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In a variable world, plants must have strategies to deal with environmental conditions as they
change. Understanding these strategies is critical since climate change not only affects mean

conditions but also affects variability and predictability of those conditions. Doing so requires

Key words: bet hedging, coordinated
strategies, fast-slow continuum, functional
traits, phenology, phenotypic plasticity.

identifying how functional and life history traits interact throughout the life cycle to drive
responses, as well as exploring how past variability will shape future responses. Here, I highlight
relevant life history theory for predicting strategies in relation to the nature of environmental

variability, relate theory to empirical studies integrating functional and life history traits to
understand responses, and identify key areas for future research that will facilitate the
application of this understanding toward predicting responses to climate change.

[. Introduction

Our world is inherently variable, and this variability is increasing.
Climate change is not only shifting mean conditions, but also
altering patterns of variation and shifting seasonal timing and
conditions (IPCC, 2021). To persist in variable and changing
environments, plants must have strategies to address these chal-
lenges, includingphysiological, morphological, and life history traits
that mediate responses to variability. Understanding these strategies,
and their ability to address current and future variability, requires
exploration of patterns of environmental variability, the traits that
mediate responses throughout the life cycle, and the consequences of
those responses for fitness and population dynamics.

© 2022 The Authors
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Evolutionary modes of response to environmental variability
generally fall into two categories. First, individuals may get better at
matching traits to the environment as it changes, through the rapid
evolution of traits via natural selection or the evolution of
phenotypic plasticity (Simons, 2011; Botero et al., 2015). Second,
traits that buffer individuals or lineages from the risk of having the
wrong phenotype as the environment changes may evolve,
including bet-hedging or other buffering strategies (Cohen, 1966;
Simons, 2011; Botero ef al., 2015). Theory suggests that the
adaptive nature of these responses depends on the timescale of
variation, how predictable that variation is, and its effect on the
mean and variance of fitness (Cohen, 1967; Seger & Brock-
mann, 1987; Botero et al., 2015).
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In addition to identifying modes of response, predicting
responses to variation requires identifying traits that lead to
tracking vs buffering the effects of environmental variability and
how these traits interact throughout the life cycle. These traits fall
into two main categories: life history traits and functional traits
(Box 1). While the field of life history evolution has long focused on
the evolution of traits in response to environmental variation, the
study of functional traits has focused more on responses to mean
conditions or across environmental gradients (McGill et al., 2006;
Kilhn et al., 2021; but see Angert et al., 2007). Integrating these
perspectives provides an insight into mechanisms driving responses

Box 1 Definitions and descriptions.

Timescale of variation: frequency or cycling of environmental
variability, which can be evaluated on absolute scales (hours, days,
years, and decades) or relative to lifespan or generation time.
Predictability of variation: temporal pattern of variability indicating
correlations among conditions, such as autocorrelations in conditions
or cross-correlations from one condition (e.g. day length) with
another (e.g. temperature).

Modes of response

Adaptive tracking: evolution by natural selection in response to
environmental conditions as they change.

Bet hedging: evolutionary mode of response in which variance in
fitness is reduced, but that reduction entails some cost to (arithmetic)
mean fitness, often categorized as conservative bet hedging or
diversified bet hedging.

Conservative bet hedging: bet hedging in which variance in individ-
ual fitness is reduced at a cost to mean fitness. Typically, this type of
bet hedging corresponds with generalist or ‘safe’ strategies that
perform reasonably well across a range of conditions. For example,
reproducing at a smaller size or younger age to reduce variance in
fitness driven by stochastic risk of mortality (Rees et al., 2004, 2006).
Diversified bet hedging: bet hedging in which variance in the fitness
of a lineage is reduced at a cost to mean fitness. Here, individuals of
the same lineage display a diversity of phenotypes. Example: Delayed
germination in desert annual plants, in which some seeds in a
maternal lineage will germinate readily, and other seeds will instead
remain dormant and germinate later (Gremer & Venable, 2014).

Phenotypic plasticity: changes in phenotype expressed by the same
genotype in response to environmental conditions.

Irreversible phenotypic plasticity: phenotypic plasticity that is
permanent such as germination or the transition to reproduction
(bolting) for monocarpic species.

Reversible phenotypic plasticity: phenotypic plasticity that is not a
permanent change, such as upregulation of physiological processes
or behavioral changes.

Types of traits

Functional traits: morphological, physiological, or phenological
attributesofspeciesthatinfluencesurvival, growth, andreproduction.
Life history traits: traits describing the timing of life cycle events, such
as the timing and extent of growth, development, reproduction, and
life span, and also phenology.

Phenology: timing of life history events, such as germination,
emergence, growth, or reproduction, typically considered within a
growing season or calendar year.
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to variability. Of course, the entire phenotype, including traits
expressed throughout the life cycle, drives responses and ultimately
determines fitness and population dynamics.

Il. Responses to environmental variation depend on
scale and predictability of variation

Evolutionary modes of response to variability critically depend on
the pattern of variation, including timescale and predictability
(Cohen, 1967; Botero et al., 2015; Fig. 1; Box 1). Adaptive tracking
via evolution or phenotypic plasticity is a favored mode when there
is some level of predictability, which allows for matching
phenotypes to the environment as it changes. When the pattern
of variation is long relative to the generation time of the organism,
adaptive tracking is favored, while plasticity is favored with
variation at shorter time frames (Simons, 2011; Botero et al., 2015;
Fig. 1; Box 1). In environments with little-to-no predictability,
strategies to buffer from risk are needed. This can be achieved
through bet hedging, either at the individual level (conservative bet
hedging, CBH), which is favored at short timescales, or across
individuals within a lineage when variability is at longer time scales
(diversified bet hedging, DBH; Fig. 1; Box 1; Slatkin, 1974; Seger
& Brockmann, 1987; Starrfelt & Kokko, 2012).

Applying this framework to plants requires consideration of their
unique characteristics. First, plants have a remarkable range of
lifespans, including very long lifetimes. Long-lived species may
have fewer generations per cycle of environmental variability and
thus rely more on conservative bet hedging in unpredictable
environments. For example, trees may allocate carbon to storage at
the cost of growth to hedge against the risk of drought or predation
(Chapin et al., 1990; Childs et al., 2010; Richardson et al., 2013;
Blumstein ef al., 2022), though evidence for this is mixed and needs
additional study (Wiley & Helliker, 2012; Bachofen et al., 2018,;
Blumstein et al., 2022). Reproducing at a smaller size or younger
age can also hedge against stochasticity in mortality risk (Rees
et al.,2006). Conversely, annual and short-lived plants may rely
more on diversified bet hedging. The classic example is annual
plants that spread the risk of germinating at unfavorable times by
having some seeds germinate readily, while others remain dormant
and germinate later (Cohen, 1966; Gremer & Venable, 2014).
Second, dormancy and developmental delay are quite common in
plants and can blur lines between timescales, and life stages may
experience variability differently. For example, annuals emerge for
one growing season, but their seeds may survive in seed banks for
years to decades (Baskin & Baskin, 2014). Third, modularity and
indeterminate growth in plants facilitate plastic responses within an
individual’s lifetime, which may create even more possibilities for
reversible plasticity (Bradshaw, 1965; Chapin ef al., 1993). Fur-
thermore, modularity can enable plants to shrink or return to
previous stages (regression), which can provide a demographic
buffer against variability (Salguero-Gomez & Casper, 2010).

While these modes are often treated as separate, they are not
mutually exclusive. Phenotypic plasticity may help populations
track-shifting optima and provide time for adaptive tracking
(Chevin & Hoffmann, 2017). Similarly, plasticity and bet hedging
may coevolve in variable environments with partially reliable

© 2022 The Authors
New Phytologist © 2022 New Phytologist Foundation.

ol ‘€ ‘€T0T ‘LEIZ6IY L

yduy/:sdny woy papeoy

ASULDIT SUOWWO)) dA1EAI) d[qearjdde oyy £q POuIdA0S a1e Sa[dIE V() SN JO SA[NI 10§ AIRIQIT QUI[UQ) AJ[IA\ UO (SUOLIPUOD-PUB-SULID}/ WO’ Kd[IM" AIRIqI[oul[U0//:sd)Y) SUONIPUO)) pue SULID oy} 23S *[£207/€0/£0] U0 Areiqr auruQ Ad[IA\ ‘UOISIAOI] BPRUER)) dUBIYD0)) Aq 50981 ydu/[ | | [°([/10p/Wwod Kajim Areiqijaur|


http://www.newphytologist.com/

New
Phytologist

Predictable 1.0 |- Reversible

plasticity

0.8
2
=
g Irreversible
g 0.6 plasticity
g
% Adaptive
g 04 tracking
c
(<)
=
[
w 0.2
Unpredictable oL
1 1
0 1 2 3 4 5

Within generations «——— > Across generations
Timescale of variation

Fig. 1 Evolutionary modes of response to environmental variation under
different levels of environmental predictability (level of correlation between
an environmental cue and future conditions) and relative timescale of
environmental variation (number of generations per cycle of environmental
variability; redrawn from Botero et al., 2015). Illustrated are regions of
parameter space that favor each mode of response. CBH, conservative bet
hedging; DBH, diversified bet hedging. See Box 1 for definitions of modes of
response.

information (Cohen, 1967; Wong & Ackerly, 2005). For example,
a fraction of seeds may germinate in response to good germination
rains, but the remaining seeds stay dormant as a hedge against the
risk that good germination rains may be followed by unfavorable
conditions (Cohen, 1967; Gremer et al., 2016). On the contrary,
plasticity may itself be a bet-hedging strategy if a genotype produces
offspring with different levels of plasticity (Haaland et al., 2021).
Thus, we may see a combination of modes evolve and plants may be
particularly effective at combining strategies.

[ll. Functional and life history traits mediate
responses to variability

Understanding and predicting responses to variability, and how
they will mediate responses to future change, requires identifying
traits mediating those responses. Ultimately, fitness depends on
performance throughout an entire lifespan, which requires
integrating the consequences of functional and life history traits
expressed across stages. Thus, identifying the linkages between
traits throughout the life cycle is an important challenge in
predicting responses to variability. Indeed, traits do not evolve in
isolation, but instead reflect coordinated strategies that respond to,
and are shaped by, the environment.

Numerous frameworks describing coordinated strategies have
been developed, each highlighting different aspects of traits,
demography, and environmental response (Raunkiaer, 1934;
MacArthur & Wilson, 1967; Grime, 1977). The fast-slow
continuum highlights trade-offs between survival and reproduction
(Harvey & Zammuto, 1985; Franco & Silvertown, 1996). ‘Fast’ life

© 2022 The Authors
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histories include rapid growth, high reproductive rates, and short
life spans, while ‘slow’ life histories have slower growth, lower
reproductive rates, and long-life spans. Parallel frameworks exist in
the plant functional trait literature, with several spectra constructed
using trait data from global datasets. Most prominent is the ‘world-
wide leaf economic spectrum’ (LES), which describes coordinated
leaf traits that reflect ‘fast’ vs ‘slow’ responses to resource availability
and allocation (Wright et al., 2004). According to the LES, fast-
growing species have traits associated with a rapid return on
investment, including high leaf nutrient concentrations, high rates
of photosynthesis, and short leaf life spans, while slow-growing
species display the opposite traits. Similarly, ‘fast” hydraulic traits,
which enable a rapid supply of water, support ‘fast’ LES traits, while
‘slow’ hydraulic traits that withstand low water availability are
linked with ‘slow’ LES traits (Reich, 2014). Recently, other trait
spectra have been proposed, including for roots (Carmona
et al., 2021) and wood (Chave et al., 2009), with calls for generating
additional spectra for seeds and seedlings (Larson & Funk, 2016;

Saatkamp et al., 2019). These frameworks highlight the coordina-

tion of traits across tissues and life stages and reveal clear parallels
with the fast-slow continuum (Fig. 2).

Critical connections between these typically disparate life history
and functional spectra have been made. Life history traits require
time-intensive monitoring to quantify, but global demographic
databases have lowered this barrier, facilitating global analyses of
life histories, as have global functional trait databases (Adler
et al., 2014; Salguero-Gllomez, 2017; Kattge et al., 2020). Func-
tional traits associated with slow growth, longer lived tissues, and
stress tolerance correspond with ‘slow’ life histories, while traits
associated with rapid responses align with ‘fast’ life history traits
(Fig. 2). A key strength of these studies is the incorporation of
multiple traits, which improves upon weak relationships using
single traits (Swenson et al., 2020; Fig. 2).

While these global analyses are powerful, they have focused on
mean traits and conditions. However, coordination among traits
may vary across local-scale environmental gradients (Diaz
et al., 2016; Flores-Moreno et al., 2019) and throughout ontogeny
(Falster et al., 2018; Emery & La Rosa, 2019), limiting general-
ization of global-scale findings to local- and regional-scale findings.
Flores-Moreno ef al. (2019) demonstrated stronger interdepen-
dence of functional traits in wetter environments, with traits
varying more independently in arid environments. Kelly
et al. (2021) demonstrated that relationships between life history
and functional traits were stronger in more arid environments. Less
well studied is trait variation through ontogeny and in relation to
variability. An experimental study of three Lasthenia species
showed significant differences in functional traits across develop-
ment and in response to mean and variance in water levels (Emery
& La Rosa, 2019). Furthermore, Lasthenia responses aligned with
patterns of variability, since fitness for the species that experiences
higher variation in the field was less sensitive.

The next critical link is between coordinated strategies and
modes of response to variability, which is even more challenging to
make. Doing so requires substantial data, including trait variation
in response to conditions and subsequent effects on fitness. One
way forward is to test relationships between the fast-slow
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Fig. 2 Coordinated functional and life history traits throughout the plant life cycle. Life stages include seeds, seedlings, growth phase for established plants, and
reproductive plants. A selection of functional and life history traits that correspond to the fast-slow continuum (top two rows, fast traits; bottom two rows, slow
traits) are listed for each life stage. Ps, photosynthetic rate (Lmol of carbon m-2s-!); SLA, specific leaf area (leaf area per unit mass).

continuum with patterns of local climatic variability using global
databases. Species with ‘slow’ strategies are expected in environ-
ments with short-to-intermediate timescales of variability, while
‘fast’ strategies may be more responsive to variability and would be
associated with environments exhibiting higher predictability
(Fig. 3).

Such links have been made for Sonoran Desert winter annual
plants after decades of study. This iconic system experiences strong
variability in temperature and precipitation, within and among
growing seasons (Huxman et al., 2013). In response, species have
evolved germination strategies that integrate both bet hedging and
plasticity to cues (Gremer & Venable, 2014; Gremer et al., 2016).
Species vary in degree of bet hedging, which aligns with differences
in later functional traits (Huang et al., 2016; Cuello et al., 2019).
Large-seeded species experience lower seed survival, which lowers
the value of delayed germination, and thus have higher germination
fractions. These species tend to have stress-tolerant functional traits
during their growth phase, including high water-use efficiency and

New Phytologist (2023) 237: 751-757
www.newphytologist.com

low specific leaf area. Thus, they have ‘fast’ traits for germination,
but ‘slow’ functional growth traits (Fig. 2). Other species have
smaller seeds, high seed survival, and low germination fractions,
rely more on bet hedging at the seed stage (‘slow’ germination
traits), and have ‘fast’” functional traits such as high relative growth
rates. If these patterns generalize across systems, then we may see
traits associated with slow strategies for life stages that are most
affected by variability and fast strategies for those that are not.
Generalizing across systems will require viewing variability in
relation to coordinated strategies. For example, the Sonoran Desert
supports species with a range of lifespans, from annuals to long-
lived shrubs and cacti (Robichaux, 1999). These species experience
variability differently such that annuals and long-lived species
experience it at longer and shorter time scales, respectively. While
annuals rely on diversified bet hedging through delayed germina-
tion, longer lived species utilize strategies consistent with conser-
vative bet hedging, such as storage of carbon or water, or adult plant
dormancy (Childs et al., 2010; Gremer et al., 2012; Fig. 3). Thus,

© 2022 The Authors
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Fig. 3 Coordinated strategies in relation to
evolutionary modes of response to variability,
with examples. Colors correspond to regions
favoring different modes of evolutionary
response in Fig. 1 (red, reversible plasticity;
blue, irreversible plasticity; light gray,
conservative BH; yellow, diversified BH;
purple, adaptive tracking). See Box 1 and text
for definitions. BH, bet hedging; monocarpic, v
plants that reproduce once in their lifespan
(semelparous); polycarpic, plants that

reproduce multiple times (iteroparous); Ps,

photosynthetic rate; sp., species.

Environmental predictability

multiple strategies can address the same variability, mediated by
coordination of traits expressed throughout a lifespan.

IV. Using the past to understand the future

Understanding modes of response and links to coordinated
strategies can provide insights into the effects of climate change
and whether alternative strategies can evolve. Primarily, work in
this area has been theoretical and needs empirical testing.
Nonetheless, the theory provides expectations for outcomes of
change. Shifts in timescale or predictability that stay within
parameter space favoring each mode of response may be generally
well tolerated. However, evolutionary tipping points can occur at
transitions between modes (Fig. 1; Botero et al., 2015). For
example, in models, extinction was likely between conditions
favoring plasticity vs bet hedging, which could be due to the
difficulty of addressing particular combinations of predictability
and timescale, or the challenges for trait evolution across modes
(Botero et al., 2015; Haaland & Botero, 2019). Thus, theory
explains why some changes may not have strong effects, while
others can be catastrophic. Furthermore, it highlights the need to
understand patterns of variability under which responses have
evolved to predict consequences of future change.

Climate change has and will continue to influence patterns of
variability, including increasing extreme events (Swain ef al., 2018;
Papalexiou & Montanari, 2019), increasing amplitude of varia-
tion, and changes in patterns of climate cycling (Dillon ef al., 2016;
Rodgers et al., 2021). How these shifts relate to timescale and
predictability is less clear. Patterns of increasing temporal
autocorrelation would increase predictability (Di Cecco &

© 2022 The Authors
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Goubhier, 2018; Bernhardt et al., 2020). Conversely, changes in
extreme events and cycling would reduce predictability and could
either increase or reduce timescale. Correlations among cues, such
as temperature, precipitation, and photoperiod, are also changing,
influencing cue perception and their reliability (Bonamour
et al., 2019; Bernhardt et al., 2020). These shifts will interact with
evolutionary modes and coordinated strategies to determine fitness
and persistence. Since ‘slow’ strategies incorporate conservative bet
hedging and buffering, they may be less responsive and more
resistant to change but recover more slowly once perturbed
(Salguero-Gllomez, 2017; Fig. 3). Conversely, ‘fast’ strategies may
have stronger and more rapid responses, with the potential for faster
evolution due to shorter generation times (Chapin et al., 1993;
Fig. 3). Indeed, studies have shown species with ‘fast’ traits to be
more responsive to changing precipitation (Zhang et al., 2020;
Compagnoni ef al., 2021). The success of these rapid responders
depends on the longer term pattern of variation and whether the
benefits of extremely good conditions outweigh risks of extremely
bad ones (Lawson et al., 2015; Liu ef al., 2019). Integrated strategies
that employ plasticity to respond to new changes while hedging
against risks of catastrophe may be particularly successful in
confronting change. However, these hypotheses need further
testing, at global and local scales.

V. Conclusions

How do shifts in mean and variance in environmental conditions
interact with functional and life history strategies to drive
performance in changing environments? The answers to this
question require understanding (1) the nature of environmental
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variation past, present, and future, (2) where in the life cycle
variation is most influential, and (3) how coordinated strategies
relate to the timescale and predictability of local climatic variation.
Recent research has provided ways forward, through a renewed
focus on coordinated strategies and multivariate phenotypes. Key
challenges remain in linking these phenotypes to evolutionary
modes of response, how they mediate fitness in the face of changing
variability, and whether the evolution of alternative traits and
strategies is possible.
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