4698137, 2023, 3, Downloaded from https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.18605 by Cochrane Canada Provision, Wiley Online Library on [03/03/2023]. See the Terms

Tansley insight

Looking to the past to understand the future: linking evolutionary modes of response with functional and life history traits in variable environments

Author for correspondence: Jennifer R. Gremer Email: jrgremer@ucdavis.edu

Received: 17 June 2022 Accepted: 22 September 2022 Jennifer R. Gremer^{1,2}

¹Department of Evolution and Ecology, University of California, Davis, CA 95616, USA; ²Center for Population Biology, University of California, Davis, CA 95616, USA

Contents

	Summary	751	IV.	Using the past to understand the future	755
I.	Introduction	751	٧.	Conclusions	755
II.	Responses to environmental variation depend on scale and predictability of variation	752		Acknowledgements References	756 756
III.	Functional and life history traits mediate responses to variability	753			

Summary

New Phytologist (2023) 237: 751–757 doi: 10.1111/nph.18605

Key words: bet hedging, coordinated strategies, fast-slow continuum, functional traits, phenology, phenotypic plasticity.

In a variable world, plants must have strategies to deal with environmental conditions as they change. Understanding these strategies is critical since climate change not only affects mean conditions but also affects variability and predictability of those conditions. Doing so requires identifying how functional and life history traits interact throughout the life cycle to drive responses, as well as exploring how past variability will shape future responses. Here, I highlight relevant life history theory for predicting strategies in relation to the nature of environmental variability, relate theory to empirical studies integrating functional and life history traits to understand responses, and identify key areas for future research that will facilitate the application of this understanding toward predicting responses to climate change.

I. Introduction

Our world is inherently variable, and this variability is increasing. Climate change is not only shifting mean conditions, but also altering patterns of variation and shifting seasonal timing and conditions (IPCC, 2021). To persist in variable and changing environments, plants must have strategies to address these challenges, includingphysiological, morphological, and life history traits that mediate responses to variability. Understanding these strategies, and their ability to address current and future variability, requires exploration of patterns of environmental variability, the traits that mediate responses throughout the life cycle, and the consequences of those responses for fitness and population dynamics.

Evolutionary modes of response to environmental variability generally fall into two categories. First, individuals may get better at matching traits to the environment as it changes, through the rapid evolution of traits via natural selection or the evolution of phenotypic plasticity (Simons, 2011; Botero *et al.*, 2015). Second, traits that buffer individuals or lineages from the risk of having the wrong phenotype as the environment changes may evolve, including bet-hedging or other buffering strategies (Cohen, 1966; Simons, 2011; Botero *et al.*, 2015). Theory suggests that the adaptive nature of these responses depends on the timescale of variation, how predictable that variation is, and its effect on the mean and variance of fitness (Cohen, 1967; Seger & Brockmann, 1987; Botero *et al.*, 2015).

14698137, 2023, 3, Downloaded from https://mph.onlinelibrary.wiley.com/doi/10.1111/nph.18605 by Cochrane Canada Provision, Wiley Online Library on [03.03/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/errs-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Centarive Commons License

In addition to identifying modes of response, predicting responses to variation requires identifying traits that lead to tracking vs buffering the effects of environmental variability and how these traits interact throughout the life cycle. These traits fall into two main categories: life history traits and functional traits (Box 1). While the field of life history evolution has long focused on the evolution of traits in response to environmental variation, the study of functional traits has focused more on responses to mean conditions or across environmental gradients (McGill *et al.*, 2006; Kühn *et al.*, 2021; but see Angert *et al.*, 2007). Integrating these perspectives provides an insight into mechanisms driving responses

Box 1 Definitions and descriptions.

Timescale of variation: frequency or cycling of environmental variability, which can be evaluated on absolute scales (hours, days, years, and decades) or relative to lifespan or generation time. *Predictability of variation*: temporal pattern of variability indicating correlations among conditions, such as autocorrelations in conditions or cross-correlations from one condition (e.g. day length) with another (e.g. temperature).

Modes of response

Adaptive tracking: evolution by natural selection in response to environmental conditions as they change.

Bet hedging: evolutionary mode of response in which variance in fitness is reduced, but that reduction entails some cost to (arithmetic) mean fitness, often categorized as conservative bet hedging or diversified bet hedging.

Conservative bet hedging: bet hedging in which variance in individual fitness is reduced at a cost to mean fitness. Typically, this type of bet hedging corresponds with generalist or 'safe' strategies that perform reasonably well across a range of conditions. For example, reproducing at a smaller size or younger age to reduce variance in fitness driven by stochastic risk of mortality (Rees et al., 2004, 2006). Diversified bet hedging: bet hedging in which variance in the fitness of a lineage is reduced at a cost to mean fitness. Here, individuals of the same lineage display a diversity of phenotypes. Example: Delayed germination in desert annual plants, in which some seeds in a maternal lineage will germinate readily, and other seeds will instead remain dormant and germinate later (Gremer & Venable, 2014). Phenotypic plasticity: changes in phenotype expressed by the same genotype in response to environmental conditions.

Irreversible phenotypic plasticity: phenotypic plasticity that is permanent such as germination or the transition to reproduction (bolting) for monocarpic species.

Reversible phenotypic plasticity: phenotypic plasticity that is not a permanent change, such as upregulation of physiological processes or behavioral changes.

Types of traits

Functional traits: morphological, physiological, or phenological attributesofspeciesthatinfluencesurvival, growth, andreproduction. Life history traits: traits describing the timing of life cycle events, such as the timing and extent of growth, development, reproduction, and life span, and also phenology.

Phenology: timing of life history events, such as germination, emergence, growth, or reproduction, typically considered within a growing season or calendar year.

to variability. Of course, the entire phenotype, including traits expressed throughout the life cycle, drives responses and ultimately determines fitness and population dynamics.

II. Responses to environmental variation depend on scale and predictability of variation

Evolutionary modes of response to variability critically depend on the pattern of variation, including timescale and predictability (Cohen, 1967; Botero et al., 2015; Fig. 1; Box 1). Adaptive tracking via evolution or phenotypic plasticity is a favored mode when there is some level of predictability, which allows for matching phenotypes to the environment as it changes. When the pattern of variation is long relative to the generation time of the organism, adaptive tracking is favored, while plasticity is favored with variation at shorter time frames (Simons, 2011; Botero et al., 2015; Fig. 1: Box 1). In environments with little-to-no predictability. strategies to buffer from risk are needed. This can be achieved through bet hedging, either at the individual level (conservative bet hedging, CBH), which is favored at short timescales, or across individuals within a lineage when variability is at longer time scales (diversified bet hedging, DBH; Fig. 1; Box 1; Slatkin, 1974; Seger & Brockmann, 1987; Starrfelt & Kokko, 2012).

Applying this framework to plants requires consideration of their unique characteristics. First, plants have a remarkable range of lifespans, including very long lifetimes. Long-lived species may have fewer generations per cycle of environmental variability and thus rely more on conservative bet hedging in unpredictable environments. For example, trees may allocate carbon to storage at the cost of growth to hedge against the risk of drought or predation (Chapin et al., 1990; Childs et al., 2010; Richardson et al., 2013; Blumstein et al., 2022), though evidence for this is mixed and needs additional study (Wiley & Helliker, 2012; Bachofen et al., 2018; Blumstein et al., 2022). Reproducing at a smaller size or younger age can also hedge against stochasticity in mortality risk (Rees et al., 2006). Conversely, annual and short-lived plants may rely more on diversified bet hedging. The classic example is annual plants that spread the risk of germinating at unfavorable times by having some seeds germinate readily, while others remain dormant and germinate later (Cohen, 1966; Gremer & Venable, 2014). Second, dormancy and developmental delay are quite common in plants and can blur lines between timescales, and life stages may experience variability differently. For example, annuals emerge for one growing season, but their seeds may survive in seed banks for years to decades (Baskin & Baskin, 2014). Third, modularity and indeterminate growth in plants facilitate plastic responses within an individual's lifetime, which may create even more possibilities for reversible plasticity (Bradshaw, 1965; Chapin et al., 1993). Furthermore, modularity can enable plants to shrink or return to previous stages (regression), which can provide a demographic buffer against variability (Salguero-Gómez & Casper, 2010).

While these modes are often treated as separate, they are not mutually exclusive. Phenotypic plasticity may help populations track-shifting optima and provide time for adaptive tracking (Chevin & Hoffmann, 2017). Similarly, plasticity and bet hedging may coevolve in variable environments with partially reliable

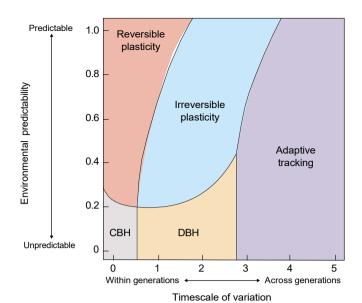


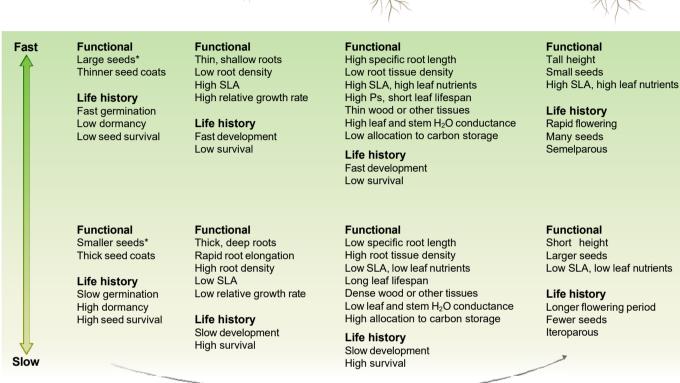
Fig. 1 Evolutionary modes of response to environmental variation under different levels of environmental predictability (level of correlation between an environmental cue and future conditions) and relative timescale of environmental variation (number of generations per cycle of environmental variability; redrawn from Botero *et al.*, 2015). Illustrated are regions of parameter space that favor each mode of response. CBH, conservative bet hedging; DBH, diversified bet hedging. See Box 1 for definitions of modes of response.

information (Cohen, 1967; Wong & Ackerly, 2005). For example, a fraction of seeds may germinate in response to good germination rains, but the remaining seeds stay dormant as a hedge against the risk that good germination rains may be followed by unfavorable conditions (Cohen, 1967; Gremer *et al.*, 2016). On the contrary, plasticity may itself be a bet-hedging strategy if a genotype produces offspring with different levels of plasticity (Haaland *et al.*, 2021). Thus, we may see a combination of modes evolve and plants may be particularly effective at combining strategies.

III. Functional and life history traits mediate responses to variability

Understanding and predicting responses to variability, and how they will mediate responses to future change, requires identifying traits mediating those responses. Ultimately, fitness depends on performance throughout an entire lifespan, which requires integrating the consequences of functional and life history traits expressed across stages. Thus, identifying the linkages between traits throughout the life cycle is an important challenge in predicting responses to variability. Indeed, traits do not evolve in isolation, but instead reflect coordinated strategies that respond to, and are shaped by, the environment.

Numerous frameworks describing coordinated strategies have been developed, each highlighting different aspects of traits, demography, and environmental response (Raunkiaer, 1934; MacArthur & Wilson, 1967; Grime, 1977). The fast-slow continuum highlights trade-offs between survival and reproduction (Harvey & Zammuto, 1985; Franco & Silvertown, 1996). 'Fast' life


histories include rapid growth, high reproductive rates, and short life spans, while 'slow' life histories have slower growth, lower reproductive rates, and long-life spans. Parallel frameworks exist in the plant functional trait literature, with several spectra constructed using trait data from global datasets. Most prominent is the 'worldwide leaf economic spectrum' (LES), which describes coordinated leaf traits that reflect 'fast' vs 'slow' responses to resource availability and allocation (Wright et al., 2004). According to the LES, fastgrowing species have traits associated with a rapid return on investment, including high leaf nutrient concentrations, high rates of photosynthesis, and short leaf life spans, while slow-growing species display the opposite traits. Similarly, 'fast' hydraulic traits, which enable a rapid supply of water, support 'fast' LES traits, while 'slow' hydraulic traits that withstand low water availability are linked with 'slow' LES traits (Reich, 2014). Recently, other trait spectra have been proposed, including for roots (Carmona et al., 2021) and wood (Chave et al., 2009), with calls for generating additional spectra for seeds and seedlings (Larson & Funk, 2016; Saatkamp et al., 2019). These frameworks highlight the coordination of traits across tissues and life stages and reveal clear parallels with the fast-slow continuum (Fig. 2).

Critical connections between these typically disparate life history and functional spectra have been made. Life history traits require time-intensive monitoring to quantify, but global demographic databases have lowered this barrier, facilitating global analyses of life histories, as have global functional trait databases (Adler et al., 2014; Salguero-Glomez, 2017; Kattge et al., 2020). Functional traits associated with slow growth, longer lived tissues, and stress tolerance correspond with 'slow' life histories, while traits associated with rapid responses align with 'fast' life history traits (Fig. 2). A key strength of these studies is the incorporation of multiple traits, which improves upon weak relationships using single traits (Swenson et al., 2020; Fig. 2).

While these global analyses are powerful, they have focused on mean traits and conditions. However, coordination among traits may vary across local-scale environmental gradients (Diaz et al., 2016; Flores-Moreno et al., 2019) and throughout ontogeny (Falster et al., 2018; Emery & La Rosa, 2019), limiting generalization of global-scale findings to local- and regional-scale findings. Flores-Moreno et al. (2019) demonstrated stronger interdependence of functional traits in wetter environments, with traits varying more independently in arid environments. Kelly et al. (2021) demonstrated that relationships between life history and functional traits were stronger in more arid environments. Less well studied is trait variation through ontogeny and in relation to variability. An experimental study of three Lasthenia species showed significant differences in functional traits across development and in response to mean and variance in water levels (Emery & La Rosa, 2019). Furthermore, Lasthenia responses aligned with patterns of variability, since fitness for the species that experiences higher variation in the field was less sensitive.

The next critical link is between coordinated strategies and modes of response to variability, which is even more challenging to make. Doing so requires substantial data, including trait variation in response to conditions and subsequent effects on fitness. One way forward is to test relationships between the fast-slow

14698137, 2023, 3, Downloaded from https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.18605 by Cochrane Canada Provision, Wiley Online Library on [03/03/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/rems-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Centarive Commons Licenses

*Empirical results mixed

Fig. 2 Coordinated functional and life history traits throughout the plant life cycle. Life stages include seeds, seedlings, growth phase for established plants, and reproductive plants. A selection of functional and life history traits that correspond to the fast–slow continuum (top two rows, fast traits; bottom two rows, slow traits) are listed for each life stage. Ps, photosynthetic rate (Lmol of carbon $m^{-2} s^{-1}$); SLA, specific leaf area (leaf area per unit mass).

continuum with patterns of local climatic variability using global databases. Species with 'slow' strategies are expected in environments with short-to-intermediate timescales of variability, while 'fast' strategies may be more responsive to variability and would be associated with environments exhibiting higher predictability (Fig. 3).

Such links have been made for Sonoran Desert winter annual plants after decades of study. This iconic system experiences strong variability in temperature and precipitation, within and among growing seasons (Huxman *et al.*, 2013). In response, species have evolved germination strategies that integrate both bet hedging and plasticity to cues (Gremer & Venable, 2014; Gremer *et al.*, 2016). Species vary in degree of bet hedging, which aligns with differences in later functional traits (Huang *et al.*, 2016; Cuello *et al.*, 2019). Large-seeded species experience lower seed survival, which lowers the value of delayed germination, and thus have higher germination fractions. These species tend to have stress-tolerant functional traits during their growth phase, including high water-use efficiency and

low specific leaf area. Thus, they have 'fast' traits for germination, but 'slow' functional growth traits (Fig. 2). Other species have smaller seeds, high seed survival, and low germination fractions, rely more on bet hedging at the seed stage ('slow' germination traits), and have 'fast' functional traits such as high relative growth rates. If these patterns generalize across systems, then we may see traits associated with slow strategies for life stages that are most affected by variability and fast strategies for those that are not.

Generalizing across systems will require viewing variability in relation to coordinated strategies. For example, the Sonoran Desert supports species with a range of lifespans, from annuals to long-lived shrubs and cacti (Robichaux, 1999). These species experience variability differently such that annuals and long-lived species experience it at longer and shorter time scales, respectively. While annuals rely on diversified bet hedging through delayed germination, longer lived species utilize strategies consistent with conservative bet hedging, such as storage of carbon or water, or adult plant dormancy (Childs *et al.*, 2010; Gremer *et al.*, 2012; Fig. 3). Thus,

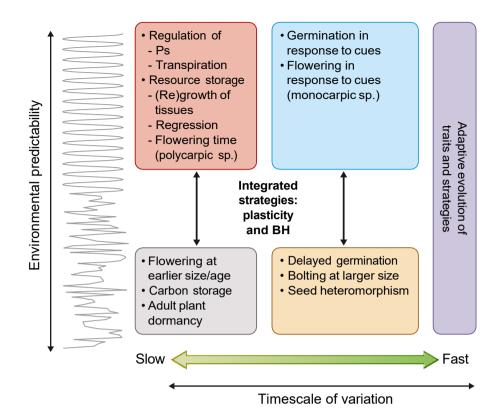


Fig. 3 Coordinated strategies in relation to evolutionary modes of response to variability, with examples. Colors correspond to regions favoring different modes of evolutionary response in Fig. 1 (red, reversible plasticity; blue, irreversible plasticity; light gray, conservative BH; yellow, diversified BH; purple, adaptive tracking). See Box 1 and text for definitions. BH, bet hedging; monocarpic, plants that reproduce once in their lifespan (semelparous); polycarpic, plants that reproduce multiple times (iteroparous); Ps, photosynthetic rate; sp., species.

multiple strategies can address the same variability, mediated by coordination of traits expressed throughout a lifespan.

IV. Using the past to understand the future

Understanding modes of response and links to coordinated strategies can provide insights into the effects of climate change and whether alternative strategies can evolve. Primarily, work in this area has been theoretical and needs empirical testing. Nonetheless, the theory provides expectations for outcomes of change. Shifts in timescale or predictability that stay within parameter space favoring each mode of response may be generally well tolerated. However, evolutionary tipping points can occur at transitions between modes (Fig. 1; Botero et al., 2015). For example, in models, extinction was likely between conditions favoring plasticity vs bet hedging, which could be due to the difficulty of addressing particular combinations of predictability and timescale, or the challenges for trait evolution across modes (Botero et al., 2015; Haaland & Botero, 2019). Thus, theory explains why some changes may not have strong effects, while others can be catastrophic. Furthermore, it highlights the need to understand patterns of variability under which responses have evolved to predict consequences of future change.

Climate change has and will continue to influence patterns of variability, including increasing extreme events (Swain *et al.*, 2018; Papalexiou & Montanari, 2019), increasing amplitude of variation, and changes in patterns of climate cycling (Dillon *et al.*, 2016; Rodgers *et al.*, 2021). How these shifts relate to timescale and predictability is less clear. Patterns of increasing temporal autocorrelation would increase predictability (Di Cecco &

Gouhier, 2018; Bernhardt et al., 2020). Conversely, changes in extreme events and cycling would reduce predictability and could either increase or reduce timescale. Correlations among cues, such as temperature, precipitation, and photoperiod, are also changing, influencing cue perception and their reliability (Bonamour et al., 2019; Bernhardt et al., 2020). These shifts will interact with evolutionary modes and coordinated strategies to determine fitness and persistence. Since 'slow' strategies incorporate conservative bet hedging and buffering, they may be less responsive and more resistant to change but recover more slowly once perturbed (Salguero-Glomez, 2017; Fig. 3). Conversely, 'fast' strategies may have stronger and more rapid responses, with the potential for faster evolution due to shorter generation times (Chapin et al., 1993; Fig. 3). Indeed, studies have shown species with 'fast' traits to be more responsive to changing precipitation (Zhang et al., 2020; Compagnoni et al., 2021). The success of these rapid responders depends on the longer term pattern of variation and whether the benefits of extremely good conditions outweigh risks of extremely bad ones (Lawson et al., 2015; Liu et al., 2019). Integrated strategies that employ plasticity to respond to new changes while hedging against risks of catastrophe may be particularly successful in confronting change. However, these hypotheses need further testing, at global and local scales.

V. Conclusions

How do shifts in mean and variance in environmental conditions interact with functional and life history strategies to drive performance in changing environments? The answers to this question require understanding (1) the nature of environmental

14698137, 2023, 3, Downloaded from https://mph.onlinelibrary.wiley.com/doi/10.1111/nph.18605 by Cochrane Canada Provision, Wiley Online Library on [03.03/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/errs-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Centarive Commons License

variation past, present, and future, (2) where in the life cycle variation is most influential, and (3) how coordinated strategies relate to the timescale and predictability of local climatic variation. Recent research has provided ways forward, through a renewed focus on coordinated strategies and multivariate phenotypes. Key challenges remain in linking these phenotypes to evolutionary modes of response, how they mediate fitness in the face of changing variability, and whether the evolution of alternative traits and strategies is possible.

Acknowledgements

I am grateful to Drs J. Schmitt, S.Y. Strauss, M. LaForgia, S. Worthy, and members of my research group for valuable discussion about modes of response, coordinated strategies, and responses to variability and how to link these typically disparate fields of study. Dr D. Ackerly provided insightful guidance on the manuscript. I would also like to thank Dr H. Slater for her guidance and patience through the process, as well as the reviewers for their excellent suggestions for improving the manuscript. Figs 2 and 3 were initially developed using Biorender. Funding was provided by NSF DEB (1831913).

ORCID

Jennifer R. Gremer https://orcid.org/0000-0001-8983-5482

References

- Adler PB, Salguero-G□omez R, Compagnoni A, Hsu JS, Ray-Mukherjee J, Mbeau-Ache C, Franco M. 2014. Functional traits explain variation in plant life history strategies. Proceedings of the National Academy of Sciences, USA 111: 740–745.
- Angert AL, Huxman TE, Barron-Gafford GA, Gerst KL, Venable DL. 2007. Linking growth strategies to long-term population dynamics in a guild of desert annuals. *Journal of Ecology* 95: 321–331.
- Bachofen C, Moser B, Hoch G, Ghazoul J, Wohlgemuth T. 2018. No carbon "bet hedging" in pine seedlings under prolonged summer drought and elevated CO₂. *Journal of Ecology* 106: 31–46.
- Baskin C, Baskin J. 2014. Seeds: ecology, biogeography and evolution of dormancy and germination. San Diego, CA, USA: Academic Press.
- Bernhardt JR, O'Connor MI, Sunday JM, Gonzalez A. 2020. Life in fluctuating environments. *Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences* 375: 20190454.
- Blumstein M, Sala A, Weston DJ, Holbrook NM, Hopkins R. 2022. Plant carbohydrate storage: intra- and inter-specific trade-offs reveal a major life history trait. *New Phytologist* 235: 2211–2222.
- Bonamour S, Chevin L-M, Charmantier A, Teplitsky C. 2019. Phenotypic plasticity in response to climate change: the importance of cue variation. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 374: 20180178.
- Botero CA, Weissing FJ, Wright J, Rubenstein DR. 2015. Evolutionary tipping points in the capacity to adapt to environmental change. *Proceedings of the National Academy of Sciences, USA* 112: 184–189.
- Bradshaw AD. 1965. Evolutionary significance of phenotypic plasticity in plants. In: Caspari EW, Thoday JM, eds. Advances in genetics. New York, NY, USA: Academic Press, 115–155.
- Carmona CP, Bueno CG, Toussaint A, Trllager S, Dllaz S, Moora M, Munson AD Plartel M, Zobel M, Tamme R. 2021. Fine-root traits in the global spectrum of plant form and function. *Nature* 597: 683–687.
- Chapin FS, Autumn K, Pugnaire F. 1993. Evolution of suites of traits in response to environmental stress. *The American Naturalist* 142: S78–S92.

- Chapin FS, Schultze E, Mooney HA. 1990. The ecology and economics of storage in plants. *Annual Review of Ecology and Systematics* 21: 423–447.
- Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE. 2009. Towards a worldwide wood economics spectrum. Ecology Letters 12: 351–366.
- Chevin LM, Hoffmann AA. 2017. Evolution of phenotypic plasticity in extreme environments. *Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences* 372: 20160138.
- Childs DZ, Metcalf CJE, Rees M. 2010. Evolutionary bet-hedging in the real world: empirical evidence and challenges revealed by plants. *Proceedings of the Royal Society B: Biological Sciences* 277: 3055–3064.
- Cohen D. 1966. Optimizing reproduction in a randomly varying environment. *Journal of Theoretical Biology* 12: 119–129.
- Cohen D. 1967. Optimizing reproduction in a randomly varying environment when a correlation may exist between the conditions at the time a choice has to be made and the subsequent outcome. *Journal of Theoretical Biology* 16: 1–14.
- Compagnoni A, Levin S, Childs DZ, Harpole S, Paniw M, Rllomer G, Burns JH, Che-Castaldo J, Rullger N, Kunstler G *et al.* 2021. Herbaceous perennial plants with short generation time have stronger responses to climate anomalies than those with longer generation time. *Nature Communications* 12: 1824.
- Cuello WS, Gremer JR, Trimmer PC, Sih A, Schreiber SJ. 2019. Predicting evolutionarily stable strategies from functional responses of Sonoran Desert annuals to precipitation. *Proceedings of the Royal Society B: Biological Sciences* 286: 20182613.
- Di Cecco GJ, Gouhier TC. 2018. Increased spatial and temporal autocorrelation of temperature under climate change. *Scientific Reports* 8: 14850.
- Diaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Prentice IC et al. 2016. The global spectrum of plant form and function. Nature 529: 167–173.
- Dillon ME, Woods HA, Wang G, Fey SB, Vasseur DA, Telemeco RS, Marshall K, Pincebourde S. 2016. Life in the frequency domain: the biological impacts of changes in climate variability at multiple time scales. *Integrative and Comparative Biology* 56: 14–30.
- Emery NC, La Rosa RJ. 2019. The effects of temporal variation on fitness, functional traits, and species distribution patterns. *Integrative and Comparative Biology* 59: 503–516.
- Falster DS, Duursma RA, FitzJohn RG. 2018. How functional traits influence plant growth and shade tolerance across the life cycle. Proceedings of the National Academy of Sciences, USA 115: E6789–E6798.
- Flores-Moreno H, Fazayeli F, Banerjee A, Datta A, Kattge J, Butler EE, Atkin OK, Wythers K, Chen M, Anand M et al. 2019. Robustness of trait connections across environmental gradients and growth forms. Global Ecology and Biogeography 28: 1806–1826.
- Franco M, Silvertown J. 1996. Life history variation in plants: an exploration of the fast-slow continuum hypothesis. *Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences* 351: 1341–1348.
- Gremer JR, Crone EE, Lesica P. 2012. Are dormant plants hedging their bets? Demographic consequences of prolonged dormancy in variable environments. *The American Naturalist* 179: 315–327.
- Gremer JR, Kimball S, Venable DL. 2016. Within-and among-year germination in Sonoran Desert winter annuals: bet hedging and predictive germination in a variable environment. *Ecology Letters* 19: 1209–1218.
- Gremer JR, Venable DL. 2014. Bet hedging in desert winter annual plants: optimal germination strategies in a variable environment. *Ecology Letters* 17: 380–387.
- Grime JP. 1977. Evidence for existence of 3 primary strategies in plants and its relevance to ecological and evolutionary theory. *The American Naturalist* 111: 1169–1194.
- Haaland TR, Botero CA. 2019. Alternative responses to rare selection events are differentially vulnerable to changes in the frequency, scope, and intensity of environmental extremes. *Ecology and Evolution* 9: 11752–11761.
- Haaland TR, Wright J, Ratikainen II. 2021. Individual reversible plasticity as a genotype-level bet-hedging strategy. *Journal of Evolutionary Biology* 34: 1022– 1033.
- Harvey PH, Zammuto RM. 1985. Patterns of mortality and age at first reproduction in natural populations of mammals. *Nature* 315: 319–320.
- Huang Z, Liu S, Bradford KJ, Huxman TE, Venable DL. 2016. The contribution of germination functional traits to population dynamics of a desert plant community. *Ecology* 97: 250–261.

- Huxman TE, Kimball S, Angert AL, Gremer JR, Barron-Gafford GA, Venable DL. 2013. Understanding past, contemporary, and future dynamics of plants, populations, and communities using Sonoran Desert winter annuals. *American Journal of Botany* 100: 1369–1380.
- IPCC. 2021. Climate change 2021: the physical science basis. In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Plean C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI et al., eds. Contribution of working group I to the sixth assessment report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.
- Kattge J, Blonisch G, Dliaz S, Lavorel S, Prentice IC, Leadley P, Tautenhahn S, Werner GD, Aakala T, Abedi M. 2020. Try plant trait database–enhanced coverage and open access. *Global Change Biology* 26: 119–188.
- Kelly R, Healy K, Anand M, Baudraz MEA, Bahn M, Cerabolini BEL, Cornelissen JHC, Dwyer JM, Jackson AL, Kattge J et al. 2021. Climatic and evolutionary contexts are required to infer plant life history strategies from functional traits at a global scale. Ecology Letters 24: 970–983.
- Kullhn N, Tovar C, Carretero J, Vandvik V, Enquist BJ, Willis KJ. 2021. Globally important plant functional traits for coping with climate change. Frontiers of Biogeography 13: e53774.
- Larson JE, Funk JL. 2016. Regeneration: an overlooked aspect of trait-based plant community assembly models. *Journal of Ecology* 104: 1284–1298.
- Lawson CR, Vindenes Y, Bailey L, van de Pol M. 2015. Environmental variation and population responses to global change. *Ecology Letters* 18: 724–736.
- Liu M, Rubenstein DR, Liu WC, Shen SF. 2019. A continuum of biological adaptations to environmental fluctuation. Proceedings of the Royal Society B: Biological Sciences 286: 20191623.
- MacArthur R, Wilson E. 1967. The theory of island biogeography. Princeton, NJ, USA: Princeton University Press.
- McGill BJ, Enquist BJ, Weiher E, Westoby M. 2006. Rebuilding community ecology from functional traits. *Trends in Ecology & Evolution* 21: 178–185.
- Papalexiou SM, Montanari A. 2019. Global and regional increase of precipitation extremes under global warming. Water Resources Research 55: 4901–4914.
- Raunkiaer C. 1934. The life forms of plants and statistical plant geography. Oxford, UK: Clarendon Press.
- Rees M, Childs DZ, Metcalf JC, Rose KE, Sheppard AW, Grubb PJ. 2006. Seed dormancy and delayed flowering in monocarpic plants: selective interactions in a stochastic environment. *The American Naturalist* 168: E53–E71.
- Rees M, Childs DZ, Rose KE, Grubb PJ. 2004. Evolution of size-dependent flowering in a variable environment: partitioning the effects of fluctuating selection. Proceedings of the Royal Society of London, Series B: Biological Sciences 271: 471–475.
- Reich PB. 2014. The world-wide 'fast-slow' plant economics spectrum: a traits manifesto. *Journal of Ecology* 102: 275–301.

- Richardson AD, Carbone MS, Keenan TF, Czimczik CI, Hollinger DY, Murakami P, Schaberg PG, Xu X. 2013. Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees. New Phytologist 197: 850– 861.
- Robichaux RH, ed. 1999. Ecology of sonoran desert plants and communities. Tucson, AZ, USA: The University of Arizona Pres.
- Rodgers KB, Lee SS, Rosenbloom N, Timmermann A, Danabasoglu G, Deser C, Edwards J, Kim JE, Simpson IR, Stein K et al. 2021. Ubiquity of human-induced changes in climate variability. Earth System Dynamics 12: 1393–1411.
- Saatkamp A, Cochrane A, Commander L, Guja Lydia K, Jimenez-Alfaro B, Larson J, Nicotra A, Poschlod P, Silveira FAO, Cross Adam T et al. 2019. A research agenda for seed-trait functional ecology. New Phytologist 221: 1764–1775.
- Salguero-Glomez R. 2017. Applications of the fast-slow continuum and reproductive strategy framework of plant life histories. New Phytologist 213: 1618–1624.
- Salguero-Gómez R, Casper BB. 2010. Keeping plant shrinkage in the demographic loop. *Journal of Ecology* 98: 312–323.
- Seger J, Brockmann HJ. 1987. What is bet-hedging? In: Harvey PH, Partridge L, eds. Oxford surveys in evolutionary biology, vol. 4. Oxford, UK: Oxford University Press, 182–211.
- Simons AM. 2011. Modes of response to environmental change and the elusive empirical evidence for bet hedging. Proceedings of the Royal Society B: Biological Sciences 278: 1601–1609.
- Slatkin M. 1974. Hedging ones evolutionary bets. Nature 250: 704-705.
 Starrfelt J, Kokko H. 2012. Bet-hedging a triple trade-off between means, variances and correlations. Biological Reviews 87: 742-755.
- Swain DL, Langenbrunner B, Neelin JD, Hall A. 2018. Increasing precipitation volatility in twenty-first-century California. Nature Climate Change 8: 427–433.
- Swenson NG, Worthy SJ, Eubanks D, Iida Y, Monks L, Petprakob K, Rubio VE, Staiger K, Zambrano J. 2020. A reframing of trait-demographic rate analyses for ecology and evolutionary biology. *International Journal of Plant Sciences* 181: 33-43
- Wiley E, Helliker B. 2012. A re-evaluation of carbon storage in trees lends greater support for carbon limitation to growth. New Phytologist 195: 285–289.
- Wong TG, Ackerly DD. 2005. Optimal reproductive allocation in annuals and an informational constraint on plasticity. New Phytologist 166: 159–171.
- Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M et al. 2004. The worldwide leaf economics spectrum. Nature 428: 821–827.
- Zhang BW, Hautier Y, Tan XR, You CH, Cadotte MW, Chu CJ, Jiang L, Sui XH, Ren TT, Han XG et al. 2020. Species responses to changing precipitation depend on trait plasticity rather than trait means and intraspecific variation. Functional Ecology 34: 2622–2633.