creat-
ing adverse impacts due to flooding. Improvements in forecast skill
will reduce the likelihood of ecologically adverse conditions within
the WCAs or, simply put, having too much or too little water
to manage the system properly. A primary aim of the present work
was to examine the TTFF to ascertain the completeness of its

information content and to compare it with and determine the po-
tential benefits of forecasts made using EDM.

Target Flows and the Tamiami Trail Flow Formula

Target flows were determined over the 1965–2005 period using
the Regional Simulation Model (RSM) (SFWMD 2020a) and an
inverse modeling tool, identifying optimal flows in response to
hydrologic constraints (SFWMD 2020b). The resultant time series
is referred to as QsumðtÞ, representing cumulative weekly target
flows across Tamiami Trail into Everglades National Park. To model
these target flows in response to current or future conditions,
the Tamiami Trail Flow Formula, a linear model, was developed
(SFWMD 2020b). TTFF developers recognized the nonlinear
nature of the problem but decided that a linear formulation per-
formed adequately and was simpler and easier to understand than

Fig. 2. (Color) Schematic of Everglades water control structures and projects. The Tamiami Trail, S-12 and S-333 structures separate upstream water
conservation areas (WCAs) from Everglades National Park. (Base map courtesy of South Florida Natural Resources Center.)
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a nonlinear or machine learning model. The TTFF presumes that
precedent values of rain, evapotranspiration, upstream and down-
stream water levels, and flow are required to best predict target
flows.

The TTFF is

Q̂sumðtÞ ¼ β1SWCAðtÞ þ β2SENPðtÞ þ β3Qsumðt − 1Þ
þ β4RðtÞ þ β5PETðtÞ þ β6ZAðtÞ ð1Þ

where Q̂sumðtÞ = predicted target flow release for coming week, and
is the sum of S-12A, S-12B, S-12C, S-12D, and S-333 (Fig. 2);
SWCAðtÞ = spatial average of observed water levels in WCA-3A
at start of current week (the start of a week is Sunday and the end
of a week is Saturday); SENPðtÞ = observed water level in Ever-
glades National Park, Northeast Shark River slough (NESRS), for
current week;Qsumðt − 1Þ = target flow releases for previous week;
RðtÞ = areal average of total weekly rainfall for WCA-3A; PET =
total weekly potential evapotranspiration at 3AS3WX station; ZA =
Zone A regulation water level of current week in WCA-3A (when
water levels in WCA-3A are above ZA, flood control water releases
are authorized across Tamiami Trail); and β = linear regression fit
coefficients.

Plotting the raw variables against target flows (Fig. 4) revealed
that the highest correlation among the variables is the previous
week’s target flow (autocorrelation). This makes sense because
water flows relatively slowly through the Everglades, giving the
system large inertia. Therefore we expected flows to have relatively
little change from the prior week and to exhibit temporal autocor-
relation. Upstream and downstream water levels are correlated
noticeably with future flows. The other two variables that have pos-
itive correlations with flow are upstream (WCA-3A) and down-
stream (NESRS) water-levels. Despite the positive correlations,
the data suggest that a nonlinear fit may be more suitable for these
variables (e.g., exponential relationship between flow and NESRS
level). The remaining variables, rain, PET, and ZA, have no clear
indication of linear relationship or covariation (correlation) of any
kind, which often occurs with nonlinear dynamics and overlapping
effects from explanatory variables (Sugihara et al. 2012). These
variables also likely are coupled with each other (e.g., upstream

water level influences downstream water level, and rainfall influ-
ences water levels), creating a complex web of dynamics that may
be difficult to define with parametric models. Taken together, this
suggests that predictions might be improved when the system is
viewed through a nonlinear, nonparametric lens.

Despite the strictly linear nature of the TTFF, it seemingly has
impressive short-term predictive accuracy, achieving a correlation
between observed and predicted weekly values of ρ ¼ 0.90. How-
ever, this largely is due to the significant amount of autocorrelation
in the data on a weekly time scale: a constant predictor (predicting
that the value next week will be the same as the current) achieves a
predictive accuracy of ρ ¼ 0.88. Other metrics for predictive accu-
racy show that the formula has much room for improvement: it cor-
rectly predicts the directional change in flow only 60% of the time,
and the prediction accuracy of changes in flow (ΔQ ¼ Qtþ1 −Qt)
is ρ ¼ 0.45.

Nonlinear, Nonparametric Approaches

As noted previously, the TTFF was generated through a generalized
linear model of six variables hypothesized to be influential to flow
using data collected from 1965 to 2005. Because the TTFF was
generated from a single best-fit solution of the entire data record,
the model is implicitly stationary: resolved coefficients of the TTFF
are fixed constants reflecting the global nature of the statistical re-
gression. This is fundamentally distinct from dynamic nonlinear
models, in which relationships among variables can change. In fact,
nonlinear models can be constructed piecewise from segmented lin-
ear models to address how relationships among variables change as
the system state evolves.

For example, if one assumes that the dynamics are changing
slowly over time, the linear solution can be recalculated every few
years to find a new set of coefficients specific to recent data. Sim-
ilarly, if dynamics are theorized to change seasonally, one may cal-
culate coefficients for each month of the year. Such partitions are
known as “similar states,” in which a state refers to a set of con-
ditions associated with a specific set of dynamics. Similar states
exhibit similar dynamics.

Typically, the state of a natural system depends on multiple fac-
tors (so-called “state variables”). For example, in the seasonal

Fig. 3. (Color) Inputs and outputs to TTFF. Each week, the current week’s environmental conditions are used to generate a target flow that dictates
management for the following week. This data is also used to forecast next week’s target flow using the TTFF, a forecast that implicitly accounts for
next week’s environmental conditions. Overall, this produces both a target to guide management for the upcoming week and a forecast to predict next
week’s new target, giving time for managers to prepare.
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model which calculated coefficients for each month (described pre-
viously), the time of year would be considered to be one state var-
iable. Just as the seasonal model recalculates coefficients depending
on the month, similar nonlinear models can be built to account for
other state variables. For example, in the case of the TTFF it may be
sensible to rederive coefficients by partitioning the data into subsets
with similar flow rates, because high flow rates may have different
dynamics than low flow rates.

EDM

Empirical dynamic modeling focuses on reconstructing a system’s
state space: a multidimensional representation of system variables
as a function of time (Sugihara and May 1990; Sugihara 1994;
Sugihara et al. 2012). Forecasting leverages the fact that points
localized in state space (nearest neighbors) exhibit similar dynam-
ics (Sugihara and May 1990; Sugihara 1994). Whereas the preced-
ing examples describe ways to define the state space based on one
variable (e.g., month or flow regime), EDM considers multiple var-
iables together to identify similar states without presuming specific
relationships (Deyle and Sugihara 2011; Ye and Sugihara 2016);
instead, dynamics are derived directly from the data.

EDM can be used to screen the available time-series data and
identify which variables are relevant and usefully can be included
in a nonlinear forecasting model. Additionally, EDM involves the
use of a causality test, convergent cross-mapping (CCM, Sugihara
et al. 2012), which identifies nonlinear coupling between variables
directly from time-series data (Fig. S1). This contrasts the common
modeling procedure of the TTFF in which the specific variables
used are asserted or hypothesized to be relevant.

We utilized a state-space forecasting technique within the EDM
framework called sequential locally weighted global linear maps
(S-Maps, Sugihara 1994). At each point in time, coefficients are
recalculated based on a linear fit that maps state variables onto
a target variable, similar to the TTFF formulation. However, each

fit at time t is weighted toward states similar to that of time t. This is
analogous to the nonlinear methods described previously; however,
instead of rigid cut-offs defined by the partition (e.g., partitioning
data strictly by month, with weights of either 1 or 0), weights are
applied smoothly based on proximity, with an exponential kernel
applied to all points in the state space. A nonlinearity parameter, θ,
can be adjusted to change how state-specific forecasts are: θ ¼ 0
gives all states equal weight regardless of state similarity, equating
to a global autoregressive model. However, higher values of θ local-
ize the forecast to more state-specific conditions, accounting for how
system dynamics change over time. Typically, when using S-Map
(or other EDM methods such as those described in the following
section), the value being predicted from is left out of local linear
regressions in order to avoid in-sample fitting and to obtain unbiased
predictions (i.e., leave-one-out cross-validation).

The S-Map method adds only one additional step into the process
of the original TTFF. Both the TTFF and S-Map forecasts utilize
regressive maps from driving variables onto flow targets; S-Maps
also apply weights to these regressions such that nearest neighbors
are weighted more heavily in each prediction.

Models

The system state can be defined in many ways. For example, the
state can be defined simply using the value of one variable (e.g., a
high-flow state versus a low-flow state), or combinations of multi-
ple (e.g., high and low flow in the winter versus high and low flow
in the summer). We analyzed the performance of four different
ways to define system state
1. Interannual predictor: recalculates linear regressions of the six

variables from Eq. (1) using the previous 5 years of data [time
points ðt−260Þ; t] to predict flow at time tþ 1.

2. Seasonal predictor: recalculates coefficients using historical data
within 6 weeks of the current year-day. For example, if a forecast
is predicting flow in the first week of March, all historical data

Fig. 4. (a) Time series of Qsum and the presumed causal variables; and (b) scatter plots of the variables versus Qsum.
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between mid-January and mid-April are used to generate linear
coefficients.

3. Variable-specific redictor: recalculates coefficients at each time
(t) using the 10% of values in the data set that have the values
closest to that of the given variable (v), i.e., the timepoints (t%)
with the smallest values | vt − vt%|. This was performed on the
five theorized drivers of flow.

4. EDM S-Maps: in contrast to the variable-specific model in
which data are partitioned based on the value of a single vari-
able, S-Maps use all input variables to define the state space. At
each point in time, the nearest neighbors are defined as the other
points in time that have similar sets of all of the variables (as
measured by Euclidean distance in state space), not just one var-
iable. Coefficients are recalculated at each point in time, just as
in the preceding models; however, regressions are weighted to-
ward state-space coordinates that have similar states (i.e., simi-
larly valued state-variables at a particular time). The variables
included in these S-Map forecasts are the six TTFF variables as
well as a sine and cosine term each with a 1-year period to
represent the time of year.

Results and Discussion

Model Coefficients

When the TTFF was formulated, the static coefficients were asso-
ciated with physical processes. For example, rain had a positive
coefficient that was interpreted as more rainfall should increase
overall flow (SFWMD 2020b). However, depending on the data
used in the linear regression to formulate the TTFF, one can obtain
either a negative coefficient, a positive coefficient, or a coefficient
near 0 (Fig. 5). For example, in Model 1 (interannual predictor), we
found that the linear regression calculated using only data from
1985 to 1990 yielded a negative coefficient for rain (Fig. 5). This
highlights that it can be dangerous to make physical interpretations
based on linear coefficients if the results change depending on the
data used. In this case, we suggest that the influence of rain on flow
targets can in fact change from positive to negative depending on
the state of the system. For example, certain states may cause

rainfall to increase the downstream water level more so than
upstream, which in turn may reduce the overall target flow.

Each model resulted in coefficients that change over time. For
example, coefficients change for the interannual predictor [Fig. 5(a)]
and seasonal predictor [Fig. 5(b)]. The interannual predictor reveals
coefficients with significant temporal variation, exhibiting dynam-
ics reflective of external interactions. There was a large excursion
in the NESRS, ZA, and PET coefficients from the mid-1990s to
2000. This was a period of high water levels in the upstreamWCAs,
with accordingly negative influence of NESRS (downstream water
levels) and positive forcing associated by upstream water availabil-
ity (ZA).

The seasonal predictor recovers dynamics reflective of the South
Florida summer monsoon, with a dry season from November
through April, and a wet season from May to October. Here,
WCA-3A and ZA (upstream water supply) closely reflect these
monsoon patterns with a distinct shift from positive to negative co-
efficients in April and November. Furthermore, the downstream
NESRS exhibits a delayed response consistent with water manage-
ment releases.

Model Performance and Causal Inference

Fig. 6 compares the accuracy of all models tested. We used the
mean absolute error (MAE) as our main metric for model accuracy
because it is a meaningful value for managers implementing these
predicted target values. The TTFF achieves a MAE of 7.2 m3=s.
The interannual predictor performed the worst, with a MAE of flow
forecasts of 7.3 m3=s. Three of the variable-specific predictors
(using Rain, ZA, and PET to define the system state) also performed
poorly (worse than the TTFF). The other three variable-specific
predictors (using NESRS, WCA-3A, and flow to define state-space)
outperformed the TTFF, achieving a MAE under 7.2 m3=s. The
second-best model was the seasonal model, achieving a MAE of
6.9 m3=s. However, S-Map forecasts provided the highest fidelity,
achieving a MAE of 6.5 m3=s.

The six variables selected as independent variables of the TTFF
model make complete sense from the perspective of a hydrologic
system. However, all variables may not provide significant infor-
mation for improving forecasts.
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Fig. 5. (Color) (a) Recalculating the TTFF coefficients every 5 years yields different coefficients over time compared with the linear coefficients
defined by the TTFF (red lines); and (b) recalculating the coefficients depending on the time of year reveals seasonal dynamics among the TTFF
variables.
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To verify that the five hypothesized variables are causal drivers
of flow targets, we performed the EDM nonlinear causality test
convergent cross-mapping (Sugihara et al. 2012). Despite the lim-
ited correlation between flow targets and these variables (Fig. 4),
CCM revealed evidence for nonlinear coupling between all five
variables and flow targets (Fig. S1). An introduction to CCM was
presented by (Sugihara Lab 2015). Variables that have weak cou-
pling (low CCM values, e.g., Rain and PET) do not necessarily
provide useful information for improving predictions beyond the
information provided by the strong drivers (e.g., upstream and
downstream water levels). To further evaluate whether the five
theorized driving variables of the TTFF are important for making
predictions, we measured the performance of the S-Map predictor
with variables removed one at a time (Fig. 7). Three of these var-
iables (ZA, PET, and Rain) had little to no negative impact on over-
all predictions when removed. This suggests that these variables,
although they were shown to be weak causal drivers with CCM,
may not be important for defining the state space of the system; no
matter what their values were, the dynamics ofQsum did not change
appreciably. As a further check, we performed an exhaustive as-
sessment of state-space variable combinations using the EDM mul-
tiview algorithm (Fig. S2) (Ye and Sugihara 2016). The multiview
approach tests the predictive accuracy of using different combina-
tions of variables (with varying time delays) to reconstruct the state
space. This gives a more complete measure of the important of var-
iables for making predictions (Fig. S2). Combined with the CCM
results, these analyses confirmed that the variables ZA, PET, and
Rain in the historical data, although they potentially are important,
are not historically important for the overall goal of predicting in-
tegrated water flows on a weekly time scale across the Tamiami
Trail.

We found that predictions were significantly hindered when
WCA-3A and NESRS were removed (Fig. 6). Physically, this aligns

with the fact that upstream (WCA-3A) and downstream (NESRS)
water levels are the primary variables determining weir flow,
whereas rain and PET accumulated over one week are integrated
drivers of these upstream and downstream water levels. Further-
more, focusing on periods of high flow and low flow revealed that
the WCA-3A water stage is more important for making forecasts
during high flows, whereas the stage in the NESRS is more
important when predicting low-flow regimes.

The accuracy of the S-Map forecasts was further improved to a
MAE of 6.3 m3=s when ZA, PET, and Rain were excluded from the
embedding. Fig. 8(a) shows this improvement compared with the
performance of the TTFF on the test data set of weekly sampled data
spanning 1965–2005. Furthermore, the prediction improvement var-
ied depending on the flow: S-Maps outperformed the TTFF during
all flow regimes, although periods of lower flow had the greatest
improvement [Fig. 8(b)]. This also was true for a contemporary data
set (weekly data from 2007 to 2020) [Figs. 8(c and d)].

The TTFF achieves a seemingly significant predictive accuracy
with correlation between observed and predicted target flows of
0.90. However, upon inspection, it is apparent that such accuracy
is not hard to achieve; simply predicting that next week’s flow will
be the same as this week’s flow achieves a comparable correlation
of 0.88. By removing variables one at a time from the TTFF, model
performance stays essentially constant (Appendix). This suggests
that relationships presumed by TTFF may not be as fully inform-
ative for forecasting dynamics of the system as one might presume.

Because the correlation between observed and predicted values
is obscured by the high level of autocorrelation in the system, cor-
relation is not the best metric to determine the significance of pre-
dictions. Here, we focused on mean absolute error as a standard for
measuring predictive accuracy. Using S-Maps, we found an aver-
age improvement of 0.9 m3=s per weekly prediction (from a MAE
of 7.2 to 6.3 m3=s). This translates to a predicted flow of over
500,000 m3 of water over the course of 1 week. Still, without a
point of reference, the relative magnitude of this improvement is
difficult to assess. We found that predicting the correct directional
change (higher or lower next week than the current week) increased
from 60% with the TTFF to 70% with S-Maps. We determined a
null standard for this metric to be 55% by predicting that next
week’s change will be the same as that of the previous week (i.e., if
the flow target increased last week, it will increase again next
week). Thus, an improvement from 60% to 70% corresponds to an
improvement from 5% above the null to 15% above the null. Fur-
thermore, the correlation between predicted and observed changes
in target flows from the prior week (ΔQ ¼ Qtþ1 −Qt) improved
from ρ ¼ 0.45 with the TTFF to ρ ¼ 0.58 with S-Maps.
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State-Space (Nonlinear) Relationships

If a real-world system exhibits purely linear dynamics, reducing the
amount of data used in the best-fit solution should hinder predic-
tive accuracy because it reduces the signal-to-noise ratio (assuming
equal amounts of noise throughout the time series). However, if
partitioning the data into state-dependent subsets leads to improved
predictions, the system dynamics are in fact different within each
partition (i.e., the system is nonlinear). We found that certain par-
titions led to increased predictability compared with the general
linear solution (TTFF), suggesting that this system is indeed non-
linear. Specifically, we found that the seasonal partitions performed
best (aside from S-Maps), suggesting that the dynamics of this sys-
tem are highly dependent on seasonal forcing.

A 5-year moving window performed the worst of the models
tested, obtaining a MAE of 7.3 m3=s (Fig. 6). This suggests that the
system does not change significantly on a year-to-year basis. How-
ever, that is not to say that dynamics do not change interannually
at all; rather, the potential nonlinearity accounted for does not im-
prove predictions more than the negative impact of using fewer data
points, which reduces the signal-to-noise ratio. We did find that a
5-year window outperformed all other window sizes tested [ranging

from 2 to 20 years (Fig. S3)]. This suggests that window sizes that
are too small have a large signal-to-noise ratio, whereas window
sizes that are too large obscure the nonlinear processes.

The Zone A regulation potentially has a strong causal influence
on flow targets; it had the third highest CCM value (Fig. S1) and
was the third most important variable in mulitview embeddings
(Fig. S2). This likely was due to the strong seasonal forcing in this
system; the Zone A regulation is a waveform with constant annual
periodicity. Although this value may influence managed flows in
the region, it more likely contributes to predictive models as a var-
iable that helps define the time of year (season). This is affirmed by
the predictive accuracy barely diminishing when it was removed
from S-Map embeddings (Fig. 7), which already include sine and
cosine terms to provide seasonal information.

When partitioning these results specifically into periods of high
and low target flows, we found that water levels in WCA-3A are
more important when making predictions during high-flow periods,
whereas water levels in the NESRS are relatively more important
during low-flow periods (Fig. 7). This may be explained by water
management operations in this region: when upstream water levels
(WCA-3A) are high, water is available for release into ENP.
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Conversely, when downstream (NESRS) water levels are low, there
is a need to release water to mitigate drought, likely at lower flow
values.

The TTFF was formulated specifically using weekly data col-
lected from 1965 to 2005. It is instructive to measure whether the
predictive improvement obtained with S-Maps constructed using
data from the same 1965–2005 period is still exists in recent data.
S-Maps still outperformed the TTFF using data spanning 2007–
2020 [Figs. 8(c and d)].

Although EDM outperformed the TTFF over the course of the
entire time series on average, it still may be possible that the TTFF
outperforms S-Maps during specific flow regimes. An important
management concern of flows from the WCAs into ENP are low-
flow regimes during dry season and drought conditions. S-Maps
outperformed the TTFF during low flow (0–25 m3=s), especially
during flows close to 0 m3=s [Figs. 8(b and d)]. Fig. 8(e) shows an
example of the significant improvement gained using S-Maps.

The S-Map forecasts are fundamentally similar to those of the
TTFF. The main differences are that (1) S-Maps utilize fewer var-
iables (they do not include Rain, ZA, or PET), and, most impor-
tantly, and (2) S-Maps solve for linear fits only on similar states
rather than on all historical data. However, just these two changes
significantly improve forecasts. This demonstrates that nonlinear
forecasting does not need to be complex; rather, it can be imple-
mented almost as easily as linear formulations, and provides insight
into nonlinear relationships.

Conclusion

A guiding principle of the Comprehensive Everglades Restoration
Plan is to get the water right. This refers to restoring the quantity,
quality, timing, and distribution of water throughout the greater
Everglades system. This work focuses on the quantity aspect of this
plan. A core component of this objective is management of water
delivered across the Taimiami Trail from the upstream water con-
servation areas into Everglades National Park. This management is
highly constrained by competing interests of hydroperiod and water
depths for ecologic benefit, flood control for agricultural and urban
interests, and water quality. These issues become particularly acute
during the seasonal dry periods and droughts. Although efforts con-
tinue to remove barriers to natural sheetflow across the Trail, the
active management of this complex, nonlinear objective is a fun-
damental lever in the water managers toolbox toward Everglades
restoration.

This work highlighted the importance of model selection when
dealing with real-world systems. In cases in which the system is
multidimensional and dynamic, it is ambitious to assume that a sin-
gle linear equation can describe the dynamics of a system. Despite
this, such linear models often are favored due to their simplicity.
However, significantly improved nonlinear approaches do not ne-
cessitate significantly complicated models. Here, we used the same
linear regressive approach as was used to formulate the TTFF; how-
ever, we added a nonlinear perspective by partitioning the data into
similar states. This effectively changed the focus of the model from
determining the single set of rules that defines the system to deter-
mining the rules of this system when it appears at a specific point in
time. This nonlinear perspective significantly improved predictions
of weekly integrated flows from the WCAs into ENP, while also re-
vealing dynamical truths about the system. Because nonlinear dy-
namics are ubiquitous in nature, such nonlinear approaches should
also be ubiquitous in management efforts.

Appendix. Reductions of TTFF

Reductions of TTFF (Table 1)

Q̂sumðtÞ≈ α1SWCAðtÞ þ α2SENPðtÞ þ α3Qsumðt − 1Þ
þ α4PETðtÞ þ α5ZAðtÞ ð2Þ

Q̂sumðtÞ ≈ γ1SWCAðtÞ þ γ2SENPðtÞ þ γ3Qsumðt − 1Þ þ γ4ZAðtÞ
ð3Þ

Q̂sumðtÞ≈ ζ1SWCAðtÞ þ ζ2SENPðtÞ þ ζ3Qsumðt − 1Þ ð4Þ

Q̂sumðtÞ≈ η1SWCAðtÞ þ η2Qsumðt − 1Þ ð5Þ

Q̂sumðtÞ≈Qsumðt − 1Þ ð6Þ

where α, γ, ζ, and η = linear regression fit coefficients.
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