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Bayesian Sparse Blind Deconvolution Using MCMC
Methods Based on Normal-Inverse-Gamma Prior

Burak C. Civek

Abstract—Bayesian estimation methods for sparse blind decon-
volution problems conventionally employ Bernoulli-Gaussian (BG)
prior for modeling sparse sequences and utilize Markov Chain
Monte Carlo (MCMC) methods for the estimation of unknowns.
However, the discrete nature of the BG model creates computa-
tional bottlenecks, preventing efficient exploration of the prob-
ability space even with the recently proposed enhanced sampler
schemes. To address this issue, we propose an alternative MCMC
method by modeling the sparse sequences using the Normal-
Inverse-Gamma (NIG) prior. We derive effective Gibbs samplers
for this prior and illustrate that the computational burden as-
sociated with the BG model can be eliminated by transferring
the problem into a completely continuous-valued framework. In
addition to sparsity, we also incorporate time and frequency do-
main constraints on the convolving sequences. We demonstrate the
effectiveness of the proposed methods via extensive simulations and
characterize computational gains relative to the existing methods
that utilize BG modeling.

Index Terms—Blind deconvolution, sparse recovery, Bayesian
estimation, Markov Chain Monte Carlo, Gibbs sampler.

I. INTRODUCTION

HE problem of reconstructing an unknown signal from
T an observation, where the observation is modeled as the
filtered version of the unknown signal with a given distortion
filter, is known as the deconvolution problem. When the impulse
response of the distortion filter is not known and to be estimated
along with the unknown signal, it evolves into the Blind De-
convolution (BD) problem. This problem setting emerges in a
variety of real-life applications including, but not limited to, seis-
mic exploration [1], [2], image deblurring [3], [4], digital com-
munication [5], [6], and biomedical signal reconstruction [7],
[8]. The class of BD problems is inherently ill-posed and suffers
from the identifiability issues without the prior knowledge about
the convolving signals [9]. This is due to the fact that many
distinct signal pairs can yield the same observation. To overcome
this issue, several different assumptions are made on the signal
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pairs in an attempt to constrain the solution space. Typical
examples of these include restricted support in frequency or time
domain [7], [8], availability of a sparse representation [10]-[12],
or existence of a generative subspace [6], [13].

Solution of BD problems has been extensively studied under
both deterministic and probabilistic frameworks [14]. Determin-
istic approaches typically construct a constrained optimization
problem, where the goal is to minimize an objective function
corresponding to a likelihood term that measures the quality of
fit. The constraints on the variables are imposed either explicitly
or by augmenting the objective function. Because a closed
form solution is usually not available, gradient-descent search
algorithms are employed to converge to a local minimum that
minimizes the objective function. However, due to the structure
of the constraints, the constructed optimization problem usually
has a non-convex formulation, and therefore, the successful re-
covery relies on finding a good initial estimate [11]. Even though
there exist convex formulations, which eliminate the effect of
initialization, their ability to impose a variety of constraints si-
multaneously, e.g., frequency and time domain constraints at the
same time, is limited [8], [10], [12]. Notably, the lifting approach
proposed in [13], and its extension to sparse sequences [15],
enable imposing time/frequency constraints jointly by assuming
the existence of a generative subspace. However, the number of
available measurements is limited when the impulse response
of the distortion filter has a bandlimited structure, which might
prevent successful recovery with lifting approaches.

Probabilistic approaches, on the other hand, provide effective
alternatives by modeling the unknown quantities as random
variables and producing estimates based on the posterior dis-
tribution. Appropriate prior distributions are assigned to the
unknown variables in order to increase the posterior value of
points that satisfy the constraints in the probability space. Similar
to deterministic models, analytic solution is not tractable in many
cases, where the solution is obtained through numerical iterative
methods such as Markov Chain Monte Carlo (MCMC) [16].
Different from gradient-descent searches, which seek for a local
minimizer point, MCMC methods sample from the posterior
distribution, exploring the space to perform density estimation,
which mitigates the effect of initialization [17]. This enables
probabilistic schemes to incorporate more complex constraints
simultaneously without suffering from the highly non-convex
structure of the posteriors shaped by these constraints.

In this paper, we adopt the probabilistic framework and
present computationally efficient Bayesian methods for the so-
lution of the regularized BD problem, in which the desired signal
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is a sparse sequence and the unknown impulse response of the
distortion filter is time and/or bandlimited. This problem setting
is of great importance due to its applicability to a wide range of
scenarios. In many cases, even if the desired signal itself is not
sparse, it is possible to find a sparse representation in a suitable
transform domain. Moreover, physical realizations of real-world
systems are well modeled by exactly or approximately bandlim-
ited system responses with finite impulse responses.

Bayesian BD methods conventionally employ a Bernoulli-
Gaussian (BG) prior for modeling the sparse sequences [18],
[19]. According to the BG model, the sparse sequence is
represented by a Bernoulli distributed binary latent sequence,
indicating the nonzero positions, and an amplitude sequence,
representing the amplitudes corresponding to those positions
under the Gaussian law. The posterior distribution constructed
in this manner has a discrete structure, prohibiting efficient
analytical solutions and leading to iterative approaches for
making inference on the posterior. Bayesian methods typically
use the MCMC simulations, whose potential in the sparse BD
literature was presented by the pioneering work of Cheng er
al. [1]. The Gibbs sampler in particular is a powerful iterative
tool for Bayesian inference problems, even when the number of
unknowns is quite high [20]. Due to its simplicity, it has practical
advantages over more sophisticated and efficient sampling meth-
ods, such as the Hamiltonian Monte Carlo (HMC) [21], which
also has applications to sparse sampling from non-differentiable
distributions [22]. Unlike the HMC methods, for which the
sampling performance strictly depends on fine-tuning the hyper-
parameters, which is quite complicated for high-dimensional
spaces, Gibbs sampling does not require any fine-tuning and
still provides a significantly fast mixing rate, especially if the
sampled variables are independent [20]. However, the mixing
performance degrades considerably when there are strong de-
pendencies between variables [23], [24].

It has been shown that the original Gibbs sampler constructed
based on BG prior for sparsity causes implicit dependencies
between the consecutive sampling steps of the latent indicator
sequence, which prohibits the sampler to explore the probability
space efficiently, causing it to get stuck on a local optimum for
a long time [23]. In order to eliminate this deficiency, more
efficient sampling methods were proposed in [23] and [25], ac-
counting for the statistical dependence between the neighboring
variables in the indicator sequence. An alternative idea, which
was first introduced in [26], and revisited in [24] within the
Bayesian sparse blind deconvolution framework, is to use the
blocked Gibbs sampler scheme that enables sampling adjacent
variables jointly. Despite the considerable improvement in the
convergence rate, their application is usually limited to very
short blocks due to exponentially increasing computational com-
plexity with the block length. Another attempt, also presented
in [24], to improve the mixing rate was to integrate the partially
collapsed Gibbs (PCG) sampler, a generalization of the block
Gibbs samplers, into the BG model. PCG samplers explore the
probability space more effectively by means of marginalization
and trimming operations [27]. However, although the PCG sam-
pling scheme outperforms the blocked sampler schemes in terms
of the number of iterations needed for convergence, iterations
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are considerably more costly [24]. As an alternative to the BG
model, the Bernoulli-Laplacian (BL) prior is also widely studied
in the literature in an attempt to produce sparser solutions by
the inclusion of the Laplacian term [28], [29]. However, both
the BG and BL models share the same computational issues
described above, which are mainly due to the discrete nature
of the incorporated Bernoulli prior creating a computational
bottleneck even for the highly efficient sampling schemes.

In order to address this deficiency, in this work, we present al-
ternative MCMC methods utilizing the Normal-Inverse-Gamma
(NIG) prior, which is a well-known continuous surrogate of
the BG prior for modeling sparsity. The use of continuous
NIG prior is well-established in the Bayesian sparse learning
literature [30] and emerges in a variety of applications includ-
ing, but not limited to, the scale mixture of Gaussians [31],
where the mixing distribution is an Inverse-Gamma, and the
sparse Bayesian linear regression [32], [33]. In our problem
setting, unlike the BG model, the NIG prior models the sparse
sequence as a zero-mean multivariate Gaussian distribution with
an unknown diagonal covariance matrix, where the individual
variances marginally follow an Inverse-Gamma (IG) distribu-
tion. Therefore, the marginal distribution for the sparse sequence
corresponds to a multivariate t-distribution, whose heavy tails
encourage sparsity [34]-[36]. With this sefting, the problem
is transformed into a completely continuous valued domain,
i.e., all unknowns including the latent variables are continuous
valued.

Our contributions in this work are listed as follows: ¢) To the
best of our knowledge, we present the first application of NIG
prior within the MCMC framework for the Bayesian sparse BD
problem with time/frequency domain constraints. 7i) We also
present a PCG sampler variant to address the inefficiencies of the
straightforward implementation of the classical Gibbs sampling
approach. 2i7) We designed the samplers in a hierarchical manner
to infer all other model parameters, including the noise variance
and the hyper-parameters of the selected priors, simultaneously
and solely from the measurements. Hence, the samplers re-
quire no fine-tuning. iv) We present an in depth numerical
study to assess the performance of the proposed samplers and
demonstrate that they achieve state-of-the-art performance of
the previously proposed blocked [24] Gibbs samplers with BG
prior at a fraction of their computational cost.

The paper is organized as follows. We first introduce the
problem setting and define the prior distributions associated with
each variable in Section II. Then, in Section III, we present
the proposed MCMC methods for the solution of sparse BD
problems, followed by their validation through numerical ex-
periments in Section IV. We finalize the discussion with the
concluding remarks in Section V.

II. PROBLEM STATEMENT

We consider a real-valued time-domain observation sequence
yp, of length N, which is modeled by linear convolution of two
finite sequences, a relatively shorter pulse sequence h,, of length
T <« N, modeling the impulse response of the distortion filter,
and a sparse sequence x,, of length K < N. The output of the
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convolution is then corrupted by additive noise vy, yielding the
following measurement model

T-1
Yn =) hitn g +on forn=0,. ,N-1, (1)

k=0
where z, = 0 for any n ¢ {0, ..., K — 1}. Here, we consider

the scenario where both the pulse shape h,, and the sparse se-
quence ., are unknown and to be estimated from the observation
Yn. This problem is well-known as the blind deconvolution prob-
lem and usually ill-posed if there is no prior information about
the pair of convolving sequences. Here, we focus on the setting
where the problem is regularized by sparsity and time-frequency
domain constraints, which enables the successful recovery of
both sequences.

For notational convenience, we define the vector valued vari-
ables y,v € RV, z € R¥, and h € R7, and rewrite (1) as

y=Hz+wv, 2

where H € R *X is the Toeplitz matrix of h. Here, the first col-
umn and row of H are given as [ho, h1, ..., hr_1,0,...,0]T and
[ho,0, ...,0] respectively. Defining = € R™*T as the Toeplitz
matrix having [xo, 1,...,zx_1,0,...,0]T as its first column
and [z, 0, . . ., 0] as its first row, we can alternatively rewrite (2)
as y = xh + v. We will make use of both of these formulations
in the rest of the paper.

A. Prior Distributions

Following the Bayesian framework, the unknowns are mod-
eled as random variables with specific prior distributions. This
section provides a complete description of the prior distributions
assigned to each variable. We begin with review of the BG
distribution, which is the conventional prior used in Bayesian
settings for sparse sequences. We then introduce the NIG model,
which is a soft alternative to the BG model promoting sparsity
of @ and will constitute the basis of our proposed estimator in
the next section.

1) Bernoulli-Gaussian Prior for Sparsity: The BG model
introduces a latent binary sequence s = [sq, $1,...,51_1]7
with s,, € {0,1} and defines the conditional distribution of =,
given s, as

| d(zn) if s, =0
Plenlon) = {N(a:n;o, o2)if sp=1" @)

where §(-) is the Dirac delta function and ' (-; i1, %) denotes the
Gaussian distribution with mean p and variance 2. Assuming
sp, are independent and identically distributed (i.i.d.) according
to a Bernoulli distribution with parameter 7y = P(s,, = 0), the
prior for s takes the form

K-1
— s ) = K Akl Z K-kl
p(o) = T pten) = (i, )70 =m0 @

where /C; denotes the set of indices giving the locations of 1’s
and | IC; | represents the cardinality of Iy, ie., [I1| =~ s,. As-
suming different pairs of (z,, s, ) are statistically independent,
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the joint distribution of & and s becomes

p(x,s) = p(s) [] N(zn;0,02) [] 8(xn), (5)
nelkly nekln
where K is the complement of Ky in {0,1,...,K — 1}. The
parameter 7 reflects our a priori knowledge about the expected
rate of 1’s in s, limiting the total number of nonzero entries in
x, and hence, leading to a sparse sequence.

2) The Normal-Inverse-Gamma Prior for Sparsity: Instead
of introducing a latent binary sequence, which forms a dis-
crete probability space, the sparsity can also be imposed by
a diagonal covariance matrix X, = diag(c2), where o2 =
02,02 ,...,02, ]7. Here, o2 consists of continuous val-
ued unknown variances of each element in x. Under a zero-
mean multivariate Gaussian law with the covariance ma-
trix X, the conditional prior distribution of = given o2
becomes

p(z|ol) = N(z;0,%,), (6)

where \/(-; i1, X) represents the multivariate Gaussian distribu-
tion with mean j+ and covariance 3. The idea is that an individual
element ., can be made arbitrarily small by setting a sufficiently
low variance crgn. Therefore, the unknown variance vector o2
is also assumed to be a random sequence and to be estimated
along with h and @.

We assign i.i.d. IG! prior on o2 with shape and scale param-

eters a; and 3,
K-1
P(aglazaﬂﬂz) = H Ig(ggn;azaﬁz)- (7
n=>0
The IG distribution is conjugate prior for the unknown vari-
ance of the Gaussian distribution, which enables analytical
calculation of the posterior. Moreover, note that the marginal
distribution of any element z,, becomes

pin) = f P(nlo?. )p(o2, )do?.

_ ” Iz +0.5)
V21T (ag) (0.522 + f)=10-57

which corresponds to a generalized Student’s f-distribution with
degree of freedom 2a, and scale 3, /c,. As shown in Fig. 1,
appropriate selection of parameters (a, 5;) leads to a family
of distributions that are highly concentrated around zero with
significantly heavier tails compared to standard Gaussian distri-
bution, justifying the use of NIG model for sparse sequences
as an alternative to BG model. However, as opposed to the
simple interpretation of mp within the BG model, the effect
of parameters a; and 3, is complicated, preventing the avail-
ability of prior estimates beforehand. Therefore, we construct
a hierarchical Bayesian model and learn the prior distribution
parameters o, and 3, from the measurement as well. Assuming
no prior information on o, and 3., we assign Jeffreys prior,
given by p(ay) o< 1/a, and p(B;) o< 1/3;, which forms an
improper prior exhibiting non-informative structure. Here, oc

@®)

IPlease see the supplement for the explicit definition of IG distribution.
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Fig. 1. Marginal prior distribution of x,, in logarithmic scale for different

parameter values (o, Sz ). Standard Gaussian and Cauchy distributions are
included for comparison. All densities are scaled such that the maximum is 1.

denotes the proportionality. We should note that the effect of
prior distributions p(ay) and p(/3;) on the posterior will indeed
be dominated by p(x|o2) and p(02|as, Bz) as the length of
the sequence K increases. Hence, the constructed hierarchical
model is not sensitive to the selection of prior distributions for
the variables a,, and 3.

3) Prior for Short Pulse Sequence: Time and frequency do-
main constraints for pulse sequences are widely used in blind
deconvolution framework to regularize the problem [7], [8],
[37]. One common practice is to assume that the pulse sequence
belongs to a known subspace, i.e., h = A, where A € RT*L
represents a lower dimensional subspace with L < T and ~ €
R’ represents the unknown orientation of /& in the subspace,
which is to be estimated. The duration of h in time domain is
explicitly enforced by the dimension of A, and the frequency
domain restrictions can be applied by constructing A using the
first L sequence of either Discrete Prolate Spheroidal (DPS)
Sequences or Hermite Functions [38]. Whenever there is no
specific frequency domain restriction, A can be set as identity,
i.e., A =1TI. We should note that due to the scaling ambiguity
inherent in BD problems, the scale of the pulse sequence h must
be restricted. This can be achieved by assigning an appropriate
prior on -y. Therefore, we assign a zero-mean i.i.d. Gaussian

distribution with variance o2, i.e.,

p(y) = N(7;0,051). 9)

Here, the variance cr?r is a fixed hyperparameter to avoid scaling
ambiguity.

4) Prior for Noise Variance: We assume that measurements
are corrupted by additive white Gaussian noise with unknown
variance o2. Assuming no prior information, similar to the other
parameters, we assign Jeffreys prior, i.e., p(02) oc 1/02.
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B. Estimation Problem

The estimation problem consists of estimating the actual
variables of interest & and -y, along with the noise variance o2,
the latent variables o2, and the corresponding prior distribution
parameters o, [, from the given measurement y. Given the
prior distributions for all variables, the posterior distribution

follows

p(0|y) o p(y|6)p(6),

where we set 8 = [z, 02,7, 02, az, ;] for more compact no-
tation. Assuming all variables are statistically independent, the
prior distribution p(@) is given by

p(8) = p(x|o2)p(0| oz, Be)p(z)p(Ba)p(Y)p(0y), (1)

where the expressions for the right hand side are given in Sec-
tion I1-A. Assumed Gaussian noise model yields the following
likelihood term

N/2 _ 2
p(yl6) o (é) exp ( - w), (12)

2
v QUU

(10)

where || - || denotes {5 norm of a vector. Note that the likelihood
term is only a function of z, v and o2.

For estimation of the variables, we consider the minimum
mean-square-error (MMSE) estimator, i.e.,

6" = E[Bly], (13)

which is equivalent to the expected value of the posterior dis-
tribution given in (10). However, explicit calculation of (13)
is not possible since it requires analytically intractable inte-
grations. This leads us to an approximate solution, which can
be obtained using MCMC simulations. MCMC methods are
widely used in Bayesian inference problems, including blind
deconvolution literature, when the posterior distribution is too
complicated to obtain exact analytical solutions [16], [17]. The
first step of MCMC methods consists of %enerating a set of,
say, J random samples, denoted by {8V}, with 6 =
(2,020 4@ 520 oD 0] being the it" sample, from the
posterior distribution using an appropriate sampler. Once the
sampling process is completed, the actual solution of (13) is
approximated by the sample mean, i.e.,

1 7

/18]

=7 >
i=J+1

g ~

(14)

where the first J' samples are discarded as part of the burn-in
process. Here, the crucial part is to have an effective sampler,
which can converge to the true target distribution quickly. To
this end, in the next section, we construct the proposed valid
sampling schemes to be used within MCMC simulations.

III. PROPOSED SAMPLERS FOR SPARSE
BLIND DECONVOLUTION

Samplers are essential components of MCMC methods for
complex target distributions. They construct Markov Chains
whose stationary distributions converge to the target distribution
(which corresponds to the posterior distribution (10) in our case)
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in the long run [39]. The effectiveness of the sampler is directly
associated with the mixing rate, which represents how fast the
stationary distribution is achieved. In this work, we employ both
Gibbs and PCG sampling schemes with improved mixing rates.

In this section, we first briefly review the idea of classical
Gibbs sampling for multivariate distributions, followed by the
construction of our proposed classical Gibbs sampler, which
utilizes the alternative NIG model for sparsity. Then, we propose
a PCG based sampler to improve upon the classical Gibbs
sampler to obtain a faster mixing rate with a slightly increased
computational complexity.

A. Gibbs Sampler

Let w(0) denote the target distribution that we want to sample
from, with @ being a vector valued random variable of arbi-
trary length, say M, ie., 0 = [00,61, . ..,60_1]T . When direct
sampling from 7(#) is not feasible, the idea of Gibbs sampling
suggests that we can sample each of the scalar variables, 6, in
turn from their conditional distributions with all other variables
are fixed at their current values. Hence in the ' iteration, 8“)
obtained by sampling from p(ﬁm |9 ), 6%, 1)) where m~ and
m7 represents the indices {1, ..., m — 1} and{m+1,...,M}
respectively. One iteration of Gibbs sampling is completed once
every single variable is updated. All variables are initialized,
usually by sampling from their prior distributions, before the first
iteration, which has a strong effect on the first few realizations. In
order to eliminate this effect, a burn-in process is incorporated,
where the realizations generated until convergence to the target
distribution are discarded.

It is also useful to note that this process is not restricted to
sampling a single scalar variable at a time. An extension of the
Gibbs sampler, called blocked Gibbs sampler, allows sampling
blocks of variables at one step through their joint distribution
conditioned on others. It helps to achieve considerably improved
convergence rates compared to sampling a scalar valued variable
at a time by reducing the autocorrelation between the successive
samples. This is especially useful when applied to variables with
strong dependencies.

B. The Proposed Classical Gibbs Sampler

We begin with constructing the classical Gibbs sampler based
on the selected prior distributions. Then, in the next section,
we propose an alternative sampling scheme that introduces
additional intermediate steps to enhance the mixing rate. One
iteration of our classical Gibbs sampler is described in Table I.
In each step, we sample a variable from its full conditional
posterior distribution. The reason for dropping some of the
variables from the conditions is not because of marginalization,
but due to conditional independence. For instance, in Step 1,
we have p(a-‘rly': T, 0377: 037 ,'81?) = p(al‘|o-?:: .8.‘12) Analogous
situations apply to the other steps.

This sampling scheme can be viewed as a blocked Gibbs
sampler, since the variables being sampled in steps 3, 4, and 5
are vector valued. Nevertheless, each variable is sampled exactly
once using the corresponding posterior distribution conditioned
on the current values of all other variables, hence, it is a valid
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TABLE1
PROPOSED CLASSICAL GIBBS SAMPLER

Step 1. Sample a, from p(a. |02, 8,)
Step 2. Sample 3, from p(8;|02, ay)
Step 3. Sample o2 from p(ol|x,ay, B:)
Step 4. Sample x from p(z|y,o2,v,02)
Step 5. Sample ~ from p(v|y, z,02)
Step 6. Sample o2 from p(o2|y, x,~)

Gibbs sampler. Due to our selection of conjugate priors, each
conditional posterior distribution is analytically tractable. We
now present the closed-form expressions for the sampling dis-
tributions in each step of Table I. The derivations are provided
in the supplemental material.

1) Sampling Distributions for Step 1 and 2: The prior dis-
tribution parameters «, and 3, for the latent variable Ui are
sampled respectively from

) pEae K-1 1 3\ @=tl
peulots )« e (T ) vl 09
and
P(Baloz, 0z) = G(Bri &g, Bs. ), (16)
where a5, = Ka, and B5, = Y n_, 1/02_. While sampling

By is straightforward, it is not for o, due to not well-known
form of its sampling distribution. Nevertheless, univariate form
of (15) allows us to draw samples efficiently by employing
different sampling approaches, such as Metropolis-Hastings or
Slice sampling [40].

2) Sampling Distribution for Step 3: The posterior distribu-
tion of 0'3 conditioned on x, a,, and 3, is given by

K-1

)= ][ Z6(02,: 2. 5-.)

n=0

p(o2|z, oz, Be (17)

with common shape parameter &; = a, + 1/2 and individual
scale parameters f3;, = z2/2 + fz. Therefore, sampling o2
can be achieved by independently sampling its elements from
univariate IG distributions.

3) Sampling Distribution for Step 4: The sampling distribu-
tion for the sparse sequence x takes the form of a multivariate
Gaussian distribution

p(@ly, 02,7, 0%) = N(T; fiy, Xz) (18)

with the posterior mean i, and covariance 3, given by
1 s 1 !
iy ==3:H"y, X,= (—QHTH + 2;1) . (19)
O—U UU

Here, in order to avoid the explicit matrix inversion re-
quired for computing the posterior covariance, we adopt the
Cholesky-based sampling procedures as described in [24]. In our
application domain, @ is typically a moderate length sequence.
This allows us to sample the whole sequence at once, while
still achieving a significant reduction on the cost per iteration
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compared to standard BG models as demonstrated in Fig. 4.
However, we should note that, for applications with very large
K, such as blind image deconvolution, sampling the whole
sequence x at once might be infeasible both in terms of com-
putational and storage costs. This problem has been extensively
studied in several studies including, [41], [42] and more recently
in [43] and [44]. As an alternative to these approaches, one can
also reduce the total computational load of Step 4 by considering
a trade-off between the cost per iteration and the mixing rate of
the sampler and apply a hierarchical Gibbs sampling procedure

Recovery results for the sparse sequence (left and middle columns), pulse sequence (upper right), and convergence rates (lower right).
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to sample shorter blocks of x in turn conditioned on each other.
Since smaller block lengths will reduce the mixing rate by
increasing the statistical dependence between the consecutive
sub-sampling steps, it must be selected as large as possible within
the limits of computational resources.

4) Sampling Distribution for Step 5: Similar to that of x,
the sampling distribution for -y is also a multivariate Gaussian
distribution

(YN, x,02) =N (v iy, ), (20)
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as a function of sparse sequence length K (right).

where the posterior mean and covariance are now given by

i — -5 BT 3, = lBTBJrlI_l (21)

“‘q«' - 03 r Y, Y Ug Gg ?
with B = ¢ A. Unlike the sparse sequence x, the length of
is usually very small for bandlimited sequences, enabling direct
sampling of -y with the Cholesky-based sampling schemes.

5) Sampling Distribution for Step 6: The sampling distribu-
tion for the noise variance o2 takes the form of IG distribution
given by

plosly,@,v) = IG(o3; v, Bo) (22)

with parameters &, = N/2 and 3, = ||y — xA~|/%/2.

The use of alternative soft NIG prior for sparsity, instead of
the BG model, allows us to introduce Step 3, where the latent
variable o2 is sampled conditioned on the current value of x. The
equivalent step for the BG model would be sampling the binary
sequence s from p(s|x) = p(x|s)p(s), which would, however,
not possible due to the deterministic dependence between s and
a. Therefore, s and x are usually sampled jointly. However,
since s is a binary sequence of length K, sampling s as a whole
at one step, which would require 2X different probability mass
point calculation, is not feasible. This enforces BG models to
sample asingle tuple (s, z,,) ata time conditioned on the others.
Since neighboring variables usually have strong dependence,
sampling them conditioned on each other causes the sampler to
be stuck on a local optimum for a long time. There is an extension
proposed in [24] that samples M -tuples at a time to escape from
local optimums faster, but it is limited to very short blocks due
to exponentially increasing computational load. Therefore, the
discrete nature of the BG model creates essential computational
burdens. By employing the alternative NIG model, the problem
is transformed into a fully continuous valued framework, which
not only helps to eliminate the exponential computational com-
plexity but also provides an easier transition between different
local optimums.

C. The Proposed Partially Collapsed Gibbs Sampler

There exist two main points worth addressing in an attempt
to improve the convergence rate of the proposed classical Gibbs
sampler. Firstly, note that Step 3 samples o2 purely conditioned
on @, which may slow down the convergence rate due to their
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strong statistical dependence. We address this issue by intro-
ducing intermediate proposal steps after Step 3, in which new
values for coinciding blocks of & and o2 are proposed using
their joint posterior densities. Secondly, the blind nature of the
problem creates many distinct local optimums corresponding to
different = and ~y pairs. Once a suboptimal® configuration has
been reached with a corresponding noise level o2, the sampler
can get stuck on this configuration for a long time since x,
~. and o2 are all sampled conditioned on each other. This
problem is especially important when the noise variance o2 gets
smaller because it results in a posterior distribution with sharper
and more isolated peaks. One way to resolve this issue is to
sample x and ~y jointly, which can be realized by marginalizing
either « or -y from the sampling distributions given in Step 6
or 4, respectively. However, both of these approaches lead to
complicated sampling distributions, from which sampling is
not feasible due to high dimensionality. A less effective but
more feasible way is to sample either « and o2, or v and o2
jointly, creating more freedom for sampling o2. This allows
o2 to assume larger values more frequently. Note that as o2
gets larger, the effect of likelihood is reduced on the conditional
posteriors of both & or -y, and it becomes easier to escape from
a local optimum. Since L < K, we choose to sample -y and
o? jointly, because it is computationally much more efficient
compared to sampling @ and o2 jointly.

Let us first introduce the intermediate sampling steps for
blocks of z and o°2. We define £, as the right-hand neighborhood
of length @ for index n, i.e., f, = {n,n+1,...,n+Q — 1}
forn=0,1,..., K — Q, and let ~{, be the complement of
£y in{0,...,Q — 1}. We represent the variable blocks pointed

by the neighborhood £,, as aﬁen =[o2 . JE“H e C’Enm_l]T

and @, = [Tn, Tny1,- -, Tnyq1]”. Similarly, o7 , and
x4, represent the blocks of the remaining K — @ variables.
At each iteration of the new sampler, we propose new values
for the blocks o2 ., and @, using the proposal distribution
p(03, s Te, |y, T, , 0%, .7, 03), which is the joint posterior
distribution of Jgfn and x,, conditioned on all the other vari-
ables. Since this is actually a valid Gibbs sampling step, the
Metropolis-Hastings acceptance probability is always 1 for the
proposals. The neighborhood £,, is updated after each iteration

2Here, by suboptimality, we refer to the configurations of 2 and -y that achieves
a likelihood value as high as the true values of = and ~.
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TABLE 1T
PARTIALLY COLLAPSED GIBBS SAMPLER

Step 1. Sample o, from p(a.|o2, 53,)

Step 2. Sample 3, from p(8.|02,a;)

Step 3. Sample a2 from p(o?|z, a., 3.)

Step 4. Sample x..,, from p(x., |y, 02,7, 02)

3., from p(o?, |y, ®e,, 7,00, @z, Br)

Step 6. Sample x,, from p(mgﬂ |y: Lty aizn 2 Y 0221)

Step 5. Sample o

Step 7. Sample o2 from p(o?|y, x)

Step 8. Sample ~ from p(v|y,,02)

as follows. At i‘" iteration we set n = mod(i — 1, K — Q + 1),
where mod(a, b) is the modulo operator returning the remainder
after division of a by b. This creates a sliding window over o2
and x that shifts one index to the right at each iteration. Hence,
the whole sequence is scanned after every K’ — () + 1 iterations.

For a given neighborhood #,,, sampling from the joint con-
ditional posterior p(a2, , ¢, |Y, Trt,,; 0y, az, fz) can be
realized in two consecutive steps, i.e.,

* First, sample 02, fromp(02, |y, T, , 7,00, @, Be)s

* Then, sample x, from p(zy, |y, T, .02, ,7,07).

These steps can be inserted right after Step 4, as Steps 5 and
6, respectively. Note that the block @, is still being sampled in
Step 4, which is redundant because it would not be conditioned
on in Step 5 and immediately replaced with the new values
obtained in Step 6. Therefore, sampling x,, can be skipped in
Step 4, which forms a new step where only .z, is sampled from
p(Ts,|y,0%,7,05). Although o2, is also re-sampled in Step
5, it is still conditioned on in Step 4, so we cannot skip sampling
ol .., inStep 3. The first 6 steps of the resulting sampling scheme
is given in Table II .

In order to jointly sample o2 and -y, we need to sample from
p(02,~|y, x), which can also be realized in two steps as:

e First, sample o2 from p(c2|y, ),

e Then, sample ~ from p(Y|y, z, 02).

These constitute the last two steps of the proposed sampler in
Table II.

We emphasize that the sampling distribution in Step 4 is not
associated with the joint posterior p(#|y) anymore. Therefore,
the proposed sampler is not a classical Gibbs sampler. Instead,
it is a PCG sampler since the procedure described above is
completely consistent with the marginalization and frimming
operations described in [27]. PCG samplers are generalizations
of the block Gibbs sampler, where some of the variables are not
sampled from their full conditional posteriors. This provides
more freedom for the sampler to jump from one point to another
in the sampling space, which usually increases the mixing rate.

Compared to the classical Gibbs sampler in Table I, the first
three steps are the same and sampling distribution for Step
8 is already given in (20). The sampling distributions for the
remaining steps are presented below. Derivations are provided
in the supplemental material.
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1) Sampling Distribution for Step 4: The sampling distri-
bution for x..,,_ block is obtained by marginalizing x,  from
p(z|y,02,~, ¢2). The resulting distribution is also a multivari-
ate Gaussian distribution given by

(@t |Y,02,7,00) = N(@wtnifig,, Bo)- (23)
The posterior mean fi_, and covariance i,ugn are defined as
1 -

3. HS, Diy,

o2
O—’I‘J'

Ao, = (24a)

- 1 -1
EL%:(EHQJ%jL%+E¢J , (24b)
v

where Dy, =1 — 5H, %, HY with H_,, and Hy, rep-
resent the matrices formed by the columns of H indexed
by ~£, and £, respectively. The covariance matrices are de-
fined as X, = diag(o3 , ), X¢, = diag(oZ, ), and X, =
(zH, He, + %) 7"

2) Sampling Distribution for Step 5: Similarly, the sampling
distribution for o2 block is obtained by marginalizing x,,

Tin
2 2 . - -
fmm p(a.r,gn 7 mfn |y> 93__,,2“-, IT: 0—1;1 Oy, ;B.‘z:), WhICh 18 glvel'] by

2 2
p(o-:l:gn |y1 xwfn:'}(a JUB (22 JB:I:)

13, |12 1 _p=1.
SIS P ENE;EE“ fie, |p(03,, )(25)

where fi, = ;%flgan; Yor, and Yo =y —H. p Ty .
Direct sampling from (25) is not possible, since the form of
the distribution is not well-known. Therefore, we employ a MH
or Slice sampling step.

3) Sampling Distribution for Step 6: The sampling distribu-
tion for x,, block is given by

p(mfn |y5 xwé’n: aitn e 0—3) = N(:Bf" 3 ﬂ‘tn ] iﬂn): (26)

with g1, and ign are as defined in Sections IT1I-C1 and ITI-C2.

4) Sampling Distribution for Step 7: The sampling distribu-
tion for the noise variance o2 is obtained by marginalizing
from p(o2,|y, x), which is given by

plogly, @)

1\ 1 1 1
s |1/2 =Tt~ T 2
oC (G—E) |E'T‘ exp (E‘JJ,Y Z'T ‘.L,Y — Qy y)p(crv)
27

Although it is not straightforward to sample from (27), we
can efficiently employ MH or Slice sampling methods due to
its univariate form. In the next section, we investigate the scal-
ing and time-shifting ambiguities existing in the BD problems
and propose two intermediate sampling steps accounting these
ambiguities.

D. Scale and Time-Shift Ambiguities

Scaling and time-shift ambiguities are inherent in blind de-
convolution problems preventing unique recovery of the pulse
shape and the sparse sequence. For a given solution pair (x, h),
one can produce infinitely many different solutions consisting of
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the Iscaled versions (ax, h/a) with o € R, which constitutes
the scale ambiguity. The time-shifted versions (@ * dn, h *
d_pn), where d,, is the Kronecker delta with spike at position
n and * denotes the convolution operation, is another source
of ambiguity constituting the time-shift ambiguity. In practice,
recovery of the true parameters up to an arbitrary scale and time-
shift does not cause a major problem and is usually sufficient.

1) Scale Ambiguity: In Bayesian framework, assignment
of the prior distributions can eliminate the scaling ambigu-
ity only if the scaling of the prior distributions is fixed at
an anchor point. Otherwise, with such a scaling transfor-
mation {ax, a’0%, az,a?By,v/a, 02 /a?, o}} with a > 0 that
leaves the likelihood invariant, one can scale the posterior
with a“~¥+4 This means that the posterior distribution can
be increased arbitrarily by decreasing the scale a, indicating
nonexistence of a global optimum. However, this issue can
be avoided by setting, for example, cr,? to a fixed constant. In
this case, the sampler eventually converges to a fixed scale o'
associated with the value of 03. However, convergence might
be slow since the parameters are sampled conditioned on each
other. A common approach to accelerate the convergence is
to introduce an intermediate Metropolis-Hastings (MH) sam-
pling step. Following this approach, once the current values of
(z,7,02) are sampled, we first propose the new values for z*
and v*, ie., (z*,v") = (ax,v/a), by sampling the scaling
factor a from the proposal distribution g(a) = N(a;0,02)
with known variance o2 and then propose o2* by sampling
from p(c2*|z*, ag, Bz ), yielding the complete proposal distri-
bution g(x*,v*, 07" |z,7,02) = g(a)p(03* |z, 0z, B). The
proposed values are accepted with probability p,,, which is given
by

a1\ T 2 + 28; @z +0.5
pa=min< 1,aX exp ( ) [ n ] }
“ { 20202 };I a?z2 425,

’ 28)

We note that a better strategy would be adjusting the parame-
ters o, and /3, as well by sampling new values « and 3% from
p(ad, B:|o2*). However, achieving a closed form expression for
the acceptance probability would not be possible.

2) Time-Shift Ambiguity: Unlike scaling ambiguity, time-
shift ambiguity does not fully apply to our case due to the
edge effects, i.e., the edges of the reconstructed observation
sequence will be corrupted when shifted versions of a given so-
lution are considered. This is because we model the observation
sequence using linear convolution of finite length sequences.
Therefore, solution pairs with different shifts cannot achieve
exactly the same likelihood value. However, although large
time-shift ambiguities are explicitly avoided, time-shifts of very
short lengths can still correspond to a similar level of likelihood,
and hence, needs to be addressed. Since both sequences @ and
h are sampled conditioned on the current value of the other,
jumps between different time-shift configurations rarely occur.
To increase the frequency of these jumps, we employ the circular
shift compensation method proposed in [45]. Following the
scale compensation step, new values of =, o2 and - are pro-
posed using the proposal distribution g(x*, 2%, v*|z, 02, v) =
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TABLE III
BASELINE CLASSICAL BERNOULLI-GAUSSIAN SAMPLER

Step 1. For n = 0,1,...,K — 1, sample (s,,z,)
from p(sp, Tn|Y, Ton,,02)

Step 2. Sample v from p(y|y, x,02)

Step 3.  Sample o2 from p(c2|y,x,~)

q(z*, o2 |z, o2)p(v*|y, =, 02) where

. 2 2 _ JOSif(z,0) = (2@ 1,0,®5 1)
q(z", 05’ |@, 05) = { 0.5 if (z°.02%) = (z ® 61,02 ® &1)
(29)
and @ denotes the circular convolution. It can be shown that the
MH acceptance probability p, is given by

_ 3. 1 pe 1. 1 _re 1.
DPs :m]_‘l:l{], | ! |6Xp (EN:‘;E’Y* Moy — 511,{2 LIJ,Y)}
(30)

where both (ft.,., f},‘,«) and (L., 537) can be calculated through
(21) using =* and x respectively.

IV. SIMULATIONS

In this section, we present our numerical studies to assess
the performance of the proposed samplers and compare our
results with the classical BG deconvolution approach, in which
the sparsity of @ is enforced by the BG prior, as described in
(3)—(5), instead of the NIG prior used in this work. The form of
the slightly modified version of Cheng et al.’s classical Gibbs
sampler employing BG model is given in Table III. Step 1 of
this sampler consists of K sub-update steps, where pairs of
(8n, ;) are sampled jointly from their joint posterior distribu-
tion ateach sub-step. Jointly sampling (s, £, ) is also completed
in two steps, first sampling s, from p(s,|y, Z.n,7,02) and
then sampling =, from p(z, |y, Tpn, Sn,7Y,o2). The remaining
sampling steps are the same as the proposed samplers. We also
consider the M-tuple Gibbs sampler proposed in [24], with
M = 3. It modifies Step 1 of Table III to sample tuples of
length 3 at a time and considerably improves the convergence
rate of classical BGS. Hence, it constitutes a stronger baseline
for assessing the performance of our samplers. Throughout the
simulations, we use these as our baseline samplers and call them,
respectively, as the classical Bernoulli-Gaussian Sampler (BGS)
and 3-Tuple BGS. We refer to the proposed samplers using the
Normal-Inverse-Gamma law as NIGS-1 (for the classical Gibbs
sampler) and NIGS-2 (for the partially collapsed Gibbs sampler).

Due to the scale and minor time-shift ambiguities that are
inherent in blind deconvolution problems, all recovery results
presented in this section are up to an arbitrary scale and shift
factor. The compensation steps introduced in the previous sec-
tion resolve these ambiguities only for the sampling stage, i.e.,
the resulting estimated sequences are not necessarily expected
to match the scale and shift of the true sequences. Therefore,
for any given estimation pair (&, ﬁ), we present the corrected
versions @’ and h', which are given by x’' = (& * §_,)/a and
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h' = a(fr, * 0y, ), where the correction factors are found using

(a,n) = arg min ||h — a(h * 8,)]|- 31)

acR,ne

A. A Measure of Convergence Rate

In order to empirically measure the convergence rate, we
employ the iterated graphical monitoring approach proposed by
Brook and Gelman in [46]. The diagnostic is based on comparing
the between and within chain covariance matrices, denoted by
Sp and S, respectively, of different simulation chains that are
running simultaneously. More precisely, for multivariate simu-
lations, convergence is declared when the multivariate potential
scale reduction factor (MPSRF), denoted by R, becomes close
to 1. A typical threshold in which the MPSRF is expected to fall
below is 1.2 as suggested in [46]. The MPSREF is defined as

-1 +1
L4

R= (32)

)\max ’
i

where i denotes the number of MCMC iterations, ¢ is the total
number of distinct simulation chains running simultaneously
and Ap,y is the maximum eigenvalue of the matrix S;l Sp. The
definitions of the between chain covariance matrix S and the
within chain covariance matrix S, are given as

q a—1 Z(B .- 8.)", (33a)
q i
Sw = ZZ(% 0,)(0,;—6,)7", (33b)
:r' 1i=1

where 6;; denotes the It" sample of j** chain. Also, 8 ; and 6 _
represent the local mean of the 5% chain and the global mean
of the all chains respectively. Therefore, for a given data, we
run several chains from different initial points and monitor the
MPSRF value to assess the convergence.

B. Recovery Performance on Mendel’s Sequence

As an illustrative example, we present the recovery results
of the proposed samplers on a given observation sequence and
provide a comparison with the classical BGS described above in
order to show its inefficiency. The observation sequence y, was
generated based on the linear convolution model given in (1).
As the sparse sequence z,,, we used the well-known Mendel’s
sequence, which models a 1-D sparse reflectivity profile for
seismic blind deconvolution [2]. The sequence is depicted with
bullets in sparse recovery plots of Fig. 2. As the short pulse
sequence h,,, we used the following sequence

hp = cos ((n — 10)w/4) exp (—|0.225n — 2|1‘5)

forn =0,1,...,20,whichis the same sequence used in both [1]
and [24]. Itis represented with solid line in the upper-right plot of
Fig. 2 with solid line. The noise variance was set as o2 = 4.8 x
108, which corresponds to a Signal-to-Noise Ratio (SNR) of
25 dB.

The lengths of the sparse sequence x and the pulse sequence
hare K = 300and T" = 21, respectively, yielding alength N =
321 measurement sequence y. For this experiment, we did not

(34)
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impose any frequency domain constraints on the pulse sequence
and set the subspace matrix as identity, i.e., A = I. For Step
1 of NIGS-1, and Steps 1, 5, and 7 of NIGS-2, we employed
univariate Slice sampling approach. We set the window length
for NIGS-2 as* @ = 10 and used the following fixed values
for the parameters of baseline samplers: o2 = 1, o2 = 10, and
mg = 1 — |x|o/ K, where |z|p denotes the number of nonzero
elements in the true sequence x. For all samplers, we generated
10* samples and used the last 25% for producing the estimations.

The four plots in the left and middle columns of Fig. 2
illustrate the sparse sequences recovered by each sampler. The
recoveries obtained by the proposed samplers and 3-Tuple BGS
are almost identical and perfectly match the true sequence. On
the other hand, the sparse sequence recovered by the classical
BGS contains inaccurate nonzero entries where the actual spikes
are located closely. This example shows the main inefficiency
of the classical BGS. Since the (s,,z,) tuples are sampled
conditioned on the current value of adjacent entries, it usually
takes a large number of iterations to escape from a local op-
timum. Therefore, initialization plays an important role in the
convergence behavior of BGS. This issue will become clearer
once we present the convergence analysis.

The recovered pulses, as shown in middle lower plotin Fig. 2,
are almost identical and perfectly match the true pulse shape
for all samplers. This is usually the case since the number of
parameters to be estimated, i.e., the degree of freedom, is much
smaller for the pulse sequence.

In order to compare the convergence rates of the samplers, we
illustrate the evolution of the MPSRF corresponding to samples
of @ and -y for all samplers in the lower-right plot in Fig. 2. We
simulated 10 independent chains with distinct initialization for
each sampler and updated the MPSRF after every 200 iterations
using the last 50% of the generated samples. The MPSRF curves
of the proposed samplers NIGS-1 and NIGS-2 consistently
decrease and fall below the convergence threshold of 1.2 after
around 5000 and 2000 iterations, respectively. This suggests that
each of the individual chains of NIGS-1 and NIGS-2 converged
to the same local optimum, which is very likely to be the global
one, regardless of where they are initialized at the parameter
space. However, the MPSRF curve of classical BGS fails to con-
verge and cannot fall below the convergence threshold during the
simulation duration. This result confirms that individual chains
of BGS get stuck on a local optimum for a much larger number of
iterations. Note that unlike classical BGS, 3-Tuple BGS reaches
the convergence threshold at around 2500 iterations, which is
due to its improved convergence rate.

C. Empirical Analysis of the Convergence Rates

Next, we evaluate the convergence performance of the pro-
posed samplers over a set of randomly generated sparse se-
quences. The generated sequences have length K = 300. The
nonzero positions were randomly distributed across the se-
quence. In order to ensure that there are no localized regions with
all nonzero elements, we divided each sequence into multiple

3We observed that the window length has no significant impact on neither the
convergence rate nor the overall success rate, as long as it is selected in the same
order of magnitude as the pulse length.
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segments of equal lengths and randomly choose a nonzero index
for each segment. A 6% sparsity level, defined by the ratio of the
number of nonzero entries to the total length of the sequence, was
maintained for all generated sequences. The amplitudes for the
nonzero positions were independently drawn from a univariate
zero-mean Gaussian distribution with a variance of 0.5. A total
of 50 distinct observations were generated by convolving each
of 50 different sparse sequences with the pulse sequence given
in (34), which were then corrupted by additive noise such that
the SNR is 20 dB.

For each observation, we run all samplers 10 times with
different initialization to obtain 10 independently simulated
chains. The MPSRF values are calculated on these chains af-
ter every 100 MCMC iterations by using the last 50% of the
samples. Same as before, we set the convergence threshold for
MPSRF as 1.2. In Fig. 3, we illustrate the ratio of converged
sequences over all 50 sequences as a function of the MCMC
iteration for all samplers. In order to individually investigate the
convergence performance on different unknowns, we calculated
the MPSRF curves separately for the sparse sequence x and
pulse coefficients -y, which are represented in the upper left and
right figures, respectively.

We see in the top left figure that the ratio of converged
sequences for the proposed samplers increases quite rapidly
compared to classical BGS, while all three are outperformed
by 3-Tuple BGS. The outstanding convergence performance
of 3-Tuple BGS is mainly due to the fact that many of the
configurations leading to a local optimum occur within a short
neighborhood, which can be escaped rapidly even with a very
small tuple size M. However, the computational complexity of
M -Tuple BGS increases exponentially with the tuple size M as
shown in [24]. We also observed that NIGS-2 achieves a slightly
better convergence rate compared to NIGS-1, which indicates
that the intermediate sampling steps introduced in NIGS-2 help
accelerating the mixing rate. Comparing the left and right fig-
ures, we see that convergence rate is faster for all samplers in
the case of pulse coefficients «y. This is indeed an expected
result since the degree of freedom is considerably higher for
the sparse sequence. We further note that the convergence rates
of the proposed samplers are almost as fast as that of 3-Tuple
BGS, and they still significantly outperform classical BGS.

D. Computational Complexity Analysis

The study presented above compared the convergence rates
of the different algorithms in terms of the number of MCMC
iterations. Next, we incorporate the computational complexities
of the samplers into the analysis. In order to investigate the em-
pirical computational complexities, we measured the processing
times based on unoptimized MATLAB R2019a implementation
of the samplers on an Intel Core i5-8265 U processor. For
the implementation of classical and 3-Tuple BGS, we used
the efficient numerical method presented in [24]. The average
elapsed time for one iteration of each sampler as a function of
the sparse sequence length K is illustrated in the left plot in
Fig. 4. For all considered values of K, the number of spikes was
adjusted accordingly to maintain the 6% sparsity level. It can
be observed that the cost per iteration in terms of processing

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

time is significantly higher for 3-Tuple BGS for all values of
K. Moreover, the difference between the computational com-
plexities of the proposed samplers and classical BGS increases
considerably for larger values of K. In order to better illustrate
the difference of computational complexities, we also present
the computational gain of all samplers relative to 3-Tuple BGS
in the right plot in Fig. 4. We define the gain as the ratio of cost
per iteration of 3-Tuple BGS to those of other samplers. It is
clear that NIGS-1 and NIGS-2 are, respectively, at least around
10 and 5 times computationally more efficient compared to
3-Tuple BGS. Moreover, the computational gain of the proposed
samplers increases for larger values of K. We also observed
that classical BGS is computationally more efficient compared
to NIGS-2 for smaller values of K, even though its cost per
iteration increases significantly for larger values of K.

Based on empirically measured computational costs of the
samplers, we can also compare the convergence rates in terms
of the simulation time. The comparisons are provided in bottom
rows of Fig. 3 for both sparse sequence x and the pulse coef-
ficients «y using length K = 300 sparse sequences. The results
indicate that the excessive computational cost of 3-Tuple BGS
overwhelms its outstanding convergence rate. Due to its lower
cost per iteration, NIGS-1 achieves the fastest convergence rate
in terms of processing time for both x and -y. NIGS-2 has a
slightly higher cost per iteration compared to NIGS-1, but still
attains a similar convergence rate to that of 3-Tuple BGS for
@, which is even better for «y. Due to increasing computational
gain with K, it would also be reasonable to suggest that the
difference between convergence rates will be more substantial
for larger values of K, favoring the use of proposed samplers in
practice.

E. Overall Recovery Performance for Different Scenarios

In this section, we investigate the recovery performance of the
proposed samplers is investigated under various different SNR
and sparsity levels, along with the comparisons with the base-
line samplers. We considered 11 different SNR levels ranging
between 10 dB and 30 dB with 2 dB separation between each
level. For each SNR level, we investigated 26 different scenarios,
where the number of spikes is increased from 10 to 60 with 2
increments. The length of the sparse sequence for each scenario
was fixed at K = 300, yielding sparsity levels ranging from 3%
to 20%. We created 20 different random sparse sequences for
each one of these 286 scenarios using the same way described in
Section IV-C. For the pulse sequence, we used the normalized
first derivative of Gaussian pulse, given by

hn =2(nnfo/fs —2)exp (0.5 — 2(nmfo/fs — 2)2)

for n =0,1,...,22 with center frequency f. =2 GHz and
sampling rate f; = 36 GHz. This pulse shape constitutes a
strictly short duration sequence in the time domain, which is
also nearly bandlimited in the frequency domain. Therefore,
for these experiments, we construct the columns of the pulse
subspace matrix A using the first L = 8 DPS sequences of length
T = 23. We run each sampler for 10% iterations and use the last
25% of the samples for estimation of the unknowns. We declare
arecovered sparse sequence ' (or pulse sequence i) successful

(35)
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Fig. 5.
the transition boundary for 3-Tuple BGS.

if the Normalized Mean Squared Error (NMSE) is less than a
given threshold 7, i.e.,

l — '] [l — B'|J
(| 112

InFig. 5, we illustrate the empirical successful recovery rates
of the samplers for the sparse sequence x for two different
values of 7. We first focus on the transition boundaries, which
identify the feasible regions in the sparsity/SNR plane for which
successful recovery, as defined in (36), is possible. In order to
better illustrate the differences, we draw the transition boundary
of 3-Tuple BGS, associated with the corresponding T, as a
reference at all plots. It can be observed that feasible regions of
the proposed samplers are slightly more restricted. This indicates
that for a given sparsity level, the proposed samplers require a
slightly higher SNR level for successful recovery. Nevertheless,
the feasible regions are quite similar for all samplers. On the
other hand, the rate of successful recovery within the feasible
region is significantly higher for the proposed sampler as op-
posed to classical BGS. This is due to the fact that classical
BGS requires a considerably larger number of iterations than 10*
to converge to the true stationary distribution. In addition, we
also observed that NIGS-2 achieves the highest overall success
rate within its feasible region even though 3-Tuple BGS has a
slightly larger feasible region. This is also justified by the average
success rates, given in Table IV , corresponding to different
values of 7, over all 286 scenarios. Despite the slightly smaller
feasible region, NIGS-2 achieves a success rate as high as that
of 3-Tuple BGS. The results also show that NIGS-2 achieves
a higher overall success rate compared to NIGS-1, which pro-
vides empirical evidence that the intermediate sampling steps of
NIGS-2 improves the convergence rate. Moreover, it is clear that
both proposed samplers significantly outperform classical BGS.
'We present the corresponding success rates for the pulse shape h
inFig. 6. Comparing the transition plots in Figs. 5 and 6, our first
observation is that feasible regions for the pulse sequence are

<T (36)

— 7

R

SNR (dB)
N
SNR (dB)
= & 2

1267

Classical BGS: r = 0.01

3-Tuple BGS: 7 =001

30
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Empirical successful recovery rates for the sparse sequence x at different SNR and sparsity levels for 7 = 0.01 and 7 = 0.1. Dashed white line depicts

TABLE IV
OVERALL EMPIRICAL SUCCESSFUL RECOVERY RATES FOR THE SPARSE
SEQUENCE i (TOP) AND THE PULSE SEQUENCE h (BOTTOM)

=001 T =10.04 T =0.07 =01
NIGS-1 0.54 0.69 0.75 0.79
NIGS-2 0.57 0.72 0.78 081
Classical BGS 0.36 0.53 0.62 0.69
3-Tuple BGS 0.57 0.73 0.79 0.82

Pulse Sequence

=001 T =10.04 T =0.07 =01
NIGS-1 0.82 0.92 0.94 0.96
NIGS-2 0.83 0.93 0.96 097
Classical BGS 0.85 0.93 0.95 0.96
3-Tuple BGS 0.86 0.93 0.95 0.96

The NMSE Threshold T is Varied Between 0.01 and 0.1.

significantly more extensive for all samplers. As it can be seen
from 7 = 0.01 case, similar to the recovery of sparse sequence,
the feasible regions are more extensive for the baseline samplers.
Another observation is that the success rates of classical BGS
are significantly higher for the pulse sequence. This indicates
that the main source of the inefficiency of classical BGS is
different configurations of sparse sequences rather than the pulse
shape. Table IV shows that all samplers achieve a similar level
of success rate for the pulse sequence except for 7 = 0.01,
which can be explained by the smaller feasible regions of the
proposed samplers. Overall, the success rates are consistently
higher compared to the recovery of sparse sequences, implying
that it is easier to recover the pulse shape in most cases.
Finally, we also compared the overall success rates of the
samplers at different SNR levels in Fig. 7. Considering the
recovery of sparse sequences, given in the left figure, all samplers
perform quite similarly for lower SNRs, and the success rates
increase as SNR increases, except for classical BGS. Its success
rate reaches a stable level at around 20 dB and then starts
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Fig. 7. Overall empirical successful recovery rates for the sparse sequence x (left) and the pulse sequence h (right) at different SNR levels. Solid and dashed

lines correspond to 7 = 0.01 and 7 = 0.1 cases respectively.

slightly decreasing after 24 dB. This seems non-intuitive but
at high SNRs, peaks of the likelihood function get sharper, and
it becomes overwhelmingly difficult to escape from a locally
optimum configuration. The proposed samplers and 3-Tuple
BGS are not affected by this effect due to their improved ability
to escape local optimums. The figure illustrates the success rate
curves for both 7 = 0.01 and 7 = 0.1. It can be observed that at
high SNRs, the number of simulations of NIGS-2 with resulting
NMSE less than 7 = 0.01 is more than those of 3-Tuple BGS
both with NMSE less than 7 = 0.1 and 7 = 0.01. This suggests
that NIGS-2 is more successful at escaping local optimums.
However, 3-Tuple BGS outperforms all other samplers at lower
SNRs. The right figure in Fig. 7 demonstrates the same analyses
for the recovery of the pulse sequence. As expected, at lower
SNRs, the baseline samplers achieve higher success rates due to
their extensive feasible regions. On the other hand, they are being
outperformed by the proposed samplers at high SNRs, because
of enhanced convergence characteristics of NIGS-1 and NIGS-2.
We also note that it is possible to observe a similar performance
reduction effect at high SNRs.

V. CONCLUSION

In this paper, we studied the problem of sparse blind decon-
volution under a Bayesian framework and presented efficient
MCMC based estimation methods for jointly recovering two un-
known sequences from their noisy convolutions. We derived two
different hierarchical Gibbs samplers under a NIG prior enforc-
ing sparsity from, which forms a continuous valued alternative
to the conventional BG model. While the first sampler follows
a classical Gibbs sampler structure, the second one employs a
PCG sampler scheme, which incorporates additional sampling
steps to reduce the statistical dependence of the variables in
an attempt to enhance the convergence rate. By moving the
problem into a completely continuous valued framework, we
avoided the computational burdens due to the discrete nature
of the BG model. The proposed samplers were evaluated on
an empirical basis via extensive numerical simulations and
compared with the existing sampling schemes that are based
on the BG model. The obtained results demonstrated the ef-
fectiveness of the proposed samplers on achieving successful
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recovery under various different settings. Comparisons with the
baseline samplers demonstrated a significant increase in the
convergence rate, along with considerable computational gains.
As a result, the proposed methods can be used in a variety of
real-life applications involving blind deconvolution problems
with sparsity and time/frequency domain constraints.
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