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Arıkan’s exciting discovery of polar codes has provided an altogether new way to efficiently achieve Shan-

non capacity. Given a (constant-sized) invertible matrix M , a family of polar codes can be associated with

this matrix and its ability to approach capacity follows from the polarization of an associated [0, 1]-bounded

martingale, namely its convergence in the limit to either 0 or 1 with probability 1. Arıkan showed appropriate

polarization of the martingale associated with the matrix G2 =
(
1 0
1 1

)
to get capacity achieving codes. His

analysis was later extended to all matrices M that satisfy an obvious necessary condition for polarization.

While Arıkan’s theorem does not guarantee that the codes achieve capacity at small blocklengths (specif-

ically in length, which is a polynomial in 1/ε where ε is the difference between the capacity of a channel

and the rate of the code), it turns out that a “strong” analysis of the polarization of the underlying martingale

would lead to such constructions. Indeed for the martingale associated withG2 such a strong polarization was

shown in two independent works (Guruswami and Xia (IEEE IT’15) and Hassani et al. (IEEE IT’14)), thereby

resolving a major theoretical challenge associated with the efficient attainment of Shannon capacity.

In this work we extend the result above to cover martingales associated with all matrices that satisfy the

necessary condition for (weak) polarization. In addition to being vastly more general, our proofs of strong
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polarization are (in our view) also much simpler and modular. Key to our proof is a notion of local polarization

that only depends on the evolution of the martingale in a single time step. We show that local polarization

always implies strong polarization. We then apply relatively simple reasoning about conditional entropies

to prove local polarization in very general settings. Specifically, our result shows strong polarization over

all prime fields and leads to efficient capacity-achieving source codes for compressing arbitrary i.i.d. sources,

and capacity-achieving channel codes for arbitrary symmetric memoryless channels. We show how to use

our analyses to achieve exponentially small error probabilities at lengths inverse polynomial in the gap to

capacity. Indeed we show that we can essentially match any error probability while maintaining lengths that

are only inverse polynomial in the gap to capacity.

CCS Concepts: • Theory of computation→ Error-correcting codes; • Mathematics of computing→
Coding theory; Stochastic processes;
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1 INTRODUCTION

Polar codes, proposed in Arıkan’s remarkable work [2], gave a fresh information-theoretic ap-
proach to construct linear codes that achieve the Shannon capacity of symmetric channels, to-
gether with efficient encoding and decoding algorithms. About a decade after their discovery, there
is now a vast and extensive body of work on polar coding spanning hundreds of papers. The un-
derlying concept of polarizing transforms has emerged as a versatile tool to successfully attack
a diverse collection of information-theoretic problems beyond the original channel and source
coding applications, including wiretap channels [22], the Slepian-Wolf, Wyner-Ziv, and Gelfand-
Pinsker problems [19], broadcast channels [11], multiple access channels [1, 8], and interference
networks [31]. We recommend the survey by Şaşoğlu [7] for a nice treatment of the early work on
polar codes. On the practical side, polar codes show impressive coding gains when a list decoding
variant of the decoder is applied [29] and have been adopted for the enhanced mobile broadband
control channels for the 5G NR (New Radio) interface.

Arıkan’s original analysis was asymptotic and established that capacity can be achieved in the
limit of large block lengths but did not quantify the speed of convergence to capacity. Effective
finite-length convergence bounds were provided several years later in References [15–17], estab-
lishing that the polar coding approach leads to a family of codes of rate C − ε for transmission
over a channel of (Shannon) capacityC , where the block length of the code and the decoding time
grow only polynomially in 1/ε . In contrast, for all previous constructions of codes, the decoding
algorithms required time exponential in 1/ε . Getting a polynomial running time in 1/ε was one of
the central theoretical challenges in the field of algorithmic coding theory, and polar codes were
the first to overcome this challenge. Follow-up works have also investigated concrete bounds on
the scaling exponent μ, i.e., the finite exponent μ for which the block length of the code can be
bounded by (1/ε )μ [12, 23], culminating in recent works that achieved μ → 2, which is the optimal
value, first for the erasure channel [10, 25] and later for all channels [13, 30] using variants of polar
codes.

The analyses of polar codes turn into questions about polarizations of certainmartingales (which
we refer to as Arıkan martingales in this work). The vast class of polar codes alluded to in the
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previous paragraph all build on polarizing martingales, and the results of References [15–17] show
that for one of the families of polar codes, the underlying martingale polarizes “extremely fast”—a
notion we refer to as strong polarization and will define shortly.

The primary goal of this work is to understand the process of polarization of martingales and
in particular to understand when a martingale polarizes strongly. In attempting to study this ques-
tion, we come up with a local notion of polarization and show that this local notion is sufficient to
imply strong polarization. Applying this improved understanding to the martingales arising in the
study of polar codes, we show that a simple necessary condition for weak polarization of such mar-
tingales is actually sufficient for strong polarization. This allows us to extend the previous results
on strong polarization, which only applied to a specific class of codes, to a broad class of codes and
show essentially that all polarizing codes lead to polynomial convergence to capacity. We further
show that this can be achieved while maintaining the same exponentially falling error probabil-
ity achieved in the original asymptotic analyses that did not give any quantitative bounds on the
convergence to capacity. Below we formally describe the notion of polarization of martingales and
our results concerning them, along with their implications for quantitatively strong convergence
to capacity of polar codes when applied to the associated Arıkan martingales. Figure 1 gives a de-
tailed roadmap of this article with different columns indicating different categories of results and
each column describing a hierarchy of results.

1.1 Polarization of [0, 1]-martingales

Our interest is mainly in the (rate of) polarization of a specific family of martingales that we call
the Arıkan martingales. We will define these objects later but first describe the notion of polariza-
tion for general [0, 1]-bounded martingales. The middle left (green) column in Figure 1 shows the
various notions of polarization that we define in this section.

Recall that a sequence of random variables X0, . . . ,Xt , . . . is said to be a martingale if for every
t and a0, . . . ,at it is the case that E[Xt+1 |X0 = a0, . . . ,Xt = at ] = at . We say that that a martingale
is [0, 1]-bounded (or simply a [0, 1]-martingale) if Xt ∈ [0, 1] for all t ≥ 0.

Definition 1.1 (Weak Polarization). A [0, 1]-martingale sequence X0,X1, . . . ,Xt , . . . is defined to
be weakly polarizing if limt→∞{Xt } exists with probability 1, and this limit is either 0 or 1.

Note that the limit of the martingale sequence X0,X1, . . . ,Xt , . . . is a Bernoulli random variable
with expectation X0.

1

Thus, a polarizing martingale does not converge to a single value with probability 1 but rather
converges to one of its extreme values. For the applications to constructions of polar codes, we need
more explicit bounds on the rates of convergence leading to the notions of (regular) polarization
and strong polarization defined below in Definitions 1.3 and 1.4, respectively.

Definition 1.2 ((τ�,τh , ε )-Polarization). For functions τ�,τh , ε : Z+ → R
≥0, a [0, 1]-martingale

sequence X0,X1, . . .Xt , . . . is defined to be (τ�,τh , ε )-polarizing if for all t we have

Pr(Xt ∈ (τ� (t ), 1 − τh (t ))) < ε (t ).

Definition 1.3 (Regular Polarization). A [0, 1]-martingale sequence X0,X1, . . . ,Xt , . . . is defined
to be regular polarizing if for all constant γ > 0 there exist ε (t ) = o(1), such that the martingale
{Xt }t ≥0 is (γ t ,γ t , ε (t ))-polarizing.

1The claim on expectation follows, since by definition, E [Xt+1] = E [Xt ].
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Fig. 1. Overview of our results (excluding those in Section 1.6). The blue boxes (on the extreme left) represent

the various coding results (n is the code block length, c and β < 1 are absolute constants). The green boxes

(middle left) are the various notations of polarizations that we study in the article. The orange boxes (middle

right) are the two notions of local polarization and the red boxes (extreme right) are the two notions of

matrix polarizations we use. Purple boxes (top and bottom on right) show the notions of mixing matrices

that we use. All the arrows denote the various results we prove (except for Theorem 1.10, which is implicit

in Arıkan [2]) in this article.

We refer to the above as being “sub-exponentially” close to the limit (since it holds for every
γ > 0). While weak polarization by itself is an interesting phenomenon, regular polarization (of
Arıkan martingales) leads to capacity-achieving codes (though without explicit bounds on the
length of the code as a function of the gap to capacity) and thus regular polarization is well explored
in the literature and tight necessary and sufficient conditions are known for regular polarization
of Arıkan martingales [3, 20].

To get codes of block length polynomially small in the gap to capacity, an even stronger notion
of polarization is needed, where we require that the sub-exponential closeness to the limit happens
with all but exponentially small probability. We define this formally next.
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Definition 1.4 (Strong Polarization). A [0, 1]-martingale sequenceX0,X1, . . . ,Xt , . . . is defined to
be strongly polarizing if for all γ > 0 there exist 0 < η < 1 and β < ∞ such that the martingale
{Xt }t ≥0 is (γ t ,γ t , β · ηt )-polarizing.

Finally, to get codes where the decoding error probability is exponentially small in the block
length, the codes need to polarize even more strongly. We abstract this notion as follows:

Definition 1.5 (Exponentially Strong Polarization). We say that Xt has Λ-exponentially strong
polarization if for every 0 < γ < 1 there exist constants 0 < η < 1 and β < ∞ such that the

martingale {Xt }t ≥0 is (2−2Λt ,γ t , βηt )-polarizing.

Note that this definition is asymmetric with respect to the two boundaries and expects tighter
polarization when Xt → 0 than when Xt → 1. The reasons for this un-aesthetic choice are the
following: (1) For the strong decoding results, the tighter polarization when Xt → 0 suffices. (2)
Several of the martingales we consider do not achieve sufficiently tight polarization when Xt → 1
(the Λ they achieve as Xt → 1 is much smaller than what is needed in the decoding results). (3)
The analysis of the best polarizations whenXt → 0 is completely different than the analysis when
Xt → 1. Due to these reasons we work with this asymmetric definition of exponentially strong
polarization.

In contrast to the rich literature on regular polarization, results on strong polarization and expo-
nentially strong polarization are quite rare, reflecting a general lack of understanding of this phe-
nomenon. Indeed, while (roughly) an Arıkan martingale can be associated with every invertible
matrix over any finite field Fq , the only concrete matrix for which exponentially strong polariza-

tion was known prior to this work was for G2 =
(

1 0
1 1

)
[15–17].2

Part of the reason behind the lack of understanding of strong polarization is that polarization
is a “limiting phenomenon” in that one tries to understand limt→∞Xt , whereas most stochastic
processes, and the Arıkan martingales in particular, are defined by local evolution, i.e., one that
relates Xt+1 to Xt . The main contribution of this work is to give a local definitions of polarization
(Definitions 1.6 and 1.8) and then showing that these definitions imply strong and exponentially
strong polarization (Theorems 1.7 and 1.9). Later, we show that Arıkan martingales polarize lo-
cally whenever they satisfy a simple condition that is necessary even for weak polarization. And
while the Arıkan martingale itself is not locally exponentially polarizing, we show that the “two-
step” Arıkan martingale is exponentially locally polarizing under the same simple condition. (The
“two step” version of a martingale X0,X1,X2, . . . , is just the martingale X0,X2,X4, . . ..) As a conse-
quence, we get exponentially strong polarization for all Arıkan martingales for which previously
only regular polarization was known.

1.2 Results I: Local to Strong Global Polarization of Martingales

Before giving the definition of local polarization, we motivate our definition using some simple

examples. Consider the martingale Z0,Z1, . . ., where Z0 = 1/2, and Zt+1 = Zt +Yt+12
−(t+2) , where

Y1, . . . ,Yt , . . . are chosen uniformly and independently from {−1,+1}. Clearly, this sequence is
not polarizing (the limit of Zt is uniform in [0, 1]). One reason why this happens is that as time
progresses, the martingale slows down and stops varying much. We would like to prevent this,
but this is also inevitable if a martingale is polarizing and bounded. In particular, a polarizing
martingale would be slowed at the boundaries (i.e., when Xt is close to 0 or close to 1) and cannot

2An exception is the work by Pfister and Urbanke [25], who showed that for the q-ary erasure channel for large-enough q,

the martingale associated with a q ×q Reed–Solomon based matrix proposed in Reference [24] polarizes strongly, and the

resulting polar codes achieve scaling exponent tending to 2.
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vary much. The first condition in our definition of local polarization insists that this be the only
reason a martingale slows down (we refer to this as variance in the middle).

Next we consider what happens when a martingale is close to the boundary. For this part, con-
sider a martingale Z0 = 1/2 and Zt+1 = Zt +

1
2Yt+1 min{Zt , 1 − Zt }, where again Y1, . . . ,Yt , . . .

are chosen uniformly and independently from {−1,+1}. This martingale does polarize and even
shows regular polarization, but it can also be easily seen that the probability that Zt <

1
2 · 2

−t is
zero (whereas we would like probability of being less than say 10−t to go to 1). So this martingale
definitely does not show strong polarization. This is so, since even in the best case the martingale is
approaching the boundary at a fixed exponential rate and not a sub-exponential one. To overcome
this obstacle we require that when the martingale is close to the boundary, with a fixed constant
probability it should get much closer in a single step (a notion we refer to as suction at the ends).

The middle right (orange) column in Figure 1 shows the notions of local polarization we define
in this section (the arrows from the orange column to the middle left (green) columns show the
main theorems in this section).

The definition below makes the above requirements precise.

Definition 1.6 (Local Polarization). A [0, 1]-martingale sequence X0, . . . ,X j , . . . , is locally polar-

izing if the following conditions hold:

(1) (Variance in the middle): For every τ > 0, there is a θ = θ (τ ) > 0 such that for all j, we
have: If X j ∈ (τ , 1 − τ ), then E[(X j+1 − X j )

2 |X j ] ≥ θ .
(2) (Suction at the ends): There exists an α > 0, such that for all c < ∞, there exists a τ =

τ (c ) > 0, such that:
(a) If X j ≤ τ , then Pr[X j+1 ≤ X j/c |X j ] ≥ α .
(b) Similarly, if 1 − X j ≤ τ , then Pr[(1 − X j+1 ≤ (1 − X j )/c |X j ] ≥ α .
We refer to condition (a) above as Suction at the low end and condition (b) as Suction at the

high end.

When we wish to be more explicit, we refer to the sequence as (α ,τ (·),θ (·)) locally polarizing.

As such, it is not clear that this definition is of any use. For example, it (1) neither obviously
implies strong polarization nor (2) is it obviously satisfiable by any interesting martingale. In this
article, we address both these issues. First, we establish general theorems connecting local polar-
ization to strong polarization, as described in Theorems 1.7 and 1.9 below. Then, we leverage this
to prove quantitatively strong capacity-approaching properties of polar codes via the strong po-
larization of Arıkan martingales associated with polar codes (Section 1.3). By our local-to-strong
conversion, this in turn follows from the local polarization of Arıkan martingales, which we estab-
lish in Theorems 1.15 and 1.16.

Theorem 1.7 (Local vs. Strong Polarization). If a [0, 1]-martingale sequenceX0, . . . ,Xt , . . . ,
is locally polarizing, then it is also strongly polarizing.

If the suction at the ends shows by the martingale is even stronger, then we can get even stronger
polarization. The following definition captures the stronger suction property.

Definition 1.8 (Exponential Local Polarization). We say thatXt has (η,b)-exponential local polar-
ization if it satisfies local polarization (Definition 1.6) and the following additional property:

(1) (Strong suction at the low end): There exists τ > 0 such that if X j ≤ τ , then Pr[X j+1 ≤
Xb
j |X j ] ≥ η.

Note that the interesting range for the parameter b is b > 1 and that is the range on which most
of our results will focus.
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In the same way that local polarization implies strong global polarization of a martingale, this
new stronger local condition implies a stronger global polarization behavior.

Theorem 1.9 (Local to Global Exponential Polarization). Let Λ,b,η > 0 be such that

Λ < η log2 b. Then, if a [0, 1]-bounded martingale X0,X1,X2, . . . satisfies (η,b)-exponential local
polarization, then it also satisfies Λ-exponentially strong polarization.3

Theorems 1.7 and 1.9 are proved in Section 3. In the rest of this section, we turn to showing that
the notions of local polarization are not vacuous. Indeed, in later sections we show that the Arıkan
martingales polarize locally (under simple necessary conditions). First, we give some background
on polar codes.

1.3 The Arıkan Martingale and Capacity-achieving Polar Codes

The setting of polar codes considers an arbitrary symmetric memoryless channel and yields codes
that aim to achieve the capacity of this channel. These notions are reviewed in Section 2.2.1. Given
any q-ary memoryless channel CY |Z and invertible matrix M ∈ Fk×kq , the theory of polar codes

implicitly defines a martingale, which we call the Arıkan martingale associated with (M,CY |Z )
and studies its polarization. (An additional contribution of this work is that we give an explicit
compact definition of this martingale, see Definition 4.1. Since we do not need this definition for
the purposes of this section, we defer it to Section 4.) The consequences of regular polarization
are described by the following remarkable theorem. (Below we use M ⊗ N to denote the tensor
product of the matrix M and N . Further, we use M ⊗t to denote the tensor of a matrix M with itself
t times.)

Theorem 1.10 (Asymptotic Convergence to Capacity; Implied by Arikan [2]). Let C be a q-
ary symmetric memoryless channel and letM ∈ Fk×kq be an invertible matrix. If the Arıkanmartingale

associated with (M,C) polarizes regularly, then given ε > 0 and c < ∞ there is a t0 such that for

every t ≥ t0 there is a code C ⊆ Fnq for n = kt of dimension at least (Capacity(C) − ε ) · n such that

C is an affine code generated by the restriction of (M−1)⊗t to a subset of its rows and an affine shift.

Moreover, there is a polynomial time decoding algorithm for these codes that has failure probability

bounded by n−c .4

To obtain codes with faster convergence to capacity, we will need stronger forms of polarization,
and a more quantitative version of this theorem, with effective upper bounds on t0 as a function
of the gap ε to capacity. The following version relates parameters of polarization with the quality
of the associated code.

Theorem 1.11 (Quantitative Convergence to Capacity [2, 16, 17]). Let C be aq-ary symmet-

ric memoryless channel and letM ∈ Fk×kq be an invertible matrix. If the Arıkan martingale associated

with (M,C) satisfies (τ�,τh , ε )-polarization, then for every t , there is an affine codeC , that is generated
by the rows of (M−1)⊗t and an affine shift, such that the rate of C is at least

Capacity(C) − ε (t ) − τh (t ),

and C can be encoded and decoded 5 in time O (n logn) where n = kt and failure probability of the

decoder is at most O (n · logq · τ� (t )).

3Note that to get η log2 b > Λ > 0 we need log2 b > 0 and so b > 1.
4We remark that the encoding and decoding are not completely uniform as described above, since the subset of rows and

the affine shift that are needed to specify the code are only guaranteed to exist. In the case of additive channels, where the

shift can be assumed to be zero, the work of Tal and Vardy [28] (or Reference [16, Sec. V]) removes this non-uniformity by

giving a polynomial time algorithm to find the subset.
5The running times count the number of floating point operations where real numbers are maintained with O (logn) bits

of precision.
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Remark 1.12. So, in particular, if τh (t ), ε (t ) = O (ρt ), then we get ε close to capacity at block

lengths roughly (1/ε )logk/ log(1/ρ ) , which is a polynomial in ε provided ρ < 1. Of course, for the
code to be useful, we also need τ� (t ) 	 k−t . Both conditions are guaranteed by strong polarization.
Λ-exponentially strong polarization guarantees decoding failure probability at most O (n · logq ·
exp(−Ω(nΛ/ log2 k ))).

This theorem is implicit in the works above, but for completeness we include a proof in Appen-
dix A.2.2 and Appendix A.2.3.

For any binary input symmetric channel, Arıkan and Telatar [3] proved that the martingale

associated with the matrix G2 =
(

1 0
1 1

)
, polarizes regularly (Arıkan’s original paper [2] proved a

weaker form of regular polarization with τ (t ) < 2−5t/4, which also sufficed for decoding error
going to 0). Subsequent work generalized this to other matrices with the work of Korada, Şaşoğlu,
and Urbanke [20] giving a precise characterization of matricesM for which the Arıkan martingale
polarizes (again over binary input channels). We will refer to such matrices as mixing, formally
defined below for all finite fields.

Definition 1.13. (Mixing Matrix). A matrix M ∈ Fk×kq is said to be mixing if it is invertible
and none of the permutations of the rows of M yields an upper triangular matrix, i.e., for every
permutation π : [k] → [k] there exists i, j ∈ [k] with j < π (i ) such that Mi, j � 0.6

It is not too hard to show that the Arıkan martingale associated with non-mixing matrices do
not polarize (even weakly). In contrast, Reference [20] shows that every mixing matrix over F2
polarizes regularly. Mori and Tanaka [24] show that the same result holds for all prime fields
and give a slightly more complicated criterion that characterizes (regular) polarization for general
fields. (These works show that the decoding failure probability of the resulting polar codes is at

most 2−n
β

for some positive β determined by the structure of the mixing matrix—this follows from
an even stronger decay in the first of the two parameters in the definition of polarization. However,
they do not show strong polarization, which is what we achieve.)

As alluded to earlier, strong polarization is defined such that it yields codes with polynomial
gap to capacity, via Theorem 1.11.

Theorem 1.14 (References [2, 16, 17]). Let C be a q-ary symmetric memoryless channel, and

let M ∈ Fk×kq be an invertible matrix. Suppose that the Arıkan martingale associated with (M,C)
polarizes strongly.

Then, for every c there exists t0 (x ) = Oc (logx )
7 such that for every ε > 0 and every t ≥ t0 (1/ε )

there is an affine code C that is generated by the rows of (M−1) (⊗t ) and an affine shift, with the

property that the rate of C is at least Capacity(C) − ε , and C can be encoded and decoded in time

O (n logn) where n = kt and failure probability of the decoder is at most n−c .
If we assume that the Arıkan martingale associated with (M,C) has exponentially strong polariza-

tion, then the failure probability of the decoder is at most exp(−nβ ) for some β > 0.8

The proof of this theorem, as a direct corollary from Theorem 1.11 is included in Appendix A.2.2
for completeness.

As alluded to earlier, the only Arıkan martingales that were known to polarize strongly were

those where the underlying matrix was G2 =
(

1 0
1 1

)
. Specifically, Guruswami and Xia [16] and

6We use 1-indexing in this article.
7The notation Oc ( ·) hides a constant factor that only depends on c .
8Throughout this article, we use the notation exp(x ) to denote a function of the form cx for some constant c > 1. The

exact value of c may be different in each usage but will always be bounded away from 1.
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Hassani et al. [17] show strong polarization of the Arıkan martingale associated with this matrix
over any binary input symmetric channel, and Guruswami and Velingker [15] extended to the
case of q-ary input channels for prime q. By using the concept of local polarization, we are able to
extend these results to all mixing matrices.

1.4 Results II: Local Polarization of Arıkan Martingales

The results in this subsection appear as the pink arrows (from top and bottom box on the right to
the middle right (orange) boxes) in Figure 1.

In our second main result, we show that every mixing matrix gives rise to an Arıkan martingale
that is locally polarizing:

Theorem 1.15 (Local Polarization of Arikan Martingales). For every prime q, for every
mixing matrixM ∈ Fk×kq , and for every symmetric memoryless channel CY |Z over Fq , the associated

Arıkan martingale is locally polarizing.

Theorem 1.15 is proved in Section 5.5.
We also show that the “two-step martingale,” or equivalently the martingale associated with

M ⊗2 for mixing matrices M , is exponentially locally polarizing.

Theorem 1.16 (Exponential Local Polarization of Arikan Martingales). For every prime

q, ε > 0, every mixing matrix M ∈ Fk×kq , and for every symmetric memoryless channel CY |Z over

Fq , the Arıkan martingale sequence associated withM ⊗2 and CY |Z is ( 1
k2 , 2−ε )-exponentially locally

polarizing.

Theorem 1.16 is proved in Section 7.

1.5 Implications for Polar Codes with Polynomial Convergence to Capacity

Results in this section are the two bottom green arrows (from the middle left (green) boxes to the
left most (blue) boxes) in Figure 1.

As a consequence of Theorems 1.7, 1.14, and 1.15, we have the following theorem.

Theorem 1.17 (Polynomially Fast Convergence to Capacity and Inverse Polynomial Er-
ror Probability). For every prime q, every mixing matrixM ∈ Fk×kq , every symmetric memoryless

channel C over Fq , and every c < ∞, there is a polynomial p such that for every ε > 0, and every

n = kt > p (1/ε ), there is an affine code C that is generated by the rows of (M−1) (⊗t ) and an affine

shift, with the property that the rate ofC is at leastCapacity(C)−ε , andC can be encoded and decoded

in time O (n logn) and failure probability of the decoder is at most n−c .

Again, as a consequence of Theorems 1.9, 1.11, and 1.16, we have the following theorem that
achieves decoding failure probability that is exp(−nβ ) for some β > 0. We refer to such a function
as root-exponentially small, and when β → 1, we call it near-exponentially small.

Theorem 1.18 (Polynomial Convergence to Capacity & Root-exponentially Small Error
Probability). For every prime q, every mixing matrixM ∈ Fk×kq , and every symmetric memoryless

channel C over Fq , there is a polynomial p and β > 0 such that for every ε > 0 and every n = kt ≥
p (1/ε ), there is an affine code C that is generated by the rows of (M−1) (⊗t ) and an affine shift, with

the property that the rate ofC is at least Capacity(C) − ε , andC can be encoded and decoded in time

O (n logn) and failure probability at most exp(−nβ ).

1.6 Additional Results Optimizing Decoding Error Probability

The above theorems shows that all polar codes associated with every mixing matrix achieves the
Shannon capacity of a symmetric memoryless channel efficiently, thus vastly expanding on the
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class of polar codes known to satisfy this condition. By choosing the mixing matrix carefully,

we can even achieve decoding error probability close to 2−Ω(n) ; specifically, we can get near-
exponentially small decoding error probability, i.e., falling as exp(−nβ ) for any desired β < 1.

Theorem 1.19 (Near-exponentially Small Error Probability and Polynomial Conver-
gence to Capacity). For every prime q, every symmetric memoryless channel C over Fq , and every

β < 1, there exists k , a mixing matrix M ∈ Fk×kq , and a polynomial p such that for every ε > 0 and

every n = kt ≥ p (1/ε ), there is an affine code C that is generated by the rows of (M−1) (⊗t ) and an

affine shift, with the property that the rate ofC is at least Capacity(C) − ε , andC can be encoded and

decoded in time O (n logn) and failure probability at most exp(−nβ ).

Theorem 1.19 is proved in Section 8.2.
Finally, for a broad class of channels, we show that we achieve nearly the best possible error

exponent for any given mixing matrix M , while achieving polynomial gap to capacity, using the
proofs of this article.

Theorem 1.20 (Polynomial Convergence to Capacity at no Price in Decoding Error Prob-
ability). SupposeM ∈ Fk×kq and β > 0 satisfy the condition that for every q-ary symmetric channel9

C and for every ε > 0, for sufficiently large n = ks , there is an affine code C of length n generated

by the rows of (M−1) (⊗s ) of rate at least Capacity(C) − ε such that C can be decoded with failure

probability at most exp(−nβ ).
Then, for every β ′ < β and every symmetric channel C′ with inputs from Fq , there is a polynomial

p such that for every ε > 0 and every n = kt ≥ p (1/ε ) there is an affine codeC that is generated by the

rows of (M−1) (⊗t ) and an affine shift, with the property that the rate ofC is at least Capacity(C′) − ε ,
and C can be encoded and decoded in time O (n logn) and failure probability at most exp(−nβ ′ ).

Theorem 1.20 is proved in Section 8.3. It is worth emphasizing two desirable aspects about
Theorem 1.20:

(1) We only need to assume that polar codes based onM achieve capacity for the q-ary symmet-
ric channel but get a conclusion for every symmetric channel (with Fq inputs).

(2) Further, we assume nothing about the speed of convergence to capacity for the q-ary sym-
metric channel and conclude polynomial convergence to capacity (positive scaling exponent)
for arbitrary symmetric channels. We do assume root-exponential decoding error probabil-
ity for the q-ary symmetric channel, but this has been established for all mixing matrices in
the limit of n → ∞ [20, 24]. Moreover, in this limit [20] gives a characterization of the best
possible exponent β for any given matrix M . Theorem 1.20 asserts that essentially the same
characterization applies with polynomial convergence to capacity.

1.7 Comparison with Previous Analyses of (Strong) Polarization

While most of the ingredients going into our eventual analysis of strong polarization are familiar
in the literature on polar codes, our proofs end up being much simpler and modular. We describe
some of the key steps in our proofs and contrast them with those in previous works.

Definition of Local Polarization. While we are not aware of a definition similar to local po-
larization being explicit in the literature before, such notions have been considered implicitly be-
fore. For instance, for the variation in the middle (where we require that E[(Xt+1 − Xt )

2] ≥ θ if
Xt ∈ (τ , 1−τ )) some of the previous analyses (e.g., in References [15, 16]) required θ be quadratic in

9A q-ary symmetric channel is one where the symbol is unaltered with probability 1 − θ , and flipped to a uniform value

with probability θ , for a channel parameter θ ∈ [0, 1].
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τ . In contrast, our requirement on the variation is very weak and qualitative, allowing any function
θ (τ ) > 0. Similarly, our requirement in the suction at the ends case is relative mild and qualitative.
In previous analyses the requirements were of the form “if Xt ≤ τ , then Xt+1 ≤ X 2

t with positive
probability.” This high demand on the suction case prevented the analyses from relying only on
the local behavior of the martingale X0, . . . ,Xt , . . . and instead had to look at other parameters
associated with it that essentially depend on the entire sequence. (For the reader familiar with
previous analyses, this is where the Bhattacharyya parameters enter the picture.) Our approach,
in contrast, only requires arbitrarily large constant factor drop and thereby works entirely with
the local properties of Xt .

Local Polarization Implies Strong Polarization. Our proof that local polarization implies
strong polarization is short (about 3 pages) and comes in two parts. The first part uses a simple
variance argument to shows that Xt is exponentially close (in t ) to the limit except with prob-
ability exponentially small in t . The second part then amplifies Xt ’s proximity to {0, 1} to sub-
exponentially small values using the suction at the end guarantee of each local step, coupled with
Doob’s martingale inequality and standard concentration inequalities. Such a two-part breakdown
of the analysis is not new; however, our technical implementation is more abstract, more general,
and more compact all at the same time.

Local Polarization of Arıkan Martingales. We will elaborate further on the approach for this
after defining the Arıkan martingales, but we can say a little bit already now: First, we essentially
reduce the analysis of the polarization of Arıkan martingale associated with an arbitrary mix-
ing matrix M to the analysis when M = G2. This reduction loses in the parameters (α ,τ (·),θ (·))
specifying the level of local polarization, but since our strong polarization theorem works for any
function, such loss in performance does not hurt the eventual result. Finally, local polarization for
the case where the matrix isG2 is of course standard, but even here our proofs (which we include
for completeness) are simpler, since they follow from known entropic inequalities on sums of two
independent random variables. We stress that even quantitatively weak forms of these inequalities
meet our requirements of local polarization, and we do not need strong forms of such inequalities
(like Mrs. Gerber’s lemma for the binary case [7, 16] and an ad hoc one for the prime case [15]).

General vs. Prime Fields. One weaknesses in our analysis that, in contrast to the result of Mori
and Tanaka [24], who characterize the set of matrices that lead to regular polarization over genertal
fields, we only get a characterization (for strong polarization) over prime fields. We feel that this
limitation is not inherent to our approach. The only (but crucial) place where the prime field plays
a role is in the “variance in the middle” lemma (Lemma 5.3) for Arıkan’s basic 2×2 kernelG2, which
in fact does not polarize regularly over general fields due to the existence of subfields. There might
be a way around this by reduction to a different 2 × 2 kernel that actually polarizes regularly.

Concrete Polynomial Upper Bounds on Block Length. A second weakness in our analysis
is that, while we develop a general framework to prove strong polarization and polynomial con-
vergence to capacity, the constants are not optimized and will lead to poor upper bounds on the
exponent μ of the polynomial in the block length as a function of the gap to capacity. This quantity
is called the scaling exponent, and our main goal in this work is to prove that for every mixing
matrix M has a finite scaling exponent μ = μ (M ).

For the case of M = G2 and binary alphabet (the original Arıkan setting), an upper bound
of μ ≤ 6 was shown in Reference [17] and improved to 5.702 in Reference [12] and to 4.714
in Reference [23]. For the case of the binary erasure channel (BEC), Reference [23] showed an
upper bound of μ ≤ 3.639, which is close to the heuristic value of≈3.627 reported in Reference [21].
This latter value is also argued as a lower bound on μ for the binary-erasure channel in Reference
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[17] (for the proof technique of bounding decoding error probability by the sum of Bhattacharyya
parameters of the channels seen by the successive cancellation decoder). For kernels besides G2,
we were unaware of any concrete (or even finite) upper bounds on μ besides our work (except for
large random kernels discussed next).

SubsequentWork. Quantitative versions of Shannon’s noisy coding theorem theorem show that
one can achieve a scaling exponent of 2 for any discrete memoryless channel, and converse theo-
rems show that this is optimal [27, 32]. For erasure channels over large alphabets, it was shown
in Reference [25] that random � × � kernels for larger � achieve a scaling exponent approaching 2.
Such a result was then shown for the BEC in Reference [10].

While these results hinted at the potential of polar codes to achieve near-optimal scaling expo-
nents, they only applied to erasure channels. Analyzing polar codes for more general channels,
including the basic binary symmetric channel (BSC), is significantly more complex.10 Variants
of polar codes were shown to achieve a scaling exponent approaching 2 for all binary-input sym-
metric channels in Reference [13], together with polynomial time constructions and quasi-linear
encoding/decoding complexity. A similar result was shown for all discrete memoryless channels
over any finite alphabet in Reference [30], albeit the efficient construction of such codes remains to
be worked out (but once constructed the codes admit efficient encoding/decoding). These results
also use large random kernels. For concrete kernels, this work remains the only general approach
to show strong polarization and finite scaling exponent.

1.8 Organization of the Rest of This Article

We first introduce some of the notation and probabilistic preliminaries used to define and analyze
the Arıkan martingale in Section 2. We then prove Theorem 1.7 showing that local polarization
implies strong polarization in Section 3. This is followed by the formal definition of the Arıkan
martingale in Section 4. Section 5.3 then asserts conditions on the entropy of the sum of two in-
dependent variables and uses these to prove Theorem 1.15 asserting the local polarization of the
Arıkan martingale. Section 6 proves these entropic conditions. Section 7 proves the exponential
local polarization of the two-step Arıkan martingale (Theorem 1.16). In Section 8, we prove The-
orems 1.19 and 1.20, which strengthen the error analysis for codes to nearly optimal. Finally, in
Appendix A we show for completeness how the Arıkan martingale (and its convergence) can be
used to construct capacity achieving codes.

2 PRELIMINARIES AND NOTATION

In this section, we introduce the notation needed to define the Arıkan martingale (which will be
introduced in Section 4). We also include information-theoretic and probabilistic inequalities that
will be necessary for the subsequent analysis.

2.1 Notation

The Arıkan martingale is based on a recursive construction of a vector valued random variable.
To cleanly describe this construction, it is useful to specify our notational conventions for vectors,
tensors, and how to view the tensor products of matrices. These notations will be used extensively
in the following sections.

10For erasure channels, all intermediate channels seen by the decoder of the recursive polar code construction are also

erasure channels, with varying erasure probabilities. Even for the BSC, however, the intermediate channels become incred-

ibly complex with huge alphabet sizes. So one must effectively argue about and find a construction that is able to handle a

plethora of channels that do not admit analytically simple descriptions.

Journal of the ACM, Vol. 69, No. 2, Article 11. Publication date: March 2022.



General Strong Polarization 11:13

2.1.1 General Notation. For a prime powerq, we use Fq to denote the finite field withq elements
and use F∗q to denote the non-zero elements in Fq .

We will use O (·) for “Big-Oh” notation.

2.1.2 Probability Notation. Throughout this work, all random variables involved will be dis-
crete. For a probability distribution D and random variable X , we write X ∼ D to mean that X is
distributed according to D and independent of all other variables. Similarly, for a set S , we write
X ∼ S to mean that X is independent and uniform over S . For a set S , let Δ(S ) denote the set of
probability distributions over S .

We occasionally abuse notation by treating distributions as random variables. That is, for D ∈
Δ(Fkq ) and a matrix M ∈ Fk×kq , we write DM to denote the distribution of the random variable
{XM }X ∼D . For a distributionD and an event E, we writeD |E to denote the conditional distribution
of D conditioned on E.

2.1.3 Tensor Notation. Here we introduce useful notation for dealing with scalars, vectors, ten-
sors, and tensor-products. All scalars will be non-bold, for example,X ∈ Fq . All our vectors will be
row vectors (except when explicitly noted) and will be in bold. Any tensors of order ≥ 1 (including
vectors) will be in bold, for example: Y ∈ Fkq . One exception to this is the matrix M used in the
polarization transforms, which we do not show in bold.

Subscripts are used to index tensors, with indices starting from 1. For example, for Y as above,
Y i ∈ Fq . Matrices and higher-order tensors are indexed with multiple subscripts: For Z ∈ (Fkq )

⊗3,

we may write Z 1,2,1 ∈ Fq . We often index tensors by tuples (multiindices), which will be in bold:

For i = (1, 2, 1) ∈ [k]3, we write Z i = Z 1,2,1. Let ≺ be the lexicographic order on these indexing
tuples.

When an index into a tensor is the concatenation of multiple tuples, we emphasize this by using
brackets in the subscript. For example, for tensor Z as above, and i = (1, 2) and j = 1, we may
write Z [i, j] = Z 1,2,1.

For a given tensor Z , we can consider fixing some subset of its indices, yielding a slice of Z (a
tensor of lower order). We denote this with brackets, using · to denote unspecified indices. For
example for tensor Z ∈ (Fkq )

⊗3 as above, we have Z [1,2, ·] ∈ Fkq and Z [·,1] ∈ (Fkq )
⊗2.

We somewhat abuse the indexing notation, using Z ≺i to mean the set of variables {Z j : j ≺ i}.
Similarly, Z [i,<j] := {Z [i,k] : k < j}.

We occasionally unwrap tensors into vectors, using the correspondence between (Fkq )
⊗t and

F
k t

q . Here, we unwrap according to the lexicographic order ≺ on tuples.
Finally, for matrices specifically,Mi, j specifies the entry in the ith row and jth column of matrix

M . Throughout, all vectors will be row-vectors by default.

2.1.4 Tensor Product Recursion. The construction of polar codes and analysis of the Arıkan
martingale rely crucially on the recursive structure of the tensor product. Here we review the
definition of the tensor product and state its recursive structure.

For a linear transform M : Fkq → Fkq , let M ⊗t : (Fkq )
⊗t → (Fkq )

⊗t denote the t-fold tensor power

ofM . Explicitly (fixing basis for all the spaces involved), this operator acts on tensorsX ∈ (Fkq )
⊗t as

[M ⊗t (X )]j =
∑

i ∈[k]t

XiMi1, j1Mi2, j2 · · ·Mit , jt .

The tensor product has the following recursive structure: M ⊗t = (M ⊗t−1) ⊗ M , which corre-
sponds explicitly to

[M ⊗t (X )][a, jt ] =
∑
it ∈[k]

Mit , jt [M
⊗t−1 (X [·,it ])]a . (1)
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In the above, if we define tensor

Y (it ) := M ⊗t−1 (X [·,it ]),

then this becomes

[M ⊗t (X )][a, ·] = M
((
Y (1)
a ,Y

(2)
a , . . . ,Y

(k )
a

))
, (2)

where the vector (Y (1)
a ,Y

(2)
a , . . . ,Y

(k )
a ) ∈ Fkq .

Finally, we use that (M ⊗t )−1 = (M−1)⊗t .

2.2 Information Theory Preliminaries

For the sake of completeness, we include the information-theoretic concepts and tools we use in
this article.

For a discrete random variable X , let H (X ) denote its binary entropy:

H (X ) :=
∑

a∈Suppor t (X )

pX (a) log

(
1

pX (a)

)
,

where pX (a) := Pr (X = a) is the probability mass function of X . Throughout, log(·) by default
denotes log2 (·).

For p ∈ [0, 1], we overload this notation, letting H (p) denote the entropy H (X ) for X ∼
Bernoulli (p).

For arbitrary random variables X ,Y , let H (X |Y ) denote the conditional entropy:

H (X |Y ) = E
Y
[H (X |Y = y)].

For a q-ary random variable X ∈ Fq , let H (X ) ∈ [0, 1] denote its (normalized) q-ary entropy:

H (X ) :=
H (X )

log(q)
. (3)

Finally, the mutual information between jointly distributed random variables X ,Y is

I (X ;Y ) := H (X ) − H (X |Y ) = H (Y ) − H (Y |X ).

We will use the following standard properties of entropy (see, for instance, Reference [6]):

(1) (Adding independent variables increases entropy): For any random variables X ,Y ,Z
such that X ,Y are conditionally independent given Z , we have

H (X + Y |Z ) ≥ H (X |Z ). (4)

(2) (Transforming Conditioning): For any random variables X ,Y , any function f , and any
bijection σ , we have

H (X |Y ) = H (X + f (Y ) |Y ) = H (X + f (Y ) |σ (Y )). (5)

(3) (Chain rule): For arbitrary random variables X ,Y : H (X ,Y ) = H (X ) + H (Y |X ).
(4) (Conditioning does not increase entropy): For X ,Y ,Z arbitrary random variables,

H (X |Y ,Z ) ≤ H (X |Y ).
(5) (Monotonicity): For p ∈ [0, 1/2), the binary entropy H (p) is non-decreasing with p. And

for p ∈ (1/2, 1], the binary entropy H (p) is non-increasing with p.
(6) (Deterministic postprocessing does not increase entropy): For arbitrary random vari-

ables X ,Y and function f we have H (X |Y ) ≥ H ( f (X ) |Y ).
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(7) (Conditioning on independent variables): For random variables X ,Y ,Z where Z is inde-
pendent from (X ,Y ), we have H (X |Y ) = H (X |Y ,Z ).

2.2.1 Channels. Given a finite field Fq , and output alphabet Y , a q-ary channel CY |Z is a prob-
abilistic function from Fq to Y . Equivalently, it is given by q probability distributions {CY |α }α ∈Fq
supported onY . We use notation C (Z ) to denote the channel operating on inputsZ . Amemoryless

channel maps Fnq toYn by acting independently (and identically) on each coordinate. A symmetric

channel is a memoryless channel where for every α , β ∈ Fq there is a bijection σ : Y → Y such
that for every y ∈ Y it is the case that CY=y |α = CY=σ (y ) |β , and moreover for any pair y1,y2 ∈ Y ,
we have

∑
x ∈Fq CY=y1 |x =

∑
x ∈Fq CY=y2 |x (see, for example, Reference [6, Section 7.2]). As shown

by Shannon every memoryless channel has a finite capacity, denoted Capacity(CY |Z ). For symmet-
ric channels, this is the mutual information I (Y ;Z ) between the input Z and output Y where Z is
drawn uniformly from Fq and Y is drawn from CY |Z given Z .

2.3 Basic Probabilistic Inequalities

In this section, we collect a few useful probabilistic and information-theoretic inequalities, all of
which are standard. The proofs are included for convenience.

We first show that a random variable with small-enough entropy will usually take its most-likely
value and thus maximum likelihood recovery is successful with high probability. In fact, we show
that even if the likelihoods are known only very approximately maximum likelihood decoding will
still be quite successful.

Lemma 2.1. Let X be an arbitrary discrete random variable with range X. Then there exist x̂ ∈ X
such that

Pr (X � x̂ ) ≤ H (X ).

In particular, one can take x̂ = argmaxα {Pr (X = α )}.
Furthermore, given p̃α ’s satisfying |p̃α − Pr (X = α ) | ≤ 1/4 for every α ∈ X, if we let x̃ =

argmaxα {p̃α } then we have Pr (X � x̃ ) ≤ 3H (X ).

Proof. Let α := H (X ) and let pi := PrX (X = i ). Let x̂ = argmaxi {pi } be the value maximizing
this probability. Let px̂ = 1 − γ . We wish to show that γ ≤ α . If γ ≤ 1/2, then we have

α = H (X ) =
∑
i

pi log
1

pi

≥
∑
i�x̂

pi log
1

pi
(Since all summands are non-negative)

≥
∑
i�x̂

pi log
1∑

j�x̂ pj
(Since pi ≤

∑
j�x̂ pj .)

= ��
∑
i�x̂

pi�� · log
(

1∑
j�x̂ pj

)

= γ · log 1/γ

≥ γ (Since γ ≤ 1/2 and so log 1/γ ≥ 1)
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as desired. Now, if γ > 1/2, then we have a much simpler case, since now we have

α = H (X ) =
∑
i

pi log
1

pi

≥
∑
i

pi log
1

px̂
(Since pi ≤ px )

= log
1

px̂
(Since

∑
i pi = 1)

= log
1

1 − γ

≥ 1. (Since γ ≥ 1/2)

But γ is always at most 1 so in this case also we have α ≥ 1 ≥ γ as desired.
For the furthermore part of the lemma statement, note that if γ < 1/4, then, by the condition

|p̃α − pα | ≤ 1/4, we have p̃x̂ > 1/2 while p̃x ′ < 1/2 for every x ′ � x̂ . Thus in this case we
have x̃ = x̂ and so by the first part above we have Pr (X � x̃ ) = Pr (X � x̂ ) ≤ H (X ). Now, if
γ > 1/4 as in the second part above, then we have H (X ) ≥ log 1

1−γ ≥ .415 ≥ 1/3, and so we get

Pr (X � x̂ ) ≤ 1 ≤ 3H (X ). �

For the decoder, we will need a conditional version of Lemma 2.1, saying that if a variableX has
low conditional entropy conditioned on Y , then X can be predicted well given the instantiation of
variable Y .

Lemma 2.2. Let X ,Y be arbitrary discrete random variables with range X,Y respectively. Then

there exists a function X̂ : Y → X such that

Pr
X ,Y

(
X � X̂ (Y )

)
≤ H (X |Y ).

In particular, the following estimator satisfies this:

X̂ (y) := argmax
x

{
Pr (X = x |Y = y)} .

Furthermore, given p̃x,y ’s satisfying |p̃x,y − Pr (X = x |Y = y) | ≤ 1/4 for every x ∈ X,y ∈ Y , if we

let X̃ (y) = argmaxx {p̃x,y }, then we have Pr
(
X � X̃ (y)

)
≤ 3H (X |Y ).

Proof. For every setting of Y = y, we can bound the error probability of this estimator using
Lemma 2.1 applied to the conditional distribution X |Y = y:

Pr
X ,Y

(
X � X̂ (Y )

)
= E

Y

[
Pr
X |Y

(
X̂ (Y ) � X

)]
≤ E

Y

[
H (X |Y = y)] (Lemma 2.1)

= H (X |Y ) . �

The furthermore part of the lemma statement follows similarly by using the furthermore part of
Lemma 2.1.

We also use the well-known Fano’s inequality, which works as a weak converse to the above
lemma, asserting that if a random variable X is predictable given Y , then its conditional entropy
is small.

Lemma 2.3 (Fano’s Ineqality). For a pair of random variables (X ,Y ) ∈ X ×Y , if there exists a

function X̂ : Y → X such that Pr(X̂ (Y ) � X ) ≤ δ with δ < 1
2 , then H (X |Y ) ≤ 2δ (logδ−1 + log |X|).

Journal of the ACM, Vol. 69, No. 2, Article 11. Publication date: March 2022.



General Strong Polarization 11:17

We will need an inverse to the usual Chebychev inequality. Recall that Chebychev shows that
variables with small variance are concentrated close to their expectation:

Pr ( |Z − E[Z ]| ≥ λ) ≤ Var(Z )

λ2
.

The Paley–Zygmund inequality below can be used to invert it (somewhat): For a random variable
W with comparable fourth and second central moment, by applying the lemma below to Z =
(W − E[W ])2 we can deduce that W has positive probability of deviating noticeably from the
mean.

Lemma 2.4 (Paley-Zygmund). If Z ≥ 0 is a random variable with finite variance, then

Pr(Z > λ E[Z ]) ≥ (1 − λ)2
E[Z ]2

E[Z 2]
.

Next, we define the notion of a sequence of random variables being adapted to another sequence
of variables, which will be useful in our later proofs.

Definition 2.5. We say that a sequence Y1,Y2 . . . of random variables is adapted to the sequence
X1,X2 . . . if and only if for every t , Yt is completely determined given X1, . . .Xt . We will use
E[Z |X[1:t ]] as a shorthand E[Z |X1, . . .Xt ] and Pr(E |X[1:t ]) as a shorthand for E[1E |X1, . . .Xt ]. If
the underlying sequence X is clear from context, then we will skip it and write just E[Z |Ft ].

Lemma 2.6. Consider a sequence of non-negative random variables Y1,Y2, . . . ,Yt , . . . adapted to

the sequence X1,X2, . . . . If for every t we have Pr(Yt+1 > λ |X[1:t ]) ≤ exp(−λ), then for every T > 0:

Pr ��
∑
i≤T

Yi > CT �� ≤ exp(−Ω(T ))

for some universal constant C .

Proof. First, observe that

E[exp(Yt+1/2) |Ft ] =
∫ ∞

0

Pr(exp(Yt+1/2) > λ |Ft ) dλ

≤ 1 +

∫ ∞

1

exp(−2 log λ) dλ

= 1 +

∫ ∞

1

λ−2 dλ

≤ exp(C0) (6)

for some constant C0. However, we have decomposition (where we apply Equation (6) in the first
inequality):

E

⎡⎢⎢⎢⎢⎣exp ��
∑
i≤T

Yi
2
��
⎤⎥⎥⎥⎥⎦ = E

⎡⎢⎢⎢⎢⎣E
⎡⎢⎢⎢⎢⎣exp ��

∑
i≤T

Yi
2
�� |FT−1

⎤⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎦

= E

⎡⎢⎢⎢⎢⎣exp ��
∑

i≤T−1

Yi/2��E [exp (YT /2) |FT−1
]⎤⎥⎥⎥⎥⎦

≤ E
⎡⎢⎢⎢⎢⎣exp ��

∑
i≤T−1

Yi/2��
⎤⎥⎥⎥⎥⎦ · exp(C0)

≤ · · ·
≤ exp(C0T ).
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In the above, the second equality follows from the fact that the sequence Y1,Y2, . . . is adapted to
X1,X2, . . . . We can now apply Markov inequality to obtain the desired tail bound:

Pr ��
∑
i≤T

Yi > 4C0T �� = Pr ��exp ��1

2

∑
i≤T

Yi�� > exp(2C0T )��
≤ E

⎡⎢⎢⎢⎢⎣exp ��1

2

∑
i≤T

Yi��
⎤⎥⎥⎥⎥⎦ · exp(−2C0T )

≤ exp (−C0T ) . �

The following bound for a moment generating function of a bounded random variable is stan-
dard and is commonly used in the proof of Bernstein inequality.

Lemma 2.7. For any random variable X such that |X | < 1 with probability 1, and every 0 < λ < 1
4 ,

we have

logE[exp(λX )] ≤ λ E[X ] +Cλ2
E[X 2],

where C is some universal constant.

Proof. Since |X | < 1, we have E |X |k ≤ EX 2, and therefore

E exp(λX ) =
∑
k

λk

k!
E[X k ]

≤ 1 + λ E[X ] + (λ2 + O (λ3)) E[X 2].

Moreover, for some constant C , and every |x | < 1
2 , we have log(1 + x ) ≤ x +Cx2, and therefore

logE[exp(λX )] ≤ λ E[X ] +Cλ2 (E[X 2] + E[X ]2) + O (λ3) E[X 2]

≤ λ E[X ] +C ′λ2
E[X 2]. �

Lemma 2.8. Consider a sequence of random variables Y1,Y2, . . . with Yi ∈ {0, 1}, adapted to the

sequence Xt . If Pr(Yt+1 = 1|X[1:t ]) > μt+1 for some deterministic value μt , then for μ :=
∑

t ≤T μt and
any ε > 0 we have

Pr ��
∑
t ≤T

Yt < (1 − ε )μ�� ≤ exp
(
−Ω(ε2μ )

)
.

Proof. Consider a random variable Mt+1 := E[Yt+1 |X[1:t ]] (depending on X[1:t ]), we know that
Mt > μt with probability 1, and let us take Zt := (1 − ε )Mt − Yt .

Standard calculation involving Markov inequality yields the following bound for any λ > 0:

Pr ��
∑
t ≤T

Yt <
∑
t ≤T

(1 − ε )μt �� ≤ Pr ��
∑
t ≤T

Yt <
∑
t ≤T

(1 − ε )Mt
��

= Pr ��
∑
t ≤T

λZt > 0��
= Pr ��exp ��

∑
t ≤T

λZt �� > 1��
≤ E

⎡⎢⎢⎢⎢⎣exp ��
∑
t ≤T

λZt ��
⎤⎥⎥⎥⎥⎦ . (7)
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To bound this latter quantity, we introduce conditioning on X[1:T−1] as follows:

E

⎡⎢⎢⎢⎢⎣exp ��
∑
t ≤T

λZt ��
⎤⎥⎥⎥⎥⎦ = E

⎡⎢⎢⎢⎢⎣E
⎡⎢⎢⎢⎢⎣exp ��

∑
t ≤T

λZt �� |X[1:T−1]

⎤⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎦

= E

⎡⎢⎢⎢⎢⎣exp ��
∑

t ≤T−1

λZt ��E[exp(λZT ) |X[1:T−1]]

⎤⎥⎥⎥⎥⎦ , (8)

where the second equality follows from the fact that Zt is adapted to Xt .
By Lemma 2.7 for any 0 < λ < 1

4 , we have

E

[
exp(λZT ) |X[1:T−1]

]
≤ exp(−λεMT +C1λ

2MT )

for some constant C1. Now, if we chose λ = 1
2C1

ε , then we get

E

[
exp (λZT ) |X[1:T−1]

]
≤ E

[
exp
(
−Cε2MT

)]
≤ exp(−Cε2μT )), (9)

where C = 1
8C1

, since μT ≤ MT deterministically.

Together with Equation (8), this yields

E

⎡⎢⎢⎢⎢⎣exp ��
∑
t ≤T

λZt ��
⎤⎥⎥⎥⎥⎦ ≤ E

⎡⎢⎢⎢⎢⎣exp ��
∑

t ≤T−1

λZt ��
⎤⎥⎥⎥⎥⎦ exp(−Cε2μT )

≤ · · ·

≤ E
⎡⎢⎢⎢⎢⎣exp ��

∑
t ≤T

−Cε2μt ��
⎤⎥⎥⎥⎥⎦ = exp(−Ω(ε2μ )). (10)

Finally, combining Equations (7) and (10) we have Pr(
∑

t ≤T Yt < (1 − ε )μ ) ≤ exp(−Ω(ε2μ )) as
desired. �

Finally, we will use the well-known Doob’s martingale inequality:

Lemma 2.9 (Doob’s Martingale Ineqality [9, Theorem 5.4.2]). If a sequence X0,X1, . . . is a
martingale, then for every T we have

Pr

(
sup
t ≤T

Xt > λ

)
≤ E[|XT |]

λ
.

Corollary 2.10. If X0,X1, . . . is a nonnegative martingale, then for every T we have

Pr

(
sup
t ≤T

Xt > λ

)
≤ E[X0]

λ
.

3 LOCAL TO GLOBAL POLARIZATION

In this section, we prove Theorems 1.7 and 1.9, which assert that every (exponentially) locally
polarizing [0, 1]-martingale is also (exponentially) strongly polarizing. The proofs in this section
depend on some basic probabilistic concepts and inequalities mentioned in Section 2.3.

The proof of both statements are implemented in two main steps. In the first step, common to
both, we show that any locally polarizing martingale, is mildly polarizing, namely that it is ((1 −
ν
2 )

t , (1− ν
2 )

t , (1− ν
4 )

t )-polarizing for some constant ν depending only on the parameters α ,τ ,θ of
local polarization. This means that, except with exponentially small probability, min{Xt/2, 1−Xt/2}
is exponentially small in t , which we can use to ensure that Xs for all t

2 ≤ s ≤ t stays in the range
where the conditions of (strong) suction at the ends apply (again, except with exponentially small
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failure probability). In the second step, we show that if the martingale stays in the suction at the

ends regime, then it will polarize strongly; i.e., if we have a [0, 1]-martingale, such that in each
step it has probability at least α to decrease by a factor of c , then we can deduce that at the end
we have Pr(XT > c−αT /4) ≤ exp(−Ω(αT )).11 A completely similar argument shows that when the
martingale shows strong suction at the low end, we have Pr(XT > exp(−ΔT )) ≤ exp(−Ω(αT )), for
some Δ > 1, thus yielding exponentially strong polarization.

3.1 Mild Polarization

We start by showing that in the first t/2 steps we do get exponentially small polarization, with
all but exponentially small failure probability. This is proved using a simple potential function
min{

√
Xt ,

√
1 − Xt }, which we show shrinks by a constant factor, 1 − ν for some ν > 0, in expecta-

tion at each step. Previous analyses in References [15, 16] tracked
√
Xt (1 − Xt ) (or some tailormade

algebraic functions [17, 23]) as potential functions and relied on quantitatively strong forms of vari-
ance in the middle to demonstrate that the potential diminishes by a constant factor in each step.
While such analyses can lead to sharper bounds on the parameter ν , which in turn translate to
better scaling exponents in the polynomial convergence to capacity, e.g., see Reference [17, Thm.
18] or Reference [23, Thm. 1], these analyses are more complex, and less general.

Lemma 3.1. If a [0, 1]-martingale sequenceX0, . . .Xt , . . . , is (α ,τ (·),θ (·))-locally polarizing, then
there exist ν > 0, depending only on α ,τ ,θ , such that

E

[
min
(√

Xt ,
√

1 − Xt

)]
≤ (1 − ν )t .

Proof. Set τ0 = τ (4),θ0 = θ (τ0). We will show that E[min(
√
Xt+1,

√
1 − Xt+1) |Xt ] ≤ (1 −

ν ) min(
√
Xt ,

√
1 − Xt ) for some ν > 0 depending on τ0, θ0, and α . The statement of the lemma

will follow by induction. The base case of t = 0 follows, since X0 ∈ [0, 1].
Let us condition on Xt and first consider the case Xt ∈ (τ0, 1 − τ0). We know that

E

[
min
(√

Xt+1,
√

1 − Xt+1

)]
≤ min

(
E

[√
Xt+1

]
,E

[√
1 − Xt+1

] )
,

and we will show that E[
√
Xt+1] ≤ (1 − ν )

√
Xt . The proof of E[

√
1 − Xt+1] ≤ (1 − ν )

√
1 − Xt is

symmetric.

Indeed, let us take R :=
√

Xt+1

Xt
. Because (Xt )t is a martingale, we have E[R2] = 1, and by Jensen’s

inequality, we have that E[R] ≤
√
E[R2] ≤ 1, where all the expectations above are conditioned on

Xt . Take δ such that E[R] = 1 − δ . We will show a lower bound on δ in terms of θ0, τ0, and α0.
We note that

Var(R) = E[R2] − (E[R])2 = 1 − (1 − δ )2 = 2δ − δ 2 ≤ 2δ . (11)

The high-level idea of the proof is that we can show that local polarization criteria implies that
T is relatively far from 1 with noticeable probability, but if E[R] were close to 1, then by Chebyshev
inequality we would be able to deduce that R is far from its mean with much smaller probability.
This implies that mean of R has to be bounded away from 1.

More concretely, observe first that by Chebyshev inequality, we have Pr( |R − E[R]| > λ) <
Var(R )
λ2 ≤ 2δ

λ2 , where the inequality follows from Equatino (11). Hence, for C0 = 4, we have the
following:

Pr
(
|R − 1| ≥ δ +C0

√
δθ−1

0 τ−2
0

)
≤ 1

8
θ 2
0τ

4
0 . (12)

11This is enough, since we pick c to be large enough (given γ ) so that c−αT /4 ≤ γT , and we pick β and η such that

βηT ≥ exp(−Ω(αT )).
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However, because of the Variation in the middle condition of local polarization, we have

Var(R2) =
E[X 2

t+1]

X 2
t

− E[Xt+1]
2

X 2
t

=
E[X 2

t+1] − X 2
t

X 2
t

≥ θ0

X 2
t

≥ θ0,

where the second equality follows from the fact that E[Xt+1] = Xt and the last inequality follows,
since Xt ≤ 1. Moreover, R < 1√

τ0
, because

√
Xt+1 < 1 and

√
Xt >

√
τ0.

Let us now consider Z = (R2 − 1)2. We have E[Z ] = Var(R2) ≥ θ0, and, moreover, E[Z 2] < τ−4
0

(because R is bounded and τ0 ≤ 1), hence by Lemma 2.4 (for C1 = 1/2),

Pr
(
(1 − R2)2 > C1θ0

)
≥ 1

4
θ 2
0τ

4
0 .

And also 1−R2 = −(1−R)2+ 2(1−R) < 2(1−R); hence, if (1−R2)2 > C1θ0, then |1−R | >
√
C1

2

√
θ0,

which implies (for the choice of C2 =
√
C1/2):

Pr
(
|R − 1| > C2

√
θ0

)
≥ 1

4
θ 2
0τ

4
0 . (13)

By comparing Equations (12) and (13), we deduce that C2

√
θ0 < δ + C0

√
δθ−1

0 τ−2
0 , which in turn

implies that δ ≥ C4θ
3
0τ

4
0 , (for C4 = C2

2/(4C
2
0 ); note that with our choice of parameters, we have

C0

√
δθ−1

0 τ−2
0 ≥ δ ), and by the definition of δ we have E[

√
Xt+1 |Xt ] ≤ (1 − δ )

√
Xt ]. The same

argument applies to show that E[
√

1 − Xt+1 |Xt ] ≤ (1 −C4θ
3
0τ

4
0 )
√

1 − Xt .
Consider now the case when Xt < τ0. For T ,δ as above (and again after conditioning on Xt ),

we have Var(R) < 2δ (note that the argument for this inequality from the previous case also holds
here), and hence by Chebyshev inequality (for the choice of C5 = 2),

Pr ��|R − 1| ≥ δ +C5

√
δ

α
�� ≤ α

2
. (14)

However, because of the suction at the end condition of local polarization, we know that with
probability α , we have R ≤ 1

2 , which means |R − 1| ≥ 1
2 and by comparing this with Equation (14),

we deduce that δ +C5

√
δ
α
≥ 1

2 , which in turn implies that δ ≥ C6α (forC6 =
1

16C2
5

; note that by our

parameter choices we have C5

√
δ
α
≥ δ ). Therefore, in the case Xt < τ0, we have E[

√
Xt+1 |Xt ] ≤

(1 −C6α )
√
Xt = (1 −C6α ) min(

√
Xt ,

√
1 − Xt ). The case Xt > 1 − τ0 is symmetric and is omitted.

This implies the statement of the lemma with ν = min(C6α ,C4θ
3
0τ

2
0 ). �

Corollary 3.2. If a [0, 1]-martingale sequence X0, . . .Xt , . . . , is (α ,τ (·),θ (·))-locally polarizing,
then there exist ν > 0, depending only on α ,τ ,θ , such that

Pr

(
min(Xt/2, 1 − Xt/2) > λ

(
1 − ν

2

)t )
≤
(
1 − ν

4

)t 1
√
λ
.

Proof. By applying Markov Inequality to the bound from Lemma 3.1 (with t/2 instead of t ), we
get

Pr

(
min(Xt/2, 1 − Xt/2) > λ

(
1 − ν

2

)t )
= Pr

(
min
(√

Xt/2,
√

1 − Xt/2

)
>
√
λ
(
1 − ν

2

)t/2)

≤ (1 − ν )t/2
(
1 − ν

2

)−t/2 1
√
λ

≤
(
1 − ν

4

)t 1
√
λ
. �
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3.2 Strong Polarization

Next, we show that if a [0,1]-martingale indeed stays in the suction at the ends range for all steps
s ≥ t

2 , i.e., in each step it has constant probability α of dropping by some large constant factor C ,

then at the end we may expect it to be (C−αt/8,C−αt/8, exp(−Ω(αt )))-polarizing.

Lemma 3.3. There exists c < ∞, such that for all K ,α with Kα ≥ c the following holds. Let Xt be a

martingale satisfying Pr(Xt+1 < e−KXt |Xt ) ≥ α , whereX0 ∈ (0, 1). Then Pr(XT > exp(−αKT /4)) ≤
exp(−Ω(αT )).

Proof. Consider Yt+1 := log Xt+1

Xt
, and note that sequence Yt is adapted to sequence Xt in the

sense of Definition 2.5. We have the following bounds on the upper tails of Yt+1, conditioned on
X[1:t ], given by Markov inequality (and recalling that E[Xt+1 |Xt ] = Xt ):

Pr(Yt+1 > λ | Ft ) = Pr

(
Xt+1

Xt
> exp(λ)

�����X[1:t ]

)
= Pr

(
Xt+1 > exp(λ)Xt |X[1:t ]

)
≤ exp(−λ).

Let us decompose Yt+1 =: (Yt+1)+ + (Yt+1)−, where (Yt+1)+ := max(Yt+1, 0). By Lemma 2.6 and
the fact that (Yt+1)+ ≥ Yt+1,

Pr ��
∑
t ≤T

(Yt+1)+ > CT �� ≤ exp(−Ω(T )).

However, let Et+1 be the indicator of Yt+1 ≤ −K . It is again adapted to the sequence Xt , and
we know that Pr(Et+1 |X[1:t ]) ≥ α ; hence, by Lemma 2.8 with probability at most exp(−Ω(αT )) at
most αT /2 of those events holds. Note that (Yt )− ≤ 0, which implies that if at least αT /2 of the
events Et hold, then we have

∑
t ≤T (Yt )− ≤ −αKT /2. Thus, we have Pr(

∑
t ≤T (Yt )− > −αKT /2) ≤

exp(−Ω(αT )). Therefore, as long as αK/4 > C (which is true if we set c = 4C), we can conclude

Pr ��
∑
t ≤T

Yt > −αKT /4�� ≤ exp(−Ω(T )) + exp(−Ω(αT )) ≤ exp(−Ω(αT )).

The proof is complete by noting that
∑

t ≤T Yt = log(XT /X0) and recalling that X0 ≤ 1. �

We are now ready to show that local polarization leads to strong polarization:

Proof of Theorem 1.7. For given γ , we take K to be large enough so that exp(−αK/8) ≤ γ and
moreover αK to be large enough to satisfy assumptions of Lemma 3.3. Let us also take τ0 = τ (e

K ).
We consider ν as in Corollary 3.2. We have

Pr

(
min(Xt/2, 1 − Xt/2) >

(
1 − ν

2

)t
τ0

)
≤
(
1 − ν

4

)−t 1
√
τ0
.

NowDoob’s martingale inequality (Corollary 2.10) implies that, conditioned onXt/2 < (1− ν
4 )

tτ0,
we have Pr( sup

i ∈(t/2,t )
Xi > τ0) ≤ (1 − ν

4 )
t .

Finally, after conditioning on Xi ≤ τ0, ∀ t/2 ≤ i ≤ t , process Xi for i ∈ (t/2, t ) satisfies con-
ditions of Lemma 3.3, because Xi always stays below τ0 and as such suction at the end condition
of local polarization corresponds exactly to the assumption in this lemma. Therefore, we can con-
clude that except with probability exp(−Ω(αt )) + (1− ν

4 )
−t 1√

τ0
(which is exp

(−Ωα,ν (t )
)
), we have

Xt < exp(−αKt/8) = γ t . The other case (1 − Xt/2 < (1 − ν
2 )

tτ0) is symmetric, and in this case we
get 1 − Xt < exp(−αKt/8) except with probability exp

(−Ωα,ν (t )
)
. �
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3.3 Exponentially Strong Polarization

In this section, we prove the analog of Theorem 1.7–Theorem 1.9. We first prove a helper lemma.

Lemma 3.4. There exist C < ∞ such that for all 0 < η < 1,b ≥ 1, 0 < ε < 1 following holds. Let

Xt be a martingale satisfying Pr(Xt+1 < Xb
t |Xt ) ≥ η, where X0 ∈ (0, 1). Then

Pr(logXT > (logX0 +CT )b
(1−ε )ηT ) < exp(−Ω(ε2ηT )).

Proof. As in the proof of Lemma 3.3, let us consider random variables Yt+1 := log(Xt+1/Xt ).
This sequence of random variables is adapted to the sequence Xt in the sense of Definition 2.5. Let
us decompose Yt = Y

+
t + Y

−
t , where Y+t = max(Yt , 0). Note that by Markov inequality

Pr
(
Yt+1 > λ |X[1:t ]

)
= Pr

(
Xt+1 > Xt exp(λ) |X[1:t ]

)
≤ exp(−λ)

E[Xt+1 |X[1:t ]]

Xt
= exp(−λ).

By Lemma 2.6, we deduce that for some C , we have

Pr ��
∑
i≤T

Y+i > CT �� ≤ exp (−Ω(T )) .

However, if we take Zt to be the indicator variable for an event Xt < Xb
t−1, then note that the

sequence zt is adapted to the sequence Xt . By Lemma 2.8, we have

Pr ��
∑
i≤T

Zi ≤ (1 − ε )ηT �� ≤ exp
(
−Ω(Tε2η)

)
.

If neither of these unlikely events hold, that is, we simultaneously have
∑

i≤T Y
+
i ≤ CT and∑

i≤T Zi > (1 − ε )ηT , then we can deduce that logXT ≤ (logX0 + CT )b
(1−ε )ηT , i.e., the largest

possible value of XT is obtained if all the initial Yi were positive and added up to CT (at which
point value of the martingale would satisfy logXT ′ ≤ logX0 + CT ), followed by (1 − ε )ηT steps
indicated by variables Zi ; for each of those steps, logXt+1 ≤ b logXt . �

We are now ready to prove the analog of Lemma 3.3 for exponentially strong polarization.

Lemma 3.5. For all 0 < η < 1,b ≥ 1, 0 < ε < 1 the following holds. Let Xt be a martingale with

values in (0, 1) satisfying Pr(Xt+1 < Xb
t |Xt ) ≥ η, where X0 < exp(−γT ) for some γ > 0, then

Pr(logXT ≥ −b (1−ε )ηT ) < exp(−Ωε,η,γ (T ))).

Proof. Consider sequence t0, t1, . . . tm ∈ [T ], where t0 = 0, tm = T , and
γT

C
≤ |ti − ti−1 | ≤ γT

2C ,

and thereforem = O (Cγ−1), where C is a constant appearing in the statement of Lemma 3.4. For

each index s ∈ [m] we consider a martingaleX (s )
i := Xts+i , and we will apply Lemma 3.4 to this mar-

tingaleX (s ) , withT = ts+1−ts . We can union bound total failure probability bym exp(−Ω(γε2ηT )),
which is upper bounded by the claim bound of exp(−Ωε,η,γ (T ))).

In case we succeed, we can deduce that for each i we have

logXti < (logXti−1 +C (ti − ti−1))b
(1−ε )η (ti−ti−1 ) . (15)

We will show that by our choice of parameters, we can boundC (ti − ti−1) ≤ − 1
2 logXti . Let us first

discuss how this is enough to complete the proof. Indeed, in such a case we have

logXti <
1

2
(logXti−1 )b

(1−ε )η (ti−ti−1 ), (16)

and by induction

logXtm <
1

2m
(logX0)b

(1−ε )ηtm .
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For fixed η,m, and T large enough (depending on η,m, ε), this yields logXT < −b (1−2ε )ηT , and the
result follows up by changing ε by a factor of 2.

All we need to do is to show is that for every i we have

C (ti+1 − ti ) ≤ −
1

2
logXti , (17)

assuming that Equation (15) holds for every i . We will show this inductively, together with
logXti ≤ −γT . Note that we assumed this inequality to be true for Xt0 = X0. By our choice of

parameters we have C (ti+1 − ti ) ≤ γT

2 , and therefore for ti+1 the inequality (17) is satisfied.
We will now show that logXti+1 ≤ logXti ≤ −γT to finish the proof by induction. We can apply

Equation (16) to Xti to deduce that logXti+1 ≤ 1
2 (logXti )b

1
2
γ
C T (which is true, since b ≥ 1,η ≤

1, ε ≥ 0). This for large values ofT (given parameters b,γ andC) yields logXti+1 < logXti ; indeed,

this inequality will be true as soon as b
γ
2C ,T > 2, because both logXti+1 and logXti are negative,

which completes the proof. �

We are now ready to prove local polarization to global polarization theorem for exponential
polarization.

Proof of Theorem 1.9. Consider exponentially locally polarizing martingale, and let us fix
some ε > 0. By Corollary 3.2 with t = 2εT and λ = 1, we deduce that for some ν > 0 we have

Pr
(
max (XεT , 1 − XεT ) ≥ (1 − ν

2
)2εT
)
< exp

(−Ωε,ν (T )
)
.

We condition on max(XεT , 1 − XεT ) < (1 − ν
2 )

2εT . Now let K be a large-enough constant de-
pending on α and γ , the target rate of polarization in the high end. Now let τ > 0 be such that

τ ≤ min
(
τ
(
eK
)
,τ0
)
, where τ0 is given by the definition of suction at the low end and τ (·) is from

the suction at the high end. Note that this implies that (1) if Xt < τ , then we have

Pr
(
Xt+1 < Xb

t |Xt

)
≥ η, (18)

which holds, since τ ≤ τ0, and (2) if 1 − Xt < τ , then we have

Pr((1 − Xt+1) < exp(−K ) (1 − Xt ) |Xt ) ≥ α , (19)

which follows from the condition on suction at the high end. By Doob’s martingale inequality
(specifically Corollary 2.10), we deduce that Pr(maxt ∈[εT ,T ] max(Xt , 1 − Xt ) > τ ) ≤ τ−1 (1 −
ν
2 )
−2εT ≤ exp(−Ωτ ,ν,ε (T )). Let us now condition in turn on this event not happening.

We will consider first the case when XεT < (1 − ν
2 )

2εT , and let us put γ0 := −2ε log(1 − ν
2 )

(note that γ0 > 0), so that XεT < exp(−γ0T ). We can now apply Lemma 3.5 to the martingale
sequence starting with XεT . (Note that the assumptions of Lemma 3.5 are satisfied as long as Xt

for t ∈ [εT ,T ] stays bounded by τ due to Equation (18).) Hence, we deduce that in this case, except
with probability exp(−Ωγ0,ε,η (T )) ≤ exp(−Ων,ε,η (T )), we have

logXT < −b (1−ε )
2ηT ,

and therefore XT < 2−b
(1−ε )2ηT

. Note that this implies that Λ = log2 (b
(1−ε )2η ) = (1 − ε )2η log2 b

(hence for any Λ < η log2 b, we pick ε appropriately). We also pick β and η such that βηT ≥
exp(−Ωε,η,μ,K (T )).

However, if 1 − Xt < τ for all εT ≤ t ≤ T , then the suction at the high end condition of
local polarization applies (i.e., Equation (19) holds), and we can apply Lemma 3.3 (we pick K large

enough so that Kα > c) to martingale X̃t � 1 − XεT+t to deduce that except with probability
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exp(−Ωα (T )), we have 1 −XT < exp(−αK (1 − εT )/4) < γT for suitable choice of K depending on
γ and α . Finally, we pick β and η such that βηT ≥ exp(−Ωε,η,μ,K,α (T )). �

4 ARIKAN MARTINGALE AND ITS LOCAL POLARIZATION

In this section, we formally describe the Arıkan martingale associated with an invertible matrix
M ∈ Fk×kq and a channel CY |Z .

Before we proceed with the formal definition, to provide overview of the goals of this construc-
tion, we shall briefly point out its main features for the special case of Arıkan martingale {Xt }∞t=0
associated with an additive channel C—where channel output Y = Z + U , with U being some
random variable in Fq not depending on Z .

(1) For given t , marginal distribution Xt is distributed identically as H ((UM ⊗t )i |(UM ⊗t )<i ) for
uniformly random index i , where U is a vector of kt i.i.d. random variables distributed as
the error U .

(2) Sequence Xt is a martingale—in particular, we provide coupling of the distributions above
over different t in a non-trivial way.

(3) Definition of the martingale Xt is “local” in some sense, which makes it manageable to ana-
lyze how Xt and Xt+1 are related and eventually show local polarization.

In Appendix A.2.3, we elaborate on the connection of the Arıkan martingale with polar codes—
specifically, the main link is a more general version of the first property for all symmetric channels
and is proved as Lemma A.18.

Briefly, the Arıkan martingale measures at time t , the distribution of conditional entropy of a
random variableA′i , conditioned on the values of a vector of variables B′ and on the values ofA′j
for j smaller (according to ≺) than i for a random choice of the index i . Here A′ is a vector of kt

random variables taking values in Fq while B′ ∈ Yk t . The exact construction of the joint distri-
bution of these 2kt variables is the essence of the Arıkan construction of codes, and we describe
it shortly. The hope with this construction is that eventually (for large values of t ) the conditional
entropies are either very close to 0 or very close to logq for most choices of i .

When t = 1, the process starts with k independent and identical pairs of variables {(Ai ,Bi )}i ∈[k],
where Ai ∼ Fq and Bi ∼ CY |Z=Ai . (So each pair corresponds to an independent input/output pair
from transmission of a uniformly random input over the channel CY |Z .) LetA = (A1, . . . ,Ak ) and
B′ = (B1, . . . ,Bk ), and note that the conditional entropies H (Ai |A≺i ,B′) are all equal, and this
entropy, divided by log2 q, will be our value ofX0. However, if we now letA′ = A ·M , then the con-
ditional entropies H (A′i |A′≺i ,B′) are no longer equal (for most, and in particular for all mixing,
matricesM). However, conservation of conditional entropy on application of an invertible transfor-
mation tells us that Ei∼[k][H (A′i |A′≺i ,B′)/ log2 q] = X0. Thus lettingX1 = H (A′i |A′≺i ,B′)/ log2 q
(for random i) gives us the martingale at time t = 1.

While this one step of multiplication by M differentiates among the k (previously identical) ran-
dom variables, it does not yet polarize. The hope is that by iterating this process one can get
polarization.12 But to get there we need to describe how to iterate this process. This iteration is
conceptually simple (though notationally still complex) and illustrated in Figure 2. Roughly, the
idea is that at the beginning of stage t , we have defined a joint distribution of kt -dimensional
vectors (A,B) along with a multi-index i ∈ [k]t . We now sample k independent and identically

distributed pairs of these random variables {(A(�),B (�) )}�∈[k] and view (A(�) )�∈[k] as a kt ×k matrix,
which we multiply by M to get a new kt ×k matrix. Flattening this matrix into a kt+1-dimensional

12In the context of polar coding, differentiation and polarization are good events, and hence our “hope.”
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Fig. 2. Evolution of Arıkan martingale for 3 × 3 matrixM .

vector gives us a sample from the distribution of A′ ∈ Fk t+1q . B′ is simply the concatenation of

all the vectors (B (�) )�∈[k]. And, finally, the new index j ∈ [k]t+1 is simply obtained by extending
i ∈ [k]t with a (t + 1)th coordinate distributed uniformly at random in [k]. Xt+1 is now defined

to be H (A′j |A′≺j ,B′), where H (·) is the normalized q-ary entropy defined in Equation (3). The
formal description is below.

Definition 4.1 (Arıkan Martingale). Given an invertible matrix M ∈ Fk×kq and a channel descrip-

tion CY |Z for Z ∈ Fq ,Y ∈ Y , the Arıkan-martingale X0, . . .Xt , . . . associated with it is defined as

follows. For every t ∈ N, let Dt be the distribution on pairs Fk
t

q ×Yk t described inductively below:

A sample (A,B) from D0 supported on Fq ×Y is obtained by sampling A ∼ Fq , and B ∼ CY |Z=A.

For t ≥ 0, a sample (A′,B′) ∼ Dt+1 supported on Fk
t+1

q × Yk t+1 is obtained as follows:

• Draw k independent samples (A(1),B (1) ), . . . , (A(k ),B (k ) ) ∼ Dt .

• Let A′ be given by A′
[i, ·] = (A(1)

i , . . . , A
(k )
i ) ·M for all i ∈ [k]t and B′ = (B (1),B (2), . . .B (k ) ).

Then, the sequence Xt is defined as follows: Sample il ∈ [k] uniformly and independently for

l = 1, 2, . . . , t . Let j = (i1, . . . , it ), and letXt := H (Aj |A≺j ,B), where the entropies are with respect
to the distribution (A,B) ∼ Dt .

13

Figure 2 illustrates the definition by highlighting the construction of the vector A′ and in par-
ticular highlights the recursive nature of the construction.

It is easy (and indeed no different than in the case t = 1) to show that E[Xt+1 |Xt ] = Xt , and so
the Arıkan martingale is indeed a martingale. This is shown below.

Proposition 4.2. For every matrix M and channel CY |Z , the Arıkan martingale is a martingale

and in particular a [0, 1]-martingale.

13We stress that the only randomness in the evolution of Xt is in the choice of i1, . . . , it , . . .. The process of sampling A
and B is only used to define the distributions for which we consider the conditional entropies H (Aj |A≺j, B ).
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Proof. The fact that Xt ∈ [0, 1] follows from the fact for 0 ≤ H (Ai |A≺i ,B) ≤ H (Ai ) ≤ log2 q
(the upper bound follows, since A≺i ∈ Fq ) and so 0 ≤ Xt = H (Ai |A≺i ,B)/ log2 q ≤ 1.

We turn to showing that E[Xt+1 |Xt = a] = a. To this end, consider a sequence of indices i =
(i1, . . . it ), such thatH (Ai |A≺i ,B) = a. We wish to show thatEit+1∼[k][H (A′

[i,it+1]
|A′

≺[i,it+1]
,B′)] =

a.
Since the pairs (A(s ),B (s ) ) are independent samples from Dt , note that for any s , we have

H (A(s )
i | A(s )

≺i ,B
(s ) ) = a. Furthermore, because of the same independence, we have

H
(
A(s )
i | A(s )

≺i ,B
(s )
)
= H
(
A(s )
i | ∪j ∈[k] A

(j )
≺i ,∪j ∈[k]B

(j )
)

and H
(
A(1)
i , . . . ,A

(k )
i | ∪j ∈[k] A

(j )
≺i ,∪j ∈[k]B

(j )
)
= k · a.

By the invertibility of M , we have

H
(
A′

[i,1], . . .A
′
[i,k] | ∪j ∈[k] A

(j )
≺i ,∪j ∈[k]B

(j )
)
= H
(
A(1)
i , . . . ,A

(k )
i | ∪j ∈[k] A

(j )
≺i ,∪j ∈[k]B

(j )
)
= k · a.

We can apply again invertibility of the matrix M to deduce that conditioning on ∪j ∈[k]A
(j )
≺i is

the same as conditioning on A′≺[i,1], i.e., for any multiindex i ′ ≺ i variables A(1)
i ′
, . . .A(k )

i ′
and

A′[i ′,1], . . .A
′
[i ′,k] are related via invertible transform M . This yields

H
(
A′[i,1], . . .A

′
[i,k] | A′≺[i,1],B

′
)
= H
(
A′[i,1], . . .A

′
[i,k] | ∪j ∈[k] A

(j )
≺i ,∪j ∈[k]B

(j )
)
= ka.

Finally, by the Chain rule of entropy we have

H (A′[i,1], . . .A
′
[i,k] | A′≺[i,1],B

′) =
k∑

it+1=1

H (A′[i,it+1] | A′
[i,<it+1]

,A′≺[i,1],B
′)

=

k∑
it+1=1

H (A′[i,it+1] | A′
≺[i,it+1]

,B′)

Putting these together, we have E[Xt+1 |Xt = a] = Eit+1 [H (A′[i,it+1] | A′≺[i,it+1],B
′)] = 1

k
·

ka = a. �

Finally, we remark that based on the construction it is not too hard to see that if M were an
identity matrix, or more generally a non-mixing matrix, then Xt would deterministically equal X0.
(There is no differentiation and thus no polarization.) The thrust of this article is to show that in
all other cases we have strong polarization.

4.1 Matrix Polarization and the Arıkan Martingale

Note that the definition of the Arıkan martingale is itself complex, and in particular the distribu-
tion of Xt , the variable at the t th step, needs a description whose complexity grows with t . The
essence of the polarization argument does not depend on this intricacy of the definition, most of
which can be abstracted away. Indeed, we do so formally by considering a simpler (single step)
randomization process associated with a matrix M . We define a matrix M to be polarizing if this
single-step process satisfies properties similar to those of local polarization (see Definition 4.3).
Then, in Theorem 4.4 we show that if a matrixM satisfies matrix polarization, then for every chan-
nel C the Arıkan martingale associated with M and C is locally polarizing. This is a notationally
heavy but conceptually light proof, whose essence is to verify that certain variables are indepen-
dent, and so conditioning on such variables does not change entropies. This will allow us focus on
a simpler single step process in future sections to prove (exponential) local polarization.
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We start with the definition of matrix polarization.

Definition 4.3 (Matrix (Exponential) Polarization). We say that a matrixM ∈ Fk×kq satisfies matrix

polarization if and only if for every pair of random variables (U ,W ), such thatU = (U 1, . . . ,U k ) ∈
F
k
q , W = (W1, . . . ,Wk ) is supported on some finite set, and the pairs (U i ,Wi ) are independently

and identically distributed for i ∈ [k], the vector V := U ·M satisfies the following conditions:

(1) (Variance in the middle): There is some index j ∈ [k] for which the following holds: For

every τ > 0, there exists ε = ε (τ ) > 0 such that if H (U 1 |W ) ∈ (τ , 1 − τ ), then

H ((V )j |V <j ,W ) ≥ H (U 1 |W ) + ε .

(2) (Suction at the lower end): There is some index j ∈ [k] for which the following holds:

For every c < ∞, there exists τ > 0 such that if H (U 1 |W ) < τ , then

H (V j |V <j ,W ) ≤ 1

c
H (U 1 |W ).

(3) (Suction at the high end): Analogously to suction at the low end, there is some index
j ∈ [k] for which the following holds:

For every c < ∞, there exists τ > 0 such that if H (U 1 |W ) > 1 − τ , then

1 − H (V j |V <j ,W ) ≤ 1

c
(1 − H (U 1 |W )).

Additionally, we say thatM satisfies (η,b)-exponential matrix polarization if we have the following
property:

2’. (Strong Suction at the lower end): There exists τ > 0 such that if H (U 1 |W ) < τ , then for
at least η fraction of the indices j ∈ [k] we have then

H (V j |V <j ,W ) ≤ H (U 1 |W )b .

Thus, the notion of matrix polarization is somewhat more general than polarization of the cor-
responding Arıkan martingale.

(1) In the latter, the conditioning in the entropy prescribes some specific relations between U
andW , where in the formerW is arbitrary (subject to the condition that the pairs (U j ,Wj )
are i.i.d.).

(2) Furthermore, the definitions also make slight changes to the conditions of Variance in the
middle and suction only requiring the existence of j ∈ [k] having a certain property as
opposed requiring that a random choice of j satisfy some condition.

The differences in (1) above allows for cleaner proofs, since the specific structure of W is not
needed. The class of differences in (2) above changes some probabilities and/or variances by factors
depending on k , but this difference is negligible. In the following section, we formally confirm that
matrix polarization is a sufficient condition for martingale polarization.

4.2 Matrix Polarization Implies Local Polarization of Arıkan Martingale

In this section, we prove that matrix polarization implies local polarization of the corresponding
Arıkan martingale.

Theorem 4.4. For every matrix M ∈ Fk×kq and every symmetric memoryless channel CY |Z , if
M satisfies matrix polarization, then the Arıkan martingale associated with M and C is satisfies lo-

cal polarization. Furthermore, if M satisfies (η,b)-exponential matrix polarization, then the Arıkan-

martingale satisfies (η,b)-exponential local polarization.
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We begin with a lemma that will be useful in the proof of Theorem 4.4:

Lemma 4.5. Let A(1), . . .A(k ) , and A′ be defined as in Definition 4.1, and let V ,W be arbitrary

random variables. Then for any multiindex i ∈ [k]t and any it+1 ∈ [k] we have

H
(
V | A′

≺[i,it+1]
,W
)
= H
(
V | A′

[i,<it+1]
,A(1)

≺i ,A
(2)
≺i , . . .A

(k )
≺i ,W

)
.

Proof. Observe first that by definition of the order ≺ we have that A′
≺[i,it+1]

= (A′
≺[i,1],

A′
[i,<it+1]

), hence

H
(
V | A′

≺[i,it+1]
,W
)
= H
(
V | A′

[i,<it+1]
,A′

≺[i,1],W
)
.

The definition of the sequence A′ in terms of A (in Definition 4.1) reads

A′
[j, ·] =

(
A(1)
j , . . . ,A

(k )
j

)
M .

Note that if random variables B,B′ are related by invertible function B = f (B′), then H (A|B) =
H (A|B′). By definition of mixing matrix, M is invertible, and hence variables A′

≺[i,1] and variables

A(1)
≺i , . . .A

(k )
≺i are indeed related by invertible (linear) transformation, which yields

H
(
V | A′

[i,<it+1]
,A′

≺[i,1],W
)
= H
(
V | A′

[i,<it+1]
,A(1)

≺i ,A
(2)
≺i , . . .A

(k )
≺i ,W

)
. �

We now turn to the proof of Theorem 4.4.

Proof of Theorem 4.4. Fix a matrix M , channel CY |Z , and time t . We start by recalling the
definition of the variables Xt and Xt+1 in the definition of the Arıkan martingale and also recall
what local polarization entails for these variables.

Let (A,B), (A(1),B (1) ), . . . (A(k ),B (k ) ) ∼ Dt denote independent random variables. Let

(A′,B′) constructed from (A(1),B (1) ), . . . (A(k ),B (k ) ) as in Definition 4.1, i.e., we have A′
[i ′, ·] =

(A(1)
i ′
, . . . , A(k )

i ′
) · M for every i ′ ∈ [k]t and B′ = (B (1),B (2), . . .B (k ) ). Now let i � (i1, . . . it ) be

sampled uniformly from [k]t and let it+1 ∈ [k] be chosen independently and uniformly.
Then by Definition 4.1 we have

Xt = H (Ai | A≺i ,B)

and Xt+1 = H
(
A′

[i,it+1]
|A′

≺[i,it+1]
,B′
)
.

That is, forU =
(
A(1)
i , . . . ,A

(k )
i

)
, we have A′[i, ·] = U ·M , and B′ = (B (1), . . . ,B (k ) ).

We will use the property of matrix polarization of M withU = (U 1, . . . ,U k ), whereU s = A(s )
i

andW = (W1, . . . ,Wk ), whereWs = (A(s )
≺i ,B

(s ) ) to deduce local polarization of Arıkan martingale.
Note that the pairs (U 1,W1), . . . , (U k ,Wk ) are identically distributed and independent as required.
We let V = U ·M . By the definition of Arıkan martingale we have A′[i, ·] = V = U ·M . Thus, the

matrix polarization of M implies bounds on the conditional entropy ofH (V j |V <j ,W ), whereV j =

A′
[i, j], where Xt+1 studies conditional entropy of (V it+1 |A′

≺[i,it+1]
,B′). In what follows, we verify

that despite the difference the latter can be bounded as required for the condition of (exponential)
local polarization of the Arıkan martingale. We tackle each of the conditions in order, but first we
note that by Lemma 4.5 we have

H (A′
[i, j] | A

′
≺[i, j],B

′) = H (A′
[i, j] | A

′
[i,<j],A

(1)
≺i , . . . ,A

(k )
≺i ,B

′),

= H ((U ·M )j |(U ·M )<j ,A
(1)
≺i , . . . ,A

(k )
≺i ,B

′)

= H (V j |V <j ,W ). (20)
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Let h � Xt = H (Ai | A≺i ,B). Note that for every s ∈ [k] we have H (A(s )
i | A(s )

≺i ,B
(s ) ) = h,

because all the pairs (A(s ),B (s ) ) are distributed independently and identically to (A,B). Moreover,

for every j ∈ [k] we have H (U j |W ) = H (A(s )
i |A(s )

≺i ,B
(s ) ) = h, where the first equality follows

from the fact that pairs (A(s ),B (s ) )s ∈[k] are identically and independently distributed (so the index
j does not matter).

We will start with the Variance in the middle condition of martingale local polarization (Defini-
tion 1.6). As a reminder, what we need to show is that if h ∈ (τ , 1 − τ ), then

Var
it+1∼[k]

(H (A′
[i,it+1]

|A′
≺[i,it+1]

,B′) − H (Ai |A≺i ,B)) > θ (τ ).

Note that by the martingale property (Proposition 4.2) we have

E
it+1∼[k]

[H (A′
[i,it+1]

|A′
≺[i,it+1]

,B′) − H (Ai |A≺i ,B)] = 0,

and as such to obtain the lower bound on the variance it is enough to show that

Pr
it+1∼[k]

(
H (A′

[i,it+1]
|A′

≺[i,it+1]
,B′) ≥ h + ε (τ )

)
≥ 1

k
. (21)

This would allow us to deduce that the variance above is lower bounded by ε (τ )2/k . (Note that
this lower bound is true for every h, and hence the actual variance needed in the statement of the
Variance in the middle condition is also true.)

We now use the Variance in the middle condition of the matrix polarization (Definition 4.3)
for M with variables (U ,W ) . This condition asserts that for some index j we have entropy gain

H ((U · M )j |(U · M )<j ,W ) ≥ h + ε (τ ). Combining this with Equation (20) proves inequality (21)
and therefore shows variation in the middle for the Arıkan martingale.

Next, we turn to the proof of suction at the upper end. Here, we will show that for ev-
ery c if 1 − h < τ (c ), then with probability at least 1

k
over the choice of it+1, we will have

1 − H (A′
[i,it+1]

|A′
≺[i,it+1]

,B′) ≤ 1
c
(1 − h). The corresponding suction at the upper end condition

of matrix polarization asserts the existence of an index j, such that 1 − H (V j |V <j ,W ) ≤ 1
c
(1 − h).

With probability at least 1
k
, we have it+1 = j, and in this case we have

1 − H (A′
[i,it+1]

| A′
≺[i, j],B

′) = 1 −H ((U ·M )j |(U ·M )<j ,W ) ≤ 1

c
(1 − h),

where the first equality above is by Equation (20).
The proof of suction at the lower end is symmetric. We now turn to the proof of strong suction

at the low end (Definition 1.8). Let M satisfy (η,b)-exponential matrix polarization. Recall that we

wish to show that Prit+1∼[k] (H (A′[i,it+1] | A′≺[i,it+1],B
′) < hb ) ≥ η. Once again by Equation (20),

we have, for every j ∈ [k], H (A′[i, j] | A′≺[i, j],B′) = H (V j | V <j ,W ). This is exactly the property

given by the strong suction at the low end property of matrix polarization (using h = H (U 1 |W )).
This concludes the proof. �

Thus, to prove Theorems 1.15 and 1.16, we now need to prove that for every mixing matrix M ,
M satisfies matrix polarization and M2 satisfies exponential polarization. We argue the former in
Section 5 and the latter in Section 7.

5 PROOF OF MATRIX POLARIZATION

In this section, we prove that every mixing matrix satisfies matrix polarization, modulo some
entropic inequalities whose proofs are deferred to Section 6. Combined with Theorem 4.4, this
immediately yields Theorem 1.15, which asserts the local polarization of the Arıkan martingale.

Journal of the ACM, Vol. 69, No. 2, Article 11. Publication date: March 2022.



General Strong Polarization 11:31

Informally, this section can be viewed as reducing matrix polarization of a general (mixing)

matrix to the matrix polarization of the matrixG2 =
(

1 0
1 1

)
. Formally, what we do is state three en-

tropic inequalities (see Section 5.1) that arise naturally in the proof of the matrix polarization ofG2.
These inequalities relate the conditional entropy of a sum of two random variables to the entropy
of each of those random variables. Indeed, these inequalities can be used to show immediately that
G2 satisfies matrix polarization, and we do so in Lemma 5.4. But the bulk of the work, and novelty,
in this section is in Section 5.3 where we show (via carefully executed “Gaussian elimination”) that
these entropic inequalities suffice to show the matrix polarization of every mixing matrix.

5.1 Entropic Lemmas in the 2 × 2 Case

We state here the three entropic lemmas. The proofs of the first two are deferred to Section 6. The
third lemma is well known and we provide a reference for its proof.

The first lemma arises from the analysis of the suction at the upper end (forXt > 1−τ ) condition
of Definition 4.3.

Lemma 5.1. For every finite field Fq and everyγ > 0, there exist τ , such that if (X1,A1) and (X2,A2)

are independent random variables with Xi ∈ Fq such that 1 − H (X2 | A2) ≤ τ , then

1 − H (X1 + X2 | A1,A2) ≤ γ (1 − H (X1 | A1)).

The next lemma comes analogously from the suction at the low end (for Xt < τ ) condition of
Definition 4.3.

Lemma 5.2. For every finite field Fq and every γ > 0, there exist τ such that the following holds.

Let (X1,A1) and (X2,A2) be any pair of independent random variables with Xi ∈ Fq , and such that

A1,A2 are identically distributed, and moreover for every a we haveH (X1 | A1 = a) = H (X2 | A2 = a).

If H (X1 | A1) = H (X2 | A2) ≤ τ , then we have

H (X1 | X1 + X2,A1,A2) ≤ γH (X1 | A1).

Finally, we use the following lemma from Reference [7, Lemma 4.2], which corresponds to the
Variance in the middle condition of Definition 4.3. This is the only place where we need the field
size q to be prime.

Lemma 5.3 ([7, Lemma 4.2]). For every τ > 0 and prime finite field Fq , there exist ε > 0 such that

if (X1,A1) and (X2,A2) are independent pairs of random variables (but not necessarily identically

distributed), with Xi ∈ Fq for some prime q, then

H (X1 | A1),H (X2 | A2) ∈ (τ , 1 − τ )

implies

H (X1 + X2 |A1,A2) ≥ max{H (X1 | A1),H (X2 | A2)} + ε .

5.2 Matrix Polarization of Arıkan’s 2 × 2 Kernel

As an illustration of how the lemmas arise in the study of matrix polarization, we prove that G2

satisfies matrix polarization. We remark that we do not need this lemma for the rest of this article—
we present it purely as an example.

Lemma 5.4. Over every prime field Fq , the matrixG2 =
(

1 0
1 1

)
satisfies matrix polarization.

Proof. Note that we have

(V1,V2) = (U1,U2) ·
(
1 0
1 1

)
,
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i.e., V1 = U1 +U2 and V2 = U2. By Lemma 5.3, we have that the choice j = 1 satisfies the variance

in the middle condition of matrix polarization for G2. By Lemma 5.2, we have the choice j = 2
yields the suction at the low end condition (with c = 1

γ
) of matrix polarization for G2. Finally, by

Lemma 5.1 we have that the choice j = 1 satisfies the Suction at the upper end condition (with
c = 1

γ
) for G2. �

5.3 Polarization of k × k Mixing Matrices

In this section, we prove the following.

Lemma 5.5. For every prime field Fq and every positive k every mixing matrix M ∈ Fk×kq satisfies

matrix polarization.

We will apply Gaussian elimination on M to reduce to the entropic inequalities of the 2× 2 case
from Section 5.1. The high-level strategy for showing polarization of k × k mixing matrix M is as
follows. Consider i.i.d. random variables (U 1,W1), . . . (U k ,Wk ), and linearly transformed variables
V = U ·M , whereU = (U 1, . . . ,U k ).

In Section 5.4, we will show that

(1) There are some indices j, �, s ∈ [k] and some α ∈ F∗q for which

H (V j |V <j ,W ) ≥ H (U � + αU s |W ).

(2) There are some indices j, �, s ∈ [k] and some α ∈ F∗q for which

H (V j |V <j ,W ) ≤ H (U � |U � + αU s ,W ).

Those two, together with entropic inequalities stated in Section 5.1, are enough to show polar-
ization of a given matrix.

Before we proceed with the formal proof of those two inequalities, we give an informal expo-
sition of the main idea behind it. For the sake of this exposition, let us focus on the inequality

H (V j |V <j ,W ) ≤ H (U � |U � + αU s ,W ), and let us skip conditioning onW .
The main observation is that if B1, . . .Bm ,Bm+1 are all linear combinations of variables

V 1, . . .V j−1, then we haveH (V j |V <j ) = H (V j +Bm+1 |V <j ,B1, . . .Bm ) ≤ H (V j +Bm+1 |B1, . . .Bm ).
Here it is enough to instantiate this observation with m = 1. Since variables V i are themselves
linear combinations of variablesU (with coefficients given by matrix M), all we need to do is find
an index j, and some indices �, s , such that

U � ∈ V j + span{V <j } and U � + αU s ∈ span{V <j } . (22)

In particular, we use B2 ∈ span{V <j } for the first inclusion to set U � = V j + B2 and use B1 ∈
span{V <j } for the second inclusion to set U � + αU s = B1. Note that with the inequalities in the
above paragraph would give us the desired inequality.

Turns out that if the matrix M is mixing, then this can be achieved by carefully applying Gauss-
ian Elimination on this matrix, as we explain next.

5.4 Reduction to the 2 × 2 Case

This section will be devoted to proving following two lemmas.

Lemma 5.6 (Reduction for Suction at the Upper End and Variance). Let (U ,W ) be a joint
distribution, where U = (U 1, . . . ,U k ) ∈ Fkq (with U i for i ∈ [k] being independent conditioned on

W ), and let M be any mixing matrix. Then, there exist three indices j, �, s ∈ [k], and α ∈ F∗q , such
that

H ((UM )j | (UM )<j ,W ) ≥ H (U � + αU s |W ).
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Lemma 5.7 (Reduction for Suction at the Lower End). Let (U ,W ) be a joint distribution,

where U = (U 1, . . . ,U k ) ∈ Fkq , and let M be any mixing matrix. Then, there exist three indices

j, �, s ∈ [k], and α ∈ F∗q , such that

H ((UM )j | (UM )<j ,W ) ≤ H (U � | U � + αU s ,W ).

As discussed previously, to show Lemma 5.7 and Lemma 5.6, we will apply Gaussian Elimination
to prove the following three lemmas about mixing matrices.

We start with a simple equivalent characterization of a mixing matrix:

Lemma 5.8. Invertible matrix M is mixing if and only if there exists j such that the support of the

first j columns has size greater than j.

Proof. We need to prove that if we let S j = {i ∈ [k]| exists j ′ ∈ [j] s.t. Mi, j′ � 0}, then there
exists a j s.t. |S j | > j. To see this, note that |S j | is invariant under permutation of the rows, and for
upper triangular matrices |S j | ≤ j. So ifM is not mixing, then for all j we have |S j | ≤ j. Conversely,
if for every j we have |S j | ≤ j, then either we have |S j | < j for some j, and in which case M is not
invertible, or |S j | = j for every j, in which case we can find a permutation π : [k] → [k] such that
for every j S j = {π (1), . . . ,π (j )}. Permuting the rows so that π (j ) is the jth row makes M upper
triangular, and so once again we get M is not mixing. �

We will now state the linear-algebraic properties of a mixing matrices that correspond directly
to the entropic inequalities in Lemma 5.6 and Lemma 5.7. Specifically, it will not be too difficult
to deduce Lemma 5.6 from Lemma 5.9 as we discussed before—the crux of the argument is that

H ((UM )j | (UM )<j ,W ) = H ((UM )j + B | (UM )<j ,W ), where B is some linear combination of
variables (UM )1, . . . (UM )j−1, and Lemma 5.9 describes how to find suitable B. Lemma 5.10 plays
the same role in the proof of Lemma 5.7.

Lemma 5.9. Let M be a mixing matrix, and let a1, . . .ak ∈ Fkq denote columns of M . Then there

exists index j and a vector v ∈ aj + span{a1, . . .aj−1}, such that | supp(v ) | ≥ 2 and supp(v ) ∩
supp(ai ) = ∅ for i < j, where supp(v ) is a set of non-zero coordinates ofv .

Proof. Let Si = ∪t ≤i supp(at ). By Lemma 5.8, this means that there exist a j such that |S j | > j.
Consider the smallest j satisfying |S j | > j. By a straightforward inductive argument for any

k < j, we have span{a1, . . .ak } = span{e� : � ∈ Sk }, where ei are the standard basis vectors.
Now, we can decompose aj = v + w , where supp(w ) ⊆ S j−1 and supp(v ) ∩ S j−1 = ∅. Since
|S j−1 | = j − 1 and |S j | > j, we have | supp(v ) | ≥ 2, and by constructionw ∈ span{e� : � ∈ S j−1} =
span{a1, . . .aj−1}. �

Lemma 5.10. Let M be a mixing matrix, and let a1, . . .ak ∈ Fkq denote columns of M . Then, there

exists three indices j, �, s ∈ [k] and α1,α2 ∈ F∗q , such that α1e� ∈ aj + span{a1, . . .aj−1} and e� +
α2es ∈ span{a1, . . .aj−1}, where ei ∈ Fkq are the standard basis vectors.

In our proof of this lemma, we will use a process that is essentially the well-known
Gaussian elimination applied to a matrix M . Specifically, the following proposition captures
the properties of intermediate matrices in a Gaussian elimination process useful for our
argument.

Proposition 5.11. For any k × k invertible matrix M , there is a permutation π : [k] → [k] and

a sequence of matrices M (1), . . .M (k ) (we call matrix M (j ) the jth step matrix) with the following

properties.

For any j, if we use a1, . . .ak to denote columns of M , a′1, . . .a
′
k
to denote columns of M (j ) , and

e1, . . . ek to denote standard basis vectors, then we have
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(1) For every s ∈ [k], we have a′s ∈ as + span{a1, . . .aj }.

(2) For every s ∈ [k] and every � ≤ j, we have 〈a′s ,eπ (�)〉 =
{

1 if � = s
0 otherwise

.

(3) span{a1, . . . ,aj } = span{a′1, . . .a′j }.

For example, if j = 3, then M (3) up to some row permutation π must have the form:

M (3) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .
� � � � . . .
� � � � . . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (23)

where each column of M (3) is a corresponding column of M shifted by some linear combination of
the first three columns of M .

Proof of Proposition 5.11. The proof proceeds by induction. For the base case we consider

M (0) = M , and it is easy to verify the properties for M .

Let j ≥ 1. For the inductive hypothesis, we assume a matrix M (j−1) satisfying properties above

and a one-to-one map π : [j − 1] → [k]. For the inductive step, we want to find M (j ) and π (j ) as in
the statement of this proposition. Note that at the end of the induction, when j = k the one-to-one
map π is also onto, and hence π : [k] → [k] is a permutation as needed.

Let a (j−1)
1 , . . .a (j−1)

k
denote columns of M (j−1) . Since M is invertible, we have aj �

span{a1, . . .aj−1}. Using properties 1 and 3 for M (j−1) , we conclude that a (j−1)
j � span{a (j−1)

1 , . . .

a (j−1)
j−1 }. In particular, this implies that a (j−1)

j � 0. Let π (j ) be such that 〈a (j−1)
j ,eπ (j )〉 � 0. Note

that π (j ) � π (s ) for any s < j by property 2 of the matrix M (j−1) , and therefore π is a one-to-one
mapping.

For s � j, let us take a′s := a (j−1)
s − 〈a (j−1)

s ,eπ (j )〉
〈a (j−1)

j ,eπ (j )〉
a (j−1)
j , and, finally, a′j := 1

〈a (j−1)
j ,eπ (j )〉

a (j−1)
j .

Next, we verify that properties 1–3 hold for matrix M (j ) given by the columns a′1, . . .a
′
k

defined
above.

Indeed, the first property holds, since for any s , we have a′s = a (j−1)
s + γa (j−1)

j , where γ is

some scalar. By induction, we have a (j−1)
s ∈ as + span{a1, . . .aj−1}, and a (j−1)

j ∈ span{a1, . . . ,aj };
therefore a′s ∈ as + span{a1, . . .aj }.

To show the second property, for any s � j we have

〈a′s ,eπ (�)〉 = 〈a
(j−1)
s ,eπ (�)〉 −

〈a (j−1)
s ,eπ (j )〉

〈a (j−1)
j ,eπ (j )〉

〈a (j−1)
j ,eπ (�)〉.

If � < j, then by induction we have 〈a (j−1)
j ,eπ (�)〉 = 0, and hence the second term vanishes, and

we have 〈a′s ,eπ (�)〉 = 〈a
(j−1)
s ,eπ (�)〉, which again by induction is 1 if s = � and 0 otherwise. For

� = j, we have 〈a′s ,eπ (�)〉 = 〈a (j−1)
s ,eπ (�)〉 − 〈a (j−1)

s ,eπ (j )〉 = 0. Further, when s = j, we have

〈a′j ,eπ (�)〉 =
〈a (j−1)

j ,eπ (�)〉

〈a (j−1)
j ,eπ (j )〉

is 1 exactly when � = j and 0 when � < j (where the latter claim follows

from property 2 for M (j−1) .
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Finally, for the third property, the inclusion span{a′1, . . .a′j } ⊂ span{a1, . . .aj } follows from

the property 1, and the dim span{a′1, . . .a′j } = j by property 2, which implies span{a′1, . . .a′j } =
span{a1, . . .aj }. �

Proof of Lemma 5.10. By Lemma 5.8 a matrix M is mixing if for some index i the support of
the first i columns has size strictly greater than i . Let j − 1 be the largest index with this property,
and note that j ≤ k (since all the k columns trivially have support size of k).

Let M (j−1) be the (j − 1)th step matrix of M defined as in Proposition 5.11.
By definition of j, the span of the first j columns of M must exactly equal span{eπ (1), . . . ,eπ (j ) },

since the total support of all those columns has size exactly j, the columns are linearly independent,

and each of π (1), . . . π (j ) is in this support by property 2 and 3 of matrix M (j ) .

Thus, all of the first j columns of M (j−1) can only be supported on coordinates {π (1), . . . ,π (j )}.
Further, by the second property in Proposition 5.11 of the (j − 1)th step matrix, the jth column of

M (j−1) has zero on all coordinates π (s ) for s < j. Thus, it must be of form α1eπ (j ) for some scalar

α1 � 0 (since otherwise the jth column of M (j−1) would be 0, which would contradict the fact that
M is invertible).

Finally, because total support of the first (j − 1) columns is larger than j − 1, there must exist

some column � < j of M (j−1) that is supported on the coordinate π (j ). This, along with the second

property ofM (j−1) in Proposition 5.11 implies that the �th column ofM (j−1) must be exactly (eπ (�)+
β2eπ (j ) ) for some β2 ∈ F∗q .

We can now conclude the statement of the lemma. We have shown that the jth column ofM (j−1)

is of form α1eπ (j ) , and by the first property of M (j−1) in Proposition 5.11 it is contained in aj +
span{a1, . . . ,aj−1}. This proves the first part of the statement of the lemma (by using � ← π (j )).
The argument for the second part is as follows. We have shown that, on one hand, the �th column

of M (j−1) is of form eπ (�) + β2eπ (j ) , on the other hand, it is contained in the span of first j − 1

columns of the matrix M by the first property of M (j−1) in Proposition 5.11. In other words, we
have β−1

2 · eπ (�) +eπ (j ) is in the span of first j − 1 columns of the matrix M . This shows the second

part of the statement of the lemma (by picking α2 ← β−1
2 and s ← π (�) and recalling that in the

first part we have already set � ← π (j )). �

With Lemmas 5.9 and 5.10 in hand, we are well equipped to show Lemmas 5.6 and 5.7
accordingly.

Proof of Lemma 5.6. Let a1, . . .ak be columns of matrix M . By Lemma 5.9, there is an index j,
and a vector v = aj +w , wherew ∈ span{a1, . . .aj−1} such that supp(v ) ∩ supp(ai ) = ∅ for each
i < j.

This implies

H ((UM )j | (UM )<j ,W ) = H (〈U ,aj 〉 | 〈U ,a1〉, . . . , 〈U ,aj−1〉,W )

= H (〈U ,aj 〉 + 〈U ,w〉 | 〈U ,a1〉, . . . 〈U ,aj−1〉,W )
(Sincew ∈ span{a1, . . .aj−1})

= H (〈U ,v〉 |W ),

where the last equality follows from the fact that 〈U ,v〉 is independent from 〈U ,a1〉, . . . 〈U ,aj−1〉
conditioned onW (sincev has disjoint support with all ai for i < j).
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Now, since | supp(v ) | > 2, let us say that v = α�e� + α2es + r , where supp(r ) ∩ {�, s} = ∅. We
have

H (〈U ,v〉 |W ) = H (α1U � + α2U s + 〈U ,r 〉 |W )

≥ H (α1U � + α2U s + 〈U ,r 〉 | 〈U ,r 〉,W )
(Since conditioning does not increase entropy)

= H (U � + α
−1
1 α2U s | 〈U ,r 〉,W ) (Since x �→ α−1

1 · x is a bijection)

= H (U � + α
−1
1 α2U s |W ),

where the last equality follows, since supp(r ) ∩ {�, s} = ∅. The proof is complete by setting α =
α−1

1 α2. �

Proof of Lemma 5.7. Let a1, . . .ak be columns of matrix M . By Lemma 5.10, there are indices
j, �, s and α1,α2 ∈ F∗q , such that α1 · e� = aj +w , where w ∈ span{a1, . . .aj−1}, and e� + α2es ∈
span{a1, . . .aj−1}.

This implies

H ((UM )j | (UM )<j ,W ) = H (〈U ,aj 〉 | 〈U ,a1〉, . . . , 〈U ,aj−1〉,W )

= H (〈U ,α1e�〉 − 〈U ,w〉 | 〈U ,a1〉, . . . , 〈U ,aj−1〉, 〈U ,e� + α2es 〉,W )
(Since e� + α2es is in span{a1, . . .aj−1})

= H (〈U ,α1e�〉 | 〈U ,a1〉, . . . , 〈U ,aj−1〉, 〈U ,e� + α2es 〉,W )
(Sincew is in span{a1, . . .aj−1})

≤ H (〈U ,α1e�〉 | 〈U ,e� + α2es 〉,W )
(Additional conditioning decreases entropy.)

= H (α1U � |U � + α2U s ,W )

= H (U � |U � + α2U s ,W ),

where the last equality follows, since α1 ∈ F∗q and hence the map x �→ α1 · x is a bijection. �

We are now ready to prove that every mixing matrix is a polarizing matrix.

Proof of Lemma 5.5. The proof follows easily by combining Lemmas 5.1 to 5.3 , 5.6, and 5.7 as
we elaborate on below.

Let M ∈ Fk×kq be a mixing matrix, and let (U ,W ) be random variables such that U =

(U 1, . . . ,U k ) ∈ Fkq , W = (W1, . . . ,Wk ) is supported on some finite set, and the pairs (U i ,Wi )
are independently and identically distributed for i ∈ [k]. Further, let the vector V := U ·M .

For the Variance in the middle condition, we need to show that there exists j ∈ [k] such that for

every τ > 0 there exists ε = ε (τ ) > 0 such that if H (U 1 |W ) ∈ (τ , 1 − τ ), then H ((V )j |V <j ,W ) ≥
H (U 1 |W ) + ε . By Lemma 5.6, we have that there exist j, �, s ∈ [k] and α ∈ F∗q such that

H ((V )j |V <j ,W ) ≥ H (U � + αU s |W ) = H (U � + αU s |W�,Ws ), (24)

where the equality above uses the fact that the (U i ,Wi ) pairs are independent. By Lemma 5.3
applied with X1 = U � , A1 =W� , X2 = αU s , and A2 =Ws , we conclude that for every τ > 0 there
exists ε > 0 such that

H (U � + αU s |W�,Ws ) ≥ max{H (U � |W� ),H (αU s |Ws )} + ε = H (U 1 |W1) + ε = H (U 1 |W ) + ε,
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where the first equality uses the fact that the map αU s �→ U s is invertible and that the (U i ,Wi )
pairs are identically distributed and the final equality uses the fact that these pairs are independent.
The Variance in the middle condition follows by combining the two steps above.

For suction at the high end, we need to show there is some index j ∈ [k] such that for every

c < ∞, there exists τ > 0 such that ifH (U 1 |W ) > 1−τ , then 1−H (V j |V <j ,W ) ≤ 1
c
(1−H (U 1 |W )).

Here again by Lemma 5.6, we have that there exist j, �, s ∈ [k] and α ∈ F∗q such that Equation (24)
holds. Now applying Lemma 5.1 to X1,A1,X2,A2 as in the previous paragraph and γ = 1/c , we get
that there exists τ > 0 such that the requirement for suction at the higher end holds.

Finally, for suction at the lower end we need to show there is some index j ∈ [k], such that for

every c < ∞ there exists τ > 0 such that if H (U 1 |W ) < τ , then H (V j |V <j ,W ) ≤ 1
c
H (U 1 |W ). We

first apply Lemma 5.7 to get that there exist j, �, s ∈ [k] and α ∈ F∗q such that

H ((V )j |V <j ,W ) ≤ H (U � |U � + αU s ,W ) = H (U � |U � + αU s ,W�,Ws ).

Now applying Lemma 5.2 with X1,A1,X2,A2, and γ as in the previous paragraph, we get that

H (U � |U � + αU s ,W�,Ws ) ≤
1

c
H (U � |W� ) =

1

c
H (U 1 |W1) =

1

c
H (U 1 |W ). �

This concludes our analysis of the reductions.

5.5 Proof of Theorem 1.15

For completeness and easy reference, we restate Theorem 1.15 below and include its proof.

Theorem 5.12. Local Polarization of Arıkan Martingales For every prime q, for every mixing ma-

trix M ∈ Fk×kq , and for every symmetric memoryless channel CY |Z over Fq , the associated Arıkan

martingale is locally polarizing.

Proof of Theorem 1.15. Let M ∈ Fk×kq be a mixing matrix. By Lemma 5.5, we have that M
satisfies matrix polarization. Now, by Theorem 4.4, we have that for every symmetric memoryless
channel CY |Z over Fq , the Arıkan martingale associated withM and CY |Z is locally polarizing. �

6 PROOFS OF ENTROPIC LEMMAS

We now turn to the entropic lemmas stated and used in Section 5.1.

6.1 Suction at the Upper End

To establish Lemma 5.1, we will first show similar kind of statement for unconditional entropies.
To this end, we first show that for random variables taking values in small set, having entropy close
to maximal is essentially the same as being close to uniform with respect to L2 distance. The L2

distance of a probability distribution to uniform is controlled by the sum of squares of non-trivial
Fourier coefficients of the distribution, and all the non-trivial Fourier coefficients are significantly
reduced after adding two independent variables close to the uniform distribution.

Finally, a simple averaging argument is sufficient to lift this result to conditional entropies, es-
tablishing Lemma 5.1.

Lemma 6.1. If X ∈ Fq is a random variable with a distribution DX , then

d2 (DX ,U )2
1

2 logq
≤ 1 − H (X ) ≤ d2 (DX ,U )2O (q2),

where U is a uniform distribution over Fq , and dp (D1,D2) := (
∑

x ∈Fq (D1 (x ) − D2 (x ))
p )1/p .
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Proof. Pinskers inequality [26] yields d1 (DX ,U ) ≤
√

2 logq ·
√

1 − H (X ), and by standard

relations between �p norms, we have d2 (DX ,U ) ≤ d1 (DX ,U ), which after rearranging yields the

bound d2 (DX ,U )2 ≤ (2 logq) (1 − H (X )), which in turn proves the claimed lower bound.

For the upper bound, given i ∈ Fq let us take δi such that DX (i )
def
= Pr (X = i ) = 1+δi

q
. Note that

this implies (along with the fact that
∑

i ∈Fq DX (i ) = 1):∑
i ∈Fq

δi = 0 (25)

and

d2 (DX ,U )2 =
1

q2

∑
i

δ 2
i . (26)

Now

1 − H (X ) = 1 +
1

logq

∑
i ∈Fq

(1 + δi )

q
log

(
1 + δi
q

)
=

1

logq

∑
i ∈Fq

(1 + δi )

q
log(1 + δi ),

where the second equality follows from Equation (25).
By Taylor expansion we have log(1 + δi ) = δi + E (δi ) with some error term E (δi ) such that

|E (δi ) | ≤ 2δ 2
i for |δi | < 1. Therefore, in the case when all δi < 1, we have (for some constant C):

1 − H (X ) =
1

q logq

∑
i ∈Fq

(1 + δi ) (δi + E (δi ))

≤ 1

q logq

∑
i ∈Fq

[δi + δ
2
i + O (δ 2

i )]

≤ 1

q logq

⎡⎢⎢⎢⎢⎢⎣
∑
i ∈Fq

δi +C
∑
i ∈Fq

δ 2
i

⎤⎥⎥⎥⎥⎥⎦
≤ Cq · d2 (DX ,U )2,

where the inequality follows from Equation (25) and Equation (26). If some δi ≥ 1, then the in-

equality is satisfied trivially: d2 (DX ,U ) ≥ 1
q
, hence 1 − H (X ) ≤ q2 · d2 (DX ,U )2. �

Lemma 6.2. If X ,Y ∈ Fq are independent random variables, then 1 − H (X + Y ) ≤ poly(q) (1 −
H (X )) (1 − H (Y )).

Proof. By Lemma 6.1, it is enough to show thatd2 (DX+Y ,U )2 ≤ poly(q)d2 (DX ,U )2d2 (DY ,U )2.

For a distribution DX , consider a Fourier transform of this distribution given by D̂X (k ) =

Ej∼DX
ω jk , where ω = exp(−2πi/q). As usual, we have D̂X+Y (k ) = D̂X (k )D̂Y (k ).

Moreover, by Parseval’s identity we will show that

d2 (DX ,U )2 =
1

q

∑
k�0

D̂X (k )
2.

Indeed, as in the proof of Lemma 6.1, define DX (i ) =:
1+δi
q

. Then, by Parseval’s identity, we have

1

q
·
∑
k ∈Fq

D̂X (k )
2 =
∑
i ∈Fq

(1 + δi )
2

q2
=

1

q2

���
∑
i ∈Fq

1 + 2
∑
i ∈Fq

δi +
∑
i ∈Fq

δ 2
i
���

1

q
+ d2 (DX ,U )2,
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which implies the claimed bound by noting that D̂X (0) = 1. (In the above, the last equality follows
from Equation (25) and Equation (26).)

This yields

d2 (DX+Y ,U )2 =
1

q
·
∑
k�0

D̂X (k )
2D̂Y (k )

2

1

q
· ≤ ���
∑
k�0

D̂X (k )
2���

���
∑
k�0

D̂Y (k )
2��� = qd2 (DX ,U )2d2 (DY ,U )2. �

Lemma 6.3. LetX1,X2 ∈ Fq be a pair of random variables, and letA1,A2 be pair of discrete random

variables, such that (X1,A1) and (X2,A2) are independent. Then

1 − H (X1 + X2 |A1,A2) ≤ (1 − H (X1 |A1)) (1 − H (X2 |A2)) poly(q).

Proof. We have

1 − H (X1 + X2 |A1, A2 )

=
∑
a1,a2

Pr(A1 = a1) Pr(A2 = a2) (1 −H (X1 + X2 |A1 = a1,A2 = a2))

≤ poly(q)
∑
a1,a2

Pr(A1 = a1) Pr(A1 = a1) (1−H (X1 |A1 = a1,A2 = a2)) (1−H (X2 |A1 = a1,A2 = a2))

= poly(q)
∑
a1,a2

Pr(A1 = a1) (1 −H (X1 |A1 = a1)) Pr(A2 = a2) (1 −H (X2 |A2 = a2))

= poly(q) ��
∑
a1

Pr(A1 = a1) (1 −H (X1 |A1 = a1))�� ��
∑
a2

Pr(A2 = a2) (1 −H (X2 |A2 = a2))��
= poly(q) (1 − H (X1 | A1)) (1 − H (X2 | A2)),

where the inequality follows from Lemma 6.2 and the second equality follows from independence
of (X1,A1) and (X2,A2). �

We are now ready to prove Lemma 5.1.

Proof of Lemma 5.1. Given γ , q, take τ = γ/P (q), where P (q) is the polynomial appearing in
the statement of Lemma 6.3. By applying the conclusion of Lemma 6.3, we have

1 − H (X1 + X2 |A1,A2) ≤ (1 − H (X1 | A1)) (1 − H (X2 | A2)P (q)

≤ (1 − H (X1 | A1))τP (q)

= γ (1 −H (X1 | A1)). �

6.2 Suction at the Lower End

In this subsection, will show Lemma 5.2. To this end, we want to show that for pairs (X1,A1) and

(X2,A2) with low conditional entropy H (X1 | A1) < τ ,H (X2 | A2) < τ , the entropy of the sum is

almost as big as sum of corresponding entropies, i.e., H (X1 + X2 | A1,A2) ≥ (1 − γ ) (H (X1 | A1) +

H (X2 | A2))—and the statement of Lemma 5.2 will follow (as we show later) by application of chain
rule. To this end, we first show the same type of statement for non-conditional entropies, i.e., if

H (X1) < τ ,H (X2) < τ , then H (X1 + X2) > (1 − γ ) (H (X1) + H (X2)); this fact can be deduced
by reduction to the analogous fact for binary random variables, where it becomes just a simple
computation. Then we proceed by lifting this statement to the corresponding statement about
conditional entropies—this requires somewhat more effort than in Lemma 5.1.
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Lemma 6.4. Let X ,Y be independent random variables in Fq . For any γ < 1, there exists α = α (γ )

such that if H (X ) ≤ α and H (Y ) ≤ α , then

H (X + Y ) ≥ (1 − γ ) (H (X ) + H (Y )).

First, we will show some preliminary useful lemmas.

Assumption 6.5. In the following, without loss of generality, let 0 be the most likely value for both

random variables X ,Y . (This shifting does not affect entropies).

Lemma 6.6. Let X be a random variable over Fq , such that 0 is the most-likely value of X . Then,

for any q and any γ < 1, there exists α2 (q,γ ) > 0 such that

H (X ) ≤ α2 (q,γ ) =⇒ Pr[X � 0] ≤ γH (X ).

Proof. Let β := Pr[X � 0], and α := H (X ). We have

α logq = H (X ) ≥ H (δ (X )) = H (β ) ≥ β log(1/β ).

In the above, the inequality follows from the fact that applying a deterministic function to a random
variable can only decrease its entropy. Thus,

Pr[X � 0] = β ≤ α logq

log(1/β )

≤ α logq

log(1/α ) − log logq
,

where we used the fact that β ≤ α logq from Lemma 2.1. Hence, as soon as log 1
α
≥ logq

γ
+ log logq,

the statement of the lemma holds. �

Lemma 6.7 (Suction-at-lower-end in the Binary Case). LetU ,V be independent binary ran-

dom variables. There exists a function α0 (γ ) such that, for any 0 < γ < 1,

H (U ),H (V ) ≤ α0 (γ ) =⇒ H (U ⊕ V ) ≥ (1 − γ ) (H (U ) + H (V )).14

Proof. Let p1 and p2 be the biases of U ,V , respectively, such that U ∼ Bernoulli(p1) and V ∼
Bernoulli(p2). Letp1◦p2 = p1 (1−p2)+(1−p1)p2 be the bias ofU ⊕V , that isU ⊕V ∼ Bernoulli(p1◦p2).

We first describe some useful bounds on H (p). We have H (p) ≥ p log 1/p. For p ≤ 1/2, we also
have

−(1 − p) log(1 − p) ≤ (1/ ln 2) (1 − p) (p + p2) ≤ (1/ ln 2)p ≤ 2p,

where the first inequality follows from the fact that − ln(1−x ) ≤ x +x2 for x ≤ 1
2 , and so we have

H (p) ≤ p (2 + log 1/p). Summarizing, we have

p log(1/p) ≤ H (p) ≤ p log(1/p) + 2p.

Suppose H (p1),H (p2) ≤ τ . We now consider H (p1) + H (p2) − H (p1 ◦ p2). WLOG assume p1 ≤ p2.
Note that this implies

p1 ◦ p2 ≤ p1 + p2 ≤ 2p2.

14We note that we could have replaced ⊕ by just + as those operations are over F2 but we chose to keep + for addition

over reals in this lemma.
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We have

H (p1) + H (p2) − H (p1 ◦ p2)

≤ p1 (log(1/p1) + 2) + p2 (log(1/p2) + 2) − (p1 ◦ p2) log(1/(p1 ◦ p2))

≤ p1 (log(1/p1) + 2) + p2 (log(1/p2) + 2) − (p1 + p2 − 2p1p2) log(1/(2p2))

= p1 log(2p2/p1) + p2 log(2p2/p2) + 2p1p2 log(1/(2p2)) + 2(p1 + p2)

≤ p1 log(p2/p1) + 2p1p2 log(1/(p2)) + 6p2

≤ 2p1H (p2) + 7p2 (Using p1 log(p2/p1) ≤ p2)

≤ 2p1H (p2) + 7H (p2)/ log(1/p2)

≤ 9H (p2)/ log(1/τ ).

In the above, the last inequality follows from the assumption that τ ≤ 1/8 (which will be true in
our case). Indeed, note that with this assumption τ log(1/τ ) ≤ 1 (which along with the fact that
p1 ≤ τ implies p1 ≤ 1/ log(1/τ )) and p2 ≤ τ (since we have p2 log(1/p2) ≤ τ ). Thus, we have

H (U ),H (V ) ≤ τ =⇒ H (U ) + H (V ) − H (U ⊕ V ) ≤ 9H (V )/ log(1/τ ).

This implies the desired statement, for α0 (γ ) := 2−9/γ . �

Let δ : Fq → {0, 1} be the complemented Kronecker delta function, δ (x ) := 1{x � 0}. We show

that for small-enough entropies, the entropy H (δ (X )) is comparable to H (X ).

Lemma 6.8. There exists a function α1 (γ ) such that for any given 0 < γ < 1, and any arbitrary

random variable X ∈ Fq such that 0 is the most likely value of X ,

H (X ) ≤ α1 (γ ) =⇒ H (X ) ≥ 1

logq
H (δ (X )) ≥ (1 − γ )H (X ).

Proof. The first inequality H (X ) logq = H (X ) ≥ H (δ (X )) always holds, by the fact that de-
terministic postprocessing does not increase entropy. Thus, we will now show the second bound:

For small-enough entropies, 1
logqH (δ (X )) ≥ (1 − γ )H (X ). This is equivalent with showing that

H (δ (X )) ≥ (1 − γ )H (X ). Given γ , let α1 := α2 (q,γ ) be the entropy guaranteed by Lemma 6.6, so

that if H (X ) ≤ α1, then Pr[δ (X ) = 1] = Pr[X � 0] ≤ γH (X ). Now, for H (X ) ≤ α1, we have

H (X ) = H (X ,δ (X )) − H (δ (X ) |X ), (Chain rule)

= H (X ,δ (X )), (as δ (X ) |X is deterministic)

= H (δ (X )) + H (X |δ (X )), (Chain rule)

= H (δ (X )) + H (X |δ (X ) = 1) Pr[δ (X ) = 1],

(as H (X |δ (X ) = 0) = 0, since X |δ (X ) = 0 is deterministic)

≤ H (δ (X )) + log(q) Pr[δ (X ) = 1], (as X ∈ Fq , so H (X |δ (X ) = 1) ≤ H (X ) ≤ log(q))

≤ H (δ (X )) + log(q)γH (X ), (by Lemma 6.6)

= H (δ (X )) + γH (X ).

Thus, if H (X ) ≤ α1, then (1 − γ )H (X ) ≤ H (δ (X )) as desired. �

Now, by combining these, we can reduce suction-at-the-lower-end from Fq to the binary case.

Journal of the ACM, Vol. 69, No. 2, Article 11. Publication date: March 2022.



11:42 J. Błasiok et al.

Proof of Lemma 6.4. Given γ , we will set α ≤ 1/4, to be determined later. Notice that we have

H (X + Y ) =
1

logq
H (X + Y ) ≥ 1

logq
H (δ (X + Y )). (27)

We will proceed to show first that

H (δ (X + Y )) ≥ H (δ (X ) ⊕ δ (Y )). (28)

This inequality is justified by comparing the distributions of δ (X +Y ) and δ (X )⊕δ (Y ), both binary
random variables, and noticing that

Pr[δ (X + Y ) = 0] = Pr[X + Y = 0] ≤ Pr[{X = 0,Y = 0} ∪ {X � 0,Y � 0}] = Pr[δ (X ) ⊕ δ (Y ) = 0].

Moreover, let us observe that Pr[δ (X + Y ) = 0] = Pr[X + Y = 0] ≥ 1/2. Indeed,

Pr[X + Y � 0] ≤ H (X + Y ) ≤ H (X ,Y ) ≤ H (X ) + H (Y ) ≤ 2α ≤ 1/2.

In the above, the second inequality follows, since X + Y is a deterministic function of X ,Y and
the third inequality follows from the chain rule and the fact that conditioning can only decrease
entropy. Therefore, by monotonicity of the binary entropy function H (p) for 1/2 ≤ p ≤ 1, and

since Pr[δ (X + Y ) = 0] ≤ Pr[δ (X ) ⊕ δ (Y ) = 0] we have

H (δ (X + Y )) ≥ H (δ (X ) ⊕ δ (Y )).

This justifies Equation (28).

Now we conclude by using the suction-lemma in the binary case, applied to δ (X ) ⊕ δ (Y ).
Let γ ′ be a small-enough constant, such that (1−γ ′)2 ≥ (1−γ ). Let α0 := α0 (γ

′) be the entropy
bound provided by Lemma 6.7, and let α1 := α1 (γ

′) be the entropy bound provided by Lemma 6.8.
Set α := min{α0,α1, 1/4}.

Then, for H (X ),H (Y ) ≤ α , we have

H (X + Y ) logq ≥ H (δ (X + Y )), (Equation (27))

≥ H (δ (X ) ⊕ δ (Y )), (Equation (28))

≥ (1 − γ ′) (H (δ (X )) + H (δ (Y ))), (Lemma 6.7 and H (δ (Z )) ≤ H (Z ) for r.v. Z )

≥ (1 − γ ′)2 (H (X ) + H (Y )) logq. (Lemma 6.8)

With our setting of γ ′, this concludes the proof. �

We will now see how Lemma 6.4 implies its strengthening for conditional entropies.

Lemma 6.9. Let (X1,A1) and (X2,A2) be independent random variables withXi ∈ Fq , and such that
A1,A2 are identically distributed; and, moreover, for every a we have H (X1 |A1 = a) = H (X2 |A2 = a).

Then, for every γ > 0, there exist τ such that if H (X1 |A1) ≤ τ , then

H (X1 + X2 |A1,A2) ≥ (1 − γ ) (H (X1 |A1) + H (X2 |A2)). (29)

Proof. Let us take α := H (X1 |A1) = H (X2 |A2). For given γ , we shall find τ such that if α < τ ,

then Equation (29) is satisfied. Let us now consider GA := {a : H (X1 |A1 = a) < α1}, for α1 =
α
γ
.

(In the remainder of the proof when we want to talk about a random variable from the identical
distribution from which A1 and A2 are drawn, we will denote it by A.) By Markov inequality

Pr(A � GA) ≤
α

α1
= γ .

Let us now fix τ , which appears in the statement of this lemma to be smaller than γ and, more-
over, small enough, so that when α < τ for every a1,a2 ∈ GA we can apply Lemma 6.4 to
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distributions (X1 |A1 = a1) and (X2 |A2 = a2) to ensure that H (X1 + X2 |A1 = a1,A2 = a2) ≥
(1 − γ ) (H (X1 |A1 = a1) + H (X2 |A2 = a2)).

Let us use shorthand S (a1,a2) = H (X1 + X2 |A1 = a1,A2 = a2) Pr(A1 = a1,A2 = a2). We have

H (X1 + X2 |A1,A2) =
∑
a1,a2

S (a1,a2)

≥
∑

a1∈GA
a2∈GA

S (a1,a2) +
∑

a1�GA
a2∈GA

S (a1,a2) +
∑

a1∈GA
a2�GA

S (a1,a2). (30)

If both a1 and a2 are in GA, then by Lemma 6.4 we have

S (a1,a2) ≥ (1 − γ ) (H (X1 |A1 = a1) + H (X2 |A2 = a2)) Pr(A1 = a1,A2 = a2),

and therefore ∑
a1∈GA,a2∈GA

S (a1,a2) ≥ 2(1 − γ ) Pr(A ∈ GA)
∑

a1∈GA

H (X1 |A1 = a1) Pr(A1 = a1), (31)

where in the above we have used the fact that A1 and A2 are identically distributed.
However, for a1 � GA,a2 ∈ GA let us bound

S (a1,a2) = H (X1 + X2 |A1 = a1,A2 = a2) Pr(A1 = a1,A2 = a2)

≥ H (X1 + X2 |A1 = a1,A2 = a2,X2) Pr(A1 = a1,A2 = a2)

= H (X1 |A1 = a1) Pr(A1 = a1,A2 = a2),

where the inequality follows from the fact that additional conditioning decreases entropy and for

the second equality we used the fact that, sinceX1 andX2 are independent,H (X1+X2 |A1 = a1,A2 =

a2,X2) = H (X1 |A1 = a1,A2 = a2,X2) = H (X1 |A1 = a1,A2 = a2) = H (X1 |A1 = a1). Summing this
bound over all such pairs yields∑

a1�GA,a2∈GA

S (a1,a2) ≥ Pr(A ∈ GA)
∑

a1�GA

H (X1 |A1 = a1) Pr(A1 = a1), (32)

and symmetrically for the third summand, we get∑
a1∈GA,a2�GA

S (a1,a2) ≥ Pr(A ∈ GA)
∑

a2�GA

H (X2 |A2 = a2) Pr(A2 = a2). (33)

Plugging Equations (31)–(33) into Equation (30) (and using the fact thatA1 andA2 are identically
distributed), we find

H (X1 + X2 |A1,A2) ≥ 2(1 − γ ) Pr(A1 ∈ GA)
∑
a1

H (X1 |A1 = a1) Pr(A1 = a1)

= 2(1 − γ ) Pr(A ∈ GA)H (X1 |A1).

We have Pr(A ∈ GA) ≥ (1 − γ ), which yields

H (X1 + X2 |A1,A2) ≥ 2(1 − γ )2α ≥ 2(1 − 2γ )α

and the statement of the lemma follows, after rescaling γ by half. �

Finally, we are ready to prove Lemma 5.2.
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Proof of Lemma 5.2. By chain rule, we have

H (X1 | X1 + X2,A1,A2) = H (X1,X1 + X2 | A1,A2) − H (X1 + X2 | A1,A2)

= H (X1,X2 | A1,A2) − H (X1 + X2 | A1,A2)

= 2H (X1 | A1) − H (X1 + X2 | A1,A2),

where the last equality follows from the independence of (X1,A1) and (X2,A2). Now we can apply
Lemma 6.9 to get

H (X1 | X1 + X2,A1,A2) ≤ 2H (X1 | A1) − (1 − γ ) (2H (X1 | A1) = 2γH (X1 | A1),

and the statement follows directly from Lemma 6.9 and rescaling γ by half. �

7 EXPONENTIAL MATRIX POLARIZATION

The main result of this section shows the exponential matrix polarization ofM ⊗2 for every mixing
matrix.

Lemma 7.1. For every prime p, every mixing matrix M ∈ Fk×kq and every ε > 0, the matrix M ⊗2

satisfies ( 1
k2 , 2 − ε )-exponential matrix polarization.

Before turning to the proof, we first note that this immediately yields Theorem 1.16.

Proof of Theorem 1.16. By Lemma 7.1, we have that for every prime q and mixing matrix
M ∈ Fk×kq , the matrixM ⊗2 satisfies ( 1

k2 , 2−ε )-exponential matrix polarization. By Theorem 4.4, we
then have that for every symmetric memoryless channel CY |Z , the Arikan martingale associated
with M ⊗2 and CY |Z is ( 1

k2 , 2 − ε )-exponentially locally polarizing. �

The rest of the section is devoted to the proof of Lemma 7.1. We start with a simple proposition.

Proposition 7.2. For every field Fq and every matrix M ∈ Fk×kq , its tensor M ⊗2 is mixing if M is

mixing.

Proof. Let S j = {i ∈ [k]|∃j ′ ∈ [j] s.t. Mi, j′ � 0}, and then ∃j s.t. |S j | > j. By Lemma 5.8, there
exists a j such that |S j | > j. With this observation, the proposition follows easily. Given mixing M ,
let j be the index such that |S j | > j. Recall that M ⊗2 is composed of k2 submatrices of dimensions
k × k each, with the i, jth submatrix being Mi j ·M . Let i be an index such that Mi1 � 0. (Such an
index must exist or else we have an all zero column that contradicts the invertibility of M .) Then
the first k columns of M ⊗2 contain the k × k submatrix Mi1 · M , and in this submatrix itself we
have that the support of the first j columns has size larger than j. We conclude the first j columns
of M ⊗2 have support size larger than j and so by Lemma 5.8, M ⊗2 is mixing. �

7.1 Exponential Polarization of a 2 × 2 Matrix

We will first prove that a single specificmatrix, namely
(

1 0
α 1

)
, after taking secondKronecker power,

satisfies exponential polarization. Recall that in Section 5.3 the local polarization of a mixing matrix
was shown essentially by reducing to this case. We will follow a similar plan in this section.

Lemma 7.3. Let q be a prime and let H =
(

1 0
α 1

)
for α ∈ F∗q . Then, for every ε > 0, the matrix H ⊗2

satisfies ( 1
4 , 2 − ε ) exponential matrix polarization.

Proof. Note that since H is mixing, by Proposition 7.2, we have that H ⊗2 is also mixing. And
so, by Lemma 5.5, we have that H ⊗2 satisfies the conditions of matrix polarization (specifically,
variance in the middle and suction at the upper and lower ends from Definition 4.3). It remains
only to argue exponential matrix polarization, i.e., strong suction at the ends.
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Given ε > 0, let τ > 0 be such that for every δ < τ we have 6(log 1
3δ 2 +logq) ≤ δ−ε . Note that the

identity is satisfied for small-enough δ , since the LHS isO (log( 1
δ
)) while the RHS is Ω(( 1

δ
)ε ). Now

let δ < τ , and now consider arbitrary sequence of i.i.d. random variables (U 1,W1), . . . (U 4,W4)
with H (U i |Wi ) = δ . We can explicitly write down matrix H ⊗2 as

H ⊗2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0 0
α 1 0 0
α 0 1 0
α2 α α 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Matrix H ⊗2 has four rows. So, to achieve exponential polarization with η = 1
4 , we need to show

that there is at least one index i satisfying the strong suction inequality (with parameter b = 2− ε).
We do so for i = 4. Let us consider vectorU = (U 1, . . . ,U 4) and similarlyW = (W1, . . . ,W4), and
let V = (V 1, . . . ,V 4) = U · H ⊗2. We want to bound

H (V 4 |V <4,W ) = H (U 4 |U 1 + αU 2 + αU 3 + α
2U 4,U 2 + αU 4,U 3 + αU 4,W )

= H (U 4 |U 1 − α2U 4,U 2 + αU 4,U 3 + αU 4,W ),

where the equality follows, sinceU 1−α2U 4 = U 1+αU 2+αU 3+α
2U 4−α (U 2 + αU 4)−α (U 3 + αU 4),

and hence the map

(
U 1 + αU 2 + αU 3 + α

2U 4,U 2 + αU 4,U 3 + αU 4

)
�→
(
U 1 − α2U 4,U 2 + αU 4,U 3 + αU 4

)

is a bijection.
The main idea to bound the conditional entropy ofU 4 above is that if any ofU i is “known” for

i ∈ {1, 2, 3}, then given the variables being conditioned on,U 4 is also “known.” Of course, none of
the U i ’s are known, but each is predictable givenWi , and we use this predictability to bound the
conditional entropy. Details follow.

Let Σ denote the domain ofWi ’s. Using H (U i |Wi ) = δ , by Lemma 2.2, we have that there exists
some function f : Σ → Fq , such that Pr( f (Wi ) � U i ) ≤ δ . Let V ′

1 := −α2U 4 + U 1. We now

give a predictor д(V ′
1,V 2,V3,W ) forU 1. Let X1 = −α−2 (V ′

1 − f (W1)), X2 = α−1 (V 2 − f (W2)), and
X3 = α−1 (V 3 − f (W3)). Note that if for some i we have f (Wi ) = U i , then we have Xi = U 4. Using
this we set д as follows: If two of X1,X2,X3 have the same value, then we define д(V ′

1,V 2,V3,W )
to be this value; otherwise, we set д(V ′

1,V 2,V3,W ) arbitrarily.
By construction of д, we have that if there exist two choices of i ∈ {1, 2, 3} satisfying f (Wi ) =

U i , then д(V ′
1,V 2,V3,W ) = U 4. In turn, this implies Pr(д(V ′

1,V 2,V3,W ) � U 4) ≤ 3δ 2, since by
symmetry, we have

Pr(д(V ′
1,V 2,V3,W ) � U 4) ≤ 3 Pr( f (W1) � U 1 ∧ f (W2) � U 2) = 3 Pr( f (W1) � U 1))

2 ≤ 3δ 2,

where the equality follows, since (U i ,Wi ) are independent.
Converting the predictability of U 1 by д(· · · ) into an entropy bound by Fano’s inequality

Lemma 2.3, we have H (U 4 |U 1 − α2U 4,U 2 + αU 4,U 3 + αU 4,W ) ≤ 6δ 2 (log 1
3δ 2 + logq). By the

choice of τ and δ < τ , we have 6(log 1
3δ 2 + logq) ≤ δ−ε and so

H (V 4 |V <4,W ) ≤ δ 2−ε =
(
H (U 1 |W1)

)2−ε
, (34)

as desired. �
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7.2 Exponential Polarization of Any Mixing Matrix via Useful Containment

We will now proceed to show that exponential polarization of M ⊗2 for any mixing matrix M can
be reduced to the lemma above. We first provide an intuitive explanation of the reasoning below.

To show that a matrix M ′ satisfies an exponential polarization (or just suction at the lower end

condition of local polarization), one needs to show that for any i.i.d. variables Ui with entropy

H (Ui ) = δ and some index j, we can upper bound H ((UM ′)j |(UM ′)<j ) (for the sake of the clarity
of this exposition, we skip conditioning onWi ). If we write V i = (UM )i , then we wish to upper

boundH (V j |V 1, . . .V j−1) (where allV i are linear forms in {U i }i ∈[k]). Now, for any B1, . . . ,Bm that
all can be expressed as linear combinations of V 1, . . .V j−1, we have

H (V j |V 1 . . .V j−1) = H (V j + Bm |V 1, . . .V j−1,B1, . . .Bm−1) ≤ H (V j + Bm |B1, . . . ,Bm−1).

In Section 5.4, we showed using Gaussian elimination that for any mixing matrixM , one can find

j, �, s , and linear formsW1,W2 s.t.Vj+W2 = U � andW1 = αU �+U s , which impliedH (V j+W2 |W1) =

H (U � |αU � + U s ). This can be thought of as showing that in some sense any mixing matrix M

contains a matrix H =
(

1 0
α 1

)
and reduces the problem of showing the local polarization of the

former to understanding local polarization of the latter.
Here we introduce a technical notion of useful containment that is tailored to extend this reason-

ing in a way that has a convenient property expressed by Lemma 7.7, i.e., since matrix M contains
H in this specific sense, the matrix M ⊗2 contains H ⊗2 and by the reasoning outlined in the previ-
ous paragraph, we can deduce exponential local polarization of M ⊗2 from this containment and
the entropy upper bound proved in Lemma 7.3.

We wish to note here that the subsequent definition and lemmas are tailored to the specific
statement we are proving. In particular, useful containment is not a transitive relation. More im-
portantly, and unfortunately, it is not true that for any exponentially polarizing matrix R; if R is
usefully contained in M , then M is exponentially polarizing. Lemma 7.8 asserts this property only
for R = H ⊗2.

The following definition of containment relation for matrices will be used to implement the
ideas outlined above.

Definition 7.4 (Matrix (Useful) Containment). For any finite field Fq and integers k ≥ m ≥ 1, we

say that a matrixM ∈ Fk×kq contains a matrix R ∈ Fm×mq if there exist someT ∈ Fk×mq and a permu-

tation matrix P ∈ Fk×kq , such that PMT =

[
R

0

]
. We say that P andT witness the containment of R

in M . If, moreover, the last non-zero row of T is scaling of the standard basis vector, i.e., Tj = αem
for some α ∈ F∗q , then we say that containment is R in M is useful, and we denote it by R �u M .

We emphasize that useful containment is not a partial order.
Comparing this definition to the exposition above, the permutation P is used to express the

fact that we can freely permute labels of variables U 1, . . . ,U k , whereas the matrix T encodes
coefficients for linear forms B1, . . .Bm−1,Bm +αV j . Finally, the condition on the last non-zero row
of T being of form αem is here to express the idea that V j is not allowed to appear in any of the
forms B1, . . .Bm .

The following fact about useful containment will be helpful.

Proposition 7.5. If R �u M , then for every upper triangular matrix U with non-zero diagonal

elementsUi,i , we also have R �u MU −1.

Proof. Consider matrix T and permutation P as in the definition of useful containment for
R �u M . We can pick the very same permutation P and matrix T ′ = UT to witness R �u MU −1.

Journal of the ACM, Vol. 69, No. 2, Article 11. Publication date: March 2022.



General Strong Polarization 11:47

All we have to show is that last non-zero row ofT ′ is the (scaled) standard basis vector αem . Indeed,
if j0 is the last non-zero row ofT , and j > j0, then rows (U )j are supported exclusively on elements
with indices larger than j0, and hence (UT )j = (U )jT = 0. However, (UT )j0 =

∑
i Uj0,iTi . Since for

i < j0 the entry Uj0,i = 0, and for i > j0 we have Ti = 0, this implies (UT )j0 = Uj0, j0Tj0 = Uj0, j0αem ,
where the last equality follows from the fact that T was useful—that is, Tj0 = αem and Ti = 0 for
i > j0. Since bothUj0, j0 � 0 and α � 0, we haveUj0, j0α � 0, as desired. �

Lemma 5.7 can now be reinterpreted as the following lemma. We give a full new proof here, as
we describe it now in the language of useful containment.

Lemma 7.6. Every mixing matrixM ∈ Fk×kq usefully contains matrix H =
(

1 0
α 1

)
for some α ∈ F∗q .

Proof. For every matrixM , there is some permutation matrix P ′ and pair L,U , such that P ′M =
LU , where L is lower triangular (such that its diagonal is all 1s) andU is upper triangular.15 Matrix
M being mixing is equivalent to the statement that L and U are invertible, and, moreover, L is
not diagonal. (In particular, M is invertible if and only if L and U are and M = (P ′)−1LU is the
permutation of an upper triangular matrix if and only if L is diagonal.) Thus, by Proposition 7.5, it
suffices to show that every lower-triangular L, which is not diagonal, contains H �u L. Indeed, let
s be the last column of L that contains more than a single non-zero entry, and let r to be the last
row of non-zero entry in column L ·,s . Note that column L ·,r has single non-zero entry Lr,r = 1.

We will show a matrixT ∈ Fk×2
q as in the definition of useful containment. Let us specify a second

column of T ·,2 := er ; note that in this case (LT )·,2 = er . To specify the first column of T , we wish
to find a linear combination of columns of L1, ·, . . . ,Lr−1, · such that

∑
i≤r−1 tiLi, · = es +αer , where

α = Lr,s � 0. Then coefficients ti can be used as the first column of matrix T , which would imply
that (LT )·,1 = es + αer . We can set those coefficients to ti = −Ls,i for i ∈ [s + 1, r − 1], ts = 1
and ti = 0 for i < s ; this setting is correct, because columns Li, · for i ∈ [s + 1, r − 1] have only
one non-zero entry Li,i . As already observed, the first column of LT is es + αer while the second
column is er . Thus, if P is any matrix corresponding to a permutation that maps s �→ 1 and r �→ 2,
then the containment H �u L is witnessed by pair P and T , as desired. �

Lemma 7.7. If matrix R �u M where R ∈ Fs×sq and M ∈ Fk×kq , then R⊗2 �u M ⊗2.

Proof. Consider matrix T and permutation P that witness the useful containment for R �u M .
Note that by the mixed product property of tensors, P ⊗2M ⊗2T ⊗2 = (PMT )⊗2. As such, restriction
of a matrix P ⊗2M ⊗2T ⊗2 to rows corresponding to [k] × [k] is exactly R⊗2, and all remaining rows

are zero. We can apply additional permutation matrix P̃ so that those are exactly first k2 rows of

the matrix P̃P ⊗2M ⊗2T ⊗2 give matrix R⊗2, and the remaining rows are zero. Finally, since the last
non-zero row of T was a scaling of the standard basis vector, the same is true for T ⊗2. �

Lemma 7.8. If matrix M ∈ Fk×kq usefully contains matrix R =
(

1 0
α 1

) ⊗2
, then matrix M satisfies

the strong suction condition of ( 1
k
, 2 − ε ) exponential polarization.

Proof. By the definition of exponential matrix polarization, it suffices to prove that there exists

an index j ∈ [k] such that H ((UM )j |(UM )<j ,W ) ≤ H ((UR)4 |(UR)<4,W ). Once we have this, the
proof of Lemma 7.3 (specifically Equation (34)) asserts that the conditional entropy is bounded as
required. So we turn to proving this.

15This, e.g., follows from Gaussian Elimination and the corresponding “LU decomposition” of any matrix. Also note that

the the assumption on the diagonal elements of L holds without loss of generality.
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Take P ∈ Fk×kq and T ∈ Fk×4
q witness the containment R �u M . Let, moreover, j be the last

non-zero row of T . We have

H ((UM )j |(UM )<j ,W ) = H ((UM )jTj,4 + (UM )<jT<j,4 |(UM )<j ,W )

= H ((UMT )4 |(UM )<j ,W )

= H ((UMT )4 |(UM )<j , (UM )<jT<j,<4,W )

≤ H ((UMT )4 |(UM )<jT<j,<4,W ).

In the above, the first equality follows, sinceTj,4 � 0 (and hence the map (UM )j �→ (UM )jTj,4 is a
bijection) and the fact that (UM )<jT<j,4 is deterministic function of (UM )<j . The second equality
follows, since M>j, · = 0, the third one introduces conditioning on (UM )<jT<j,<4, which is deter-
ministic given (UM )<j , and the inequality follows, because entropy is decreasing under additional
conditioning. Observe now that (UM )<jT<j,<4 = (UMT )<4. Indeed, according to the definition of
useful containment and because j is last non-zero row of T , we have Tj,<4 = 0 (jth row has only
one non-zero entry Tj,4), as well as T>j,<4 = 0. Therefore

H ((UM )j |(UM )<j ,W ) ≤ H ((UMT )4 |(UMT )<4,W )

= H ((UP−1R)4 |(UP−1R)<4,W )

= H ((UR)4 |(UR)<4,W ),

where the last inequality follows from the fact that variablesU i are i.i.d. hence for the permutation
matrix P ,UP−1 has the same distribution asU . �

With the above ingredients in place we are ready to prove Lemma 7.1.

Proof of Lemma 7.1. Since M is mixing we have that M ⊗2 is also mixing (Proposition 7.2) and
so by Lemma 5.5 we have that M ⊗2 satisfies the conditions of matrix polarization. So it suffices to
prove M ⊗2 satisfies the conditions of ( 1

k2 , 2 − ε ) exponential matrix polarization.

By Lemma 7.6, we have that M usefully contains H =
(

1 0
α 1

)
. Then, by Lemma 7.7 we have that

M ⊗2 usefully contains H ⊗2. Finally, by Lemma 7.8 applied to M ⊗2 (which is a k2 × k2 matrix) we
have that M ⊗2 satisfies (1/k2, 2 − ε ) exponential matrix polarization. �

8 NEARLY OPTIMAL DECODING ERROR PROBABILITIES

Finally, we turn to the proofs of Theorems 1.19 and 1.20. Recall that the former yields codes achiev-
ing decoding error probability exp(−N β ) for any β < 1 while doing so at block lengths polynomial
in the gap to capacity. The latter result shows that the techniques in this article are essentially op-
timal (for a broad class of channels) by showing that any analysis that bounds the decoding error
probability can be used as a black box to achieve a similar decoding error probability in our anal-
ysis framework while additionally guaranteeing convergence at polynomial lengths in the gap to
capacity. We first present the former, though before doing so, we make a small digression to rec-
ollect some known definitions of linear codes that we will use in this section (for more details see,
e.g., Reference [14, Chap. 2]).

8.1 Basics of Linear Error-correcting Codes

A linear q-ary error correcting code C of block length n0 and dimension k0 is a linear subspace of

F
n0
q of dimension k0. Equivalently, there exists a full rankG ∈ Fk0×n0

q such thatC = {v ·G |v ∈ Fk0
q }–

G is called the generator matrix of C . The kernel/null-space/dual of C , denoted by C⊥ or kerG, is
given by {w |〈w,c〉 = 0 for all c ∈ C}. A generator matrix of C⊥ is called a parity-check matrix of
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C . The distance of a codeC is the minimum number of positions any two codewords inC differ in.
For linear codeC , its distance is exactly minc ∈C\{0} wt(c ), where wt(x ) is the number of non-zero
elements in x .

8.2 Polar Codes with Decoding Failure Probability Approaching 2−N
1−o (1)

Theorem 1.19 is proved by giving a sufficient structural condition on matrices for very strong
exponential polarization. The following lemma states this condition.

Lemma 8.1. Let q be prime. If a mixing matrix M ∈ Fk×kq is decomposed as M = [M0 |M1], where

M0 ∈ Fk×(1−η)kq is such that kerMT
0 is a linear code of distance larger than 2b, then matrixM satisfies

(η,b − ε )-exponential matrix polarization for every ε > 0.

Proof. By Lemma 5.5, we have that M satisfies the conditions of matrix polarization (specif-
ically, variance in the middle and suction at the upper and lower ends from Definition 4.3). It
remains only to argue exponential matrix polarization, i.e., strong suction at the lower end.

Let us again consider a sequence of i.i.d. pairs (U i ,Wi ) for i ∈ [k], such that H (U i |Wi ) = δ . By
Lemma 2.2, there is some f : Σ → Fq such that Pr( f (Wi ) � U i ) ≤ δ (for every i ∈ [k]). Let us

define Ũ i := U i − f (Wi ).

We will bound H ((UM )j |(UM )<j ,W ), for all j > (1 − η)k . We have

H ((UM )j |(UM )<j ,W ) ≤ H (U |(UM )<j ,W ) ≤ H (U |UM0,W ) = H (Ũ |ŨM0,W ) ≤ H (Ũ |ŨM0),

where the first two inequalities follow from the fact that for random variables (X ,Y , S,T ) it is

always the case that H (X |S,T ) ≤ H (X ,Y |S,T ) ≤ H (X ,Y |S ) (the second inequality also uses the

fact that (UM )<j is a sub-matrix ofUM0). The equality follows from the definition of Ũ i and the
fact that f (·) is deterministic function. The final inequality follows from the fact that conditioning
can only decrease the entropy.

Given ŨM0 we can produce estimate Û := argminV {wt(V ) : VM0 = ŨM0}, where wt(V ) = |{j :
V j � 0}|.

We note that if wt(Ũ ) ≤ b, then Û = Ũ . Indeed, we have wt(Û ) ≤ wt(Ũ ), and therefore

wt(Û − Ũ ) ≤ 2wt(Ũ ) ≤ 2b, but, however, (Û − Ũ )M0 = 0, and by the assumption on distance of

kerMT
0 we deduce that Û − Ũ = 0. Therefore, Pr(Ũ � Û ) ≤ Pr(wt(Ũ ) > b). All coordinates of Ũ

are independent, and each Ũ i is nonzero with probability at most δ , therefore

Pr(wt(Ũ ) > β1) ≤
(
k

b

)
δb .

Further, by Fano inequality (Lemma 2.3), we have

H (Ũ |ŨM0) ≤ 2Cδb (b logδ−1 + logC + logq),

where C =
(
k
b

)
. Again, for any ε , and small-enough δ (with respect to ε,b,k,q), we have

H (Ũ |ŨM0) ≤ δb−ε .
This shows that for any j > (1 − η)k (note that there are at least ηk such values of j) and

small-enough δ we have

H ((UM )j |(UM )<j ,W ) ≤ δb−ε ,

which completes the proof of a exponential matrix polarization for M . �

We are now almost ready to prove Theorem 1.19. We start with a corollary that uses standard
results on existence of codes with good distance.

Journal of the ACM, Vol. 69, No. 2, Article 11. Publication date: March 2022.



11:50 J. Błasiok et al.

Corollary 8.2. For every ν > 0 and every prime field Fq , there exist k , and matrix M ∈ Fk×kq ,

such that matrixM satisfies (1 − ν ,k1−ν ) exponential matrix polarization.

Proof. Consider a parity check matrix M0 of a BCH code with distance 2k1−ν . We can achieve

this with a matrix M0 ∈ Fk×k0
q , where k0 = O (k1−ν logk ) (see, e.g., Reference [14, Exercise 5.10]).

Hence, as soon as k > Ω(2ν
−1 log ν−1 ) ), we have k0 < νk . Note that if k0 = ν0k , then by Lemma 8.1

we can hope for (1 − ν0,k
1−ν0 − ε ) exponential matrix polarization. We can now complete M0 to

a mixing matrix to get overall (1 − ν ,k1−ν ) exponential matrix polarization (since ν0 < ν ). To
complete matrix M0 to a mixing matrix, by Lemma 5.8 it is enough to complete it in arbitrary way
to an invertible matrix, since already the first column of M0 has support larger than 1. �

Remark 8.3 (Exponential Polarization of Random Kernels). It is worth noting that by the same
argument and standard results on the distance of random linear codes, a random matrixM ∈ Fk×kq

with high probability satisfies a (1 − ν ,k1−ν ) local polarization, with ν → 0 as k → ∞. Thus polar
codes arising from a large random matrix will usually have this property.

We now complete the proof of Theorem 1.19.

Proof of Theorem 1.19. Given β < 1 and q, let ν = (1 − β )/3. Now let k and M be
as given by Corollary 8.2. By Theorem 4.4, we have that for every channel CY |Z , M satisfies
(1 − ν ,k1−ν )-exponential local polarization. By Theorem 1.9, we have that the same martingale
satisfies Λ-exponentially strong polarization for Λ = (1 − ν )2 log2 k ≥ (1 − 2ν ) log2 k . By Theo-
rem 1.11 (in particular, Remark 1.12), we then get that the resulting codes have failure probability
O (N · logq · exp(−N 1−2ν )) ≤ exp(−N 1−3ν ) = exp(−N β ), where the first inequality holds for suffi-
ciently large N (as a function of ν ). �

8.3 Universality of Local Polarization

Suppose we know that polar codes associated with a matrix M ∈ Fk×kq achieve capacity with error

probability exp(−nβ ) in the limit of block lengths n → ∞ (which may happen at lengths growing
super polynomially in ε the gap to capacity). In this section, we prove a general result (previously
stated as Theorem 1.20) that “lifts” (in a black box manner) such a statement to the claim that, for
every β ′ < β , polar codes associated with M achieve polynomially fast convergence to capacity

(i.e., the block length n can be as small as poly(1/ε ) for rates within ε of capacity) and exp(−nβ ′ )
decoding error probability simultaneously. Thus, convergence to capacity at finite block length
comes with almost no price in the (exponent of) decoding failure probability.

Put differently, the result states that one can get polynomial convergence to capacity for free
once one has a proof of convergence to capacity in the limit of n → ∞ with root-exponential
decoding error probability. Such proofs of convergence to capacity has been shown in Reference
[20] for the binary alphabet and Reference [24] for general alphabets. Yet another way of viewing
the results of this section are that every proof of convergence to capacity has a proof of local
polarization embedded in it.

We get our result by proving a structural result that is roughly a converse to Lemma 8.1. Specif-
ically, in Lemma 8.5 we show that if a matrix M leads to a polar code with exponentially small
failure probability, then some high (but constant sized) tensor powerM ⊗t ofM contains the parity
check matrix of a high distance code. In fact, more generally if a matrix in Fk×sq is the parity check
matrix of a code that has a decoding algorithm that corrects errors from a q-symmetric channel
with failure probability exp(−kβ ), then this code has high distance.

Combining Lemma 8.5 with Lemma 8.1, we get that every matrix that leads to a polar code with
low error probability has a constant sized tensor that is a exponentially polarizing matrix. This
immediately leads to a proof of Theorem 1.20.
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To derive our results, we focus on a simple q-ary symmetric channel defined next.

Definition 8.4. For any finite field Fq and γ ∈ [0, 1], we will denote by Bq (γ ) the distribution on

Fq such that for Z ∼ Bq (γ ) we have Pr(Z = 0) = 1 − γ and Pr(Z = k ) =
γ

q−1 for any k � 0.

Lemma 8.5. Consider a matrix H ∈ Fk×sq and arbitrary decoding algorithm Dec : Fsq → Fkq , such
that for independent random variablesU 1, . . .U i ∼ Bq (γ ) with γ <

1
2 , we have Pr(Dec(UH ) � U ) <

exp(−kβ ). Then kerH is a code of distance at least k β

ln−1 (q/γ )
.

Proof. Consider maximum likelihood decoder Dec′(y) := argmaxx ∈Fkq Pr(U = x |UH = y). By

definition, we have Pr(Dec′(UH ) � U ) < Pr(Dec(UH ) � U ) < exp(−kβ ).
Note that forU distributed according to Bq (γ ), we have Dec′(y) = argminx :xH=y wt(x ), where

wt(x ) is number of non-zero elements of x .
Consider set E = {x ∈ Fkq |,where there exists h ∈ kerM,wt(x + h) < wt(x )}, and observe that

Pr(Dec′(UH ) � U ) ≥ Pr(U ∈ E). We say that vector u ∈ Fkq is dominated by v ∈ Fkq (denoted by

u � v) if and only if ∀i ∈ supp(u), ui = vi . We will argue that for any w1 ∈ E and any w2  w1,
we have w2 ∈ E. Indeed, if w1 ∈ E, then there is some h ∈ kerH such that wt(w1 + h) < wt(w1).
We will show that wt(w2 + h) < wt(w2), which implies that w2 ∈ E. Given that w1 � w2, we can
equivalently say that there is a vector d withw1 + d = w2 and wt(w2) = wt(w1) +wt(d ). Hence,

wt(w2 + h) = wt(w1 + d + h) ≤ wt(w1 + h) +wt(d ) < wt(w1) +wt(d ) = wt(w2).

Consider noww0 ∈ kerH to be minimum weight non-zero vector, and let us denoteA = wt(w0).
We wish to show a lower bound for A. By definition of the set E, we havew0 ∈ E, and by upward
closure of E with respect to domination we have

Pr(U ∈ E) ≥ Pr(w0 � U ) =

(
γ

q − 1

)A
≥
(
γ

q

)A
.

However, we have

Pr(U ∈ E) ≤ Pr(Dec′(UH ) � U ) ≤ Pr(Dec(UH ) � U ) ≤ exp(−kβ ).
By comparing these two inequalities we get

A ≥ kβ

ln(q/γ )
. �

Proof of Theorem 1.20. Consider the channel that outputsX +Z on inputX , whereZ ∼ Bq (γ )
for some γ > 0 (depending on β, β ′). The hypothesis on M implies that for sufficiently large n the
polar code of block length n corresponding to M will have failure probability at most exp(−nβ )
on this channel. Using the well-known equivalence between correcting errors for this additive
channel and linear compression schemes (see, e.g., Reference [14, Prop. 11.2.1]), we obtain that for
all large-enough t there is some subset S of (hq (γ ) + ε )kt columns of M ⊗t that defines a linear
compression scheme (for kt i.i.d. copies of Bq (γ )), along with an accompanying decompression

scheme with error probability (over the randomness of the source) at most exp(−kβt ).
We now claim that for all β ′ < β , there exists t0 = t0 (β

′, β ) such that the Arikan martingale
associated with some column permuted version of M ⊗t0 , is β ′t0 log2 k-exponentially strongly
polarizing.

The proof of this claim is in fact immediate, given the ingredients developed in previous sections.
Apply the hypothesis about M in the theorem with the choice ε = (β − β ′)/4 and γ chosen small
enough as a function β, β ′ so that hq (γ ) ≤ (β − β ′)/4 and let t0 be a larger than promised value of

t in the statement and large enough so that 3 ln(q/γ ) < m(β−β ′)/2 with m := kt0 . Take, moreover,
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� = (hq (γ ) + ε )m and L = M ⊗t0 . Using Lemma 8.5 and the equivalence between linear coding for

source and channel coding (mentioned above), we know there is submatrix L′ ∈ Fm×�q of L such

that ker((L′)T ) defines a code of distance Δ ≥ mβ/ ln(q/γ ). Define M0 = [L′ | ·] ∈ Fm×mq to be

any matrix obtained by permuting the columns of L such that the columns in L′ occur first. By
Lemma 8.1, the matrixM0 is (1−�/m,Λ)-exponential matrix polarizing with Λ = Δ/2−o(1) > Δ/3.

For our choice of γ , ε , we have �/m ≤ β−β ′
2 and for our choice of t0 (and therefore m) we

have Λ ≥ m(β+β ′)/2. Using Theorem 4.4 and Theorem 1.7, it follows that the Arikan martingale

associated with M0 exhibits (β + β ′)/2× (1− β−β ′
2 ) log2m-exponentially strong polarization. Since

β " def
=

β + β ′

2
·
(
1 − β − β ′

2

)
= β ′ +

β − β ′

2
·
(
1 − β + β ′

2

)
> β ′,

the claim follows (in the above we used the fact that 0 < β ′ < β < 1).
Applying Theorem 1.11 (and Remark 1.12) to the matrix M0 = M ⊗t0 we conclude that there is a

polynomial p such that given the gap to capacity ε > 0, and for every s satisfying N = kt0s ≥ p ( 1
ε
)

there is an affine code generated by a subset of rows of (M−1
0 )⊗s , which achieves ε-gap to capacity

and has failure probability exp(−N β ") · N · logq < exp(−N β ′ ) for large-enough N . But this
resulting code is simply an affine code generated by a subset of the rows of (M−1)⊗t , for t = st0,
which concludes the proof. �

APPENDIX

A CODES FROM POLARIZATION

In this section, we describe the construction of polar codes and analyze the failure probability of
decoders by corresponding them to the Arıkan martingale. This proves Theorems 1.11 and 1.14.

Specifically, we first describe the polar encoder along with a fast O (n logn)-time implemen-
tation, where n is the blocklength. Then, in Appendix A.2 we define the (inefficient) successive-
cancellation decoder and analyze its failure probability assuming a correspondence between polar
coding and the Arıkan martingale. In Appendix A.2.2, we describe a fast O (n logn)-time decoder
that is functionally equivalent to the successive-cancellation decoder. Finally, in Appendix A.2.3,
we prove the required correspondence between polar coding and the Arıkan martingale.

Throughout this section, fix parameters k ∈ N as the dimension of the mixing matrix M ∈ Fk×kq ,

Fq as a finite field, and n = kt as the codeword length.

A.1 Polar Encoder

Given a set S ⊆ [n] and a fixing α ∈ F |S
c |

q ,16 we define the polar code of dimension |S | by giving

the encoder mapping FSq → Fnq as follows:

ALGORITHM 1: Polar Encoder

Constants: M ∈ Fk×kq , S ⊆ [n],α ∈ FScq
Input: U ∈ FSq
Output: Z ∈ Fnq

1: procedure Polar-Encoder(U ;α )

2: ExtendU toU ∈ Fnq by letting (U i )i�S = α for coordinates not in S

3: Return Z = U · (M−1)⊗t

16We use the notation Sc = [n] \ S .
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The above gives a polynomial time algorithm for encoding. An Oq (n logn) algorithm can also
be obtained by using the recursive structure imposed by the tensor powers.

Below, we switch to considering vectors in Fk
t

q as tensors in (Fkq )
⊗t , indexed by multiindices

i ∈ [k]t . The following encoder takes as input the “extended” messageU , as defined above.

ALGORITHM 2: Fast Polar Encoder

Constants: M ∈ Fk×kq

Input: U ∈ (Fkq )
⊗t

Output: Z = U · (M−1)⊗t

1: procedure Fast-Polar-Encodert (U )
2: If t = 0 then

3: ReturnU
4: for all j ∈ [k] do

5: Z (j ) ← Fast-Polar-Encodert−1(U [·, j])

6: for all i ∈ [k]t−1 do

7: Z [i, ·] ← (Z (1)
i ,Z

(2)
i , . . . ,Z

(k )
i ) ·M−1

8: Return Z

It is not too hard to verify that Algorithm 2 runs in Ok,q (n logn) time. Indeed, if T (n) is the
runtime of the algorithm on inputs of size n = kt , then each call results in k recursive calls to
inputs of size n

k
. Further, each recursive call solve n

k
systems of linear equations (each of which

can be solved in Oq (k
3) time). Thus we get the recurrence (using the fact that k is a constant) of

T (n) = k ·T (n/k ) + Ok,q (n), which results in the desired Ok,q (n logn) runtime.

A.2 The Successive-Cancellation Decoder

Here we describe a successive-cancellation decoder. Note that this decoder is not efficient, but the
fast decoder described later will nearly have the same error probability as this decoder.

For given channel outputsY , letZ be the posterior distribution on channel inputs given outputs
Y . Each Z i ∈ Δ(Fq ) is the conditional distribution Z i |Y i defined by the channel CY |Z and the
received output Y i .

Now we define the decoder on the distribution vectorZ and the fixingα ∈ (Fq∪{⊥})n as follows.
We implicitly represent the subset Sc of fixed positions by denoting α i = ⊥ for those indices.

Remark A.1. We note that parts in brown are not needed for the algorithm itself and only used
in the analysis. Further, unless explicitly stated otherwise, we will use SC-Decoder to just denote

the Û part of the output (i.e., we will ignore P by default).

Note that several of the above steps, including computing the joint distribution of U and mar-
ginal distributions ofU i , are not computationally efficient though we will get efficient algorithms
effectively approximating these distributions later. Even then, we will only get an algorithm that
gets an estimate of the probabilities PrU (U i = x ) to within an additive error of 1/4 for every
x ∈ Fq . In what follows, we will use the following definition:

Definition A.2. We will term an algorithm that runs an SC-Decoder where the algorithm gets
an estimate of the probabilities PrU (U i = x ) to within an additive error of 1/4 for every x ∈ Fq
an Approximate-Successive-Cancellation Decoder.
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ALGORITHM 3: Successive-Cancellation Decoder

Constants: M ∈ Fk×kq ,n = ks ,
Input: Z ∈ Δ(Fq )

n ,α ∈ (Fq ∪ {⊥})n
Output: Û ∈ Fnq , P ∈ (Δ(Fq ) ∪ ⊥)n

1: procedure SC-Decoder(Z ;α )
2: Compute the distributionU ∈ Δ(Fnq ) defined byU ← ZM ⊗s

3: for all i ∈ [n] do
4: If α i = ⊥ then

5: For x ∈ Fq , Û i ← argmaxx ∈Fq {PrU (U i = x )} ; P i (x ) ← PrU (U i = x )

6: else

7: Û i ← α i ; P i ← ⊥
8: Update distributionU ← (U |U i = Û i )

9: Return Û , P

A.2.1 Decoding Analysis. For this section, it will be useful to keep Remark A.1 in mind.
We will first reason about the “genie-aided” case, when the fixing α ∈ (Fq ∪ {⊥})n of non-

message bits is chosen uniformly at random, and revealed to both the encoder and decoder. Then,
we will argue that it is sufficient to use a deterministic fixing α = α 0.

We now argue that over a uniform choice of messageU S , and a uniform fixingα of non-message
bits, the probability of decoding failure is bounded as follows.

Claim A.3. For S ⊆ [n], let V ∈ (Fq ∪ {⊥})n be given by V i ∼ Fq if i ∈ S and ⊥ otherwise. Let

α ∈ (Fq ∪ {⊥})n be given by α i ∼ Fq if i � S and ⊥ otherwise. Let Z := Polar-Encoder(V ;α ) and
Y sampled according to the channel Y := CY |Z (Z ). LetU ∈ Fnq be given byU i = V i if i ∈ S and αi

if i � S . With this notation, we have

Pr[SC-Decoder(Y ;α ) � U ] ≤
∑
i ∈S

H (U i | U <i ,Y ).

Furthermore, for every approximate-successive-cancellation decoder D we have

Pr[D (Y ;α ) � U ] ≤ 3
∑
i ∈S

H (U i | U <i ,Y ).

Proof. Note thatU is uniform over Fnq . Now, we have

Pr (SC-Decoder(Y ;α ) � U ) = Pr
(
∃i Û i � U i

)
=
∑
i≤n

Pr
(
Û i � U i and Û <i = U <i

)

≤
∑
i≤n

Pr
(
Û i � U i | Û <i = U <i

)
.

Clearly, for i � S we have Pr[Û i � U i ] = 0, since both are defined to be equal to α i on those
coordinates. It is enough to show that for i ∈ S we have

Pr(Û i � U i | U <i = Û <i ) ≤ H (U i | U <i ,Y ).

This follows directly from Lemma 2.2, as Û i is defined exactly as a maximum likelihood estimator
ofU i given channel outputs Y and conditioning onU <i (note that the conditioning is happening
in Line 8).
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The furthermore part of the claim follows from using the furthermore part of Lemma 2.2 in the
final step above. �

Claim A.4. Let n = kt , U ∼ Fnq ,Z := U (M−1)⊗t ,Y := CY |Z (Z ), where CY |Z is a symmetric

channel. If ArıkanMartingale associated with (M,C) satisfies (τ�,τh , ε )-polarization, then there exists
a subset S ⊂ [n] of size (Capacity(CY |Z ) − ε − τh )n, such that∑

i ∈S
H (U i | U <i ,Y ) ≤ τ�n logq.

Proof. Applying Lemma A.18, we can deduce that for uniformly random index i ∈ [n], normal-

ized entropies H (U i |U <i ,Y ) are distributed identically as Xt in the Arıkan Martingale.
Now, for symmetric channels, the uniform distribution achieves capacity (see, e.g., Reference

[6, Theorem 7.2.1]). In addition, since matrix (M (−1) )⊗t is invertible, vector Z also has a uniform
distribution. Thus, for uniform channel input Z ,

n · Capacity(CY |Z ) = H (Z ) − H (Z |Y ) = n −H (Z |Y ). (35)

Let S be the set of all indices i such that H (U i | U <i ,Y ) < τ� . By definition, we have∑
i ∈S

H (U i | U <i ,Y ) ≤ τ�n,

as desired.
Now observe that polarization of martingale Xt and Lemma A.18 directly implies that we have

at most εn indicies i satisfying H (U i | U <i ) ∈ (τ�, 1 − τh ) (recall that in Lemma A.18 we pick one

such index uniformly at random). Let S ′ be a set of indices for which H (U i | U <i ,Y ) > 1 − τh . We
have

n(1 − Capacity(CY |Z )) = H (U (M−1)⊗t | Y ), (Equation (35))

= H (U 1, . . . ,U n |Y ), (Since (M−1)⊗t is full rank)

=
∑
i ∈[n]

H (U i |U <i ,Y ), (Chain rule)

≥
∑
i ∈S ′

H (U i |U <i ,Y ),

≥ (1 − τh ) |S ′ | ≥ |S ′ | − τhn,

which implies that

|S ′ | ≤ n(1 − Capacity(CY |Z ) + τh ),
and, finally,

|S | ≥ n − |S ′ | − εn ≥ n(Capacity(CY |Z ) − ε − τh ) . �

We can now combine the above to prove a version of Theorem 1.14 for the (inefficient)
successive-cancellation decoder:

Theorem A.5. Let C be a q-ary symmetric memoryless channel, and letM ∈ Fk×kq be an invertible

matrix. If the Arıkanmartingale associated with (M,C) satisfies (τ�,τh , ε )-polarization, then for every
t , there is an affine code C that is generated by the rows of (M−1)⊗t and an affine shift, such that the

rate ofC is at least Capacity(C)−ε (t )−τh (t ), andC can be encoded in time O (n logn), where n = kt .
Furthermore, the successive-cancellation decoder succeeds with probability at least 1 − n log(q)τ� ,
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and every approximate-successive-cancellation decoder succeeds with probability at least 1 −
3n log(q)τ� .

Proof. LetU ∼ Fnq , Z := U (M−1)⊗t , and Y := CY |Z (Z ).
By Claim A.4, there exist a set S ⊂ [n] of size (Capacity(CY |Z ) − ε − τh )n, such that∑

i ∈S
H (U i | U <i ,Y ) ≤ τ�n logq.

However, by Claim A.3, the failure probability of the successive-cancellation decoder is bounded
by

Pr
U ,α,Y

[SC-Decoder(Y ;α )S � U ] ≤
∑
i ∈S

H (U i | U <i ,Y ), (36)

where random variables U ,Y ,α are defined as in Claim A.3. Note that, in fact, the joint distribu-

tions of (U ,Y ,Z ) and (U ,Y ,Z ) are the same, despite superficially more complicated way in which
sampling from distribution (U ,Y ,Z ) was defined. Therefore,∑

i ∈S
H (U i | U <i ,Y ), =

∑
i ∈S

H (U i | U <i ,Y )

≤ τ�n logq.

Note that this failure probability is an average over random choice of fixing α , but this implies
there is some deterministic fixing α = α 0 with failure probability at least as good. Further, by
linearity of the encoding (Algorithm 2) such a deterministic fixing yields an affine code. The rate
of this code is |S |/n ≥ (Capacity(CY |Z ) − ε − τh ) as desired.

If we replace the successive-cancellation decoder by an approximate successive cancellation
decoder, then the theorem follows by using the furthermore part of Claim A.3 in Equation (36)
above. �

A.2.2 Fast Decoder. In this section, we will define the recursive Fast-Decoder algorithm. The
observation that polar codes admit a recursive fast-decoder was made in the original work of
Arıkan [2]. Our presentation is somewhat different in that it decodes general product distributions
(and does not require the marginals to be identical).

Fast-Decoder will take on input descriptions of the posterior distributions on channel inputs
{Z i }i ∈[k]s for some s , where each individual Z i ∈ Δ(Fq ) is a distribution over Fq , as well as α ∈
(Fq ∪ {⊥})[k]s , where α i ∈ Fq are the fixed values corresponding to non-message positions. The

output of Fast-Decoder is a vector Ẑ ∈ (Fkq )
⊗s—the guess for the actual channel inputs. To recover

the message, it is enough to apply Û := ẐM ⊗s and restrict it to the positions where α i = ⊥.
In Algorithm 4, forW i ∈ Δ(Fkq ), a description of joint probability distribution over Fkq , we will

write πj (W i ) ∈ Δ(Fq ) as a jth marginal ofW i for j ∈ [k], i.e., projection on the jth coordinate.

In addition, we will use π≤j (W i ) ∈ Δ(Fq )
j to denote the projection ofW to the first j marginal

coordinates.
We make an remark analogous to Remark A.1 for Fast-Decoder:

Remark A.6. In the code above, the parts in brown are not needed for the running of the algo-
rithm but included, since they help with the analysis. Further, unless explicitly stated otherwise,

we will use SC-Decoder to just denote the Ẑ part of the output (i.e., we will ignore Q , Û
F

by
default).

Journal of the ACM, Vol. 69, No. 2, Article 11. Publication date: March 2022.



General Strong Polarization 11:57

ALGORITHM 4: Fast Decoder

Constants: M ∈ Fk×kq

Input: Z = {Z i ∈ Δ(Fq )}i ∈[k]s , α ∈ (Fq ∪ {⊥})[k]s

Output: Ẑ ∈ (Fkq )
⊗s , Q ∈ (Δ(Fkq ) ∪ {⊥})⊗s , Û

F ∈ (Fkq )
⊗s

1: procedure Fast-Decoders (Z ; α )
2: If s = 0 then

3: If α = ⊥ then

4: Return Ẑ = argmaxx ∈Fq Pr (Z = x ), Q = Z , Û
F
= Ẑ

5: else

6: Return Ẑ = α , Q = ⊥, Û
F
= α

7: else

8: for all i ∈ [k]s−1 do

9: Compute joint distributionW i ∈ Δ(Fkq ), given byW i ← Z [·,i]M

10: for all j ∈ [k] do
11: Z ′(j ) ← {πj (W i )}i ∈[k]s−1

12: V̂ [j, ·], Q [j, ·], Û
F
[j, ·] ← Fast-Decoder(Z ′(j ) ;α [j, ·], s − 1)

13: for all i ∈ [k]s−1 do

14: Update distributionW i ← (W i |π≤j (W i ) = V̂ [≤j,i])

15: for all i ∈ [k]s−1 do

16: Ẑ [·,i] ← V [·,i] ·M−1

17: Return Ẑ , Q , Û
F

Analogously to Definition A.2, we define a similar approximate version of Fast-Decoder:

Definition A.7. We will term an algorithm that runs an Fast-Decoder where the algorithm gets
an estimate of the probabilities Pr (Z = x ) to within an additive error of 1/4 for every x ∈ Fq a
precision-bounded Fast-Decoder.

The Fast-Decoder as described above runs in time O (n logn), where n = ks is block length if
one assumes infinite precision arithmetic. Furthermore, even a bounded-precision model only re-
quires O (n logn) operations in the “floating point RAM” model — the model where a non-negative
real number r ∈ [0, 1] is represented with two � = O (logn) bit integers a,b as a · 2b and two such
numbers can be added, multiplied, or divided in a single step.

In bit more detail, the above representation is also known as the Floating point number system [18,
Chapter 2]. Before we go into the details of the runtime analysis of Fast-Decoder, we quickly
summarize the relevant properties of the floating point number system.

Floating point number system and floating point RAMmodel. We recall the definition of the float-
ing point number system:

Definition A.8 ([18], Section 2.1). A floating point number system F ⊂ R is a subset of real
numbers whose elements have the form

y = ±a · βe−Δ,
where

• The integer β ≥ 2 is the base or radix
• The natural number Δ is the precision
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• The integer e is the exponent and has the range emin ≤ e ≤ emax for integers emin ≤ emax

• The natural number a is the significand, and it is assumed that

βΔ−1 ≤ a ≤ βΔ − 1.

The representation range of F is given by [βemin−1, βemax (1 − β−Δ)].

Before we proceed, we note the simplications to the above definition that we use in our model:

Definition A.9. We use the floating point number system from Definition A.8 with the following
simplifications/modifications:

• Set β = 2.
• Δ = �.17

• emin = −2� and emax = 2� .

For the rest of this discussion, we will assume the parameters that we have set in Definition A.9.
Next, we recall some properties of the floating point number system that we will use as given in
our runtime analysis of Fast-Decoder.

Before we present the results, we fix some more notation. For x ∈ R falling within the represen-
tation range of the floating point system, we will use fl (x ) to denote the closest approximation of
x in the floating point system. For any vector y ∈ Rk , we will overload notation and use fl (y) to
denote the vector obtained by applying fl (·) to each component of y. This leads to the following
definition, which defines a crucial quantity that will turn up in our approximation bounds.

Definition A.10. The unit roundoff is defined as

u = 2−Δ.

We first recall a bound on the approximation error that the rounding entails:

Lemma A.11 (Reference [18], Theorem 2.2). Let x ∈ R be in the representation range of the

floating point system. Then

fl (x ) = (1 + δ ) · x , where |δ | < u .

We will also use fl (·) applied to a formula to denote a result of a floating-point evaluation of
this formula. We will use the so-called standard model [18, Section 2.2]:

Definition A.12 (Standard Model). The standard model assumes the following precision bounds
on binary operations. Given x ,y ∈ F and op ∈ {+,−,×,÷}, we have

fl (x op y) = (x op y) · (1 + δ ) where |δ | ≤ u,

as long as x op y is in the representation range.

In particular, even if x opy happens to have the exact representation in the floating point number
system F , we do not require the result of this floating point operation to be exact.

For the rest of the section, we will assume the standard model in our floating point RAM model.
Next, we present a technical lemma that will be useful for us:

Lemma A.13 (Simple Generalization of Lemma 3.1 in Reference [18]). Let δ1, . . . ,δn be such

that
∑n

i=1 |δi | < 1 and let ρi ∈ {−1, 1} for all i ∈ [n]. Then we have

n∏
i=1

(1 + δi )
ρi = 1 + θ ,

17Since we are using � bits to represent a.
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where

|θ | ≤
∑n

i=1 |δi |
1 −∑n

i=1 |δi |
.

Finally, we present approximation error bounds for computing a bounded-degree rational func-
tion, which will be crucial in our runtime analysis of Fast-Decoder:

Lemma A.14. Let f (X1, . . . ,XN ) and д(X1, . . . ,XN ) be multi-linear polynomials18 such that both

satisfy the following properties:

• the degree is at most d
• there are at mostm monomials

• all the coefficients are non-negative and have exact representation in the floating point number

system.

Further, let x , x̃ ∈ RN≥0, be such that there exists an ε > 0 such that for every i ∈ [N ], we have��x i − x̃ i �� ≤ εx i ,

and, moreover, let e0 be such that all x̃ i and all coefficients of f ,д lie in [2−e0 , 2e0 ]. Then, assuming

4 (d · ε + (d + logm) · u) + 1 ≤ 1

2
, (37)

e1 := 2(d + 1) (e0 + 1) + 4 logm + 1 ≤ 2�, (38)

we have that ����� f (x )д(x )
− fl

(
f (x̃ )

д(x̃ )

) ����� ≤ 8 · (d · ε + (d + logm + 1) · u) · f (x )
д(x )

, (39)

and, moreover, �����log fl

(
f (x̃ )

д(x̃ )

) ����� ≤ e1, (40)

where the (
f (x̃ )
д (x̃ )

) is computed by using pairwise operations (and paying for approximation error for

each such operation as in the standard model).

Proof. We will compute (
f (x̃ )
д (x̃ )

) by first computing each monomial in f (x̃ ) and д(x̃ ) and then

summing the at-most m values in a depth logm tree fashion. Finally, we divide f (x̃ ) by д(x̃ ) to
obtain our answer.

For notational convenience for each i ∈ [N ], define εi such that x̃ i = (1 + εi ) · x i . Note that we
have |εi | ≤ ε .

To see the error bound, consider an arbitrary monomial, which we assume WLOG to be
∏d

i=1 Xi .

We compute
∏d

i=1 x̃ i in the obvious way. It is easy to check that (
∏d

i=1 x̃ i ) = (
∏d

i=1 x̃ i )·
∏d−1

i=1 (1+δi ),
where |δi | ≤ u. Further, by definition of εi , we have

fl ��
d∏
i=1

x̃ i�� = ��
d∏
i=1

x i�� ·
d∏
i=1

(1 + δi ) (1 + εi ),

where for notational simplicity define δd = 1.
To apply the error bounds for the floating point operations, we need to argue that all the

results of the multiplications in the computation above are within the representations range.
Indeed, since x̃ i ≥ 2−e0 , all the intermediate results in the multiplication above are at least

18The result can be proven for general polynomials as well. However, since we only need the result for multilinear polyno-

mials and the notation for multi-linear polynomials is slightly cleaner, we stick with the multi-linear case.
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( 2−e0
1+u )

d+1 ≥ 2−(e0+1)(d+1) . Similarly, for the upper bound: Since x̃i ≤ 2e0 , all the intermediate re-

sults are at most ((1 + u)2e0 ) (d+1) ≤ 2(e0+1)(d+1) , which is assumed to be within the representation
range (38).

Now let us consider the computation of fl
(
f (x̃ )
)
. LetM be the collection of all subset of size at

most d that correspond to the monomials in f (X1, . . . ,XN ). Then when computing fl
(
f (x̃ )
)
, for

each S ∈ M, we first compute fl
(∏

i ∈S x̃ i
)
, which satisfies by the above discussion,

m̂S
def
= fl ��

∏
i ∈S

x̃ i�� = ��
∏
i ∈S

x i�� ·
∏
i ∈S

(1 + δi ) (1 + εi ).

Now recall, we need to compute
∑

S ∈M m̂S . This in turn adds more error. In particular, if we use
the algorithm that computes the sum in a recursive-pairwise manner, then we get that

fl
(
f (x̃ )
)
=
∑
S ∈M

m̃S ,

where

m̃S = m̂S

log |M |∏
j=1

(
1 + δ (S )

j

)
,

where each |δ (S )
j | ≤ u. In other words, we have

m̃S = ��
∏
i ∈S

x i�� · ��
∏
i ∈S

(1 + δi ) (1 + εi )�� · ���
log |M |∏
j=1

(
1 + δ (S )

j

)��� .
The above along with Lemma A.13, shows that for every S ∈ M,������m̃S − ��

∏
i ∈S

x i��
������ ≤ |S | (ε + u) + logm · u

1 − |S | (ε + u) + logm · u · ��
∏
i ∈S

x i��
≤ 2 · (d (ε + u) + logm · u) · ��

∏
i ∈S

x i�� ,
here the first inequality follows from the facts that |M| ≤ m, |δi | ≤ ε , |δ (S )

j | ≤ u and |εi | ≤ ε and

the second inequality follows from the fact that |S | ≤ d and d (ε +u) + logm ·u ≤ 1
2 (which in turn

follows from Lemma 37).
Now, using the fact that all cofficients in f (x ) are non-negative and have an exact representation

in the floating point number system, the above then implies that��fl ( f (x̃ )) − f (x )�� ≤ 2 · (d (ε + u) + logm · u) · f (x ).
By a similar argument, we get��fl (д(x̃ )) − д(x )�� ≤ 2 · (d (ε + u) + logm · u) · д(x ).
As earlier, to apply the error bounds on the result of each floating point addition in the calcu-
lation, we need to ensure that all results of all the intermediate computations are within the
representation range. Since we are adding exactly represented non-negative values, the lower
bound of the representation range is trivially smaller than any of those intermediate values. The
largest intermediate value can appear at the end of the calculation and is upper bounded by

(1 + u)logmm((1 + u)2e0 )d+1) ≤ 2(d+1)(e0+1)+2 logm , which is assumed to be in the representation
range (38).

Then note that to compute the final answer, we divide fl
(
f (x̃ )
)

by fl
(
д(x̃ )
)
, which along with

Definition A.12, Lemma A.13, and Lemma 37, proves the claimed bound in Equation (39), as desired.
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Moreover, since | log fl
(
д(x̃ )
) | ≤ (d + 1) (e0 + 1) + 2 logm, and similarly for | log fl

(
f (x̃ )
) |, the

quotient satisfy | log( f (x̃ )
д (x̃ )

) | ≤ 2(d + 1) (e0 + 1) + 4 logm + 1 = e1, proving Equation (40). �

Finally, we state the definition of a floating point RAM:

Definition A.15 (Floating Point RAM Model). A floating point RAM works with numbers in the
floating point system as in Definition A.9 with � = O (logn) for inputs of size n. Each arithmetic
operation in the floating point number system is assumed to take unit time.

We note that in the above, each floating point number can be represented with constant many
registers ofO (logn) bits and that each of the basic floating operations translates to constant many
operations over constant many registers of O (logn) bits. In other words, each such floating point
operation can be done in O (1) time in the standard RAM model, and this justifies the assumption
on floating point operations taking unit time in the above definition.

Runtime analysis of Fast-Decoder. We are now ready to do a runtime analysis of Fast-
Decoder.

Lemma A.16. For n = ks , Fast-Decoder runs in Oq,k (n logn) time assuming unit cost infinite

precision arithmetic. Furthermore, it can be implemented in a bounded-precision floating point RAM

model (of Definition A.15) to compute every intermediate real number to within an additive error of

1/4 in Oq,k (n logn) time, as long as the description of the channel CY |Z is given in a floating point

number system using O (logn) bits per conditional probability. In other words, bounded-precision

Fast-Decoder can also be implemented in Oq,k (n logn) time in the floating point RAM.

Proof. We first remark that we use a “truth-table” representation for each probability distribu-
tion, i.e., we store tables with q and qk floating point numbers, respectively, to represent a distribu-
tion in Δ(Fq ) and Δ(Fkq ), respectively. In other words, each Zj for each j ∈ [k]s is a vector length

q, andWi for each i ∈ [k]s−1 is a vector of length qk .
Let us separate out the computing on real numbers and the rest. It is easy to see that for a

recursive call with n = ks , all the operations that do not involve floating point operations can be
done inOq,k (n) time. We also note that Lines 9 and 14 are the only places where we have to perform
floating point operations. Further, it can be checked that there are Oq,k (n) such operation. Thus,
the running time (in both infinite precision setting and floating point RAM model), T (n) of Fast-
Decoder satisfies the recurrence T (n) ≤ kT (n/k ) + Oq,k (n), which yields T (n) = Oq,k (n logn).

Finally, we prove the claim on the claimed precision in the floating point RAM model. We
note that while our final desired precision is only an additive 1/4, intermediate precision needs
to be high, since the precision goes down at each recursive call. More precisely, our goal is to
use Lemma A.14 to bound this error. Before we can apply Lemma A.14, we verify that the pre-
conditions of the lemma holds.

As mentioned, Lines 9 and 14 are the only places where we have to perform floating point
operations are the only places to perform floating point operations. In particular, the input are
the N = q · ks probability values in Z (denote these N probability values by p = (p1, . . . ,pN )).
Line 9 computes for each of the qk values in Wi a degree k multi-linear polynomial in k of the
N variables (in fact, this polynomial is actually a monomial). Line 14 is where we update the qk

values ofWi . In particular, each computed value is a rational function
f (p )
д (p ) , where f (X1, . . . ,XN )

is still a monomial in k variables and д(X1, . . . ,XN ) is a multilinear polynomial of degree k with
at most qk monomials each with a coefficient of 1. Note that f and д satisfy the pre-conditions of
Lemma A.14.
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Now, consider a recursive call to Fast-Decoder with s ← s−i . We first note that we do not have
access to p but rather an approximation p̃ where each entry has an error bounded by 1± εi , where
we define εi soon. Moreover, we will maintain the bound ei on the magnitude of the exponents of
the approximations at the ith level of the recursion, namely we shall ensure that on the ith level
of recursion for each j we have | log p̃ j | ≤ ei ; the ei will be defined soon as well.

First, we note that by Lemma A.11, we have that ε0 ≤ u, and e0 ≤ 2O (logn) , since we assumed
that the description of the channel is specified using O (logn) bits. Now applying Lemma A.14 with
d ← k,m ← qk , ε ← εi ,x ← p, and x̃ ← p̃ from Equation (39) (it can be verified that Lemma 37
will be satisfied with our parameter choice), we get

εi+1 ≤ 8 (k · εi + (k + k logq + 1) · u) ≤ 32 · k logq · εi ,
where the inequality uses k ≥ 1 and the fact that εi is increasing in i and hence u ≤ ε0 ≤ εi . Thus,
we have that

εs ≤ (32 · k logq)s · u .
Similarly, from Equation (40), we get

ei+1 ≤ 2(k + 1) (ei + 1) + 4k logq + 1 ≤ (13k logq) · ei ,
and therefore es ≤ (13k logq)s · e0. Since ei ≤ es for each i ≤ s , to ensure condition Lemma 38 in
all applications of Lemma A.14, it is enough to pick � such that (13k logq)se0 ≤ 2� , that is,

� ≥ s · (log 13 + logk + log logq) + log e0.

However, note that at any stage the additive error for any probability value calculated by Fast-
Decoder is upper bounded by εs . Thus, if we pick

� ≥ s · (logk + log logq + 5) + 2,

then we have εs ≤ 1
4 (since u = 2−�). The proof is complete by noting that if we chose � to be

maximum of those two necessary lower bounds bounds, then we have � = Ok,q (logn) and hence
we indeed are working with a floating point RAM model. �

Correctness of Fast-Decoder. With the runtime analysis of Fast-Decoder out of the way, in
the next lemma we show that Fast-Decoder is equivalent to the SC-Decoder on the same input.
For this lemma, we assume that [n] is equated with [k]s and elements of [k]s are enumerated in
lex order by SC-Decoder. Also it would be useful to keep Remark A.6 and Remark A.1 in mind.

Lemma A.17. Let Z be a product distribution (where each Z i ∈ Δ(Fq ) is a distribution over Fq ),

and let α ∈ (Fq ∪ {⊥})[k]s . For i ∈ [k]s , let P i be the quantity defined on Line 5 of SC-Decoder

for input (Z ;α ), and let Qi be from the output of Fast-Decoder(Z ;α , s ). Then we have for every

i ∈ [k]s , P i = Qi and

Fast-Decoder(Z ;α ) ·M ⊗s = SC-Decoder(Z ;α ).

Furthermore, the output of the precision-bounded Fast-Decoder equals the output of an approximate-

successive-cancellation decoder on (Z ;α ).

Proof. We prove the lemma by induction on s . For s = 0, the lemma is immediate (from line 5
in SC-Decoder and line 4 in Fast-Decoder), so assume the lemma holds for s ′ < s .

Our proof will compare two sets of variables, Û
F
from the definition of Fast-Decoder and Û

SC
,

which we define next. Given Z ,α as in the statement of the lemma, letU be the joint distribution
defined by

U := ZM ⊗s .
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Now define Û
SC

such that for all i ∈ [k]s :

Û
SC
i =

⎧⎪⎪⎨⎪⎪⎩
argmaxx ∈Fq Pr

(
U i = x |U ≺i = Û

SC
≺i

)
= argmaxx ∈Fq X i (x ) if α i = ⊥

α i if α i ∈ Fq
. (41)

We start by noting that Û
SC
= SC-Decoder(Z ;α ) (this can be argued, e.g., by induction on i). If

α i ∈ Fq , then it is easy to check that Û
F
i = Û

SC
i , so for the rest of the proof we will assume this as

given and the focus will be on indices i such that α i = ⊥. Next, we note that the outputs Ẑ and

Û
F

of Fast-Decoder are related by the condition Ẑ = Fast-Polar-Encoder(Û
F
). (In particular,

Lines 4, 12, and 16 correspond exactly to the code of Fast-Polar-Encoder.) Restated, this implies

Ẑ ·M ⊗s = Û
F
. (42)

Thus to prove the lemma, it suffices to prove that Û
F
= Û

SC
. To do so, we use the recursive

structure of Fast-Decoder and prove that for every j ∈ [k], Û
F
[j, ·] = Û

SC
[j, ·]. We do so by induction

on j.

First, recall that Û
F
[j, ·] = Fast-Decoders−1 (Z

′(j ) ;α [j, ·]) with

Z ′(j ) = {(Z ·M )[j, ·] |(Z ·M )[<j, ·] = V̂ [<j, ·]},

where the equality follows from Lines 9 and 14. To compare with Û
SC
[j, ·], we need a inductive struc-

ture on Û
SC

, and we use a simple property that we describe informally first and then describe in
formal notation. Informally, if the input stream to the successive cancellation decoder is split into
three parts, the prefix A, the central part B, and the suffixC , then the decoding on the central part
is independent of the suffix. Furthermore, the decoding of the central part is the output of the suc-
cessive cancellation decoder on a modified input that incorporates the conditioning induced by the
decoding of the prefix. Formally, the above can be expressed as the following: Let A ∈ (Δ(Fq ))

a ,

B ∈ Δ(Fq )
b , and C ∈ Δ(Fq )

c and α ∈ (Fq ∪ {⊥})a , β ∈ (Fq ∪ {⊥})b , and γ ∈ (Fq ∪ {⊥})c . If

Â = SC-Decoder(A,α ), then we have SC-Decoder(A◦B◦C,α◦β◦γ )[a+1,a+b] = SC-Decoder(B̃, β ),

where B̃i = {Ba+i |A = Â} for i ∈ [b]. Applied in our context with A = U [<j, ·] and B = U [j, ·], we

get Û
SC
[j, ·] = SC-Decoder(Ũ

(j )
,α [j, ·]), where Ũ

(j )
= {U [j, ·] |U [<j, ·] = Û

SC
[<j, ·]} plays the role of B̃.

We now use induction to show that the resulting sequences Û
F
[j, ·] and Û

SC
[j, ·] are the same.

By the (outer) inductive hypothesis (on s), it suffices to show that Z ′(j ) · M ⊗s−1 is distributed

identically19 to Ũ
(j )

. We now simplify the former. We have

Z ′(j ) ·M ⊗s−1 = {(Z ·M ⊗s )[j, ·] |(Z ·M )[<j, ·] = V̂ [<j, ·]} = {U [j, ·] |(Z ·M )[<j, ·] = V̂ [<j, ·]},
where the first equality uses the fact that (Z ·M )[j, ·] ·M ⊗s−1 = (Z ·M ⊗s )[j, ·].

Comparing with the definition of Ũ
(j )
= {U [j, ·] |U [<j, ·] = Û

SC
[<j, ·]}, it thus suffices to show that

the conditioning events (Z ·M )[<j, ·] = V̂ [<j, ·] and U [<j, ·] = Û
SC
[<j, ·] are identical. For every � < j,

we have, by applying Equation (42) to the outputs of Fast-Decoder(Z ′(j ),α [�, ·], s − 1) in Line 12,

we have V̂ [�, ·] ·M ⊗s−1 = Û
F
[�, ·]. Now using (inner) inductive hypothesis on � < j, we have V̂ [�, ·] ·

M ⊗s−1 = Û
SC
[�, ·]. We use this and the invertibility of M ⊗s−1 to rephrase the event (Z · M )[<j, ·] =

V̂ [<j, ·] as (Z · M )[<j, ·] · M ⊗s−1 = V̂ [<j, ·] · M ⊗s−1 = Û
SC
[<j, ·]. Simplifying the left-hand side, we get

19Technically, we want Z ′(j ) to be identically distributed to Ũ
(j )

, but this condition is equivalent, since M⊗s−1 has full

rank.
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(Z ·M )[<j, ·] ·M ⊗s−1 = (Z ·M ⊗s )[<j, ·] = U [<j, ·]. Thus we get that the two events are indeed identical

and thus yield Û
F
[j, ·] = Û

SC
[j, ·].

The proof that P [j, ·] = Q [j, ·] for every j ∈ [k] is completely similar, and we omit the details.
Furthermore, note that an equivalent view of Fast-Decoder is that it is an efficient algorithm
to compute the Qi ’s, which it then uses to run SC-Decoder. Thus, if a bounded-precision Fast-
Decoder computes every entry of P i to within an additive error of 1/4, then the bounded precision
Fast-Decoder implements an approximate-successive-cancellation decoder. �

Proofs of Theorem 1.11 and Theorem 1.14. Now we can prove Theorem 1.11 (modulo Claim A.4,
which we prove in the next sub-section).

Proof of Theorem 1.11. In the model of infinite precision arithmetic, Theorem 1.11 follows
from Theorem A.5 and the equivalence of SC-Decoder and Fast-Decoder from Lemma A.17
with the running time bound following from Lemma A.16.

In the bounded precision case, by Lemma A.17 we have that the bounded-precision Fast-
Decoder implements an approximate-successive-cancellation decoder. Applying Theorem A.5
again in this setting, we have that the decoding error probability still remains O (nτ logq), and the
running time of O (n logn) from Lemma A.16 is now in the standard floating point RAM model. �

Finally, Theorem 1.14 is essentially a corollary of Theorem 1.11 and the definition of (exponen-
tial) strong polarization.

Proof of Theorem 1.14. Fix some constant c , and take γ < k−c−1 log−1 q, with n = kt . Note
that this implies that

γ t =
1

(kt )c+1 · logt q
=

1

(kt )c+1 · logt q
. (43)

By the definition of strong polarization property, we know that for some constants β,η, mar-
tingale Xt is (γ t ,γ t , β · ηt )-polarizing. Hence, by Theorem 1.11, the corresponding polar code has
rate at least

Capacity(C) − βηt − γ t

for t = Θη,β (log(1/ε )), and we have βηt + γ t ≤ ε , where the inequality follow from Equation (43)
and our choice of t .

The probability of decoding failure is at most

nγ t logq ≤ n(n)−c−1 log−t+1 (q) ≤ n−c ,

where the first inequality follows from Equation (43).
By the definition of strong polarization property, we know that for some constants β,η,Λ, mar-

tingale Xt is (2−2Λt ,γ t , β · ηt )-polarizing. We use the same choice of t as in the strong polarizing
case, and using the same argument as in that case we get that the polar code has the claimed rate.
The probability of decoding error is at most

n logq · 2−2Λt = n logq · 2−2
Λ

logn
logk
= n logq · 2−n

Λ
logk ≤ 2−n

β ′

for some β ′ = ΩΛ,k,q (1), as desired. �
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A.2.3 Arıkan Martingale and Polar Coding. Here we build a correspondence between the defi-
nition of the Arıkan Martingale and the process of polar coding, which was used in the proof of
Claim A.4.

Lemma A.18. For a matrix M ∈ Fk×kq and symmetric channel CY |Z , let {Xt } be the associated
Arıkan Martingale. For a given t , let L = M ⊗t be the polarization transform, and let n = kt be the
block length. Let the channel inputs Z i be i.i.d. uniform in Fq and channel outputs Y i ∼ CY |Z (Z i ).

Then, for a uniformly random index i ∈ [n], the normalized entropy H ((ZL)i | (ZL)<i ,Y ) is dis-
tributed identically as Xt .

Proof. Throughout this proof, we will switch to considering vectors in Fk
t

q as tensors in (Fkq )
⊗t ,

for convenience—this correspondence is induced by lexicographic ordering ≺ on tuples [k]t . Also,
we will writeH (Z ) to mean the operatorH acting on Z . More specifically, for a linear map defined
by matrix H , we use H (Z ) = ZH . In this notation, we wish to show that the distribution of Xt is

identical to H ((M ⊗t (Z ))i | Y , (M ⊗t (Z ))≺i ) for a uniformly random multiindex i ∈ [k]t .
We will show by induction that for all t , there is some permutation of coordinates20 σ ′ : [k]t →

[k]t such that the joint distributions

{(A′,B′)}(A′,B′)∼Dt
≡ {(M ⊗t (Z ),σ ′(C (Z )))}Z ∼(Fkq )⊗t , (44)

where (A′,B′) ∼ Dt are the distributions defined in the t th step of the Arıkan martingale, and
Z ∼ (Fkq )

⊗t is sampled with i.i.d. uniform coordinates. This is sufficient, because a permutation of
the channel outputs does not affect the relevant entropies. That is,

H (A′i | A′≺i ,B′) = H (A′i | A′≺i ,σ ′(B′)).

First, the base case t = 0 follows by definition of the distribution D0 in the Arıkan martingale
(and the fact that M (Z 1) ∼ Fq ).

For the inductive step, assume the claim holds for t − 1. Let σ be the permutation guaranteed

for t − 1. For each j ∈ [k], sample an independent uniform Z (j ) ∼ (Fkq )
⊗t−1 and define

(A(j ),B (j ) ) := (M ⊗t−1 (Z (j ) ) , σ (C (Z (j ) ))). (45)

By the inductive hypothesis, (A(j ),B (j ) ) ∼ Dt−1, for each j ∈ [k].

As in the Arıkan martingale, define (A′,B′) deriving from {(A(j ),B (j ) )}j ∈[k] as

A′
[i, ·] := M ((A(1)

i , . . . , A
(k )
i )) and B′[j, ·] := B (j ) . (46)

Note that B′ can equivalently be written (unwrapped) as

B′ := (B (1),B (2), . . . ,B (k ) ).

By definition of the Arıkan martingale, we have (A′,B′) ∼ Dt .
Finally, define Z ∈ (Fkq )

⊗t by

Z [·, j] := Z (j ) . (47)

To finish the proof, we will show that (A′,B′) = (M ⊗t (Z ),σ ′(C (Z ))) for some permutation σ ′.
The main claim is the following.

Claim A.19. For every instantiation of the underlying randomness in Z , we have

A′ = M ⊗t (Z ).

20This is in fact just a reversal of the coordinates, i.e., σ ′((i1, i2, . . . it )) = (it , . . . , i2, i1).
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Proof of Claim A.19. Expanding the recursive definition of the tensor product, Equation (2),
we have

[M ⊗t (Z )][i, ·] = M ((W (1)
i ,W

(2)
i , . . .W

(k )
i )),

where

W (j ) := M ⊗t−1 (Z [·, j]) = M ⊗t−1 (Z (j ) ) = A(j ) .

Here the last equality is by the inductive assumption. Thus,

[M ⊗t (Z )][i, ·] = M ((A(1)
i , . . . , A

(k )
i ))

= A′[i, ·]. (By definition, given in Equation (46))

And so M ⊗t (Z ) = A′ as desired. �

Continuing the proof of Lemma A.18, we now have

(A′ , B′) = (A′ , (B (1),B (2), . . . ,B (k ) ))

(σ (C (Z (1) )),σ (C (Z (2) )), . . . ,σ (C (Z (k ) ))) (Definition of sampling, Equation (45))

= (A′ , σ ′(C (Z ))) (�)

= (M ⊗t (Z ) , σ ′(C (Z ))). (Claim A.19)

In the above, the equality in line (�) follows by taking σ ′ to be the permutation that sorts [k]t in
the order of least significant symbol first (based on our definition in Equation (47)) and then sorts
each group (thought of as [k]t−1 in the natural way) recursively according to σ . Unwinding this
recursion, one can see that σ ′ is in fact the symbol-reversal permutation on [k]t .

This establishes the equivalence of the distributions claimed in Equation (44) and completes the
proof. �
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