L)

Check for
updates

General Strong Polarization

JAROSLAW BLASIOK, Department of Computer Science, Columbia University, USA
VENKATESAN GURUSWAMI, Computer Science Department, Carnegie Mellon University, USA
PREETUM NAKKIRAN, Halicioglu Data Science Institute, University of California San Diego, USA
ATRI RUDRA, Computer Science and Engineering Department, University at Buffalo, USA
MADHU SUDAN, Harvard John A. Paulson School of Engineering and Applied Sciences,

Harvard University, USA

Arikan’s exciting discovery of polar codes has provided an altogether new way to efficiently achieve Shan-
non capacity. Given a (constant-sized) invertible matrix M, a family of polar codes can be associated with
this matrix and its ability to approach capacity follows from the polarization of an associated [0, 1]-bounded
martingale, namely its convergence in the limit to either 0 or 1 with probability 1. Arikan showed appropriate
polarization of the martingale associated with the matrix G, = (% (1)) to get capacity achieving codes. His
analysis was later extended to all matrices M that satisfy an obvious necessary condition for polarization.

While Arikan’s theorem does not guarantee that the codes achieve capacity at small blocklengths (specif-
ically in length, which is a polynomial in 1/e where ¢ is the difference between the capacity of a channel
and the rate of the code), it turns out that a “strong” analysis of the polarization of the underlying martingale
would lead to such constructions. Indeed for the martingale associated with Gy such a strong polarization was
shown in two independent works (Guruswami and Xia (IEEE IT’15) and Hassani et al. (IEEE IT’14)), thereby
resolving a major theoretical challenge associated with the efficient attainment of Shannon capacity.

In this work we extend the result above to cover martingales associated with all matrices that satisfy the
necessary condition for (weak) polarization. In addition to being vastly more general, our proofs of strong
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polarization are (in our view) also much simpler and modular. Key to our proof'is a notion of local polarization
that only depends on the evolution of the martingale in a single time step. We show that local polarization
always implies strong polarization. We then apply relatively simple reasoning about conditional entropies
to prove local polarization in very general settings. Specifically, our result shows strong polarization over
all prime fields and leads to efficient capacity-achieving source codes for compressing arbitrary i.i.d. sources,
and capacity-achieving channel codes for arbitrary symmetric memoryless channels. We show how to use
our analyses to achieve exponentially small error probabilities at lengths inverse polynomial in the gap to
capacity. Indeed we show that we can essentially match any error probability while maintaining lengths that
are only inverse polynomial in the gap to capacity.

CCS Concepts: « Theory of computation — Error-correcting codes; « Mathematics of computing —
Coding theory; Stochastic processes;

Additional Key Words and Phrases: Polar codes, polarization, capacity-achieving codes

ACM Reference format:

Jaroslaw Blasiok, Venkatesan Guruswami, Preetum Nakkiran, Atri Rudra, and Madhu Sudan. 2022. General
Strong Polarization. J. ACM 69, 2, Article 11 (March 2022), 67 pages.

https://doi.org/10.1145/3491390

1 INTRODUCTION

Polar codes, proposed in Arikan’s remarkable work [2], gave a fresh information-theoretic ap-
proach to construct linear codes that achieve the Shannon capacity of symmetric channels, to-
gether with efficient encoding and decoding algorithms. About a decade after their discovery, there
is now a vast and extensive body of work on polar coding spanning hundreds of papers. The un-
derlying concept of polarizing transforms has emerged as a versatile tool to successfully attack
a diverse collection of information-theoretic problems beyond the original channel and source
coding applications, including wiretap channels [22], the Slepian-Wolf, Wyner-Ziv, and Gelfand-
Pinsker problems [19], broadcast channels [11], multiple access channels [1, 8], and interference
networks [31]. We recommend the survey by Sasoglu [7] for a nice treatment of the early work on
polar codes. On the practical side, polar codes show impressive coding gains when a list decoding
variant of the decoder is applied [29] and have been adopted for the enhanced mobile broadband
control channels for the 5G NR (New Radio) interface.

Arikan’s original analysis was asymptotic and established that capacity can be achieved in the
limit of large block lengths but did not quantify the speed of convergence to capacity. Effective
finite-length convergence bounds were provided several years later in References [15-17], estab-
lishing that the polar coding approach leads to a family of codes of rate C — ¢ for transmission
over a channel of (Shannon) capacity C, where the block length of the code and the decoding time
grow only polynomially in 1/¢. In contrast, for all previous constructions of codes, the decoding
algorithms required time exponential in 1/¢. Getting a polynomial running time in 1/¢ was one of
the central theoretical challenges in the field of algorithmic coding theory, and polar codes were
the first to overcome this challenge. Follow-up works have also investigated concrete bounds on
the scaling exponent yi, i.e., the finite exponent u for which the block length of the code can be
bounded by (1/¢)* [12, 23], culminating in recent works that achieved y — 2, which is the optimal
value, first for the erasure channel [10, 25] and later for all channels [13, 30] using variants of polar
codes.

The analyses of polar codes turn into questions about polarizations of certain martingales (which
we refer to as Arikan martingales in this work). The vast class of polar codes alluded to in the
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previous paragraph all build on polarizing martingales, and the results of References [15-17] show
that for one of the families of polar codes, the underlying martingale polarizes “extremely fast”—a
notion we refer to as strong polarization and will define shortly.

The primary goal of this work is to understand the process of polarization of martingales and
in particular to understand when a martingale polarizes strongly. In attempting to study this ques-
tion, we come up with a local notion of polarization and show that this local notion is sufficient to
imply strong polarization. Applying this improved understanding to the martingales arising in the
study of polar codes, we show that a simple necessary condition for weak polarization of such mar-
tingales is actually sufficient for strong polarization. This allows us to extend the previous results
on strong polarization, which only applied to a specific class of codes, to a broad class of codes and
show essentially that all polarizing codes lead to polynomial convergence to capacity. We further
show that this can be achieved while maintaining the same exponentially falling error probabil-
ity achieved in the original asymptotic analyses that did not give any quantitative bounds on the
convergence to capacity. Below we formally describe the notion of polarization of martingales and
our results concerning them, along with their implications for quantitatively strong convergence
to capacity of polar codes when applied to the associated Arikan martingales. Figure 1 gives a de-
tailed roadmap of this article with different columns indicating different categories of results and
each column describing a hierarchy of results.

1.1 Polarization of [0, 1]-martingales

Our interest is mainly in the (rate of) polarization of a specific family of martingales that we call
the Arikan martingales. We will define these objects later but first describe the notion of polariza-
tion for general [0, 1]-bounded martingales. The middle left (green) column in Figure 1 shows the
various notions of polarization that we define in this section.

Recall that a sequence of random variables Xy, ..., X}, ... is said to be a martingale if for every
tand ag, . . ., a; it is the case that E[X;11|Xo = ao, . .., X; = a;] = a;. We say that that a martingale
is [0, 1]-bounded (or simply a [0, 1]-martingale) if X; € [0,1] for all ¢ > 0.

Definition 1.1 (Weak Polarization). A [0, 1]-martingale sequence Xy, X1, ..., X, ... is defined to
be weakly polarizing if lim,_,{X;} exists with probability 1, and this limit is either 0 or 1.

Note that the limit of the martingale sequence Xy, X1, ..., X}, . .. is a Bernoulli random variable
with expectation Xj.!

Thus, a polarizing martingale does not converge to a single value with probability 1 but rather
converges to one of its extreme values. For the applications to constructions of polar codes, we need
more explicit bounds on the rates of convergence leading to the notions of (regular) polarization
and strong polarization defined below in Definitions 1.3 and 1.4, respectively.

Definition 1.2 ((t¢, Ty, €)-Polarization). For functions 7z, 7, ¢ : Z© — R2% a (o, 1]-martingale
sequence Xy, X1, . .. X}, ... is defined to be (z¢, 7, €)-polarizing if for all ¢ we have

Pr(X; € (tp(t),1 — (1)) < (t).

Definition 1.3 (Regular Polarization). A [0, 1]-martingale sequence Xy, X1, ..., X}, ... is defined
to be regular polarizing if for all constant y > 0 there exist e(t) = o(1), such that the martingale
{Xt}is01s (y', y', e(t))-polarizing.

IThe claim on expectation follows, since by definition, E [X;4;] = E [X,].
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Capacity achieving Weak polarization
codes (Def. 1.1)
Mixing matrix M
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3n, n=¢ decoding Regular polarization (DS )
error @ (Def. 1.3)
Strong polariza- Local polarization Matrix polariza-
tion (Def. 1.4) « (Def. 1.6) @ tion (Def. 4.3)
Exp. local Exp. matrix
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(Def. 1.8) (Def. 43)
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Fig. 1. Overview of our results (excluding those in Section 1.6). The blue boxes (on the extreme left) represent
the various coding results (n is the code block length, ¢ and < 1 are absolute constants). The green boxes
(middle left) are the various notations of polarizations that we study in the article. The orange boxes (middle
right) are the two notions of local polarization and the red boxes (extreme right) are the two notions of
matrix polarizations we use. Purple boxes (top and bottom on right) show the notions of mixing matrices
that we use. All the arrows denote the various results we prove (except for Theorem 1.10, which is implicit
in Arikan [2]) in this article.

We refer to the above as being “sub-exponentially” close to the limit (since it holds for every
y > 0). While weak polarization by itself is an interesting phenomenon, regular polarization (of
Arikan martingales) leads to capacity-achieving codes (though without explicit bounds on the
length of the code as a function of the gap to capacity) and thus regular polarization is well explored
in the literature and tight necessary and sufficient conditions are known for regular polarization
of Arikan martingales [3, 20].

To get codes of block length polynomially small in the gap to capacity, an even stronger notion
of polarization is needed, where we require that the sub-exponential closeness to the limit happens
with all but exponentially small probability. We define this formally next.
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Definition 1.4 (Strong Polarization). A [0, 1]-martingale sequence Xy, X1, ..., X}, ...is defined to
be strongly polarizing if for all y > 0 there exist 0 < n < 1 and < oo such that the martingale
{Xi}e0is (y',y", B - n*)-polarizing.

Finally, to get codes where the decoding error probability is exponentially small in the block
length, the codes need to polarize even more strongly. We abstract this notion as follows:

Definition 1.5 (Exponentially Strong Polarization). We say that X; has A-exponentially strong
polarization if for every 0 < y < 1 there exist constants 0 < n < 1 and < oo such that the

martingale {X;};50 is (Z‘ZM, v%, Bn')-polarizing.

Note that this definition is asymmetric with respect to the two boundaries and expects tighter
polarization when X; — 0 than when X; — 1. The reasons for this un-aesthetic choice are the
following: (1) For the strong decoding results, the tighter polarization when X; — 0 suffices. (2)
Several of the martingales we consider do not achieve sufficiently tight polarization when X; — 1
(the A they achieve as X; — 1 is much smaller than what is needed in the decoding results). (3)
The analysis of the best polarizations when X; — 0 is completely different than the analysis when
X; — 1. Due to these reasons we work with this asymmetric definition of exponentially strong
polarization.

In contrast to the rich literature on regular polarization, results on strong polarization and expo-
nentially strong polarization are quite rare, reflecting a general lack of understanding of this phe-
nomenon. Indeed, while (roughly) an Arikan martingale can be associated with every invertible
matrix over any finite field Fy, the only concrete matrix for which exponentially strong polariza-

tion was known prior to this work was for G, = ( 1 ) [15-17].2

Part of the reason behind the lack of understanding of strong polarization is that polarization
is a “limiting phenomenon” in that one tries to understand lim;_,., X;, whereas most stochastic
processes, and the Arikan martingales in particular, are defined by local evolution, i.e., one that
relates X; ;1 to X;. The main contribution of this work is to give a local definitions of polarization
(Definitions 1.6 and 1.8) and then showing that these definitions imply strong and exponentially
strong polarization (Theorems 1.7 and 1.9). Later, we show that Arikan martingales polarize lo-
cally whenever they satisfy a simple condition that is necessary even for weak polarization. And
while the Arikan martingale itself is not locally exponentially polarizing, we show that the “two-
step” Arikan martingale is exponentially locally polarizing under the same simple condition. (The
“two step” version of a martingale Xo, X1, Xy, . . ., is just the martingale X, X5, X4, .. ..) As a conse-
quence, we get exponentially strong polarization for all Arikan martingales for which previously
only regular polarization was known.

1.2 Results I: Local to Strong Global Polarization of Martingales

Before giving the definition of local polarization, we motivate our definition using some simple
examples. Consider the martingale Zy, Z1, . . ., where Zy = 1/2,and Z;,1 = Z; + Y412~ %2 where
Yi,..., Y, ... are chosen uniformly and independently from {—1, +1}. Clearly, this sequence is
not polarizing (the limit of Z; is uniform in [0, 1]). One reason why this happens is that as time
progresses, the martingale slows down and stops varying much. We would like to prevent this,
but this is also inevitable if a martingale is polarizing and bounded. In particular, a polarizing
martingale would be slowed at the boundaries (i.e., when X is close to 0 or close to 1) and cannot

2 An exception is the work by Pfister and Urbanke [25], who showed that for the g-ary erasure channel for large-enough g,
the martingale associated with a ¢ X ¢ Reed-Solomon based matrix proposed in Reference [24] polarizes strongly, and the
resulting polar codes achieve scaling exponent tending to 2.
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vary much. The first condition in our definition of local polarization insists that this be the only
reason a martingale slows down (we refer to this as variance in the middle).

Next we consider what happens when a martingale is close to the boundary. For this part, con-
sider a martingale Zy = 1/2 and Z;1 = Z; + %Yt+1 min{Z;,1 — Z;}, where again Y1, ..., Y, ...
are chosen uniformly and independently from {-1, +1}. This martingale does polarize and even
shows regular polarization, but it can also be easily seen that the probability that Z, < % <27t s
zero (whereas we would like probability of being less than say 107/ to go to 1). So this martingale
definitely does not show strong polarization. This is so, since even in the best case the martingale is
approaching the boundary at a fixed exponential rate and not a sub-exponential one. To overcome
this obstacle we require that when the martingale is close to the boundary, with a fixed constant
probability it should get much closer in a single step (a notion we refer to as suction at the ends).

The middle right (orange) column in Figure 1 shows the notions of local polarization we define
in this section (the arrows from the orange column to the middle left (green) columns show the
main theorems in this section).

The definition below makes the above requirements precise.

Definition 1.6 (Local Polarization). A [0, 1]-martingale sequence Xy, ..., X}, ..., is locally polar-
izing if the following conditions hold:

(1) (Variance in the middle): For every r > 0, there is a § = 6(r) > 0 such that for all j, we
have: If X; € (7,1 - 1), then E[(X;11 — X;)?1X;] > 6.
(2) (Suction at the ends): There exists an @ > 0, such that for all ¢ < oo, there exists a 7 =
7(c) > 0, such that:
(@) If X; < 7, then Pr[X;4 < Xj/clXj] > a.
(b) Similarly, if 1 = X; < 7, then Pr[(1 - Xj,; < (1 = Xj)/c|X;] > a.
We refer to condition (a) above as Suction at the low end and condition (b) as Suction at the
high end.

When we wish to be more explicit, we refer to the sequence as («, 7(-), 0(-)) locally polarizing.

As such, it is not clear that this definition is of any use. For example, it (1) neither obviously
implies strong polarization nor (2) is it obviously satisfiable by any interesting martingale. In this
article, we address both these issues. First, we establish general theorems connecting local polar-
ization to strong polarization, as described in Theorems 1.7 and 1.9 below. Then, we leverage this
to prove quantitatively strong capacity-approaching properties of polar codes via the strong po-
larization of Arikan martingales associated with polar codes (Section 1.3). By our local-to-strong
conversion, this in turn follows from the local polarization of Arikan martingales, which we estab-
lish in Theorems 1.15 and 1.16.

THEOREM 1.7 (LOCAL vS. STRONG POLARIZATION). Ifa [0, 1]-martingale sequence Xy, ..., X¢, ...,
is locally polarizing, then it is also strongly polarizing.

If the suction at the ends shows by the martingale is even stronger, then we can get even stronger
polarization. The following definition captures the stronger suction property.

Definition 1.8 (Exponential Local Polarization). We say that X; has (1, b)-exponential local polar-
ization if it satisfies local polarization (Definition 1.6) and the following additional property:

(1) (Strong suction at the low end): There exists 7 > 0 such that if X; < 7, then Pr[X;; <
X;’|Xj] > 7.

Note that the interesting range for the parameter b is b > 1 and that is the range on which most
of our results will focus.
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In the same way that local polarization implies strong global polarization of a martingale, this
new stronger local condition implies a stronger global polarization behavior.

THEOREM 1.9 (LocAL TO GLOBAL EXPONENTIAL POLARIZATION). Let A,b,n > 0 be such that
A < nlog,b. Then, if a [0,1]-bounded martingale X,, X1, Xy, ... satisfies (n, b)-exponential local
polarization, then it also satisfies A-exponentially strong polarization.’

Theorems 1.7 and 1.9 are proved in Section 3. In the rest of this section, we turn to showing that
the notions of local polarization are not vacuous. Indeed, in later sections we show that the Arikan
martingales polarize locally (under simple necessary conditions). First, we give some background
on polar codes.

1.3 The Arikan Martingale and Capacity-achieving Polar Codes

The setting of polar codes considers an arbitrary symmetric memoryless channel and yields codes
that aim to achieve the capacity of this channel. These notions are reviewed in Section 2.2.1. Given
any g-ary memoryless channel Cy|z and invertible matrix M € FSXk , the theory of polar codes
implicitly defines a martingale, which we call the Arikan martingale associated with (M, Cy|z)
and studies its polarization. (An additional contribution of this work is that we give an explicit
compact definition of this martingale, see Definition 4.1. Since we do not need this definition for
the purposes of this section, we defer it to Section 4.) The consequences of regular polarization
are described by the following remarkable theorem. (Below we use M ® N to denote the tensor
product of the matrix M and N. Further, we use M®’ to denote the tensor of a matrix M with itself
t times.)

THEOREM 1.10 (AsyMPTOTIC CONVERGENCE TO CAPACITY; IMPLIED BY ARIKAN [2]). LetC be ag-
ary symmetric memoryless channel and let M € F’;Xk be an invertible matrix. If the Arikan martingale
associated with (M, C) polarizes regularly, then given ¢ > 0 and ¢ < oo there is a ty such that for
everyt > to there is a code C C Fg forn = k* of dimension at least (Capacity(C) — ¢) - n such that
C is an affine code generated by the restriction of (M™1)®" to a subset of its rows and an affine shift.
Moreover, there is a polynomial time decoding algorithm for these codes that has failure probability

c4

bounded by n™°.

To obtain codes with faster convergence to capacity, we will need stronger forms of polarization,
and a more quantitative version of this theorem, with effective upper bounds on t; as a function
of the gap ¢ to capacity. The following version relates parameters of polarization with the quality
of the associated code.

THEOREM 1.11 (QUANTITATIVE CONVERGENCE TO CAPACITY [2, 16, 17]). LetC be aq-ary symmet-
ric memoryless channel and let M € ]F";Xk be an invertible matrix. If the Arikan martingale associated
with (M, C) satisfies (t¢, Ty, €)-polarization, then for everyt, there is an affine code C, that is generated
by the rows of (M™1)®! and an affine shift, such that the rate of C is at least

Capacity(C) — () — (1),

and C can be encoded and decoded® in time O(nlogn) where n = k' and failure probability of the
decoder is at most O(n - log q - 7¢(t)).

$Note that to get n7log, b > A > 0 we need log, b > 0 and so b > 1.

“We remark that the encoding and decoding are not completely uniform as described above, since the subset of rows and
the affine shift that are needed to specify the code are only guaranteed to exist. In the case of additive channels, where the
shift can be assumed to be zero, the work of Tal and Vardy [28] (or Reference [16, Sec. V]) removes this non-uniformity by
giving a polynomial time algorithm to find the subset.

5The running times count the number of floating point operations where real numbers are maintained with O(log n) bits
of precision.
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Remark 1.12. So, in particular, if 7;,(¢), e(t) = O(p"), then we get ¢ close to capacity at block
lengths roughly (1/e)'°8*/1°8(1/P) which is a polynomial in ¢ provided p < 1. Of course, for the
code to be useful, we also need 7/(t) < k™. Both conditions are guaranteed by strong polarization.
A-exponentially strong polarization guarantees decoding failure probability at most O(n - logq -
exp(—~Q(n 0 k))).

This theorem is implicit in the works above, but for completeness we include a proof in Appen-
dix A.2.2 and Appendix A.2.3.

For any binary input symmetric channel, Arikan and Telatar [3] proved that the martingale
associated with the matrix G, = (% (1)), polarizes regularly (Arikan’s original paper [2] proved a

weaker form of regular polarization with () < 27°¢/%, which also sufficed for decoding error
going to 0). Subsequent work generalized this to other matrices with the work of Korada, Sasoglu,
and Urbanke [20] giving a precise characterization of matrices M for which the Arikan martingale
polarizes (again over binary input channels). We will refer to such matrices as mixing, formally
defined below for all finite fields.

Definition 1.13. (Mixing Matrix). A matrix M € F’;x" is said to be mixing if it is invertible
and none of the permutations of the rows of M yields an upper triangular matrix, i.e., for every
permutation 7 : [k] — [k] there exists i, j € [k] with j < (i) such that M; ; # 0.°

It is not too hard to show that the Arikan martingale associated with non-mixing matrices do
not polarize (even weakly). In contrast, Reference [20] shows that every mixing matrix over F,
polarizes regularly. Mori and Tanaka [24] show that the same result holds for all prime fields
and give a slightly more complicated criterion that characterizes (regular) polarization for general
fields. (These works show that the decoding failure probability of the resulting polar codes is at
most 2~ for some positive  determined by the structure of the mixing matrix—this follows from
an even stronger decay in the first of the two parameters in the definition of polarization. However,
they do not show strong polarization, which is what we achieve.)

As alluded to earlier, strong polarization is defined such that it yields codes with polynomial
gap to capacity, via Theorem 1.11.

THEOREM 1.14 (REFERENCES [2, 16, 17]). Let C be a q-ary symmetric memoryless channel, and
let M € P’;Xk be an invertible matrix. Suppose that the Arikan martingale associated with (M, C)
polarizes strongly.

Then, for every c there exists ty(x) = O(logx)’ such that for every e > 0 and every t > ty(1/e)
there is an affine code C that is generated by the rows of (M™')(®") and an affine shift, with the
property that the rate of C is at least Capacity(C) — ¢, and C can be encoded and decoded in time
O(nlogn) where n = k' and failure probability of the decoder is at most n™°.

If we assume that the Arikan martingale associated with (M, C) has exponentially strong polariza-

tion, then the failure probability of the decoder is at most exp(—n®) for some p > 0.°

The proof of this theorem, as a direct corollary from Theorem 1.11 is included in Appendix A.2.2
for completeness.

As alluded to earlier, the only Arikan martingales that were known to polarize strongly were
those where the underlying matrix was G, = (% (1)) Specifically, Guruswami and Xia [16] and

®We use 1-indexing in this article.

"The notation O (-) hides a constant factor that only depends on c.

8Throughout this article, we use the notation exp(x) to denote a function of the form ¢* for some constant ¢ > 1. The
exact value of ¢ may be different in each usage but will always be bounded away from 1.
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Hassani et al. [17] show strong polarization of the Arikan martingale associated with this matrix
over any binary input symmetric channel, and Guruswami and Velingker [15] extended to the
case of g-ary input channels for prime g. By using the concept of local polarization, we are able to
extend these results to all mixing matrices.

1.4 Results ll: Local Polarization of Arikan Martingales

The results in this subsection appear as the pink arrows (from top and bottom box on the right to
the middle right (orange) boxes) in Figure 1.

In our second main result, we show that every mixing matrix gives rise to an Arikan martingale
that is locally polarizing:

THEOREM 1.15 (LocAL POLARIZATION OF ARIKAN MARTINGALES). For every prime g, for every
mixing matrix M € F’;Xk, and for every symmetric memoryless channel Cy|z over g, the associated
Arikan martingale is locally polarizing.

Theorem 1.15 is proved in Section 5.5.
We also show that the “two-step martingale,” or equivalently the martingale associated with
M®? for mixing matrices M, is exponentially locally polarizing.

THEOREM 1.16 (EXPONENTIAL LOCAL POLARIZATION OF ARIKAN MARTINGALES). For every prime
q, € > 0, every mixing matrix M € F’;Xk, and for every symmetric memoryless channel Cy|z over
Fy, the Arikan martingale sequence associated with M®? and Cy |z is (%, 2 —¢)-exponentially locally
polarizing.

Theorem 1.16 is proved in Section 7.

1.5 Implications for Polar Codes with Polynomial Convergence to Capacity

Results in this section are the two bottom green arrows (from the middle left (green) boxes to the
left most (blue) boxes) in Figure 1.
As a consequence of Theorems 1.7, 1.14, and 1.15, we have the following theorem.

THEOREM 1.17 (PoLYNOMIALLY FAST CONVERGENCE TO CAPACITY AND INVERSE POLYNOMIAL ER-
ROR PROBABILITY). For every prime q, every mixing matrix M € F’;Xk, every symmetric memoryless
channel C over F,, and every c < oo, there is a polynomial p such that for every ¢ > 0, and every
n = k' > p(1/¢), there is an affine code C that is generated by the rows of (M™)(®") and an affine
shift, with the property that the rate of C is at least Capacity(C) —¢, and C can be encoded and decoded

c

in time O(nlogn) and failure probability of the decoder is at most n™°.

Again, as a consequence of Theorems 1.9, 1.11, and 1.16, we have the following theorem that
achieves decoding failure probability that is exp(—n?) for some > 0. We refer to such a function
as root-exponentially small, and when f§ — 1, we call it near-exponentially small.

THEOREM 1.18 (POLYNOMIAL CONVERGENCE TO CAPACITY & ROOT-EXPONENTIALLY SMALL ERROR
PROBABILITY). For every prime q, every mixing matrix M € F’(;Xk, and every symmetric memoryless
channel C over By, there is a polynomial p and > 0 such that for every ¢ > 0 and everyn = k' >
p(1/¢), there is an affine code C that is generated by the rows of (M™')(®") and an affine shift, with
the property that the rate of C is at least Capacity(C) — ¢, and C can be encoded and decoded in time
O(nlogn) and failure probability at most exp(—n®).

1.6 Additional Results Optimizing Decoding Error Probability

The above theorems shows that all polar codes associated with every mixing matrix achieves the
Shannon capacity of a symmetric memoryless channel efficiently, thus vastly expanding on the
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class of polar codes known to satisfy this condition. By choosing the mixing matrix carefully,
we can even achieve decoding error probability close to 27%"; specifically, we can get near-
exponentially small decoding error probability, i.e., falling as exp(—n#) for any desired < 1.

THEOREM 1.19 (NEAR-EXPONENTIALLY SMALL ERROR PROBABILITY AND POoLYNOMIAL CONVER-
GENCE TO CAPACITY). For every prime q, every symmetric memoryless channel C over Fy, and every
B < 1, there exists k, a mixing matrix M € ]FSX’C, and a polynomial p such that for every ¢ > 0 and

everyn = k' > p(1/e), there is an affine code C that is generated by the rows of (M~')(®") and an
affine shift, with the property that the rate of C is at least Capacity(C) — ¢, and C can be encoded and
decoded in time O(nlog n) and failure probability at most exp(—n”).

Theorem 1.19 is proved in Section 8.2.

Finally, for a broad class of channels, we show that we achieve nearly the best possible error
exponent for any given mixing matrix M, while achieving polynomial gap to capacity, using the
proofs of this article.

THEOREM 1.20 (POLYNOMIAL CONVERGENCE TO CAPACITY AT NO PRICE IN DECODING ERROR PROB-
ABILITY). SupposeM € IF"];Xk and 8 > 0 satisfy the condition that for every q-ary symmetric channel’
C and for every ¢ > 0, for sufficiently large n = k°, there is an affine code C of length n generated
by the rows of (M~1)(®%) of rate at least Capacity(C) — ¢ such that C can be decoded with failure
probability at most exp(—n¥).

Then, for every ' < f and every symmetric channel C’ with inputs from Fg, there is a polynomial
p such that for every e > 0 and everyn = k' > p(1/e¢) there is an affine code C that is generated by the
rows of (M™")(®") and an affine shift, with the property that the rate of C is at least Capacity(C’) — ¢,
and C can be encoded and decoded in time O(nlogn) and failure probability at most exp(—n").

Theorem 1.20 is proved in Section 8.3. It is worth emphasizing two desirable aspects about
Theorem 1.20:

(1) We only need to assume that polar codes based on M achieve capacity for the g-ary symmet-
ric channel but get a conclusion for every symmetric channel (with F, inputs).

(2) Further, we assume nothing about the speed of convergence to capacity for the g-ary sym-
metric channel and conclude polynomial convergence to capacity (positive scaling exponent)
for arbitrary symmetric channels. We do assume root-exponential decoding error probabil-
ity for the g-ary symmetric channel, but this has been established for all mixing matrices in
the limit of n — oo [20, 24]. Moreover, in this limit [20] gives a characterization of the best
possible exponent f for any given matrix M. Theorem 1.20 asserts that essentially the same
characterization applies with polynomial convergence to capacity.

1.7 Comparison with Previous Analyses of (Strong) Polarization

While most of the ingredients going into our eventual analysis of strong polarization are familiar
in the literature on polar codes, our proofs end up being much simpler and modular. We describe
some of the key steps in our proofs and contrast them with those in previous works.

Definition of Local Polarization. While we are not aware of a definition similar to local po-
larization being explicit in the literature before, such notions have been considered implicitly be-
fore. For instance, for the variation in the middle (where we require that E[(X,4; — X;)?] > 0 if
X; € (r,1-1)) some of the previous analyses (e.g., in References [15, 16]) required 6 be quadratic in

A g-ary symmetric channel is one where the symbol is unaltered with probability 1 — 6, and flipped to a uniform value
with probability 0, for a channel parameter 6 € [0, 1].
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7. In contrast, our requirement on the variation is very weak and qualitative, allowing any function
0(r) > 0. Similarly, our requirement in the suction at the ends case is relative mild and qualitative.
In previous analyses the requirements were of the form “if X; < r, then X;,; < X? with positive
probability” This high demand on the suction case prevented the analyses from relying only on
the local behavior of the martingale X, ..., X}, ... and instead had to look at other parameters
associated with it that essentially depend on the entire sequence. (For the reader familiar with
previous analyses, this is where the Bhattacharyya parameters enter the picture.) Our approach,
in contrast, only requires arbitrarily large constant factor drop and thereby works entirely with

the local properties of X;.

Local Polarization Implies Strong Polarization. Our proof that local polarization implies
strong polarization is short (about 3 pages) and comes in two parts. The first part uses a simple
variance argument to shows that X; is exponentially close (in ¢) to the limit except with prob-
ability exponentially small in ¢. The second part then amplifies X,’s proximity to {0, 1} to sub-
exponentially small values using the suction at the end guarantee of each local step, coupled with
Doob’s martingale inequality and standard concentration inequalities. Such a two-part breakdown
of the analysis is not new; however, our technical implementation is more abstract, more general,
and more compact all at the same time.

Local Polarization of Arikan Martingales. We will elaborate further on the approach for this
after defining the Arikan martingales, but we can say a little bit already now: First, we essentially
reduce the analysis of the polarization of Arikan martingale associated with an arbitrary mix-
ing matrix M to the analysis when M = G;. This reduction loses in the parameters (a, 7(-), 6(-))
specifying the level of local polarization, but since our strong polarization theorem works for any
function, such loss in performance does not hurt the eventual result. Finally, local polarization for
the case where the matrix is G; is of course standard, but even here our proofs (which we include
for completeness) are simpler, since they follow from known entropic inequalities on sums of two
independent random variables. We stress that even quantitatively weak forms of these inequalities
meet our requirements of local polarization, and we do not need strong forms of such inequalities
(like Mrs. Gerber’s lemma for the binary case [7, 16] and an ad hoc one for the prime case [15]).

General vs. Prime Fields. One weaknesses in our analysis that, in contrast to the result of Mori
and Tanaka [24], who characterize the set of matrices that lead to regular polarization over genertal
fields, we only get a characterization (for strong polarization) over prime fields. We feel that this
limitation is not inherent to our approach. The only (but crucial) place where the prime field plays
arole is in the “variance in the middle” lemma (Lemma 5.3) for Arikan’s basic 2Xx 2 kernel G,, which
in fact does not polarize regularly over general fields due to the existence of subfields. There might
be a way around this by reduction to a different 2 X 2 kernel that actually polarizes regularly.

Concrete Polynomial Upper Bounds on Block Length. A second weakness in our analysis
is that, while we develop a general framework to prove strong polarization and polynomial con-
vergence to capacity, the constants are not optimized and will lead to poor upper bounds on the
exponent y of the polynomial in the block length as a function of the gap to capacity. This quantity
is called the scaling exponent, and our main goal in this work is to prove that for every mixing
matrix M has a finite scaling exponent y = p(M).

For the case of M = G, and binary alphabet (the original Arikan setting), an upper bound
of 4 < 6 was shown in Reference [17] and improved to 5.702 in Reference [12] and to 4.714
in Reference [23]. For the case of the binary erasure channel (BEC), Reference [23] showed an
upper bound of 1 < 3.639, which is close to the heuristic value of ~3.627 reported in Reference [21].
This latter value is also argued as a lower bound on i for the binary-erasure channel in Reference
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[17] (for the proof technique of bounding decoding error probability by the sum of Bhattacharyya
parameters of the channels seen by the successive cancellation decoder). For kernels besides G,
we were unaware of any concrete (or even finite) upper bounds on p besides our work (except for
large random kernels discussed next).

Subsequent Work. Quantitative versions of Shannon’s noisy coding theorem theorem show that
one can achieve a scaling exponent of 2 for any discrete memoryless channel, and converse theo-
rems show that this is optimal [27, 32]. For erasure channels over large alphabets, it was shown
in Reference [25] that random ¢ X ¢ kernels for larger £ achieve a scaling exponent approaching 2.
Such a result was then shown for the BEC in Reference [10].

While these results hinted at the potential of polar codes to achieve near-optimal scaling expo-
nents, they only applied to erasure channels. Analyzing polar codes for more general channels,
including the basic binary symmetric channel (BSC), is significantly more complex.!® Variants
of polar codes were shown to achieve a scaling exponent approaching 2 for all binary-input sym-
metric channels in Reference [13], together with polynomial time constructions and quasi-linear
encoding/decoding complexity. A similar result was shown for all discrete memoryless channels
over any finite alphabet in Reference [30], albeit the efficient construction of such codes remains to
be worked out (but once constructed the codes admit efficient encoding/decoding). These results
also use large random kernels. For concrete kernels, this work remains the only general approach
to show strong polarization and finite scaling exponent.

1.8 Organization of the Rest of This Article

We first introduce some of the notation and probabilistic preliminaries used to define and analyze
the Arikan martingale in Section 2. We then prove Theorem 1.7 showing that local polarization
implies strong polarization in Section 3. This is followed by the formal definition of the Arikan
martingale in Section 4. Section 5.3 then asserts conditions on the entropy of the sum of two in-
dependent variables and uses these to prove Theorem 1.15 asserting the local polarization of the
Arikan martingale. Section 6 proves these entropic conditions. Section 7 proves the exponential
local polarization of the two-step Arikan martingale (Theorem 1.16). In Section 8, we prove The-
orems 1.19 and 1.20, which strengthen the error analysis for codes to nearly optimal. Finally, in
Appendix A we show for completeness how the Arikan martingale (and its convergence) can be
used to construct capacity achieving codes.

2 PRELIMINARIES AND NOTATION

In this section, we introduce the notation needed to define the Arikan martingale (which will be
introduced in Section 4). We also include information-theoretic and probabilistic inequalities that
will be necessary for the subsequent analysis.

2.1 Notation

The Arikan martingale is based on a recursive construction of a vector valued random variable.
To cleanly describe this construction, it is useful to specify our notational conventions for vectors,
tensors, and how to view the tensor products of matrices. These notations will be used extensively
in the following sections.

0For erasure channels, all intermediate channels seen by the decoder of the recursive polar code construction are also
erasure channels, with varying erasure probabilities. Even for the BSC, however, the intermediate channels become incred-
ibly complex with huge alphabet sizes. So one must effectively argue about and find a construction that is able to handle a
plethora of channels that do not admit analytically simple descriptions.

Journal of the ACM, Vol. 69, No. 2, Article 11. Publication date: March 2022.



General Strong Polarization 11:13

2.1.1  General Notation. For a prime power g, we use F, to denote the finite field with g elements
and use F; to denote the non-zero elements in Fy.
We will use O(+) for “Big-Oh” notation.

2.1.2  Probability Notation. Throughout this work, all random variables involved will be dis-
crete. For a probability distribution D and random variable X, we write X ~ D to mean that X is
distributed according to D and independent of all other variables. Similarly, for a set S, we write
X ~ S to mean that X is independent and uniform over S. For a set S, let A(S) denote the set of
probability distributions over S.

We occasionally abuse notation by treating distributions as random variables. That is, for D €
A(F’;) and a matrix M € ]F’;Xk , we write DM to denote the distribution of the random variable
{XM}x .p.For adistribution D and an event E, we write D|E to denote the conditional distribution
of D conditioned on E.

2.1.3  Tensor Notation. Here we introduce useful notation for dealing with scalars, vectors, ten-
sors, and tensor-products. All scalars will be non-bold, for example, X € [F4. All our vectors will be
row vectors (except when explicitly noted) and will be in bold. Any tensors of order > 1 (including
vectors) will be in bold, for example: Y € F(’;. One exception to this is the matrix M used in the
polarization transforms, which we do not show in bold.

Subscripts are used to index tensors, with indices starting from 1. For example, for Y as above,
Y; € F;. Matrices and higher-order tensors are indexed with multiple subscripts: For Z € (F’;)m,
we may write Z; 51 € F,. We often index tensors by tuples (multiindices), which will be in bold:
For i = (1,2,1) € [k]?, we write Z; = Z; 5. Let < be the lexicographic order on these indexing
tuples.

When an index into a tensor is the concatenation of multiple tuples, we emphasize this by using
brackets in the subscript. For example, for tensor Z as above, and i = (1,2) and j = 1, we may
write Z[i,j] = Zl,2,1~

For a given tensor Z, we can consider fixing some subset of its indices, yielding a slice of Z (a
tensor of lower order). We denote this with brackets, using - to denote unspecified indices. For
example for tensor Z € (IF"(;)®3 as above, we have Z[ 5 ] € Fg and Zp.q) € (Fz)@’z.

We somewhat abuse the indexing notation, using Z .; to mean the set of variables {Z; : j < i}.
Similarly, Z[; <j; == {Z[ix) : k < j}.

We occasionally unwrap tensors into vectors, using the correspondence between (]Fg)‘g’ and
F’;t. Here, we unwrap according to the lexicographic order < on tuples.

Finally, for matrices specifically, M; ; specifies the entry in the ith row and jth column of matrix
M. Throughout, all vectors will be row-vectors by default.

2.1.4  Tensor Product Recursion. The construction of polar codes and analysis of the Arikan
martingale rely crucially on the recursive structure of the tensor product. Here we review the
definition of the tensor product and state its recursive structure.

For a linear transform M : ]FZ - Fg, let M®? . (Fg)‘gt - (FS)W denote the ¢-fold tensor power

of M. Explicitly (fixing basis for all the spaces involved), this operator acts on tensors X € (]F][;)@’t as

[ME'(0); = ) XMy, My, j, -~ M,
ie[k]?
The tensor product has the following recursive structure: M®" = (M®'~!) ® M, which corre-
sponds explicitly to
(M )@y = > Mi M (X (i) (1)
i) e[k]
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In the above, if we define tensor
Y(it) = M®t71(X[-,it]),
then this becomes
k
M (X)) = M((YS. YY), )

where the vector (YS), YS,Z), o, Yf,k)) € F’;.
Finally, we use that (M®)™1 = (M~1)®?,

2.2 Information Theory Preliminaries

For the sake of completeness, we include the information-theoretic concepts and tools we use in
this article.
For a discrete random variable X, let H(X) denote its binary entropy:

HX) = > pxla)log (XL)

aeSupport(X) p (a)

where px(a) := Pr(X = a) is the probability mass function of X. Throughout, log(-) by default
denotes log, ().

For p € [0,1], we overload this notation, letting H(p) denote the entropy H(X) for X ~
Bernoulli(p).

For arbitrary random variables X, Y, let H(X|Y) denote the conditional entropy:

H(X]Y) = BH(XIY = y)].

For a g-ary random variable X € FFg, let H(X) € [0, 1] denote its (normalized) g-ary entropy:
_ HX)
log(q)

Finally, the mutual information between jointly distributed random variables X, Y is

I(X;Y) == H(X) - HX|Y) = H(Y) - H(Y|X).

H(X) :

®)

We will use the following standard properties of entropy (see, for instance, Reference [6]):

(1) (Adding independent variables increases entropy): For any random variables X,Y, Z
such that X, Y are conditionally independent given Z, we have

H(X +Y|Z) > H(X|Z). (4)

(2) (Transforming Conditioning): For any random variables X, Y, any function f, and any
bijection o, we have

HX]Y) = HX + f(N)]Y) = HX + f(Y)|o(Y)). ()

(3) (Chain rule): For arbitrary random variables X, Y: H(X,Y) = H(X) + H(Y|X).

(4) (Conditioning does not increase entropy): For X,Y,Z arbitrary random variables,
HX|Y,Z) < HX]Y).

(5) (Monotonicity): For p € [0, 1/2), the binary entropy H(p) is non-decreasing with p. And
for p € (1/2,1], the binary entropy H(p) is non-increasing with p.

(6) (Deterministic postprocessing does not increase entropy): For arbitrary random vari-
ables X, Y and function f we have H(X|Y) > H(f(X)|Y).
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(7) (Conditioning on independent variables): For random variables X, Y, Z where Z is inde-
pendent from (X, Y), we have H(X|Y) = H(X|Y, Z).

2.2.1  Channels. Given a finite field Fy, and output alphabet Y, a g-ary channel Cy)z is a prob-
abilistic function from F to . Equivalently, it is given by q probability distributions {Cy |« }aeF,
supported on Y. We use notation C(Z) to denote the channel operating on inputs Z. A memoryless
channel maps Fj to Y" by acting independently (and identically) on each coordinate. A symmetric
channel is a memoryless channel where for every a, f € F there is a bijection o : ¥ — Y such
that for every y € Y it is the case that Cy—y|¢ = Cy=c(y)|s> and moreover for any pair y,y; € Y,
we have ) e, Cy=y,|x = Yixer, Cy=yyix (see, for example, Reference [6, Section 7.2]). As shown
by Shannon every memoryless channel has a finite capacity, denoted Capacity(Cy|z). For symmet-
ric channels, this is the mutual information I(Y; Z) between the input Z and output Y where Z is
drawn uniformly from F; and Y is drawn from Cy |z given Z.

2.3 Basic Probabilistic Inequalities

In this section, we collect a few useful probabilistic and information-theoretic inequalities, all of
which are standard. The proofs are included for convenience.

We first show that a random variable with small-enough entropy will usually take its most-likely
value and thus maximum likelihood recovery is successful with high probability. In fact, we show
that even if the likelihoods are known only very approximately maximum likelihood decoding will
still be quite successful.

LEmMMA 2.1. Let X be an arbitrary discrete random variable with range X. Then there exist X € X
such that

Pr(X # %) < H(X).

In particular, one can take X = argmax_{Pr (X = a)}.
Furthermore, given p,’s satisfying |p, — Pr(X = a)| < 1/4 for every a € X, if we let X =
argmax, {py} then we have Pr (X # x) < 3H(X).

ProoF. Let a := H(X) and let p; := Prx (X = i). Let £ = argmax,{p;} be the value maximizing
this probability. Let p; = 1 — y. We wish to show that y < a.If y < 1/2, then we have

1
> Z pilog — (Since all summands are non-negative)
i#x i
1
> » pilog (Since p; < ¥4z pj-)
#ch 2jzx Pj JExt
AR
(; l) Z]#—x p]
=y -logl/y
>y (Since y < 1/2andsologl/y > 1)
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as desired. Now, if y > 1/2, then we have a much simpler case, since now we have

1
a=HX) = ilog —
2ot

1
> ;i log — (Since p; < px)
Zi:p g pi<p
= 10g1% (Since };p;i = 1)
1
=1
og 7 =
> 1. (Since y > 1/2)

But y is always at most 1 so in this case also we have « > 1 > y as desired.

For the furthermore part of the lemma statement, note that if y < 1/4, then, by the condition
|pe — pal < 1/4, we have p;y > 1/2 while pyr < 1/2 for every x’ # %. Thus in this case we
have ¥ = x and so by the first part above we have Pr(X # x) = Pr(X # ) < H(X). Now, if

L >

y > 1/4 as in the second part above, then we have H(X) > log T > 415 > 1/3, and so we get
Pr(X # x) <1 < 3H(X). ]

For the decoder, we will need a conditional version of Lemma 2.1, saying that if a variable X has
low conditional entropy conditioned on Y, then X can be predicted well given the instantiation of
variable Y.

LEMMA 2.2. Let X, Y be arbitrary discrete random variables with range X, Y respectively. Then
there exists a function X : Y — X such that

% <
Pr (X #X(1)) < HXY).
In particular, the following estimator satisfies this:
X(y) := argmax {Pr (X = x|Y = 1)} .
X
Furthermore, given py. ,’s satisfying |px,, —Pr(X = x|Y = y) | < 1/4 for everyx € X,y € Y, if we
let X(y) = argmax., {py,y}, then we have Pr (X + )N((y)) < 3H(X|Y).

Proor. For every setting of Y = y, we can bound the error probability of this estimator using
Lemma 2.1 applied to the conditional distribution X|Y = y:

P (X #X(1)) = B Lglry (X(r) # X)]
< ]g [HXY =y)] (Lemma 2.1)

= H(X|Y) . o

The furthermore part of the lemma statement follows similarly by using the furthermore part of
Lemma 2.1.

We also use the well-known Fano’s inequality, which works as a weak converse to the above
lemma, asserting that if a random variable X is predictable given Y, then its conditional entropy
is small.

LEMMA 2.3 (FANO’s INEQUALITY). For a pair of random variables (X,Y) € X X M, if there exists a
function X : Y — X such that Pr(X(Y) # X) < § with§ < %, then H(X|Y) < 26(log 57! +log | X]).
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We will need an inverse to the usual Chebychev inequality. Recall that Chebychev shows that
variables with small variance are concentrated close to their expectation:
Var(Z)

Az

Pr(|Z -E[Z]| = A) <

The Paley-Zygmund inequality below can be used to invert it (somewhat): For a random variable
W with comparable fourth and second central moment, by applying the lemma below to Z =
(W — E[W])? we can deduce that W has positive probability of deviating noticeably from the
mean.

LEMMA 2.4 (PALEY-ZYGMUND). IfZ > 0 is a random variable with finite variance, then
LE[Z]?

E[Z?]

Next, we define the notion of a sequence of random variables being adapted to another sequence

of variables, which will be useful in our later proofs.

Pr(Z > AE[Z]) = (1-A)

Definition 2.5. We say that a sequence Yy, Y .. . of random variables is adapted to the sequence
X1, Xy ... if and only if for every t, Y, is completely determined given Xj,...X,. We will use
E[Z|X[1:11] as a shorthand E[Z]X;, ... X;] and Pr(E|X[1./]) as a shorthand for E[1g|X;,...X/]. If
the underlying sequence X is clear from context, then we will skip it and write just E[Z|F;].

LEmMMA 2.6. Consider a sequence of non-negative random variables Y1, Ys,...,Y;, ... adapted to
the sequence X1, Xo, . ... If for every t we have Pr(Y;11 > A| X[1.]) < exp(—A), then for every T > 0:

Pr(Z Y; > CT) < exp(—Q(T))

i<T

for some universal constant C.

ProoF. First, observe that

Blexp(Yes1/2)| 1] = f Pr(exp(Yes1/2) > AF7) dA
0

< 1+f exp(—2log 1) dA
1

1+ f A% dA
1
< exp(Co) (6)

for some constant Cy. However, we have decomposition (where we apply Equation (6) in the first

inequality):
wol3 3|25 )|

i<T i<T

E =E|E

E exp( > Y,-/z)E [exp (Yr/2) |ﬁ_1]]

i<T-1

<E -exp( Z Y,~/2>

i<T-1

- exp(Co)

S cee
< exp(CoT).
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In the above, the second equality follows from the fact that the sequence Y1, Ys, ... is adapted to
X1, Xz, . ... We can now apply Markov inequality to obtain the desired tail bound:

Pr (Z Y; > 4C0T) =Pr (exp (% Z Y,~> > exp(ZCOT))

i<T i<T

1
Ny
%)

<exp (-CoT). O

<E -exp(—2CoT)

The following bound for a moment generating function of a bounded random variable is stan-
dard and is commonly used in the proof of Bernstein inequality.

LEMMA 2.7. For any random variable X such that |X| < 1 with probability 1, and every0 < A < 1,
we have

log E[exp(1X)] < AE[X] + CA* E[X?],
where C is some universal constant.

PrOOF. Since |X| < 1, we have E |X|*¥ < E X2, and therefore

k
Eexp(1X) = Z % E[X*]
k!

<1+ AE[X]+ (A% + 0(A%)) E[X?].
Moreover, for some constant C, and every x| < %, we have log(1 + x) < x + Cx?, and therefore
log E[exp(AX)] < AE[X] + CA*(E[X?] + E[X]?) + O(A%) E[X?]
< AE[X] + C’'A*EB[X?]. O

LeEmMA 2.8. Consider a sequence of random variables Y1, Yo, ... with Y; € {0,1}, adapted to the

sequence X;. If Pr(Yi41 = 11X[1.4]) > pir41 for some deterministic value i, then for i := 3, .1 j1; and
any ¢ > 0 we have

Pr(Z Y; < (1- s)y) < exp (—Q(gzp)) .
t<T

Proor. Consider a random variable M; .1 := E[Y;41]X[1.1]] (depending on X[1.,7), we know that
M; > u, with probability 1, and let us take Z; := (1 — e)M; — Y;.
Standard calculation involving Markov inequality yields the following bound for any A > 0:

Pr(z Y, < 2(1 —£)yt) < Pr(z Y, < 2(1 —E)Mt)

t<T t<T t<T t<T

= Pr(Z AZ; > 0)

t<T

s (p(z AZ;) . 1)
exp(z )LZt)

t<T

<E . (7)
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To bound this latter quantity, we introduce conditioning on X[1.7—1] as follows:

E exp(z AZt) =E|E exp(z AZt> IX[1.7-1 }
t<T t<T
=E eXp( > AZt>]E[exp(AZT)IX[I;T_l]]}, 8)
t<T-1

where the second equality follows from the fact that Z; is adapted to X;.
By Lemma 2.7 for any 0 < A < i, we have

E [exp(AZr)|X(1:7-1)] < exp(-AeMr + C1A*Mr)
for some constant C;. Now, if we chose A = 21715, then we get
E [exp (AZ7) |X[1:T—1]] <E [exp (—CSZMT)]
< exp(=Cé’pr)), ©)

where C = % since pr < Mt deterministically.
Together with Equation (8), this yields

E exp(ZAZ;) <E exp( Z AZt) exp(—Cé?ur)
t<T I t<T-1
S ce
< E |exp (Z —ngyt) = exp(—Q(%p)). (10)
] t<T

Finally, combining Equations (7) and (10) we have Pr(Y,.1 Y, < (1 — &)u) < exp(—Q(e?p)) as
desired. O

Finally, we will use the well-known Doob’s martingale inequality:

LEMMA 2.9 (DOOB’s MARTINGALE INEQUALITY [9, THEOREM 5.4.2]). If a sequence Xy, X1, ... isa
martingale, then for every T we have
E[1X
Pr (supXt > /1) < M
t<T A
COROLLARY 2.10. If Xy, X1, ... is a nonnegative martingale, then for every T we have
E[X,
Pr (supXt > /1) < M.

t<T A

3 LOCAL TO GLOBAL POLARIZATION

In this section, we prove Theorems 1.7 and 1.9, which assert that every (exponentially) locally
polarizing [0, 1]-martingale is also (exponentially) strongly polarizing. The proofs in this section
depend on some basic probabilistic concepts and inequalities mentioned in Section 2.3.

The proof of both statements are implemented in two main steps. In the first step, common to
both, we show that any locally polarizing martingale, is mildly polarizing, namely that it is ((1 —
DL (A= 3)", (1 = §)")-polarizing for some constant v depending only on the parameters «, 7, 6 of
local polarization. This means that, except with exponentially small probability, min{X;,2, 1 -X;,2}
is exponentially small in ¢, which we can use to ensure that X; for all £ <'s <t stays in the range
where the conditions of (strong) suction at the ends apply (again, except with exponentially small
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failure probability). In the second step, we show that if the martingale stays in the suction at the
ends regime, then it will polarize strongly; i.e., if we have a [0, 1]-martingale, such that in each
step it has probability at least « to decrease by a factor of ¢, then we can deduce that at the end
we have Pr(Xr > ¢™*T/%) < exp(—Q(aT)).!! A completely similar argument shows that when the
martingale shows strong suction at the low end, we have Pr(Xr > exp(-AT)) < exp(-Q(aT)), for
some A > 1, thus yielding exponentially strong polarization.

3.1 Mild Polarization

We start by showing that in the first t/2 steps we do get exponentially small polarization, with
all but exponentially small failure probability. This is proved using a simple potential function
min{vX;, V1 — X;}, which we show shrinks by a constant factor, 1 — v for some v > 0, in expecta-
tion at each step. Previous analyses in References [15, 16] tracked 4/X; (1 — X;) (or some tailormade
algebraic functions [17, 23]) as potential functions and relied on quantitatively strong forms of vari-
ance in the middle to demonstrate that the potential diminishes by a constant factor in each step.
While such analyses can lead to sharper bounds on the parameter v, which in turn translate to
better scaling exponents in the polynomial convergence to capacity, e.g., see Reference [17, Thm.
18] or Reference [23, Thm. 1], these analyses are more complex, and less general.

LEmMA 3.1. Ifa [0, 1]-martingale sequence Xy, ... X¢, ..., is (o, 7(-), 0(-))-locally polarizing, then
there exist v > 0, depending only on a, 7, 0, such that

E [min (\/)Tt,mn <(1-v)h

PROOF. Set 7y = 7(4),0) = 0(19). We will show that E[min(vVX;4+1, V1 — X)X ] < (1 —
v) min(vX;, V1 — X;) for some v > 0 depending on 7y, 6y, and . The statement of the lemma
will follow by induction. The base case of ¢t = 0 follows, since X € [0, 1].

Let us condition on X; and first consider the case X; € (1, 1 — 79). We know that

E | min (vX;11, V1= Xp41)| < min (E [VXea |, B [V1 - Xp11]),
and we will show that E[vX,;1] < (1 — v)VX;. The proof of E[V1 — X;41] < (1 - v)V1 =X, is

symmetric.

Indeed, let us take R := X)% Because (X;); is a martingale, we have E[R?] = 1, and by Jensen’s

inequality, we have that E[R] < 4/E[R?] < 1, where all the expectations above are conditioned on
X;. Take 6 such that E[R] = 1 — §. We will show a lower bound on § in terms of 8y, 7y, and .
We note that
Var(R) = E[R?] - (B[R])* =1 - (1 - 8)? = 26 — 6 < 26. (11)

The high-level idea of the proof is that we can show that local polarization criteria implies that
T is relatively far from 1 with noticeable probability, but if E[R] were close to 1, then by Chebyshev
inequality we would be able to deduce that R is far from its mean with much smaller probability.
This implies that mean of R has to be bounded away from 1.

More concretely, observe first that by Chebyshev inequality, we have Pr(|R — E[R]| > 1) <
Var(R) < 28

A2 = 2>
following:

where the inequality follows from Equatino (11). Hence, for Cy = 4, we have the

1
Pr(IR—1] 2 &+ CVoby'r,?) < gegfg. (12)

-aT/4

This is enough, since we pick c to be large enough (given y) so that ¢ < yT, and we pick 8 and 7 such that

pnT = exp(-Q(aT)).
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However, because of the Variation in the middle condition of local polarization, we have

2 2 2
Var(Rz) — E[Xt2+1] _ E[Xt;rl]z _ E[Xt+11_xt > 9_02 > 6y,
Xy Xi Xy Xy
where the second equality follows from the fact that E[X;,] = X; and the last inequality follows,
since X; < 1. Moreover, R < ‘/LT_O, because VX;;1 < 1 and VX; > /1.

Let us now consider Z = (R? — 1)%. We have E[Z] = Var(R?) > 6, and, moreover, E[Z?] < 7;*
(because R is bounded and 7y < 1), hence by Lemma 2.4 (for C; = 1/2),

1
Pr((1-R%? > Cy60) 2 29373.

And also 1-R? = —(1—R)?+2(1-R) < 2(1—R); hence, if (1— R?)? > C;0, then [1—R| > YL \/G,
which implies (for the choice of C; = V/C;/2):

Pr(|R— 1] > CZ\/G—O) > }Legfg. (13)

By comparing Equations (12) and (13), we deduce that C,v0, < & + CO\/SGO_ 7,2, which in turn
implies that § > C4037,, (for C4 = C5/(4C3); note that with our choice of parameters, we have
CO\/SHO_L['O_Z > §), and by the definition of § we have E[vX;111X;] < (1 — §)VX,]. The same
argument applies to show that E[v1 — X;11X;] < (1 — C4037,)V1 — X;.

Consider now the case when X; < ry. For T, § as above (and again after conditioning on X;),
we have Var(R) < 2§ (note that the argument for this inequality from the previous case also holds
here), and hence by Chebyshev inequality (for the choice of C5 = 2),

Pr(IR—1|25+C5\/§)Sg. (14)
o 2

However, because of the suction at the end condition of local polarization, we know that with
probability &, we have R < 7, which means |R — 1| >  and by comparing this with Equation (14),

we deduce that § + Cs\/g > 1 which in turn implies that § > Csa (for Cg = note that by our

J

2’ 16C2°
parameter choices we have C5\/§ > 0). Therefore, in the case X; < 7y, we have E[VX;41|X;] <
(1-Csa)VX; = (1 — Coa) min(yX;, V1 — X;). The case X; > 1 — 15 is symmetric and is omitted.

This implies the statement of the lemma with v = min(Csa, C493 Tg). O

COROLLARY 3.2. Ifa [0, 1]-martingale sequence Xy, ... X;, ..., is (o, 7(-), 0(-))-locally polarizing,
then there exist v > 0, depending only on a, 7, 0, such that

. v\! vyt 1
Pr (mm(Xt/z,l - Xt/2) >/1(1— 5) ) < (1— Z) ﬁ

Proor. By applying Markov Inequality to the bound from Lemma 3.1 (with t/2 instead of t), we
get

P i1~ X, > 4 (1. 5 ) =P min (V7 T=5) > ¥R (1 5))

< (1- w2 (1 - g)ft/z \/LI
- vyt 1
< (1—1) = o
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3.2 Strong Polarization

Next, we show that if a [0,1]-martingale indeed stays in the suction at the ends range for all steps
s> % i.e., in each step it has constant probability « of dropping by some large constant factor C,
then at the end we may expect it to be (C~*/8, C~%*/3 exp(—Q(at)))-polarizing.

LEMMA 3.3. There exists ¢ < oo, such that for all K, @ with Ka > c the following holds. Let X; be a
martingale satisfying Pr(X;11 < e XX,|X;) > a, where X, € (0,1). ThenPr(Xr > exp(-aKT/4)) <
exp(—Q(aT)).

Proor. Consider Y;;; := log ﬁg‘, and note that sequence Y, is adapted to sequence X, in the
sense of Definition 2.5. We have the following bounds on the upper tails of Y;,;, conditioned on
X[1:1], given by Markov inequality (and recalling that E[X,11X;] = X;):

X
Pr(Yi > A F2) = Pr( ;;1 > exp(A) ‘X[”]) =Pr (Xt+1 > exp()X; IX[U]) < exp(-A).
t

Let us decompose Y1 =: (Yi1)+ + (Yr41)-, where (Y;41)+ := max(Yy41,0). By Lemma 2.6 and
the fact that (Yy11)+ > Yii1,

Pr(Z(YHl)+ > CT) < exp(-Q(T)).

t<T

However, let E;,y be the indicator of Y,y < —K. It is again adapted to the sequence X;, and
we know that Pr(E;;1|X[1.1]) > a; hence, by Lemma 2.8 with probability at most exp(—=Q(aT)) at
most T /2 of those events holds. Note that (Y;)- < 0, which implies that if at least aT/2 of the
events E; hold, then we have }}; <7 (Y;)- < —aKT/2. Thus, we have Pr(},<7(Y;)- > —aKT/2) <
exp(—Q(aT)). Therefore, as long as aK/4 > C (which is true if we set ¢ = 4C), we can conclude

Pr(z Y, > —aKT/4) < exp(—Q(T)) + exp(—Q(aT)) < exp(-Q(aT)).

t<T

The proof is complete by noting that ), <7 Y; = log(X7/Xj) and recalling that X, < 1. ]
We are now ready to show that local polarization leads to strong polarization:

Proor or THEOREM 1.7. For given y, we take K to be large enough so that exp(—aK/8) < y and
moreover aK to be large enough to satisfy assumptions of Lemma 3.3. Let us also take 7y = 7(eX).
We consider v as in Corollary 3.2. We have

. V! v\t 1
Pr(mm(Xt/z,l—Xt/z)> (1—5) To) < (I—Z) \/_7,'_0

Now Doob’s martingale inequality (Corollary 2.10) implies that, conditioned on X/, < (1-%)1,
we have Pr( sup X; > 1) < (1-%)"

i€(t/2,1)

Finally, after conditioning on X; < 75, Vt/2 <i <'t, process X; for i € (t/2,t) satisfies con-
ditions of Lemma 3.3, because X; always stays below 7y and as such suction at the end condition
of local polarization corresponds exactly to the assumption in this lemma. Therefore, we can con-
clude that except with probability exp(—Q(at)) + (1 — %)~ —= (which is exp (-=Qg,,(t))), we have

47 o
X; < exp(-aKt/8) = y’. The other case (1 — X;/; < (1 — ¥)’rp) is symmetric, and in this case we
get 1 — X, < exp(—aKt/8) except with probability exp (—Qq., (1)). o
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3.3 Exponentially Strong Polarization

In this section, we prove the analog of Theorem 1.7-Theorem 1.9. We first prove a helper lemma.

LEMMA 3.4. There exist C < oo such that forall0 < n < 1,b > 1,0 < ¢ < 1 following holds. Let
X; be a martingale satisfying Pr(X;;1 < Xf |X;) = n, where X, € (0,1). Then

Pr(log X7 > (log Xy + CT)b=T) < exp(—Q(e2nT)).

ProOOF. As in the proof of Lemma 3.3, let us consider random variables Yry1 := log(Xrs1/X¢).
This sequence of random variables is adapted to the sequence X; in the sense of Definition 2.5. Let
us decompose Y; = Y;" + Y, , where Y;" = max(Y;,0). Note that by Markov inequality

[Xr+11X[1:01]

E
Pr (Yt+1 > /1|X[1:t]) =Pr (XHl > X, exp(/l)IX[lzt]) < exp(—A) X = exp(—-A).
t

By Lemma 2.6, we deduce that for some C, we have

Pr (Z Y > CT) < exp (-Q(T)).
i<T

However, if we take Z; to be the indicator variable for an event X; < X f’_l, then note that the
sequence z; is adapted to the sequence X;. By Lemma 2.8, we have

Pr (Z Z; <(1- E)I]T) < exp (—Q(Tezq)) .
i<T

If neither of these unlikely events hold, that is, we simultaneously have };.r Y;" < CT and
i<t Zi > (1 - &)nT, then we can deduce that log X7 < (log X, + CT)b(=917 ie, the largest
possible value of Xt is obtained if all the initial Y; were positive and added up to CT (at which
point value of the martingale would satisfy log X7- < log X, + CT), followed by (1 — €)5T steps

indicated by variables Z;; for each of those steps, log X;+1 < blog X;. O
We are now ready to prove the analog of Lemma 3.3 for exponentially strong polarization.

LEmMA 3.5. Forall0 < n < 1,b > 1,0 < € < 1 the following holds. Let X; be a martingale with
values in (0, 1) satisfying Pr(X;+1 < X21X;) > n, where Xy < exp(=yT) for somey > 0, then

Pr(log X7 > —b1"91T) < exp(-Q, ., (T))).

Proor. Consider sequence ty, t1, ...ty € [T], where ty = 0,t,, = T, and % < |ti —tiq] < %,

and therefore m = O(Cy™!), where C is a constant appearing in the statement of Lemma 3.4. For
eachindex s € [m] we consider a martingale Xl.(s) = X, +i, and we will apply Lemma 3.4 to this mar-
tingale X®), with T = t,,1 —t;. We can union bound total failure probability by m exp(-Q(y*5T)),
which is upper bounded by the claim bound of exp(-€,, , , (T))).

In case we succeed, we can deduce that for each i we have

log X;, < (log Xy, , + C(t; — t;_y))b=Intti=ti), (15)

We will show that by our choice of parameters, we can bound C(¢; —t;—;) < —% log X;,. Let us first
discuss how this is enough to complete the proof. Indeed, in such a case we have

1
log X;, < E(logXti_l)b(l_s)”(ti_ti’l), (16)
and by induction

log X;,, < — (log Xo)b1=)1tm

1
om
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For fixed 5, m, and T large enough (depending on 7, m, ¢), this yields log X7 < —b(17297T and the
result follows up by changing ¢ by a factor of 2.
All we need to do is to show is that for every i we have

1
C(tl’+1 - ti) < —5 lOgXti, (17)

assuming that Equation (15) holds for every i. We will show this inductively, together with
log X;, < —yT. Note that we assumed this inequality to be true for X;, = Xj. By our choice of
parameters we have C(t;11 — t;) < ﬂ, and therefore for t;,; the inequality (17) is satisfied.

We will now show that log X;,,, <logX;, < —yT to finish the proof by induction. We can apply
Equation (16) to X;, to deduce that log X;,,, < %(logX,i)b%%T (which is true, since b > 1,n <
1, & > 0). This for large values of T (given parameters b, y and C) yields log X;,,, < logX,,; indeed,
this inequality will be true as soon as bac:T > 2, because both log X;,,, and log X;, are negative,
which completes the proof. O

We are now ready to prove local polarization to global polarization theorem for exponential
polarization.

ProoF oF THEOREM 1.9. Consider exponentially locally polarizing martingale, and let us fix
some ¢ > 0. By Corollary 3.2 with t = 2¢T and A = 1, we deduce that for some v > 0 we have

Pr (max (Xer, 1 =Xe7) > (1 - g)ng) < exp (—Q.(T)).

We condition on max(X,r,1 — X.r) < (1 — %)%T. Now let K be a large-enough constant de-
pending on « and y, the target rate of polarization in the high end. Now let 7 > 0 be such that
7 < min (T (eK ) s ro), where 79 is given by the definition of suction at the low end and 7(-) is from
the suction at the high end. Note that this implies that (1) if X; < 7, then we have

Pr(Xpi1 < XPIX:) 2 1, (18)
which holds, since 7 < 19, and (2) if 1 — X; < 7, then we have
Pr((1 — X;41) < exp(=K)(1 = X,)|X;) 2 a, (19)

which follows from the condition on suction at the high end. By Doob’s martingale inequality
(specifically Corollary 2.10), we deduce that Pr(max;e[o,7) max(X;,1 — X;) > 7) < 77'(1 -
%)’ZST < exp(—Q;.v.-(T)). Let us now condition in turn on this event not happening.

We will consider first the case when X+ < (1 — %)st, and let us put yp := —2¢elog(1 — 3)
(note that yp > 0), so that X,r < exp(—yoT). We can now apply Lemma 3.5 to the martingale
sequence starting with X,r. (Note that the assumptions of Lemma 3.5 are satisfied as long as X;
for t € [¢T, T] stays bounded by 7 due to Equation (18).) Hence, we deduce that in this case, except
with probability exp(—=Q,, .. ;(T)) < exp(—=Q, ¢, ,(T)), we have

log X7 < —b1=’nT

lfs)Zr]T

and therefore Xy < 27" . Note that this implies that A = log,(b(")*1) = (1 — ¢)2ylog, b
(hence for any A < nlog, b, we pick ¢ appropriately). We also pick § and 7 such that fn? >
exp(_Qe,r],p,K(T))-

However, if 1 — X; < 7 for all ¢eT < t < T, then the suction at the high end condition of
local polarization applies (i.e., Equation (19) holds), and we can apply Lemma 3.3 (we pick K large
enough so that K& > c¢) to martingale X; £ 1 — X,7,; to deduce that except with probability
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exp(—Qq(T)), we have 1 — X7 < exp(—aK (1 — ¢T)/4) < yT for suitable choice of K depending on
y and a. Finally, we pick  and 7 such that fn7 > exp(—Q. ;. . k.« (T)). O

4 ARIKAN MARTINGALE AND ITS LOCAL POLARIZATION

In this section, we formally describe the Arikan martingale associated with an invertible matrix
M e ]F’;Xk and a channel Cy|z.

Before we proceed with the formal definition, to provide overview of the goals of this construc-
tion, we shall briefly point out its main features for the special case of Arikan martingale {X;};2,
associated with an additive channel C—where channel output Y = Z + U, with U being some
random variable in F, not depending on Z.

(1) For given t, marginal distribution X, is distributed identically as H((UM®*);|(UM®")_;) for
uniformly random index i, where U is a vector of k ii.d. random variables distributed as
the error U.

(2) Sequence X; is a martingale—in particular, we provide coupling of the distributions above
over different ¢ in a non-trivial way.

(3) Definition of the martingale X; is “local” in some sense, which makes it manageable to ana-
lyze how X; and X;,; are related and eventually show local polarization.

In Appendix A.2.3, we elaborate on the connection of the Arikan martingale with polar codes—
specifically, the main link is a more general version of the first property for all symmetric channels
and is proved as Lemma A.18.

Briefly, the Arikan martingale measures at time ¢, the distribution of conditional entropy of a
random variable A’;, conditioned on the values of a vector of variables B’ and on the values of A’;
for j smaller (according to <) than i for a random choice of the index i. Here A’ is a vector of k’
random variables taking values in F, while B" € Y k' The exact construction of the joint distri-
bution of these 2k’ variables is the essence of the Arikan construction of codes, and we describe
it shortly. The hope with this construction is that eventually (for large values of t) the conditional
entropies are either very close to 0 or very close to log q for most choices of i.

When t = 1, the process starts with k independent and identical pairs of variables {(A;, B;)}ie[k]s
where A; ~ Fy and B; ~ Cy|z=4,. (So each pair corresponds to an independent input/output pair
from transmission of a uniformly random input over the channel Cy|z.) Let A = (A4, ..., Ax) and
B’ = (By,...,B), and note that the conditional entropies H(A;|A<;, B") are all equal, and this
entropy, divided by log, g, will be our value of X,,. However, if we now let A’ = A- M, then the con-
ditional entropies H(A’;|A’ <;, B’) are no longer equal (for most, and in particular for all mixing,
matrices M). However, conservation of conditional entropy on application of an invertible transfor-
mation tells us that E; () [H(A’;|A’ <;, B")/log, q] = X,. Thus letting X; = H(A’;|A’.;, B")/log, q
(for random i) gives us the martingale at time ¢ = 1.

While this one step of multiplication by M differentiates among the k (previously identical) ran-
dom variables, it does not yet polarize. The hope is that by iterating this process one can get
polarization.'? But to get there we need to describe how to iterate this process. This iteration is
conceptually simple (though notationally still complex) and illustrated in Figure 2. Roughly, the
idea is that at the beginning of stage ¢, we have defined a joint distribution of k’-dimensional
vectors (A, B) along with a multi-index i € [k]’. We now sample k independent and identically
distributed pairs of these random variables {(A(f), B('f))}ge[k] and view (A('f))t’e[k] as a k? x k matrix,
which we multiply by M to get a new k’ X k matrix. Flattening this matrix into a k’*!-dimensional

2In the context of polar coding, differentiation and polarization are good events, and hence our “hope.”
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Fig. 2. Evolution of Arikan martingale for 3 X 3 matrix M.

vector gives us a sample from the distribution of A" € ]F’;M. B’ is simply the concatenation of
all the vectors (B‘))s¢(x]. And, finally, the new index j € [k]**! is simply obtained by extending
i € [k]" with a (¢t + 1)th coordinate distributed uniformly at random in [k]. X; is now defined
to be ITI(A']-IA' <j»B’), where H(-) is the normalized g-ary entropy defined in Equation (3). The
formal description is below.

Definition 4.1 (Arikan Martingale). Given an invertible matrix M € FSX" and a channel descrip-
tion Cy|z for Z € Fy,Y € Y, the Arikan-martingale Xy, . .. X, . .. associated with it is defined as
follows. For every t € N, let D; be the distribution on pairs FS[ x Yk described inductively below:

A sample (A, B) from D, supported on Fy X Y is obtained by sampling A ~ Fy, and B ~ Cy|z=4.
For t > 0, a sample (A’, B’) ~ Dy supported on F’;Hl x Y*"" is obtained as follows:

e Draw k independent samples (A(l),B(l)), e, (A(k),B(k)) ~ D;.
e Let A’ be given by AEi 1= (Agl) s Agk)) -Mforalli e [k]* and B = (B, B®, ... B%).

Then, the sequence X, is defined as follows: Sample i; € [k] uniformly and independently for
I=1,2,...,t.Letj=(i1,...,i;),and let X; := H(A;|A<;, B), where the entropies are with respect
to the distribution (A, B) ~ D,."*

Figure 2 illustrates the definition by highlighting the construction of the vector A” and in par-
ticular highlights the recursive nature of the construction.

It is easy (and indeed no different than in the case t = 1) to show that E[X;,1|X;] = X}, and so
the Arikan martingale is indeed a martingale. This is shown below.

PROPOSITION 4.2. For every matrix M and channel Cy|z, the Arikan martingale is a martingale
and in particular a [0, 1]-martingale.

13We stress that the only randomness in the evolution of X is in the choice of i1, . . ., iz, . . .. The process of sampling A
and B is only used to define the distributions for which we consider the conditional entropies H(Aj|A<j, B).
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Proor. The fact that X; € [0, 1] follows from the fact for 0 < H(A;|A<;, B) < H(A;) < log, q
(the upper bound follows, since A<; € F;) and so 0 < X; = H(A;|A<;,B)/log, q < 1.

We turn to showing that E[X,11|X; = a] = a. To this end, consider a sequence of indices i
(i1, . .. i), such that H(A; | A<, B) = a. We wish to show that Ei, . ~[k] [E(Afi’im] | A ],B')] =
a

<[i iz

Since the pairs (A®), B®)) are independent samples from D;, note that for any s, we have
H(AES) | A(jz, B(S)) = a. Furthermore, because of the same independence, we have

A | 46 BOY - T A®) 0) ~
H(AY 1 AS.BY) = H(AY | Ujeg A} UjerBY)

<i’

and H(A", ..., AP ey AY), UjenBY) = k - a.

<i’

By the invertibility of M, we have
I U) N = 7( A0 (k) 0) ) —
H(Afi,l]""AEi,k] | Ujelk] Aii,Ujg[k]B(])) —H(Al. ""’Ai | Ujerk A<l.,Uj€[k]B(J)) =k-a.

We can apply again invertibility of the matrix M to deduce that conditioning on U je[k]Agz is

the same as conditioning on A’_[; 1}, i.e., for any multiindex i’ < i variables Ag,l), .. AifC and
A’ 1], - .. A'[iv ) are related via invertible transform M. This yields

H(A'[i,l], .. ~A,[i,k] | A'<[i,1],B/) = ITI(A'[M], .. -Al[i,k] | Ujerr Ag:, Ujg[k]B(j)) = ka.
Finally, by the Chain rule of entropy we have

k

Z H(A,[ivit+l] |AEi,<i,+1]’A,<[i»1]’B’)
ire1=1

k —_—

Z H(A (ii,.1] |A’<[i,it+1]’B’)

ire1=1

H(A (13- Al | A <(i1), B')

Putting these together, we have E[X;1|1X; = a] = E;,, [ﬁ(A’[i,im] | A <[i,i;]-B)] = %
ka = a. |

Finally, we remark that based on the construction it is not too hard to see that if M were an
identity matrix, or more generally a non-mixing matrix, then X; would deterministically equal Xj.
(There is no differentiation and thus no polarization.) The thrust of this article is to show that in
all other cases we have strong polarization.

4.1 Matrix Polarization and the Arikan Martingale

Note that the definition of the Arikan martingale is itself complex, and in particular the distribu-
tion of X;, the variable at the tth step, needs a description whose complexity grows with ¢. The
essence of the polarization argument does not depend on this intricacy of the definition, most of
which can be abstracted away. Indeed, we do so formally by considering a simpler (single step)
randomization process associated with a matrix M. We define a matrix M to be polarizing if this
single-step process satisfies properties similar to those of local polarization (see Definition 4.3).
Then, in Theorem 4.4 we show that if a matrix M satisfies matrix polarization, then for every chan-
nel C the Arikan martingale associated with M and C is locally polarizing. This is a notationally
heavy but conceptually light proof, whose essence is to verify that certain variables are indepen-
dent, and so conditioning on such variables does not change entropies. This will allow us focus on
a simpler single step process in future sections to prove (exponential) local polarization.
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We start with the definition of matrix polarization.

Definition 4.3 (Matrix (Exponential) Polarization). We say that a matrix M € F’;Xk satisfies matrix
polarization if and only if for every pair of random variables (U, W), such that U = (Uy,...,Uy) €
]F’q‘, W = (Wy,..., W) is supported on some finite set, and the pairs (U;, W;) are independently
and identically distributed for i € [k], the vector V := U - M satisfies the following conditions:

(1) (Variance in the middle): There is some index j € [k] for which the following holds: For
every 7 > 0, there exists ¢ = ¢(r) > 0 such that if H({U;|W) € (r,1 - r), then

H((V); [V, W) = HU; W) +e.

(2) (Suction at the lower end): There is some index j € [k] for which the following holds:
For every ¢ < oo, there exists 7 > 0 such that if H(U;|W) < 7, then

_ 1 —
H(V;|V.;, W) < ZH(U1|W)-

(3) (Suction at the high end): Analogously to suction at the low end, there is some index
Jj € [k] for which the following holds: _
For every ¢ < oo, there exists 7 > 0 such that if H(U;|W) > 1 — 7, then

L HV, IV W) < %(1 _H U, W)).

Additionally, we say that M satisfies (1, b)-exponential matrix polarization if we have the following
property:

2’. (Strong Suction at the lower end): There exists 7 > 0 such that if H(U,|W) < t, then for
at least n fraction of the indices j € [k] we have then

H(V;IV_;,W) < HU,[W)®,

Thus, the notion of matrix polarization is somewhat more general than polarization of the cor-
responding Arikan martingale.

(1) In the latter, the conditioning in the entropy prescribes some specific relations between U
and W, where in the former W is arbitrary (subject to the condition that the pairs (U, W;)
are i.i.d.).

(2) Furthermore, the definitions also make slight changes to the conditions of Variance in the
middle and suction only requiring the existence of j € [k] having a certain property as
opposed requiring that a random choice of j satisfy some condition.

The differences in (1) above allows for cleaner proofs, since the specific structure of W is not
needed. The class of differences in (2) above changes some probabilities and/or variances by factors
depending on k, but this difference is negligible. In the following section, we formally confirm that
matrix polarization is a sufficient condition for martingale polarization.

4.2 Matrix Polarization Implies Local Polarization of Arikan Martingale

In this section, we prove that matrix polarization implies local polarization of the corresponding
Arikan martingale.

THEOREM 4.4. For every matrix M € ]F’;Xk and every symmetric memoryless channel Cy|z, if
M satisfies matrix polarization, then the Arikan martingale associated with M and C is satisfies lo-
cal polarization. Furthermore, if M satisfies (1, b)-exponential matrix polarization, then the Arikan-
martingale satisfies (1, b)-exponential local polarization.

Journal of the ACM, Vol. 69, No. 2, Article 11. Publication date: March 2022.



General Strong Polarization 11:29

We begin with a lemma that will be useful in the proof of Theorem 4.4:

LEMMA 4.5. Let A(l), .. .A(k), and A’ be defined as in Definition 4.1, and let V,W be arbitrary
random variables. Then for any multiindex i € [k]' and any i,,; € [k] we have

7 (1) 4(2) (k)
H(V | A’<[i,iz+1]’ W) (V | A[l <1z+1]’A<i’A<i’ " 'A<i > W)'

Proor. Observe first that by definition of the order < we have that A",
), hence

i = Al

A/

[i, <iz+1]
H(V 1 Ay W) = BV A 0 Al W)-

The definition of the sequence A’ in terms of A (in Definition 4.1) reads

Apyy = (4] A )M

Note that if random variables B, B” are related by invertible function B = f(B’), then H(A|B) =

H(A|B’). By definition of mixing matrix, M is invertible, and hence variables A’ “iq and variables

ASZ, .. .A(<k.) are indeed related by invertible (linear) transformation, which yields

<1

H(V|A], A

M) 4@ *)
i<i A W) = H(V 1AL L, AT AT AT W) o

We now turn to the proof of Theorem 4.4.

ProoF oF THEOREM 4.4. Fix a matrix M, channel Cy|z, and time t. We start by recalling the
definition of the variables X; and X, in the definition of the Arikan martingale and also recall
what local polarization entails for these variables.

Let (A,B), (A", BW), .. (A® B¥®) < D, denote independent random variables. Let
(A’,B’) constructed from (A, BMW), ... (A% B®)) as in Definition 4.1, i.e., we have AEi,’ 1=
(AE,I) s Aifc)) - M for every i’ € [k]* and B’ = (B, B® ... B®) Now leti £ (iy,...i;) be
sampled uniformly from [k]* and let i;,; € [k] be chosen independently and uniformly.

Then by Definition 4.1 we have

X, = H(A; | Ai, B)

and X1 = H(Afl lt+1]| <[i, lt+1]’B’)'

That is, for U = (Agl), . ,Agk)), we have A’[; 1 =U-M,and B’ = (B(l), . ,B(k)).

We will use the property of matrix polarization of M with U = (Uy, ..., Ug), where Us = AES)
and W = (Wi, ..., W), where Wy = (ASZ,B(S)) to deduce local polarization of Arikan martingale.
Note that the pairs (U1, Wy), . .., (U, W) are identically distributed and independent as required.
We let V = U - M. By the definition of Arikan martingale we have A’[; . = V = U - M. Thus, the
matrix polarization of M implies bounds on the conditional entropy of E(V |V.j, W), where V;
A[ i) , where Xy studies conditional entropy of (V;,,,|A’ i, B ). In what follows, we Verlfy
that despite the difference the latter can be bounded as requlred for the condition of (exponential)
local polarization of the Arikan martingale. We tackle each of the conditions in order, but first we
note that by Lemma 4.5 we have

T/ A7 ’ ’ (1) (k)

H(A| | AL o B) = HA | AL AL - AL BY),

- k ’

H((U - M);|(U - M)<;, AV, ..., A% B

H(V;|[V,,W). (20)

irs1
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Let h = X; = ITI(A,- | A<i, B). Note that for every s € [k] we have ITI(Ags) | A(jg,B(s)) = h,
because all the pairs (A®), B®)) are distributed independently and identically to (A, B). Moreover,
for every j € [k] we have E(Uj | W) = E(AES) IA(jg ,B®)) = h, where the first equality follows
from the fact that pairs (A®), B®)) se[k] are identically and independently distributed (so the index
J does not matter).

We will start with the Variance in the middle condition of martingale local polarization (Defini-
tion 1.6). As a reminder, what we need to show is that if h € (z,1 — r), then

Var (H(A[;, lA. B’) — H(A;|A<;, B)) > 0(7).

. i,i 1]’
lt+1~[k] [, t+1 (] t+1]

Note that by the martingale property (Proposition 4.2) we have

E [H(A,, A
it+1~[k][ ( [l»1t+1]| <[

and as such to obtain the lower bound on the variance it is enough to show that

]aB’) _ITI(AI |A<i7B)] = 0’

[ PR

— 1
itj)f[k] (H(AEi,iHl]IA’<[i,it+1]’Bl) 2 h+ E(T)) 2 K (1)
This would allow us to deduce that the variance above is lower bounded by ¢(r)?/k. (Note that
this lower bound is true for every h, and hence the actual variance needed in the statement of the
Variance in the middle condition is also true.)

We now use the Variance in the middle condition of the matrix polarization (Definition 4.3)
for M with variables (U, W) . This condition asserts that for some index j we have entropy gain
H((U - M);|(U - M).j,W) > h + &(r). Combining this with Equation (20) proves inequality (21)
and therefore shows variation in the middle for the Arikan martingale.

Next, we turn to the proof of suction at the upper end. Here, we will show that for ev-
ery ¢ if 1 — h < 7(c), then with probability at least % over the choice of i;;1, we will have

1- H(Afi,im]|A/<[i,i,+1]’B/) < %(1 — h). The corresponding suction at_the upper end condition
of matrix polarization asserts the existence of an index j, such that 1 — H(V;|V.;, W) < %(1 - h).

With probability at least %, we have i;;; = j, and in this case we have

1-H(A}, ;| AL, B) = 1= H((U - M);|(U - M), W) <

[SEN

i1 (1-h),
where the first equality above is by Equation (20).

The proof of suction at the lower end is symmetric. We now turn to the proof of strong suction
at the low end (Definition 1.8). Let M satisfy (1, b)-exponential matrix polarization. Recall that we
wish to show that Pr;, (] (H(A’[i,i,.,] | A’<[i.ir,.}» B') < h?) > 5. Once again by Equation (20),
we have, for every j € [k], E(A'[i,j] | A’ i1, B) = E(Vj | V<j, W). This is exactly the property
given by the strong suction at the low end property of matrix polarization (using h = H(U;|W)).

This concludes the proof. ]

Thus, to prove Theorems 1.15 and 1.16, we now need to prove that for every mixing matrix M,
M satisfies matrix polarization and M? satisfies exponential polarization. We argue the former in
Section 5 and the latter in Section 7.

5 PROOF OF MATRIX POLARIZATION

In this section, we prove that every mixing matrix satisfies matrix polarization, modulo some
entropic inequalities whose proofs are deferred to Section 6. Combined with Theorem 4.4, this
immediately yields Theorem 1.15, which asserts the local polarization of the Arikan martingale.
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Informally, this section can be viewed as reducing matrix polarization of a general (mixing)
matrix to the matrix polarization of the matrix G, = ( { ‘1) ) Formally, what we do is state three en-
tropic inequalities (see Section 5.1) that arise naturally in the proof of the matrix polarization of G,.
These inequalities relate the conditional entropy of a sum of two random variables to the entropy
of each of those random variables. Indeed, these inequalities can be used to show immediately that
G, satisfies matrix polarization, and we do so in Lemma 5.4. But the bulk of the work, and novelty,
in this section is in Section 5.3 where we show (via carefully executed “Gaussian elimination”) that
these entropic inequalities suffice to show the matrix polarization of every mixing matrix.

5.1 Entropic Lemmas in the 2 x 2 Case

We state here the three entropic lemmas. The proofs of the first two are deferred to Section 6. The
third lemma is well known and we provide a reference for its proof.

The first lemma arises from the analysis of the suction at the upper end (for X; > 1—1) condition
of Definition 4.3.

LEMMA 5.1. For every finite field ¥y and everyy > 0, there exist T, such that if (X1, A1) and (X, A;)
are independent random variables with X; € F such that 1 — H(X, | A;) < 1, then

1-H(X; + X, | AL, Ag) < y(1-H(X; | A)).

The next lemma comes analogously from the suction at the low end (for X, < 7) condition of
Definition 4.3.

LEMMA 5.2. For every finite field Fy and every y > 0, there exist T such that the following holds.
Let (X1, A1) and (X3, Az) be any pair of independent random variables with X; € Fy, and such that

Ay, Ay are identically distributed, and moreover for every a we have H(X; | Ay = a) = H(X; | Ay = a).
IfH(X; | A1) = H(X; | Ay) < 7, then we have
H(X; | Xq + X3, A1, Ay) < yH(X; | Ay).
Finally, we use the following lemma from Reference [7, Lemma 4.2], which corresponds to the

Variance in the middle condition of Definition 4.3. This is the only place where we need the field
size g to be prime.

LEmMA 5.3 ([7, LEmMA 4.2]). For every T > 0 and prime finite field Fy, there exist ¢ > 0 such that
if (X1,A1) and (X3, Az) are independent pairs of random variables (but not necessarily identically
distributed), with X; € Fy for some prime g, then

H(X; | A),H(X, | Ap) € (1,1 - 1)
implies
H(X1 + X2|A1, A) 2 max{H(X; | Ap), H(X; | A2)} +e.
5.2 Matrix Polarization of Arikan’s 2 X 2 Kernel

As an illustration of how the lemmas arise in the study of matrix polarization, we prove that G,
satisfies matrix polarization. We remark that we do not need this lemma for the rest of this article—
we present it purely as an example.

LEMMA 5.4. Over every prime field Fy, the matrix G; = ( ! (1)) satisfies matrix polarization.

Proor. Note that we have

(W1, Vo) = (U, Us) - (1 (1))
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ie,V; =U; + U, and V, = U,. By Lemma 5.3, we have that the choice j = 1 satisfies the variance
in the middle condition of matrix polarization for G,. By Lemma 5.2, we have the choice j = 2
yields the suction at the low end condition (with ¢ = %) of matrix polarization for G,. Finally, by
Lemma 5.1 we have that the choice j = 1 satisfies the Suction at the upper end condition (with
c= %) for G. O

5.3 Polarization of k X k Mixing Matrices

In this section, we prove the following.

LEMMA 5.5. For every prime field F, and every positive k every mixing matrix M € F’;Xk satisfies
matrix polarization.

We will apply Gaussian elimination on M to reduce to the entropic inequalities of the 2 X 2 case
from Section 5.1. The high-level strategy for showing polarization of k X k mixing matrix M is as
follows. Consider i.i.d. random variables (U, W;), . .. (U, W), and linearly transformed variables
V=U-M,whereU = (Uy,...,Uy).

In Section 5.4, we will show that

(1) There are some indices j, ¢, s € [k] and some a € F for which
H(V;|V<;,W) > H(U; + aU,|W).

(2) There are some indices j, £, s € [k] and some a € F; for which

H(V;|V.;,W) <H(U|U; + aUs, W).

Those two, together with entropic inequalities stated in Section 5.1, are enough to show polar-
ization of a given matrix.

Before we proceed with the formal proof of those two inequalities, we give an informal expo-
sition of the main idea behind it. For the sake of this exposition, let us focus on the inequality
H(leVq, W) < H(U|U; + aUg, W), and let us skip conditioning on W.

The main observation is that if By,...B,,, B+ are all linear combinations of variables
Vi,...Vj_i, thenwehave H(V;|V.;) = H(V;+Bp:1|V<;,B1,...Bp) < H(Vj+Bpmi1|Bi, ... Bp).
Here it is enough to instantiate this observation with m = 1. Since variables V; are themselves
linear combinations of variables U (with coefficients given by matrix M), all we need to do is find
an index j, and some indices ¢, s, such that

UpeVj+span{V.;} and U+ aUs €span{V;}. (22)

In particular, we use B, € span{V ;} for the first inclusion to set Uy = V; + B, and use B; €
span{V ;} for the second inclusion to set U; + aU; = B;. Note that with the inequalities in the
above paragraph would give us the desired inequality.

Turns out that if the matrix M is mixing, then this can be achieved by carefully applying Gauss-
ian Elimination on this matrix, as we explain next.

5.4 Reduction to the 2 x 2 Case

This section will be devoted to proving following two lemmas.

LEMMA 5.6 (REDUCTION FOR SUCTION AT THE UPPER END AND VARIANCE). Let (U, W) be a joint
distribution, where U = (Uq,...,Uy) € F’; (with U; fori € [k] being independent conditioned on
W), and let M be any mixing matrix. Then, there exist three indices j,{,s € [k], and a € F’;, such
that

H(UM); | (UM)<;,W) > HU; + aU, | W).
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LEMMA 5.7 (REDUCTION FOR SUCTION AT THE LOWER END). Let (U, W) be a joint distribution,
where U = (Uy,...,Uyg) € Fz, and let M be any mixing matrix. Then, there exist three indices
J,t,s € [k], and a € F;, such that

H((UM); | (UM)<;,W) <H(U; | U +aUg, W).

As discussed previously, to show Lemma 5.7 and Lemma 5.6, we will apply Gaussian Elimination
to prove the following three lemmas about mixing matrices.
We start with a simple equivalent characterization of a mixing matrix:

LEMMA 5.8. Invertible matrix M is mixing if and only if there exists j such that the support of the
first j columns has size greater than j.

Proor. We need to prove that if we let S; = {i € [k]| exists j* € [j] s.t. M; j» # 0}, then there
exists a j s.t. |S;| > j. To see this, note that |S;] is invariant under permutation of the rows, and for
upper triangular matrices |S;| < j. So if M is not mixing, then for all j we have |S;| < j. Conversely,
if for every j we have |S;| < j, then either we have |S;| < j for some j, and in which case M is not
invertible, or |S;| = j for every j, in which case we can find a permutation 7 : [k] — [k] such that
for every j S; = {n(1),...,7(j)}. Permuting the rows so that z(j) is the jth row makes M upper
triangular, and so once again we get M is not mixing. O

We will now state the linear-algebraic properties of a mixing matrices that correspond directly
to the entropic inequalities in Lemma 5.6 and Lemma 5.7. Specifically, it will not be too difficult
to deduce Lemma 5.6 from Lemma 5.9 as we discussed before—the crux of the argument is that
ﬁ((UM)j | (UM)<j, W) = H((UM)J- + B | (UM)<j, W), where B is some linear combination of
variables (UM);, ... (UM);_1, and Lemma 5.9 describes how to find suitable B. Lemma 5.10 plays
the same role in the proof of Lemma 5.7.

LEMMA 5.9. Let M be a mixing matrix, and let a4, . ..ay € IF"’; denote columns of M. Then there
exists index j and a vector v € a; + span{ay, ...aj_1}, such that | supp(v)| > 2 and supp(v) N
supp(a;) = 0 fori < j, where supp(v) is a set of non-zero coordinates of v.

Proor. Let S; = U, <; supp(a;). By Lemma 5.8, this means that there exist a j such that |S;| > j.
Consider the smallest j satisfying |S;| > j. By a straightforward inductive argument for any
k < j, we have span{ay,...ar} = span{e; : { € Si}, where e; are the standard basis vectors.
Now, we can decompose a; = v + w, where supp(w) € S;_; and supp(v) N Sj_; = 0. Since
[Sj-1] = j— 1and |S;| > j, we have | supp(v)| > 2, and by construction w € span{e, : £ € S;_1} =
span{ay,...aj_1}. O

LEMMA 5.10. Let M be a mixing matrix, and let ay, . . . ay € F’; denote columns of M. Then, there
exists three indices j,{,s € [k] and a1, 0z € F}, such that aye; € a; + span{ay,...a;_1} and e; +
ages € span{ay,...a;j_1}, wheree; € F’; are the standard basis vectors.

In our proof of this lemma, we will use a process that is essentially the well-known
Gaussian elimination applied to a matrix M. Specifically, the following proposition captures
the properties of intermediate matrices in a Gaussian elimination process useful for our
argument.

PROPOSITION 5.11. For any k X k invertible matrix M, there is a permutation x : [k] — [k] and
a sequence of matrices MY, ... M®) (we call matrix MY) the jth step matrix) with the following
properties.

For any j, if we use a, . ..ay to denote columns of M, ai, .. a;C to denote columns ofMU), and
eq,...ex to denote standard basis vectors, then we have
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(1) For every s € [k], we have a; € a, + span{a, . .. a;}.
1 ift=s

k
(2) For every s € [k] and every { < j, we have({a;, e, ()) = { 0 otherwise °

(3) span{ay, ..., a;} = span{aj, ... a]’.}.

For example, if j = 3, then M® up to some row permutation 7 must have the form:

M® = (23)

* ¥ © O =
* ¥ O = O

0
0
1
*
*

* % © o ©

where each column of M® is a corresponding column of M shifted by some linear combination of
the first three columns of M.

PrROOF oF PROPOSITION 5.11. The proof proceeds by induction. For the base case we consider
M© = M, and it is easy to verify the properties for M.

Let j > 1. For the inductive hypothesis, we assume a matrix MU~ satisfying properties above
and a one-to-one map 7 : [j — 1] — [k]. For the inductive step, we want to find MY and 7(j) as in
the statement of this proposition. Note that at the end of the induction, when j = k the one-to-one
map 7 is also onto, and hence 7 : [k] — [k] is a permutation as needed.

Let a(j 1), - (jfl) denote columns of MUY, Since M is invertible we have a; ¢

span{ay, ...a;j_1}. Usrng properties 1 and 3 for MU~V we conclude that a] R §Z span{a; a7y

Y . )} In particular, this implies that a(J Y % 0. Let 7(j) be such that (a e,[(,)) # 0. Note

that 7(j) # n(s) for any s < j by property 2 of the matrix MU~V and therefore 7 is a one-to-one

mapping.
; 1z U @) G- 20D

For s # j, let us take a; := a; (ay P a; = v 1) Py a; .

Next, we verify that properties 1-3 hold for matrix M) given by the columns aj,...a; defined
above. '

Indeed, the first property holds, since for any s, we have a; = ag_ ) 4 ya;
-1 -1)

, and, finally, a

U= where y is

some scalar. By induction, we have a; € as + span{ay, ... aj_1}, and aj € span{ay, ..., a;};
therefore a} € a5 + span{ay, ... a;}.

To show the second property, for any s # j we have

j— <a(j_1)a e j > i
(@}, ex)) = (aV 1),%(5)) - 707 gV 1),en(f)>~
=) j
a; .ex()

If ¢ < j, then by induction we have (a(j -

,ex(¢)) = 0, and hence the second term vanishes, and
we have (a}, e, ) = (aS e,,(g)) which agaln by induction is 1 if s = £ and 0 otherwise. For
t = j, we have (aj,e,() = (as e,,(p)) - (as , ex(j) = 0. Further, when s = j, we have

U1 o
(a}, er(r) = H is 1 exactly when ¢ = j and 0 when ¢ < j (where the latter claim follows

from property 2 for MUY,
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Finally, for the third property, the inclusion span{aj,...a}} C span{ai,...a;} follows from
the property 1, and the dim span{aj, ... a]’.} = j by property 2, which implies span{aj, ... aj’.} =

span{ay, ... a;}. O

ProOOF OF LEMMA 5.10. By Lemma 5.8 a matrix M is mixing if for some index i the support of
the first i columns has size strictly greater than i. Let j — 1 be the largest index with this property,
and note that j < k (since all the k columns trivially have support size of k).

Let MUY be the (j — 1)th step matrix of M defined as in Proposition 5.11.

By definition of j, the span of the first j columns of M must exactly equal span{e),...,ex()}
since the total support of all those columns has size exactly j, the columns are linearly independent,
and each of (1), ... z(j) is in this support by property 2 and 3 of matrix M),

Thus, all of the first j columns of MU~V can only be supported on coordinates {(1), ..., 7(j)}.
Further, by the second property in Proposition 5.11 of the (j — 1)th step matrix, the jth column of
MUY has zero on all coordinates 7(s) for s < j. Thus, it must be of form a1 e, (j) for some scalar
a1 # 0 (since otherwise the jth column of MU~ would be 0, which would contradict the fact that
M is invertible).

Finally, because total support of the first (j — 1) columns is larger than j — 1, there must exist
some column ¢ < j of MU~ that is supported on the coordinate 7 (j). This, along with the second
property of MU= in Proposition 5.11 implies that the £th column of MU~ must be exactly (ex(y+
p2e ;) for some S, € Fy.

We can now conclude the statement of the lemma. We have shown that the jth column of MU~V
is of form a;e,(;), and by the first property of MU=V in Proposition 5.11 it is contained in a; +
span{ay,...,a;j_}. This proves the first part of the statement of the lemma (by using £ < 7(j)).
The argument for the second part is as follows. We have shown that, on one hand, the {th column
of MUY is of form ex(¢) + f2ex(j), on the other hand, it is contained in the span of first j — 1
columns of the matrix M by the first property of MY~1 in Proposition 5.11. In other words, we
have ;' - €, (¢) + €,(;) is in the span of first j — 1 columns of the matrix M. This shows the second
part of the statement of the lemma (by picking a; « f,' and s « 7(¢) and recalling that in the
first part we have already set £ « 7(j)). O

With Lemmas 5.9 and 5.10 in hand, we are well equipped to show Lemmas 5.6 and 5.7
accordingly.

PROOF OF LEMMA 5.6. Let ay, . . . ax be columns of matrix M. By Lemma 5.9, there is an index j,
and a vector v = a; + w, where w € span{ay, ... a;_;} such that supp(v) N supp(a;) = 0 for each
i<j.

This implies

H((UM); | (UM)<;,W) = H(U. a)) (U, a1),.....(U.aj-1), W)

= E((U, a}) + <U, W> | <U, a1>, e <U, aj_1>, W)
(Since w € span{ay, . ..a;j_1})

=H(U,v) | W),

where the last equality follows from the fact that (U, v) is independent from (U, a;), ... (U, aj_1)
conditioned on W (since » has disjoint support with all a; for i < j).
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Now, since | supp(v)| > 2, let us say that v = aye, + azes + r, where supp(r) N {{,s} = 0. We
have
H(U, )| W) = H@U¢ + aUs + (U, r) | W)
> H(anUg + auUs + (U, r) (U, 1), W)
(Since conditioning does not increase entropy)
=HU; + a;lazUs KU, r),W) (Since x a;l - x is a bijection)
=HU; +a;'a2Us | W),

where the last equality follows, since supp(r) N {£,s} = 0. The proof is complete by setting « =
-1
a;as. O

Proor oF LEMMA 5.7. Let ay, . . . @ be columns of matrix M. By Lemma 5.10, there are indices
J,€,s and ay, ay € F, such that oy - e, = a; + w, where w € span{ay,...a;_1}, and e, + aze; €
span{ay,...a;_1}.

This implies

H((UM); | (UM)<;, W) = H(U, a)) |{U, @), ...,(U, a;-1), W)

= H(U, meg) = (U, w) (U, ay),....,<U,a;-1),(U, e + azes), W)
(Since e¢ + aze; is in spanfay, . .. aj_1})
= H(<U9 alef> | <U’ a1>’ e <U’ aj—l>7 <U9 es+ a2e$>9 W)
(Since w is in span{ay, ... aj_1})
<H(U,aiec) | (U, e¢ + azes), W)
(Additional conditioning decreases entropy.)
=H(anU | Ur + U5, W)
=H(U¢|U¢ + aUs, W),

where the last equality follows, since a; € F and hence the map x — «; - x is a bijection. O
We are now ready to prove that every mixing matrix is a polarizing matrix.

Proor oF LEMMA 5.5. The proof follows easily by combining Lemmas 5.1 to 5.3, 5.6, and 5.7 as
we elaborate on below.

Let M € FI‘;Xk be a mixing matrix, and let (U, W) be random variables such that U =
(Uyq,...,Ug) € FS, W = (Wi,..., W) is supported on some finite set, and the pairs (U;, W;)
are independently and identically distributed for i € [k]. Further, let the vector V := U - M.

For the Variance in the middle condition, we need to show that there exists j € [k] such that for
every 7 > 0 there exists ¢ = ¢(r) > 0 such that if HU,|W) € (1,1 - 1), then ﬁ((V)leq, W) >
H(U{|W) + . By Lemma 5.6, we have that there exist j, £,s € [k] and a € F such that

H((V)jIV<;,W) =2 HU¢ + aUg|W) = H{U; + aU,|Wp, W;), (24)

where the equality above uses the fact that the (U;, W;) pairs are independent. By Lemma 5.3
applied with X; = Uy, A; = Wy, Xp = aUy, and A, = W, we conclude that for every 7 > 0 there
exists ¢ > 0 such that

H(U¢ + aUg|Wp, Wy) > max{H(U¢|W), H(aU|Wy)} + ¢ = HU|W;) + e = HU W) +e¢,
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where the first equality uses the fact that the map aUs — Uy is invertible and that the (U;, W;)
pairs are identically distributed and the final equality uses the fact that these pairs are independent.
The Variance in the middle condition follows by combining the two steps above.

For suction at the high end, we need to show there is some index j € [k] such that for every
¢ < oo, there exists 7 > 0 such that if H(U;|W) > 1—7, then 1 —H(leVq, W) < %(1 —H(U,|W)).
Here again by Lemma 5.6, we have that there exist j, {,s € [k] and « € IF; such that Equation (24)
holds. Now applying Lemma 5.1 to Xj, Ay, X3, A, as in the previous paragraph and y = 1/c, we get
that there exists 7 > 0 such that the requirement for suction at the higher end holds.

Finally, for suction at the lower end we need to show there is some index j € [k], such that for
every ¢ < oo there exists 7 > 0 such that if H(U;|W) < r, then E(leVq, W) < % H(U{|W). We
first apply Lemma 5.7 to get that there exist j, £, s € [k] and & € Fj, such that

H((V)jIV<j,W) <HU|U; + aUs, W) = HU/|U; + aUs, We, Wy).

Now applying Lemma 5.2 with Xj, A;, X3, A, and y as in the previous paragraph, we get that
— 1— 1— 1—
HU¢lU¢ + aUs, We, Ws) < EH(Ué’lW[) = ZH(U1|W1) = EH(U1|W)~ o
This concludes our analysis of the reductions.

5.5 Proof of Theorem 1.15

For completeness and easy reference, we restate Theorem 1.15 below and include its proof.

THEOREM 5.12. Local Polarization of Arikan Martingales For every prime q, for every mixing ma-
trix M € ]F’;Xk, and for every symmetric memoryless channel Cy|z over Fy, the associated Arikan
martingale is locally polarizing.

ProoF oF THEOREM 1.15. Let M € ]F’;Xk be a mixing matrix. By Lemma 5.5, we have that M
satisfies matrix polarization. Now, by Theorem 4.4, we have that for every symmetric memoryless
channel Cy |z over Fy, the Arikan martingale associated with M and Cy|z is locally polarizing. O

6 PROOFS OF ENTROPIC LEMMAS

We now turn to the entropic lemmas stated and used in Section 5.1.

6.1 Suction at the Upper End

To establish Lemma 5.1, we will first show similar kind of statement for unconditional entropies.
To this end, we first show that for random variables taking values in small set, having entropy close
to maximal is essentially the same as being close to uniform with respect to L, distance. The L,
distance of a probability distribution to uniform is controlled by the sum of squares of non-trivial
Fourier coefficients of the distribution, and all the non-trivial Fourier coefficients are significantly
reduced after adding two independent variables close to the uniform distribution.

Finally, a simple averaging argument is sufficient to lift this result to conditional entropies, es-
tablishing Lemma 5.1.

LEmMA 6.1. If X € Fy is a random variable with a distribution Dx, then

d(Dx, U)? < 1-H(X) < do(Dx, U)’0(¢),

2loggq
where U is a uniform distribution over Fy, and d, (D1, Dy) := (Zxdpq (D1 (x) = Dy(x))P)V/P.
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Proor. Pinskers inequality [26] yields di(Dx,U) < +/2logq - /1 — H(X), and by standard

relations between ¢, norms, we have dy(Dx,U) < d1 (DX, U), which after rearranging yields the
bound dy(Dx, U)? < (2log q)(1 — H(X)), which in turn proves the claimed lower bound.

For the upper bound, given i € F, let us take §; such that Dx (i) «f pr X=1i)= 1+5’ . Note that
this implies (along with the fact that DicF, Dx (i) =1):

Z 5,’ =0 (25)
i€Fy
and

1
dy(Dx. U)? = 7 Z 82. (26)

Now

— 1 1+6; 1+6; 1 1+6;
_HX) =1+ Z( i )log( Al ): Z( 00 Jog(1 + 5,),
logg & 4 q logg & a

where the second equality follows from Equation (25).
By Taylor expansion we have log(1 + §;) = §; + &(J;) with some error term &(J;) such that
|E(8;)| < 257 for |5;| < 1. Therefore, in the case when all §; < 1, we have (for some constant C):

— 1
1-H(X) = D1+ 86+ E@)
qlogg
1
< [6: + 62+ O(57)]
qlogg ,;;
6;+C &7
qlogq LZ; l;q ]

< Cq : dZ(DX, U)Z’

where the inequality follows from Equation (25) and Equation (26). If some §; > 1, then the in-
equality is satisfied trivially: d2(Dx, U) > é, hence 1 — H(X) < ¢% - d2(Dx, U)2. O

Lemma 6.2. If X,Y € F, are independent random variables, then 1 — H(XX +Y) < poly(q)(1 —
H(X))(1 - H(Y)).

ProOF. By Lemma 6.1, it is enough to show that dy(Dx 4y, U)? < poly(q)dz(Dx, U)2ds(Dy, U)2.
For a distribution Dy, consider a Fourier transform of this distribution given by Dx (k) =
Ej-py «’'*, where w = exp(—27i/q). As usual, we have Dxsy (k) = Dx (k) Dy (k).

Moreover, by Parseval’s identity we will show that

do(Dx, U)? = Z Dx (k).
k;éo

Indeed, as in the proof of Lemma 6.1, define Dx (i) =: 1+5

%'ZﬁX(k)ZZZ( p Z1+225 8 —+dz(Z)x,U)2

kel i€Fg, i€Fy i€Fy i€Fy

——L_ Then, by Parseval’s identity, we have
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which implies the claimed bound by noting that Dx (0) = 1. (In the above, the last equality follows
from Equation (25) and Equation (26).)

This yields
1 A R
do(Dxor, U) = = > Dx(k)* Dy (k)
q k#0
1 A R
- < Zm(k)z) Zm(k)z) = gdy(Dx, U)*dy(Dy, U)*, o
q k#0 k#0

LEMMA 6.3. Let X1, X, € Fy be a pair of random variables, and let A, A; be pair of discrete random
variables, such that (X1, A1) and (X3, Az) are independent. Then

1- H(X; + X3|A1, Az) < (1 - H(X11A1))(1 = H(X2]Az)) poly(q).
Proor. We have

1-H(X, + X2]A1, Ap)
Z Pr(A; = a1) Pr(A; = a2)(1 — H(X;1 + X|A; = a1, Az = a3))

a, az

poly(q) ZPI(Al = a1) Pr(A; = a))(1-H(X1|A; = a1, Ay = a3))(1-H(X2|A; = a1, Ay = ap))

a, az

IA

poly(q) Z Pr(A; = a1)(1 - H(X11A; = a1)) Pr(A; = a)(1 — H(Xz|Az = a3))

ai, az

poly(q) (Z Pr(A; = a;)(1 - H(X1|A; = al))) (Z Pr(A; = a5)(1 — H(X;|A; = az)))

a az

poly(q) (1 - H(X: | A1))(1 - H(X; | A2)).
where the inequality follows from Lemma 6.2 and the second equality follows from independence
of (Xl,A1) and (Xz,Az). O

We are now ready to prove Lemma 5.1.

Proor oF LEMMA 5.1. Given y, g, take 7 = y/P(q), where P(q) is the polynomial appearing in
the statement of Lemma 6.3. By applying the conclusion of Lemma 6.3, we have

1-H(X; + Xz|A1,A2) < (1-H(X; | A))(1 - H(X; | A2)P(q)
(1-H(X, | Ay))TP(q)

y(1—H(X; | A)). o

IA

6.2 Suction at the Lower End

In this subsection, will show Lemma 5.2. To this end, we want to show that for pairs (X, A;) and
(X2, Az) with low conditional entropy H(X; | A) < 7,H(X; | Ap) < T, the entropy of the sum is
almost as big as sum of corresponding entropies, i.e., H(X, + Xz | Ay, Ay) > (1 - y)(ITI(Xl | Ay) +
H(X, | A;))—and the statement of Lemma 5.2 will follow (as we show later) by application of chain
rule. To this end, we first show the same type of statement for non-conditional entropies, i.e., if
H(X;) < 1,H(X;) < 7, then H(X; + X3) > (1 — y)(H(X;) + H(X;)); this fact can be deduced
by reduction to the analogous fact for binary random variables, where it becomes just a simple
computation. Then we proceed by lifting this statement to the corresponding statement about
conditional entropies—this requires somewhat more effort than in Lemma 5.1.
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LEMMA 6.4. Let X,Y be independent random variables in Fy. For anyy < 1, there exists o = a(y)
such that if H(X) < a and H(Y) < a, then

H(X +Y) 2 (1-y)(HX) +H(Y)).
First, we will show some preliminary useful lemmas.

ASSUMPTION 6.5. In the following, without loss of generality, let 0 be the most likely value for both
random variables X, Y. (This shifting does not affect entropies).

LEMMA 6.6. Let X be a random variable over Fy, such that 0 is the most-likely value of X. Then,
forany q and any y < 1, there exists a;(q, y) > 0 such that

H(X) < az(q,y) = Pr[X # 0] < yH(X).
PRrOOF. Let f := Pr[X # 0], and & := H(X). We have

alogq = H(X) > H(S(X)) = H(p) = flog(1/p).

In the above, the inequality follows from the fact that applying a deterministic function to a random
variable can only decrease its entropy. Thus,

aloggq
PrI X #0] =f < ———
[ =7 log(1/p)
- aloggq
~ log(1/a) —loglogq’
where we used the fact that f < alog g from Lemma 2.1. Hence, as soon as log é > lé% +logloggq,
the statement of the lemma holds. o

LEMMA 6.7 (SUCTION-AT-LOWER-END IN THE BINARY CASE). Let U,V be independent binary ran-
dom variables. There exists a function ay(y) such that, forany 0 <y <1,

HU),HV)<a(y) = HU®V) > 1 -y)(HU)+HWV))."

Proor. Let p; and p, be the biases of U, V, respectively, such that U ~ Bernoulli(p;) and V ~
Bernoulli(py). Let pyops = p1(1—p2)+(1—p1)p2 be the bias of UV, thatis U®V ~ Bernoulli(p; opy).

We first describe some useful bounds on H(p). We have H(p) > plog 1/p. For p < 1/2, we also
have

—(1-p)log(1—p) < (1/In2)(1—p)(p +p*) < (1/In2)p < 2p,

where the first inequality follows from the fact that — In(1 —x) < x + x? for x < % and so we have
H(p) < p(2 + log 1/p). Summarizing, we have

plog(1/p) < H(p) < plog(1/p) + 2p.

Suppose H(p1), H(p2) < . We now consider H(p;) + H(ps) — H(p1 o p2). WLOG assume p; < p,.
Note that this implies

p1op2 < p1+p2 < 2ps.

14We note that we could have replaced & by just + as those operations are over F; but we chose to keep + for addition
over reals in this lemma.
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We have

H(p1) + H(p2) — H(p1 © p2)
< p1(log(1/p1) +2) + p2(log(1/p2) + 2) — (p1 © p2) log(1/(p1 © p2))
< p1(log(1/p1) +2) + p2(log(1/p2) + 2) = (p1 + p2 = 2p1p2) log(1/(2p2))
= p1log(2p2/p1) + p2 log(2pa/p2) + 2p1p2 log(1/(2p2)) + 2(p1 + p2)
< p1log(pz/p1) + 2pip2 log(1/(p2)) + 6p2
< 2pH(p2) + 7p2 (Using p; log(p2/p1) < p2)
< 2p1H(p2) + TH(p2)/ log(1/p2)
< 9H(ps)/log(1/7).
In the above, the last inequality follows from the assumption that 7 < 1/8 (which will be true in

our case). Indeed, note that with this assumption 7 log(1/r) < 1 (which along with the fact that
p1 < 7 implies p; < 1/log(1/7)) and p, < 7 (since we have p, log(1/p;) < 7). Thus, we have

H({U),HV)<t = H({U)+H({V)-HU®V) <9H(V)/log(1/7).

This implies the desired statement, for ao(y) := 27°/7. O

Let § : Fq — {0,1} be the complemented Kronecker delta function, S(x) := 1{x # 0}. We show

that for small-enough entropies, the entropy H(5(X)) is comparable to H(X).

LEMMA 6.8. There exists a function a;(y) such that for any given 0 < y < 1, and any arbitrary
random variable X € F such that 0 is the most likely value of X,

H(X) <aiy) = HX) 2 %H(E(X)) > (1-y)HX).
0gq

Proor. The first inequality H(X) logg = HX) > H (5(X)) always holds, by the fact that de-
terministic postprocessing does not increase entropy. Thus, we will now show the second bound:

For small-enough entropies, loéqH (X)) > (1- y)H(X). This is equivalent with showing that

H(5(X)) > (1 - y)H(X). Given y, let @1 := a2(q,y) be the entropy guaranteed by Lemma 6.6, so
that if H(X) < a;, then Pr[§(X) = 1] = Pr[X # 0] < yH(X). Now, for H(X) < a;, we have

H(X) = H(X, 8(X)) - H(5(X)|X), (Chain rule)
= H(X, §(X)), (as 6(X)|X is deterministic)
= H(5(X)) + H(X|5(X)), (Chain rule)

= H(5(X)) + H(X|8(X) = 1) Pr[6(X) = 1],
(as H(X|5(X) = 0) = 0, since X|5(X) = 0 is deterministic)

< H(5(X)) +log(q) Pr[6(X) = 1],  (as X € Fy, so H(X|8(X) = 1) < H(X) < log(q))
< H(E(X)) + log(q)yH(X), (by Lemma 6.6)
= H(5(X)) + yH(X).

Thus, if H(X) < a1, then (1 — y)H(X) < H(5(X)) as desired. O

Now, by combining these, we can reduce suction-at-the-lower-end from [, to the binary case.
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ProoF oF LEMMA 6.4. Given y, we will set ¢ < 1/4, to be determined later. Notice that we have
— 1 1 _
HX+Y)=—HX+Y)> —HGX+Y)). (27)
log g loggq

We will proceed to show first that
H(S(X +Y)) > HG(X) @ 5(Y)). (28)
This inequality is justified by comparing the distributions of §(X +Y) and 5(X) ®5(Y), both binary
random variables, and noticing that
Prl6(X+Y)=0]=Pr[X+Y =0] <Pr[{X =0,Y =0} U{X #0,Y # 0}] = Pr[6(X) ® §(Y) = 0].
Moreover, let us observe that Pr[g(X +Y)=0] =Pr[X +Y =0] > 1/2. Indeed,
Pr[X +Y #0] < H(X +Y) < H(X,Y) < HX) + H(Y) < 2a < 1/2.

In the above, the second inequality follows, since X + Y is a deterministic function of X,Y and
the third inequality follows from the chain rule and the fact that conditioning can only decrease
entropy. Therefore, by monotonicity of the binary entropy function H(p) for 1/2 < p < 1, and
since Pr[S(X +Y)=0] < Pr[g(X) [ S(Y) = 0] we have

HS(X +Y)) > H(5(X) @ 8(Y)).

This justifies Equation (28).

Now we conclude by using the suction-lemma in the binary case, applied to 5(X) @ 5(Y).

Let y’ be a small-enough constant, such that (1 —y’)? > (1—y). Let ay := ao(y’) be the entropy
bound provided by Lemma 6.7, and let a1 := a1 (y”) be the entropy bound provided by Lemma 6.8.
Set ¢ := min{ay, a1, 1/4}.

Then, for H(X), H(Y) < a, we have

H(X +Y)logq > H(5(X +Y)), (Equation (27))

> H(5(X) @ 8(Y)), (Equation (28))

> (1-y')(H(5(X)) + H(5(Y))), (Lemma 6.7 and H(5(Z)) < H(Z) for r.v. Z)

> (1-y)2(H(X) + H(Y))logg. (Lemma 6.8)

With our setting of y’, this concludes the proof. ]

We will now see how Lemma 6.4 implies its strengthening for conditional entropies.

LEMMA 6.9. Let (X1, A;) and (X3, Az) be independent random variables with X; € F, and such that
Ay, A, are identically distributed; and, moreover, for every a we have H(Xl |A; =a) = I_J(XZIAZ =a).
Then, for everyy > 0, there exist T such that if H(X1|A;) < 7, then

H(X; + Xz|A1,A2) > (1 - y)(H(X11Ay) + H(Xz|A)). (29)

PROOF. Let us take a := H(X;|A;) = H(X,|A;). For given y, we shall find 7 such that if ¢ < 7,
then Equation (29) is satisfied. Let us now consider G4 := {a : E(Xl |A; = a) < a1}, for a1 = %.
(In the remainder of the proof when we want to talk about a random variable from the identical
distribution from which A; and A, are drawn, we will denote it by A.) By Markov inequality

Pr(A¢ Ga) < — = y.
a1

Let us now fix 7, which appears in the statement of this lemma to be smaller than y and, more-
over, small enough, so that when ¢ < 7 for every aj,a; € G4 we can apply Lemma 6.4 to
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distributions (X;|A; = a;) and (X3]A; = ay) to ensure that H(X; + X3|A; = a1, A, = ay) >
(1-y)HXlAr = a1) + H(X;|Az = a3)).
Let us use shorthand S(ay, ay) = H(X; + X3]A; = a1, As = a3) Pr(A; = a1, Ay = ay). We have

H(X; + X3|A1, Ag) = Z S(ay, az)

ai, az

> ) Sana)+ Y Slana)+ Y Sar,a). (30)
a1€Gx a1¢Ga a1€G4
a,€Gy a;€Gx a2#Ga

If both a; and a; are in G4, then by Lemma 6.4 we have
S(a,az) > (1 - y)(HXi|Ar = a1) + H(Xz|Az = a2)) Pr(A; = a1, A; = ay),
and therefore

Do S(ana) = 20-y)Pr(A€Ga) > H(XilA1 = @) Pr(A; =), (31)

a1€Ga,a6Gx a1€Gy

where in the above we have used the fact that A; and A; are identically distributed.
However, for a; € Ga, as € G4 let us bound

S(ar, az) = H(X; + X2)Ay = a1, Ay = a2) Pr(A; = a1, A = a3)
> E(Xl +X2|A1 = a1,A2 = ag,Xz)PI'(Al = al,Ag = (12)
= ﬁ(X1|A1 = al)Pr(Al = al,Az = (,12),

where the inequality follows from the fact that additional conditioning decreases entropy and for
the second equality we used the fact that, since X; and X, are independent, H(X;+X,|A; = a1, A, =

az,Xz) = H(X] |A1 = al,Az = az,Xz) = H(XllAl = aI,Az = az) = H(X1|A1 = (11). Summing this
bound over all such pairs yields

> Sana) 2 Pr(A€Ga) Y H(Xi|As = ap) Pr(4; = ay), (32)

a1¢Ga,a2€Ga a1¢Ga

and symmetrically for the third summand, we get

S(@r.a2) 2 Pr(A € Ga) ) H(XolAy = a2) Pr(dy = ). (33)

a1€G4,a2¢GA a;¢Ga

Plugging Equations (31)—(33) into Equation (30) (and using the fact that A; and A, are identically
distributed), we find

H(X; + Xl A1, A7) > 2(1 = y) Pr(As € Ga) Y H(X|A; = a1) Pr(A; = ay)
ay
= 2(1-y)Pr(A € GA)H(X1|A)).
We have Pr(A € Ga) > (1 —y), which yields
H(X; + X3)A1, Ay) > 2(1 — y)2a > 2(1 - 2y)a

and the statement of the lemma follows, after rescaling y by half. O

Finally, we are ready to prove Lemma 5.2.
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ProoF oF LEMMA 5.2. By chain rule, we have
H(X; | X1+ X2, A Ag) = HX1, X1 + X | A Ag) — H(X; + Xz | Ar, Ay)
H(X1, X5 | A1, Az) — H(X1 + Xz | A1, Ay)

2H(X; | Ay) —HX + X | A1, Ag),

where the last equality follows from the independence of (X1, A;) and (X3, A;). Now we can apply
Lemma 6.9 to get

E(Xl |X1 +X2,A1,A2) < ZE(XI | Al) - (1 — }/)(ZH(Xl |A1) = ZYITI(Xl |A1),

and the statement follows directly from Lemma 6.9 and rescaling y by half. ]

7 EXPONENTIAL MATRIX POLARIZATION

The main result of this section shows the exponential matrix polarization of M®? for every mixing
matrix.

LEmMA 7.1. For every prime p, every mixing matrix M € FZXk and every ¢ > 0, the matrix M®?

satisfies (%, 2 — ¢)-exponential matrix polarization.
Before turning to the proof, we first note that this immediately yields Theorem 1.16.

PrROOF OF THEOREM 1.16. By Lemma 7.1, we have that for every prime g and mixing matrix
M e }FSXk, the matrix M®2 satisfies (%, 2 —¢)-exponential matrix polarization. By Theorem 4.4, we
then have that for every symmetric memoryless channel Cy|z, the Arikan martingale associated
with M® and Cy/z is (ﬁ, 2 — ¢)-exponentially locally polarizing. O

The rest of the section is devoted to the proof of Lemma 7.1. We start with a simple proposition.

PROPOSITION 7.2. For every field F, and every matrix M € IFSXk, its tensor M®? is mixing if M is
mixing.

Proor. Let S; = {i € [k]|3j" € [j] s.t. M; j # 0}, and then Jj s.t. |S;| > j. By Lemma 5.8, there
exists a j such that |S;| > j. With this observation, the proposition follows easily. Given mixing M,
let j be the index such that |S;| > j. Recall that M®* is composed of k? submatrices of dimensions
k x k each, with the i, jth submatrix being M;; - M. Let i be an index such that M;; # 0. (Such an
index must exist or else we have an all zero column that contradicts the invertibility of M.) Then
the first k columns of M®? contain the k X k submatrix M;; - M, and in this submatrix itself we
have that the support of the first j columns has size larger than j. We conclude the first j columns
of M®2 have support size larger than j and so by Lemma 5.8, M®? is mixing. ]

7.1 Exponential Polarization of a 2 X 2 Matrix

We will first prove that a single specific matrix, namely ( Lo ), after taking second Kronecker power,
satisfies exponential polarization. Recall that in Section 5.3 the local polarization of a mixing matrix

was shown essentially by reducing to this case. We will follow a similar plan in this section.
LEMMA 7.3. Let q be a prime and let H = (01[ ?)fora € F,. Then, for every e > 0, the matrix H®*
satisfles (1,2 — €) exponential matrix polarization.

ProoF. Note that since H is mixing, by Proposition 7.2, we have that H®? is also mixing. And
so, by Lemma 5.5, we have that H ®2 gatisfies the conditions of matrix polarization (specifically,
variance in the middle and suction at the upper and lower ends from Definition 4.3). It remains
only to argue exponential matrix polarization, i.e., strong suction at the ends.
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Given ¢ > 0,let 7 > 0be such that for every § < 7 we have 6(log 55 +log q) < 6. Note that the
identity is satisfied for small-enough &, since the LHS is O(log(%)) while the RHS is Q((%)g ). Now
let 5 < 7, and now consider arbitrary sequence of i.i.d. random variables (U1, W), ... (U4, Wy)
with H(U;|W;) = 8. We can explicitly write down matrix H®? as

1 0 0 O

w2 | @ 1 0 0
H_a010
> a a1

Matrix H®? has four rows. So, to achieve exponential polarization with = i, we need to show
that there is at least one index i satisfying the strong suction inequality (with parameter b = 2 —¢).
We do so for i = 4. Let us consider vector U = (Uy, ..., Uy) and similarly W = (W;, ..., W,), and
let V= (Vy,...,V,) = U - H®?. We want to bound

H(V4|V oy, W) = HU4U; + aU; + aUs + a?Uy, Uy + aU,, Us + aUy, W)
= H(U4|U; — a?Uy, Uy + aUy, Us + aUy, W),

where the equality follows, since U, —a?U, = U +aUz+aUs+a*Uys—a (Uy + aUy)—a (Us + aUy),
and hence the map

(Ul +aU, + aU3 + (X2U4, U, +aUy, U3 + aU4) [ (U1 - azU4, U, +aUy, U3 + (ZU4)

is a bijection.

The main idea to bound the conditional entropy of U, above is that if any of U; is “known” for
i € {1, 2,3}, then given the variables being conditioned on, Uy is also “known.” Of course, none of
the U;’s are known, but each is predictable given W;, and we use this predictability to bound the
conditional entropy. Details follow.

Let X denote the domain of W;’s. Using E(UiIM/i) = J, by Lemma 2.2, we have that there exists
some function f : ¥ — Fg, such that Pr(f(W;) # U;) < 6. Let V| = —a?U, + U;. We now
give a predictor g(V/, V3, V5, W) for U;. Let X; = —a 2(V} — f(W)), Xz = a”1(V; — f(W,)), and
X3 = a 1(V3 — f(W;)). Note that if for some i we have f(W;) = U;, then we have X; = Uy. Using
this we set g as follows: If two of X3, X5, X3 have the same value, then we define g(V{, V3, V5, W)
to be this value; otherwise, we set g(V{, V3, V3, W) arbitrarily.

By construction of g, we have that if there exist two choices of i € {1, 2,3} satisfying f(W;) =
U;, then g(V},V,,V3,W) = Uy In turn, this implies Pr(g(V},V,, V5, W) # Uy) < 367 since by
symmetry, we have

Pr(g(V],Vy, Vs, W) # Uy) < 3Pr(f(W) # Uy A f(Wo) # Uy) = 3Pr(f(Wy) # Uy))? < 387,

where the equality follows, since (U;, W;) are independent.

Converting the predictability of U; by g(---) into an entropy bound by Fano’s inequality
Lemma 2.3, we have H(U,|U; — «®Uy, Uy + aUy, Us + Uy, W) < 65%(log ﬁ + logq). By the
choice of 7 and § < 7, we have 6(log ﬁ +logg) < 67¢ and so

— S— 2—
H(ValV<y, W) < 87 = (HU W), (34)
as desired. |
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7.2 Exponential Polarization of Any Mixing Matrix via Useful Containment

We will now proceed to show that exponential polarization of M®? for any mixing matrix M can
be reduced to the lemma above. We first provide an intuitive explanation of the reasoning below.

To show that a matrix M’ satisfies an exponential polarization (or just suction at the lower end
condition of local polarization), one needs to show that for any ii.d. variables U; with entropy
H(U;) = 6 and some index j, we can upper bound E((UM’)jI(UM')q) (for the sake of the clarity
of this exposition, we skip conditioning on W;). If we write V; = (UM);, then we wish to upper
bound E(leVl, ... Vj_1) (where all V; are linear forms in {U};¢[x]). Now, for any By, .. ., B,, that
all can be expressed as linear combinations of V4, ... V;_;, we have

H(V;|Vy...V;.1) =H(V; +By|Vy,...V;_1,B1,...Bp_1) <H(V; +By|By,...,Bp_y).

In Section 5.4, we showed using Gaussian elimination that for any mixing matrix M, one can find
Jj, €, s, and linear forms Wy, Wy s.t. V;+ W, = Uy and Wy = aU+ Uy, which implied E(Vj+Wz [wy) =
H(U/|laU; + Uy). This can be thought of as showing that in some sense any mixing matrix M
contains a matrix H = (01( 9
former to understanding local polarization of the latter.

Here we introduce a technical notion of useful containment that is tailored to extend this reason-
ing in a way that has a convenient property expressed by Lemma 7.7, i.e., since matrix M contains
H in this specific sense, the matrix M®? contains H®? and by the reasoning outlined in the previ-
ous paragraph, we can deduce exponential local polarization of M®? from this containment and
the entropy upper bound proved in Lemma 7.3.

We wish to note here that the subsequent definition and lemmas are tailored to the specific
statement we are proving. In particular, useful containment is not a transitive relation. More im-
portantly, and unfortunately, it is not true that for any exponentially polarizing matrix R; if R is
usefully contained in M, then M is exponentially polarizing. Lemma 7.8 asserts this property only
for R = H®2,

The following definition of containment relation for matrices will be used to implement the
ideas outlined above.

) and reduces the problem of showing the local polarization of the

Definition 7.4 (Matrix (Useful) Containment). For any finite field F; and integers k > m > 1, we
say that a matrix M € Fng contains a matrix R € P;"X’" if there exist some T € F’;X’" and a permu-

R
tation matrix P € F’;Xk, such that PMT = o | We say that P and T witness the containment of R

in M. If, moreover, the last non-zero row of T is scaling of the standard basis vector, i.e., Tj = ae,,
for some o € PZ’ then we say that containment is R in M is useful, and we denote it by R C,, M.

We emphasize that useful containment is not a partial order.

Comparing this definition to the exposition above, the permutation P is used to express the
fact that we can freely permute labels of variables Uy, ..., Uy, whereas the matrix T encodes
coeflicients for linear forms By, . . . By,—1, By, + @V ;. Finally, the condition on the last non-zero row
of T being of form ae,, is here to express the idea that V; is not allowed to appear in any of the
forms By, . ..B,,.

The following fact about useful containment will be helpful.

ProrosiTION 7.5. IfR T, M, then for every upper triangular matrix U with non-zero diagonal
elements U; ;, we also have R C,, MU,

Proor. Consider matrix T and permutation P as in the definition of useful containment for
R £, M. We can pick the very same permutation P and matrix T’ = UT to witness R ©, MU .
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All we have to show is that last non-zero row of T’ is the (scaled) standard basis vector ae,,. Indeed,
if jo is the last non-zero row of T, and j > j,, then rows (U); are supported exclusively on elements
with indices larger than jy, and hence (UT); = (U);T = 0. However, (UT);, = >; Uj,,iT;. Since for
i < jo the entry Uj, ; = 0, and for i > j, we have T; = 0, this implies (UT);, = Uj, ;, T, = Uj. jo@€m;
where the last equality follows from the fact that T was useful—that is, Tj, = ae,, and T; = 0 for
i > jo. Since both Uj, j, # 0 and a # 0, we have U;, ;,a # 0, as desired. O

Lemma 5.7 can now be reinterpreted as the following lemma. We give a full new proof here, as
we describe it now in the language of useful containment.

. . . kxk . . _ 0 %
LEMMA 7.6. Every mixing matrix M € qu usefully contains matrix H = (é 1) for some a € Fy.

Proor. For every matrix M, there is some permutation matrix P’ and pair L, U, such that P’M =
LU, where L is lower triangular (such that its diagonal is all 1s) and U is upper triangular.”® Matrix
M being mixing is equivalent to the statement that L and U are invertible, and, moreover, L is
not diagonal. (In particular, M is invertible if and only if L and U are and M = (P’)"!LU is the
permutation of an upper triangular matrix if and only if L is diagonal.) Thus, by Proposition 7.5, it
suffices to show that every lower-triangular L, which is not diagonal, contains H C,, L. Indeed, let
s be the last column of L that contains more than a single non-zero entry, and let r to be the last
row of non-zero entry in column L. ;. Note that column L. , has single non-zero entry L, , = 1.
We will show a matrix T € F<x2
column of T. ; := e,; note that in this case (LT)., = e,. To specify the first column of T, we wish
to find a linear combination of columns of Ly .,...,L,—1 . suchthat } ;.. t;L; . = es + ae,, where
a = L, s # 0. Then coefficients t; can be used as the first column of matrix T, which would imply
that (LT).; = e + ae,. We can set those coefficients to t; = —Ls; fori € [s+ 1,r — 1], t; = 1
and t; = 0 for i < s; this setting is correct, because columns L; . for i € [s + 1,7 — 1] have only
one non-zero entry L; ;. As already observed, the first column of LT is es + ae, while the second
column is e,. Thus, if P is any matrix corresponding to a permutation that maps s = land r - 2,
then the containment H C, L is witnessed by pair P and T, as desired. O

as in the definition of useful containment. Let us specify a second

LemMA 7.7. If matrix R ©, M where R € FJ*® and M € F’;Xk, then R®? &, M®2.

Proor. Consider matrix T and permutation P that witness the useful containment for R ©,, M.
Note that by the mixed product property of tensors, P®2M®2T®% = (PMT)®2. As such, restriction
of a matrix P®2M®2T®? to rows corresponding to [k] x [k] is exactly R®2, and all remaining rows
are zero. We can apply additional permutation matrix P so that those are exactly first k? rows of
the matrix PP®2M®?T®? give matrix R®?, and the remaining rows are zero. Finally, since the last

non-zero row of T was a scaling of the standard basis vector, the same is true for T®?, |

®2
LEmMA 7.8. If matrix M € F’;Xk usefully contains matrix R = <Dll ‘1)) , then matrix M satisfies

the strong suction condition of(%, 2 — ¢) exponential polarization.

Proor. By the definition of exponential matrix polarization, it suffices to prove that there exists
an index j € [k] such that H((UM)J-I(UM)<J-, W) < H((UR)4|(UR) <4, W). Once we have this, the
proof of Lemma 7.3 (specifically Equation (34)) asserts that the conditional entropy is bounded as
required. So we turn to proving this.

15This, e.g., follows from Gaussian Elimination and the corresponding “LU decomposition” of any matrix. Also note that
the the assumption on the diagonal elements of L holds without loss of generality.
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Take P € ]FZXk and T € F’;X“ witness the containment R =, M. Let, moreover, j be the last
non-zero row of T. We have

H((UM);|((UM)<;, W) = H(UM);Tj 4 + (UM)<;T<; 4| (UM) <, W)
= H(UMT)4|(UM);, W)
= H(UMT)y|(UM)<;j, (UM)<;T<j <4 W)
< H(UMT)s|(UM)<;T<j, <4, W).

In the above, the first equality follows, since Tj 4 # 0 (and hence the map (UM); = (UM);T; 4 is a
bijection) and the fact that (UM);T<; 4 is deterministic function of (UM).;. The second equality
follows, since M ;. = 0, the third one introduces conditioning on (UM)«;T<; <4, which is deter-
ministic given (UM)<;, and the inequality follows, because entropy is decreasing under additional
conditioning. Observe now that (UM) ;T <4 = (UMT)4. Indeed, according to the definition of
useful containment and because j is last non-zero row of T, we have Tj .4 = 0 (jth row has only
one non-zero entry Tj 4), as well as T ; <4 = 0. Therefore

H((UM);|(UM)<;, W) < H(UMT);|(UMT)<4, W)
= H(UP'R)y|(UP™'R) <4, W)
= H((UR)4|(UR) <4, W),

where the last inequality follows from the fact that variables U; are i.i.d. hence for the permutation
matrix P, UP~! has the same distribution as U. m]

With the above ingredients in place we are ready to prove Lemma 7.1.

PROOF OF LEMMA 7.1. Since M is mixing we have that M®? is also mixing (Proposition 7.2) and
so by Lemma 5.5 we have that M®? satisfies the conditions of matrix polarization. So it suffices to
prove M®? satisfies the conditions of (%, 2 — ¢) exponential matrix polarization.

By Lemma 7.6, we have that M usefully contains H = ( ! (1)) Then, by Lemma 7.7 we have that

M®? usefully contains H®?. Finally, by Lemma 7.8 applied to M®? (which is a k% X k? matrix) we
have that M®? satisfies (1/k?, 2 — €) exponential matrix polarization. ]

8 NEARLY OPTIMAL DECODING ERROR PROBABILITIES

Finally, we turn to the proofs of Theorems 1.19 and 1.20. Recall that the former yields codes achiev-
ing decoding error probability exp(~N*) for any § < 1 while doing so at block lengths polynomial
in the gap to capacity. The latter result shows that the techniques in this article are essentially op-
timal (for a broad class of channels) by showing that any analysis that bounds the decoding error
probability can be used as a black box to achieve a similar decoding error probability in our anal-
ysis framework while additionally guaranteeing convergence at polynomial lengths in the gap to
capacity. We first present the former, though before doing so, we make a small digression to rec-
ollect some known definitions of linear codes that we will use in this section (for more details see,
e.g., Reference [14, Chap. 2]).

8.1 Basics of Linear Error-correcting Codes

A linear g-ary error correcting code C of block length ny and dimension kj is a linear subspace of
Fg® of dimension ko. Equivalently, there exists a full rank G € ]FZOX"O suchthatC = {v-Glv € FSO =
G is called the generator matrix of C. The kernel/null-space/dual of C, denoted by C* or ker G, is
given by {w|{w,c) = 0 for all ¢ € C}. A generator matrix of C* is called a parity-check matrix of
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C. The distance of a code C is the minimum number of positions any two codewords in C differ in.
For linear code C, its distance is exactly min¢cc\ o) wt(c), where wt(x) is the number of non-zero
elements in x.

8.2 Polar Codes with Decoding Failure Probability Approaching g~N'W

Theorem 1.19 is proved by giving a sufficient structural condition on matrices for very strong
exponential polarization. The following lemma states this condition.

LEMMA 8.1. Let q be prime. If a mixing matrix M € F’;Xk is decomposed as M = [My|M;], where
M, € ng(l_n)k is such that ker MOT is a linear code of distance larger than 2b, then matrix M satisfies

(n, b — ¢€)-exponential matrix polarization for every e > 0.

Proor. By Lemma 5.5, we have that M satisfies the conditions of matrix polarization (specif-
ically, variance in the middle and suction at the upper and lower ends from Definition 4.3). It
remains only to argue exponential matrix polarization, i.e., strong suction at the lower end.

Let us again consider a sequence of i.i.d. pairs (U;, W;) for i € [k], such that H(U;|W;) = §. By
Lemma 2.2, there is some f : ¥ — F, such that Pr(f(W;) # U;) < 6 (for every i € [k]). Let us
define U; := U; — f(W;).

We will bound ﬁ((UM)j|(UM)<j, W), for all j > (1 — n)k. We have

H((UM);|(UM)<;,W) < HU|(UM)-;,W) < H{U|UM,, W) = H{U|UM,, W) < H{U|UM,),

where the first two inequalities follow from the fact that for random variables (X, Y, S, T) it is
always the case that H(X|S,T) < H(X,Y|S,T) < H(X,Y|S) (the second inequality also uses the
fact that (UM)<; is a sub-matrix of UM). The equality follows from the definition of U; and the
fact that f(-) is deterministic function. The final inequality follows from the fact that conditioning
can only decrease the entropy:.

Given UM, we can produce estimate U= argminy {wt(V) : VM, = UM,}, where wt(V) = |{j :
Vj # 0}].

We note that if wt(U) < b, then U = U. Indeed, we have wt(f]) < wt(U), and therefore
wt(U — U) < 2wt(U) < 2b, but, however, (U — U)M, = 0, and by the assumption on distance of
ker MOT we deduce that U — U = 0. Therefore, Pr(U # U) < Pr(wt(U) > b). All coordinates of U
are independent, and each U; is nonzero with probability at most &, therefore

~ k
Pr(wt(U) > f;) < (b)ab.
Further, by Fano inequality (Lemma 2.3), we have
H(U|UM,) < 2C5%(blog 6" +log C + log q),
where C = (llj) Again, for any ¢, and small-enough § (with respect to ¢,b,k,q), we have
H(U|UM,) < §°=.

This shows that for any j > (1 — n)k (note that there are at least nk such values of j) and
small-enough § we have

H((UM);|(UM)<;, W) < 8°7¢,

which completes the proof of a exponential matrix polarization for M. O

We are now almost ready to prove Theorem 1.19. We start with a corollary that uses standard
results on existence of codes with good distance.
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COROLLARY 8.2. For every v > 0 and every prime field Fy, there exist k, and matrix M € F’;Xk,
such that matrix M satisfies (1 — v, k'™") exponential matrix polarization.

Proor. Consider a parity check matrix M, of a BCH code with distance 2k'~". We can achieve

this with a matrix M, € ]FSXkO, where ko = O(k'™" logk) (see, e.g., Reference [14, Exercise 5.10]).

Hence, as soon as k > Q(Z"i1 log "71)), we have kg < vk. Note that if k) = vk, then by Lemma 8.1
we can hope for (1 — vy, k'™ — ¢) exponential matrix polarization. We can now complete Mj to
a mixing matrix to get overall (1 — v,k'”") exponential matrix polarization (since v, < v). To
complete matrix M, to a mixing matrix, by Lemma 5.8 it is enough to complete it in arbitrary way
to an invertible matrix, since already the first column of M, has support larger than 1. ]

Remark 8.3 (Exponential Polarization of Random Kernels). It is worth noting that by the same
argument and standard results on the distance of random linear codes, a random matrix M € FZXk
with high probability satisfies a (1 — v, k!™") local polarization, with v — 0 as k — oco. Thus polar
codes arising from a large random matrix will usually have this property.

We now complete the proof of Theorem 1.19.

ProoF oF THEOREM 1.19. Given f < 1 and ¢, let v = (1 — f)/3. Now let k and M be
as given by Corollary 8.2. By Theorem 4.4, we have that for every channel Cy|z, M satisfies
(1 — v, k'™")-exponential local polarization. By Theorem 1.9, we have that the same martingale
satisfies A-exponentially strong polarization for A = (1 — v)?log, k > (1 — 2v) log, k. By Theo-
rem 1.11 (in particular, Remark 1.12), we then get that the resulting codes have failure probability
O(N -logq - exp(~N'72")) < exp(=N'7%") = exp(~N?), where the first inequality holds for suffi-
ciently large N (as a function of v). O

8.3 Universality of Local Polarization

Suppose we know that polar codes associated with a matrix M € F’;Xk achieve capacity with error
probability exp(—n#) in the limit of block lengths n — co (which may happen at lengths growing
super polynomially in ¢ the gap to capacity). In this section, we prove a general result (previously
stated as Theorem 1.20) that “lifts” (in a black box manner) such a statement to the claim that, for
every f’ < f, polar codes associated with M achieve polynomially fast convergence to capacity
(i.e., the block length n can be as small as poly(1/¢) for rates within ¢ of capacity) and exp(—n”")
decoding error probability simultaneously. Thus, convergence to capacity at finite block length
comes with almost no price in the (exponent of) decoding failure probability.

Put differently, the result states that one can get polynomial convergence to capacity for free
once one has a proof of convergence to capacity in the limit of n — oo with root-exponential
decoding error probability. Such proofs of convergence to capacity has been shown in Reference
[20] for the binary alphabet and Reference [24] for general alphabets. Yet another way of viewing
the results of this section are that every proof of convergence to capacity has a proof of local
polarization embedded in it.

We get our result by proving a structural result that is roughly a converse to Lemma 8.1. Specif-
ically, in Lemma 8.5 we show that if a matrix M leads to a polar code with exponentially small
failure probability, then some high (but constant sized) tensor power M®’ of M contains the parity
check matrix of a high distance code. In fact, more generally if a matrix in FSXS is the parity check
matrix of a code that has a decoding algorithm that corrects errors from a g-symmetric channel
with failure probability exp(—k#), then this code has high distance.

Combining Lemma 8.5 with Lemma 8.1, we get that every matrix that leads to a polar code with
low error probability has a constant sized tensor that is a exponentially polarizing matrix. This
immediately leads to a proof of Theorem 1.20.
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To derive our results, we focus on a simple g-ary symmetric channel defined next.

Definition 8.4. For any finite field Fy and y € [0, 1], we will denote by B, (y) the distribution on
[F4 such that for Z ~ B,(y) we have Pr(Z = 0) =1~y and Pr(Z = k) = ﬁ for any k # 0.

LEMMA 8.5. Consider a matrix H € FSXS and arbitrary decoding algorithm Dec : Fg — F’;, such
that for independent random variables U+, ... U; ~ By(y) withy < %, we have Pr(Dec(UH) # U) <

exp(—kP). Then ker H is a code of distance at least %.

Proor. Consider maximum likelihood decoder Dec’(y) := argmax, gk Pr(U = x|UH = y). By
definition, we have Pr(Dec’(UH) # U) < Pr(Dec(UH) # U) < exp(—k#).

Note that for U distributed according to B,(y), we have Dec’(y) = argmin
wt(x) is number of non-zero elements of x.

Consider set E = {x € ]FZ |, where there exists h € ker M, wt(x + h) < wt(x)}, and observe that
Pr(Dec’(UH) # U) > Pr(U € E). We say that vector u € F’; is dominated by v € F’; (denoted by
u < v) if and only if Vi € supp(u), u; = v;. We will argue that for any wy; € E and any wp > wy,
we have w, € E. Indeed, if wy; € E, then there is some h € ker H such that wt(w; + h) < wt(wy).
We will show that wt(w, + h) < wt(w,), which implies that wy € E. Given that w; < w,, we can
equivalently say that there is a vector d with w; + d = w, and wt(w,) = wt(w;) + wt(d). Hence,

xix H=y Wt(x), where

Wt(ws + h) = wt(wy +d + h) < wt(wy + h) + wt(d) < wt(ws) + wt(d) = wt(ws).

Consider now wy € ker H to be minimum weight non-zero vector, and let us denote A = wt(wy).
We wish to show a lower bound for A. By definition of the set E, we have wy € E, and by upward
closure of E with respect to domination we have

A A
Pr(U € E) > Pr(wo < U) = (L) > (f) .

However, we have
Pr(U € E) < Pr(Dec’(UH) # U) < Pr(Dec(UH) # U) < exp(—k?).
By comparing these two inequalities we get
kP
In(q/y) -

ProoF oF THEOREM 1.20. Consider the channel that outputs X +Z on input X, where Z ~ By (y)
for some y > 0 (depending on f, f’). The hypothesis on M implies that for sufficiently large n the
polar code of block length n corresponding to M will have failure probability at most exp(—n”)
on this channel. Using the well-known equivalence between correcting errors for this additive
channel and linear compression schemes (see, e.g., Reference [14, Prop. 11.2.1]), we obtain that for
all large-enough ¢ there is some subset S of (hq(y) + €)k’ columns of M®’ that defines a linear
compression scheme (for k* ii.d. copies of By(y)), along with an accompanying decompression
scheme with error probability (over the randomness of the source) at most exp(—k??).

We now claim that for all f” < f, there exists t, = ty(f’, f) such that the Arikan martingale
associated with some column permuted version of M®%, is 't log, k-exponentially strongly
polarizing.

The proof of this claim is in fact immediate, given the ingredients developed in previous sections.
Apply the hypothesis about M in the theorem with the choice ¢ = (f — f’)/4 and y chosen small
enough as a function f, " so that hy(y) < (B — B’)/4 and let t; be a larger than promised value of
t in the statement and large enough so that 3In(g/y) < m#=#)/2 with m := k%. Take, moreover,

A>

O
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€ = (hq(y) + e)m and L = M®"_ Using Lemma 8.5 and the equivalence between linear coding for
source and channel coding (mentioned above), we know there is submatrix L” € ]qu><€ of L such

that ker((L’)") defines a code of distance A > m#/In(q/y). Define My = [L' | -] € ]F;”X’" to be
any matrix obtained by permuting the columns of L such that the columns in L’ occur first. By
Lemma 8.1, the matrix M is (1 —¢/m, A)-exponential matrix polarizing with A = A/2—-0(1) > A/3.

For our choice of y, ¢, we have {/m < ﬁ_Tﬁ/ and for our choice of ¢, (and therefore m) we
have A > m#*F)/2 Using Theorem 4.4 and Theorem 1.7, it follows that the Arikan martingale

associated with M, exhibits (S + ’)/2x (1 - #) log, m-exponentially strong polarization. Since

5 d_efﬁ+,5, (1 B - ﬂ) P +ﬁ B (1_)32[3') S B,
the claim follows (in the above we used the fact that 0 < ﬂ’ <p<1).

Applying Theorem 1.11 (and Remark 1.12) to the matrix My, = M®" we conclude that there is a
polynomial p such that given the gap to capacity ¢ > 0, and for every s satisfying N = k%S > p(;)
there is an affine code generated by a subset of rows of (M;')®*, which achieves e-gap to capacity
and has failure probability exp(~N?") - N - logq < exp(—N#") for large-enough N. But this
resulting code is simply an affine code generated by a subset of the rows of (M™1)®!, for t = st,
which concludes the proof. ]

APPENDIX
A CODES FROM POLARIZATION

In this section, we describe the construction of polar codes and analyze the failure probability of
decoders by corresponding them to the Arikan martingale. This proves Theorems 1.11 and 1.14.

Specifically, we first describe the polar encoder along with a fast O(nlogn)-time implemen-
tation, where n is the blocklength. Then, in Appendix A.2 we define the (inefficient) successive-
cancellation decoder and analyze its failure probability assuming a correspondence between polar
coding and the Arikan martingale. In Appendix A.2.2, we describe a fast O (nlogn)-time decoder
that is functionally equivalent to the successive-cancellation decoder. Finally, in Appendix A.2.3,
we prove the required correspondence between polar coding and the Arikan martingale.

Throughout this section, fix parameters k € N as the dimension of the mixing matrix M €
F, as a finite field, and n = k' as the codeword length.

kxk
Fq ,

A.1 Polar Encoder
Given a set S C [n] and a fixing @ € Fls | 16

; S n
the encoder mapping F;, — Fg as follows

we define the polar code of dimension |S| by giving

ALGORITHM 1: Polar Encoder
Constants: M € FZXk,S C[n],axce ]Fflc
. S
Ontpts 2 ¢ b
1: procedure POLAE—ENCODER(U; @) .
2: Extend U to U € IFZ by letting (U;)i¢s = a for coordinates not in S
33 ReturnZ =U-(M1)®

16\We use the notation S€ = [n] \ S.
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The above gives a polynomial time algorithm for encoding. An Og4(nlog n) algorithm can also
be obtained by using the recursive structure imposed by the tensor powers.
Below, we switch to considering vectors in th as tensors in (Pg)g’t, indexed by multiindices

i € [k]". The following encoder takes as input the “extended” message U, as defined above.

ALGORITHM 2: Fast Polar Encoder
Constants: M € FZXk
Input: Uec (Fg)@’t
Output: Z = U- (M~1)®t
procedure FAST-POLAR-ENCODERt(E)

1:

2 If t = 0 then_
3: Return U
4
5

for all j € [k] do .
: ZY) « Fast-PoLAR-ENCODER,_; (U] j))
6: foralli € [k]"' do
7 Zpy = @0, 29,20y M
8: Return Z

It is not too hard to verify that Algorithm 2 runs in Oy 4(nlogn) time. Indeed, if T(n) is the
runtime of the algorithm on inputs of size n = k', then each call results in k recursive calls to
inputs of size 7. Further, each recursive call solve - systems of linear equations (each of which
can be solved in Og4(k®) time). Thus we get the recurrence (using the fact that k is a constant) of

T(n) = k - T(n/k) + Oy, 4(n), which results in the desired Oy, 4(nlogn) runtime.

A.2 The Successive-Cancellation Decoder

Here we describe a successive-cancellation decoder. Note that this decoder is not efficient, but the
fast decoder described later will nearly have the same error probability as this decoder.

For given channel outputs Y, let Z be the posterior distribution on channel inputs given outputs
Y. Each Z; € A(F,) is the conditional distribution Z;|Y; defined by the channel Cy|z and the
received output Y;.

Now we define the decoder on the distribution vector Z and the fixing & € (F,U{L})" as follows.
We implicitly represent the subset S¢ of fixed positions by denoting «; = L for those indices.

Remark A.1. We note that parts in brown are not needed for the algorithm itself and only used
in the analysis. Further, unless explicitly stated otherwise, we will use SC-DECODER to just denote
the U part of the output (i.e., we will ignore P by default).

Note that several of the above steps, including computing the joint distribution of U and mar-
ginal distributions of U;, are not computationally efficient though we will get efficient algorithms
effectively approximating these distributions later. Even then, we will only get an algorithm that
gets an estimate of the probabilities Pry (U; = x) to within an additive error of 1/4 for every
x € Fy. In what follows, we will use the following definition:

Definition A.2. We will term an algorithm that runs an SC-DEcCODER where the algorithm gets
an estimate of the probabilities Pry (U; = x) to within an additive error of 1/4 for every x € F,
an Approximate-Successive-Cancellation Decoder.
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ALGORITHM 3: Successive-Cancellation Decoder

Constants: M € F’(;Xk, n=k®,
Input: Z € A(F,)", ¢ € (F, U {L})"
Output: U € F", P € (A(F,) U 1)"
1: procedure SC-DECODER(Z; @)
2: Compute the distribution U € A(Fy) defined by U « ZM®*
for all i € [n] do
If «; = 1 then

A

For x € Fy, U; < argmax Pry(U; = x)}; Pi(x) « Pry (U; = x)

xqu{
Uji—a; P — L
Update distribution U « (U|U; = ﬁi)

3

4

5

6: else
; R
8

9 Return U, P

A.2.1 Decoding Analysis. For this section, it will be useful to keep Remark A.1 in mind.

We will first reason about the “genie-aided” case, when the fixing & € (Fg4 U {1})" of non-
message bits is chosen uniformly at random, and revealed to both the encoder and decoder. Then,
we will argue that it is sufficient to use a deterministic fixing @ = «,.

We now argue that over a uniform choice of message U g, and a uniform fixing & of non-message
bits, the probability of decoding failure is bounded as follows.

Cramm A3. ForS C [n], let V € (Fq U {L})" be given by V; ~ Fy ifi € S and L otherwise. Let
a € (Fg U (L))" be given by a; ~ Fy ifi ¢ S and L otherwise. Let Z := PoLAR-ENCODER(V; ) and
Y sampled according to the channel Y := Cy z(Z). Let U € Fg be given by U; = V; ifi € S and a;
ifi ¢ S. With this notation, we have

Pr[SC-Decoper(Y; ) # U] < ZH(Ui U<, Y).
ieS

Furthermore, for every approximate-successive-cancellation decoder D we have

Pr[D(Y;@) # U] <3 ) H(U; | Us,Y).
i€eS

Proor. Note that U is uniform over Fg. Now, we have
Pr (SC-Decoper(Y; ) # U) = Pr (Eli U # Ul-)
= ZPI‘ (0, * Ui and ﬁ<i = U<i)

i<n
< ZPI‘([AJI * Ui I lj<i = U<i) .
i<n
Clearly, for i ¢ S we have Pr[fli # U;] = 0, since both are defined to be equal to «; on those
coordinates. It is enough to show that for i € S we have

Pr(U; 2U; |U-; =U.;) < HU; | UL, Y).

This follows directly from Lemma 2.2, as U, is defined exactly as a maximum likelihood estimator
of U; given channel outputs Y and conditioning on U .; (note that the conditioning is happening
in Line 8).
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The furthermore part of the claim follows from using the furthermore part of Lemma 2.2 in the
final step above. o

Craim A4. Letn = k', U ~ Fy.Z = UM NH)®Y = Cy|z(Z), where Cy|z is a symmetric
channel. If Arikan Martingale associated with (M, C) satisfies (t¢, Ty, €)-polarization, then there exists
a subset S C [n] of size (Capacity(Cy|z) — € — t4)n, such that

Z HU; | U<;,Y) < rynloggq.
ieS
Proor. Applying Lemma A.18, we can deduce that for uniformly random index i € [n], normal-
ized entropies H(U;|U.;,Y) are distributed identically as X; in the Arikan Martingale.
Now, for symmetric channels, the uniform distribution achieves capacity (see, e.g., Reference
[6, Theorem 7.2.1]). In addition, since matrix (M("1)®! is invertible, vector Z also has a uniform
distribution. Thus, for uniform channel input Z,

n - Capacity(Cy|z) = H(Z)-H(Z|Y) =n—-H(Z|Y). (35)
Let S be the set of all indices i such that H(Ui | U<i, Y) < 7¢. By definition, we have
D VH(U; | U, Y) < 7m,
i€S
as desired.
Now observe that polarization of martingale X; and Lemma A.18 directly implies that we have
at most en indicies i satisfying H(U; | U<;) € (7¢, 1 — ) (recall that in Lemma A.18 we pick one

such index uniformly at random). Let S’ be a set of indices for which H{U; | U.;,Y) > 1 —1;,. We
have

n(1 — Capacity(Cy|z)) = HUM )®' | Y), (Equation (35))
=H(Uy,...,U,|Y), (Since (M~1)®? is full rank)
= Z H(U;|U;,Y), (Chain rule)

icn)
> Y HUIU<,Y),

which implies that
IS”| < n(1 — Capacity(Cy,z) + 1),
and, finally,
IS| = n—|S’| — en = n(Capacity(Cy|z) — ¢ — 1) . O

We can now combine the above to prove a version of Theorem 1.14 for the (inefficient)
successive-cancellation decoder:

THEOREM A.5. Let C be a g-ary symmetric memoryless channel, and let M € ]F’;Xk be an invertible
matrix. If the Arikan martingale associated with (M, C) satisfies (t¢, Ty, €)-polarization, then for every
t, there is an affine code C that is generated by the rows of (M™1)®! and an affine shift, such that the
rate of C is at least Capacity(C) — e(t) — 7j,(t), and C can be encoded in time O (nlog n), wheren = k'.
Furthermore, the successive-cancellation decoder succeeds with probability at least 1 — nlog(q)zs,
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and every approximate-successive-cancellation decoder succeeds with probability at least 1 —
3nlog(q)ze.

PROOF. Let U ~F?, Z := UM™)®, and Y := Cy2(2).
By Claim A .4, there exist a set S C [n] of size (Capacity(Cy|z) — ¢ — 7»)n, such that

Z H(U; | U.;,Y) < rnlogg.
ieS
However, by Claim A.3, the failure probability of the successive-cancellation decoder is bounded
by

JPr [SC-DEcoDER(Y; @)s # U] < ; H(U; | U, Y), (36)

where random variables U, Y, & are defined as in Claim A.3. Note that, in fact, the joint distribu-

tions of (U, Y, Z) and (5 ?, Z) are the same, despite superficially more complicated way in which
sampling from distribution (U, Y, Z) was defined. Therefore,

DTH(U; U<, Y), = Y H(U; | U<, Y)
i€S ieS
< 1¢ynloggq.

Note that this failure probability is an average over random choice of fixing «, but this implies
there is some deterministic fixing @ = «a with failure probability at least as good. Further, by
linearity of the encoding (Algorithm 2) such a deterministic fixing yields an affine code. The rate
of this code is |S|/n > (Capacity(Cy|z) — € — 71,) as desired.

If we replace the successive-cancellation decoder by an approximate successive cancellation
decoder, then the theorem follows by using the furthermore part of Claim A.3 in Equation (36)
above. ]

A.2.2  Fast Decoder. In this section, we will define the recursive FAsT-DECODER algorithm. The
observation that polar codes admit a recursive fast-decoder was made in the original work of
Arikan [2]. Our presentation is somewhat different in that it decodes general product distributions
(and does not require the marginals to be identical).

FasT-DEcoDER will take on input descriptions of the posterior distributions on channel inputs
{Zi}ie[x)s for some s, where each individual Z; € A(F,) is a distribution over Fy, as well as o €
(Fq U { 1) where a; € F, are the fixed values corresponding to non-message positions. The
output of FAST-DECODER is a vector Z € (F’;)m —the guess for the actual channel inputs. To recover

the message, it is enough to apply U := ZM®S and restrict it to the positions where az; = L.

In Algorithm 4, for W; € A(Fg), a description of joint probability distribution over Fg, we will
write 7;(W;) € A(Fy) as a jth marginal of W; for j € [k], i.e., projection on the jth coordinate.
In addition, we will use 7<;(W;) € A(Fq)j to denote the projection of W to the first j marginal
coordinates.

We make an remark analogous to Remark A.1 for FAST-DECODER:

Remark A.6. In the code above, the parts in brown are not needed for the running of the algo-
rithm but included, since they help with the analysis. Further, unless explicitly stated otherwise,

we will use SC-DECODER to just denote the Z part of the output (i.e., we will ignore O, o by
default).
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ALGORITHM 4: Fast Decoder
Constants: M € F’;Xk
Input: Z = {Z; € A(Fy)}ickys, @ € (Fq U {L})F"
Output: Z € (FK)®, 0 € (A(FE) U (L), U e (75)®
1: procedure FAST-DECODER(Z; @)
2: If s = 0 then

3: If @ = 1L then .

4 Return Z = argmax, .z Pr(Z=x),0=2U =7

5: else .

6: ReturnZ =, 0= 1, U =«o

7: else

8: foralli € [k]*"! do

9: Compute joint distribution W; € A(Fg), given by W « Z| yM
10: for allj € [k] do

11: Z’U) — {”j(Wi)}ie[k]s‘l

12: Vi Qu, 1 UE ] e Fast-DEcoper(Z'Y); e 1,5 — 1)
13: for alli € [k]*' do

14: Update distribution W; « (W;|n<;(W;) = V(<))
15: for alli € [k]*"! do

16: Z[.’,-] — V[.’i] M1

17: Return Z, 0, Uk

Analogously to Definition A.2, we define a similar approximate version of FAST-DECODER:

Definition A.7. We will term an algorithm that runs an FAsT-DECODER where the algorithm gets
an estimate of the probabilities Pr (Z = x) to within an additive error of 1/4 for every x € Fj a
precision-bounded FAST-DECODER.

The FasT-DECODER as described above runs in time O(nlogn), where n = k° is block length if
one assumes infinite precision arithmetic. Furthermore, even a bounded-precision model only re-
quires O(nlog n) operations in the “floating point RAM” model — the model where a non-negative
real number r € [0, 1] is represented with two £ = O(log n) bit integers a, b as a - 2 and two such
numbers can be added, multiplied, or divided in a single step.

In bit more detail, the above representation is also known as the Floating point number system [18,
Chapter 2]. Before we go into the details of the runtime analysis of FAST-DECODER, we quickly
summarize the relevant properties of the floating point number system.

Floating point number system and floating point RAM model. We recall the definition of the float-
ing point number system:

Definition A.8 ([18], Section 2.1). A floating point number system F C R is a subset of real
numbers whose elements have the form
y=xa- IBE_A,
where

o The integer f > 2 is the base or radix
e The natural number A is the precision
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e The integer e is the exponent and has the range enin < e < emax for integers epmin < €max
e The natural number a is the significand, and it is assumed that

PrAl<a<pt-1.
The representation range of F is given by [Bémin=1, Bémax (1 — f=2)].
Before we proceed, we note the simplications to the above definition that we use in our model:

Definition A.9. We use the floating point number system from Definition A.8 with the following
simplifications/modifications:

e Setff=2.
e A=V
o enin = —20 and ey = 2°.

For the rest of this discussion, we will assume the parameters that we have set in Definition A.9.
Next, we recall some properties of the floating point number system that we will use as given in
our runtime analysis of FAST-DECODER.

Before we present the results, we fix some more notation. For x € R falling within the represen-
tation range of the floating point system, we will use fl (x) to denote the closest approximation of
x in the floating point system. For any vector y € R¥, we will overload notation and use fl (y) to
denote the vector obtained by applying fl (-) to each component of y. This leads to the following
definition, which defines a crucial quantity that will turn up in our approximation bounds.

Definition A.10. The unit roundoffis defined as
u=2",
We first recall a bound on the approximation error that the rounding entails:

LEMMA A.11 (REFERENCE [18], THEOREM 2.2). Let x € R be in the representation range of the
floating point system. Then
fl(x) = (1 +6) - x, where |5] < u.

We will also use fl (-) applied to a formula to denote a result of a floating-point evaluation of
this formula. We will use the so-called standard model [18, Section 2.2]:

Definition A.12 (Standard Model). The standard model assumes the following precision bounds
on binary operations. Given x,y € F and op € {+, —, X, +}, we have

fl(x opy) = (x opy) - (1 + §) where || < u,
as long as x op y is in the representation range.
In particular, even if x op y happens to have the exact representation in the floating point number
system F, we do not require the result of this floating point operation to be exact.

For the rest of the section, we will assume the standard model in our floating point RAM model.
Next, we present a technical lemma that will be useful for us:

LEMMA A.13 (SIMPLE GENERALIZATION OF LEMMA 3.1 IN REFERENCE [18]). Let 1, ...,05, be such
that 3}7, |8;] < 1 and let p; € {—1,1} for alli € [n]. Then we have

[Ja+enr=1+0,

i=1

7Since we are using ¢ bits to represent a.
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where

?:1 |51|
1- ?:1 |5z| )
Finally, we present approximation error bounds for computing a bounded-degree rational func-
tion, which will be crucial in our runtime analysis of FAST-DECODER:

10] <

LEMMA A.14. Let f(X1,...,Xn) and g(X1, ..., Xn) be multi-linear polynomials'® such that both
satisfy the following properties:

o the degree is at most d

e there are at most m monomials

e all the coefficients are non-negative and have exact representation in the floating point number
system.

Further, let x,x € RY

07 be such that there exists an e > 0 such that for every i € [N], we have

|x; —xi| < ex;,
and, moreover, let ey be such that all x; and all coefficients of f, g lie in [27%, 2%]. Then, assuming
4(d-e+(d+logm)-u)+1 < -, (37)
ep:=2(d+1)(ep +1) +4logm+1 < 2, (38)

we have that

fx) (f (x )‘ fx)
— 8- (d-e+(d+logm+1)-u 39
g g )| 8 @rer@rios e 7
and, moreover, _
‘logﬂ (Lf)) <er, (40)
g(x)
where the (f( )) is computed by using pairwise operations (and paying for approximation error for

each such operatzon as in the standard model).

Proor. We will compute (f ) by first computing each monomial in f(x) and g(x) and then

summing the at-most m values m a depth log m tree fashion. Finally, we divide f(x) by g(x) to
obtain our answer.

For notational convenience for each i € [N], define ¢; such that x; = (1 + ¢;) - x;. Note that we
have |¢;| < e.

To see the error bound, consider an arbitrary monomial, which we assume WLOG to be ]_[d
We compute [J%, X; in the obvious way. It is easy to check that ([T%, ;) = ([T%, x:)- 1%, 1(1+5 )
where |;| < u. Further, by definition of ¢;, we have

d d d
ﬂ(ﬂ’i,-) = (]—[ x,-) JJa+sna+e,
i=1 i=1 i=1
where for notational simplicity define §4 = 1.

To apply the error bounds for the floating point operations, we need to argue that all the
results of the multiplications in the computation above are within the representations range.
Indeed, since x; > 27%, all the intermediate results in the multiplication above are at least

18The result can be proven for general polynomials as well. However, since we only need the result for multilinear polyno-
mials and the notation for multi-linear polynomials is slightly cleaner, we stick with the multi-linear case.
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(%)’*r1 > 27(@*D(d+1) Similarly, for the upper bound: Since x; < 2%, all the intermediate re-
sults are at most ((1 + u)2%)@*Y) < 2(e0+1)(@+1) \which is assumed to be within the representation
range (38).

Now let us consider the computation of fl (f(x)). Let M be the collection of all subset of size at
most d that correspond to the monomials in f(Xj,...,Xy). Then when computing fl (f(x)), for
each S € M, we first compute fl ([];es X;), which satisfies by the above discussion,

s défﬂ([_[ 35,) - (]—[ xi) Jla+ona+e.

ieS ieS ieS
Now recall, we need to compute ), sc o M1s. This in turn adds more error. In particular, if we use
the algorithm that computes the sum in a recursive-pairwise manner, then we get that

A(f@) = ms,
SeM

where
log IM|

ms = Mg ]_[ (1 +(S;S)),

Jj=1

where each |6;S) | < u. In other words, we have
log IM|
s = (ﬂ xi) : (]_[(1 +8:)(1 +g,-))- [1 (1+6)].
ies ieS j=1
The above along with Lemma A.13, shows that for every S € M,

— IS| (¢ + u) +logm-u
ms—(]_[xi) = 1—-|S|(e+u)+logm-u ’(HL‘)

i€S i€S

< 2~(d(£+u)+logm-u)~<l_[x,~>,

iesS

A

here the first inequality follows from the facts that |[M| < m, |5;] < e, I(S;S)I < uand |¢| < € and
the second inequality follows from the fact that |S| < d and d(e +u) +logm-u < 3 (which in turn
follows from Lemma 37).

Now, using the fact that all cofficients in f(x) are non-negative and have an exact representation
in the floating point number system, the above then implies that

1 (f(x) = f(x)] <2 (d(e +u) +logm - u) - f(x).
By a similar argument, we get

1 (9(x)) —g(x)| < 2 (d(e +u) +logm - u) - g(x).
As earlier, to apply the error bounds on the result of each floating point addition in the calcu-
lation, we need to ensure that all results of all the intermediate computations are within the
representation range. Since we are adding exactly represented non-negative values, the lower
bound of the representation range is trivially smaller than any of those intermediate values. The
largest intermediate value can appear at the end of the calculation and is upper bounded by
(1 + w)lee™m((1 + u)2%)d+) < 20d+D(@+D+2logm which is assumed to be in the representation
range (38).

Then note that to compute the final answer, we divide fl (f(x)) by fl (g(x)), which along with

Definition A.12, Lemma A.13, and Lemma 37, proves the claimed bound in Equation (39), as desired.
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Moreover, since |logfl (9(x)) | < (d + 1)(eo + 1) + 2log m, and similarly for [logfl (f(x)) |, the

quotient satisfy |10g(%)| <2(d+1)(eo + 1) +4logm+ 1 = ey, proving Equation (40). O

Finally, we state the definition of a floating point RAM:

Definition A.15 (Floating Point RAM Model). A floating point RAM works with numbers in the
floating point system as in Definition A.9 with £ = O(logn) for inputs of size n. Each arithmetic
operation in the floating point number system is assumed to take unit time.

We note that in the above, each floating point number can be represented with constant many
registers of O(log n) bits and that each of the basic floating operations translates to constant many
operations over constant many registers of O(log n) bits. In other words, each such floating point
operation can be done in O(1) time in the standard RAM model, and this justifies the assumption
on floating point operations taking unit time in the above definition.

Runtime analysis of FAsT-DEcODER. We are now ready to do a runtime analysis of FAsT-
DECODER.

LEMMA A.16. For n = k*, FAST-DECODER runs in Oy x(nlogn) time assuming unit cost infinite
precision arithmetic. Furthermore, it can be implemented in a bounded-precision floating point RAM
model (of Definition A.15) to compute every intermediate real number to within an additive error of
1/4 in Oy r(nlogn) time, as long as the description of the channel Cy)z is given in a floating point
number system using O(logn) bits per conditional probability. In other words, bounded-precision
FaAsT-DECODER can also be implemented in Oy, (nlog n) time in the floating point RAM.

ProoF. We first remark that we use a “truth-table” representation for each probability distribu-
tion, i.e., we store tables with g and qk floating point numbers, respectively, to represent a distribu-
tion in A(F,) and A(IF"(;), respectively. In other words, each Z; for each j € [k]* is a vector length
g, and W; for each i € [k]*~! is a vector of length g*.

Let us separate out the computing on real numbers and the rest. It is easy to see that for a
recursive call with n = k*, all the operations that do not involve floating point operations can be
done in Oy, (n) time. We also note that Lines 9 and 14 are the only places where we have to perform
floating point operations. Further, it can be checked that there are Oy (1) such operation. Thus,
the running time (in both infinite precision setting and floating point RAM model), T(n) of FAsT-
DECODER satisfies the recurrence T(n) < kT (n/k) + Oy, i (n), which yields T(n) = Oy r(nlogn).

Finally, we prove the claim on the claimed precision in the floating point RAM model. We
note that while our final desired precision is only an additive 1/4, intermediate precision needs
to be high, since the precision goes down at each recursive call. More precisely, our goal is to
use Lemma A.14 to bound this error. Before we can apply Lemma A.14, we verify that the pre-
conditions of the lemma holds.

As mentioned, Lines 9 and 14 are the only places where we have to perform floating point
operations are the only places to perform floating point operations. In particular, the input are
the N = g - k* probability values in Z (denote these N probability values by p = (p1,...,pN)).
Line 9 computes for each of the ¢* values in W; a degree k multi-linear polynomial in k of the
N variables (in fact, this polynomial is actually a monomial). Line 14 is where we update the ¢*
values of W;. In particular, each computed value is a rational function %, where f(X1,...,XN)
is still a monomial in k variables and ¢g(X, ..., X)) is a multilinear polynomial of degree k with
at most ¢ monomials each with a coefficient of 1. Note that f and g satisfy the pre-conditions of
Lemma A.14.
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Now, consider a recursive call to FAST-DECODER with s < s—i. We first note that we do not have
access to p but rather an approximation p where each entry has an error bounded by 1 + ¢;, where
we define ¢; soon. Moreover, we will maintain the bound e; on the magnitude of the exponents of
the approximations at the ith level of the recursion, namely we shall ensure that on the ith level
of recursion for each j we have | logﬁjl < e;; the e; will be defined soon as well.

First, we note that by Lemma A.11, we have that ¢, < u, and ¢y < 20(0gn) gince we assumed
that the description of the channel is specified using O(log n) bits. Now applying Lemma A.14 with
d — k,m « ¢*,¢ « &,x « p,and x « p from Equation (39) (it can be verified that Lemma 37
will be satisfied with our parameter choice), we get

civ1 < 8(k- &+ (k+klogg+1)-u) <32-klogq- ¢,
where the inequality uses k > 1 and the fact that ¢; is increasing in i and hence u < ¢y < ¢;. Thus,
we have that
& < (32-klogq)® - u.
Similarly, from Equation (40), we get
eiv1 < 2(k+1)(e; +1) +4klogg+1 < (13klogq) - €,

and therefore e; < (13klogq)® - eg. Since e; < e for each i < s, to ensure condition Lemma 38 in
all applications of Lemma A.14, it is enough to pick ¢ such that (13k log q)%e, < 2¢, that is,

¢ >s-(log13 +logk + loglog q) + log e.

However, note that at any stage the additive error for any probability value calculated by Fast-
DECODER is upper bounded by ¢,. Thus, if we pick

> s-(logk +loglogq+5) + 2,

then we have ¢ < ‘—11 (since u = 27¢). The proof is complete by noting that if we chose ¢ to be
maximum of those two necessary lower bounds bounds, then we have £ = Oy 4(log n) and hence

we indeed are working with a floating point RAM model. ]

Correctness of FAST-DEcODER. With the runtime analysis of FAsT-DECODER out of the way, in
the next lemma we show that FAST-DECODER is equivalent to the SC-DECODER on the same input.
For this lemma, we assume that [n] is equated with [k]® and elements of [k]°® are enumerated in
lex order by SC-DEcODER. Also it would be useful to keep Remark A.6 and Remark A.1 in mind.

LEMMA A.17. Let Z be a product distribution (where each Z; € N(Fy) is a distribution over Fy),
and let ¢ € (Fq U (LD, For i € [K]*, let P; be the quantity defined on Line 5 of SC-DECODER
for input (Z; &), and let Q; be from the output of FAsST-DECODER(Z; e, s). Then we have for every
ielk]’),P;=0Q;and

FasT-DECODER(Z; &) - M®S = SC-DECODER(Z; &t).

Furthermore, the output of the precision-bounded FAST-DECODER equals the output of an approximate-
successive-cancellation decoder on (Z; ).

Proor. We prove the lemma by induction on s. For s = 0, the lemma is immediate (from line 5
in SC-DECODER and line 4 in FAST-DECODER), so assume the lemma holds for s” < s.

Our proof will compare two sets of variables, UF from the definition of FAST-DECODER and ljSC,
which we define next. Given Z, & as in the statement of the lemma, let U be the joint distribution
defined by

U :=ZM®s,
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Now define U°C such that for all i € [k]*:

~SC .
ﬁ?c _ jargmax, g, Pr (Ui =x|Ug; = U<,-) = argmax, Xi(x) ifa;=1 . (41)
; ifai S Fq

We start by noting that 0 = SC-DECODER(Z; @) (this can be argued, e.g., by induction on i). If
a; € Fy, then it is easy to check that [71: = ljfc, so for the rest of the proof we will assume this as
given and the focus will be on indices i such that &; = L. Next, we note that the outputs Z and
0" of FasT-DECODER are related by the condition Z = FAST-POLAR-ENCODER((]F). (In particular,
Lines 4, 12, and 16 correspond exactly to the code of FAsT-POLAR-ENCODER.) Restated, this implies

F

Z-M*=U. (42)

Thus to prove the lemma, it suffices to prove that UF SC To do so, we use the recursive
structure of FAsST-DECODER and prove that for every j € [k], l]E IAJEC] We do so by induction
on j.

First, recall that lAJE-’ ]= FAST-DECODER;_{(Z 10), ayj,.]) with

Z'0 = ((Z - M), g(Z - M)(<j,1 = Vi<j 1),

~SC
where the equality follows from Lines 9 and 14. To compare with U[; ;, we need a inductive struc-

ture on flSC, and we use a simple property that we describe informally first and then describe in
formal notation. Informally, if the input stream to the successive cancellation decoder is split into
three parts, the prefix A, the central part B, and the suffix C, then the decoding on the central part
is independent of the suffix. Furthermore, the decoding of the central part is the output of the suc-
cessive cancellation decoder on a modified input that incorporates the conditioning induced by the
decoding of the prefix. Formally, the above can be expressed as the following: Let A € (A(F,))?,
B € A(Fy)?, and C € A(F,)° and a € (Fy U {L})%, B € (FgU{L}), andy € (Fy U {L}). If
A = SC-DECODER(A, @), then we have SC-DECODER(AoBoC, aofoy)a+1,arb] = SC- DECODER(B, f),
where B; = {Ba.i|A = A} for i € [b]. Applied in our context with A = U[<j jand B = Uyj, ], we
get 0[} = SC-DEcoper(U v ,a[j,]), where oY = U, 11U1<), U[<] 1} plays the role of B.
We now use induction to show that the resulting sequences ﬁE and UL/', q are the same.

By the (outer) inductive hypothesis (on s), it suffices to show that Z '0) . M®s1 is distributed

identically' to 0. We now simplify the former. We have
Z'0 - M® T = ((Z - M®*) 5 9(Z - M)y = Viej ) = (UG AI(Z - M) = Vi)
where the first equality uses the fact that (Z - M)jj.; - M®5™1 = (Z - M®); .

Comparing with the definition of oY = U, 1lU<j,1 = U?Sj’ 1}, it thus suffices to show that
the conditioning events (Z - M), = V[< jqjand Upej g = 0’?2]-,_] are identical. For every ¢ < j,
we have, by applying Equation (42) to the outputs of FAsT-DECODER(Z'Y), a[¢,.1,s — 1) in Line 12,
we have Vi, - M®™! = IAJF& - Now using (inner) inductive hypothesis on ¢ < j, we have Vie
M®s~1 = U?Z.]. We use this and the invertibility of M®™! to rephrase the event (Z - M)[<j,] =

Vicjgas (Z-M)<j - M =V - M = ﬁ?gj - Simplifying the left-hand side, we get

Technically, we want Z'D) to be identically distributed to U 0 , but this condition is equivalent, since M®$~! has full
rank.
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(Z-M)[<j,1-M® ™! = (Z-M®%)<; ] = U<j,.;. Thus we get that the two events are indeed identical
and thus yield UE ]= lA]EC]

The proof that Pf; .} = Qy; ; for every j € [k] is completely similar, and we omit the details.
Furthermore, note that an equivalent view of FAsT-DECODER is that it is an efficient algorithm
to compute the Q;’s, which it then uses to run SC-DEcoDER. Thus, if a bounded-precision FasT-
DECODER computes every entry of P; to within an additive error of 1/4, then the bounded precision
FasT-DECODER implements an approximate-successive-cancellation decoder. o

Proofs of Theorem 1.11 and Theorem 1.14. Now we can prove Theorem 1.11 (modulo Claim A .4,
which we prove in the next sub-section).

ProoF oF THEOREM 1.11. In the model of infinite precision arithmetic, Theorem 1.11 follows
from Theorem A.5 and the equivalence of SC-DEcopER and FAsT-DECODER from Lemma A.17
with the running time bound following from Lemma A.16.

In the bounded precision case, by Lemma A.17 we have that the bounded-precision Fast-
DEcODER implements an approximate-successive-cancellation decoder. Applying Theorem A.5
again in this setting, we have that the decoding error probability still remains O(nt log g), and the
running time of O(n log n) from Lemma A.16 is now in the standard floating point RAM model. O

Finally, Theorem 1.14 is essentially a corollary of Theorem 1.11 and the definition of (exponen-
tial) strong polarization.

PrROOF OF THEOREM 1.14. Fix some constant c, and take y < k=*"!log™ ¢, with n = k’. Note
that this implies that

r 1 _ 1
Y (kt)C+1 . logtq (kt)c+1 . logtq.

(43)

By the definition of strong polarization property, we know that for some constants f, , mar-
tingale X; is (y*,y", B - n')-polarizing. Hence, by Theorem 1.11, the corresponding polar code has
rate at least

Capacity(C) — pn' - y*

for t = ©,, g(log(1/¢)), and we have fin’ + y* < ¢, where the inequality follow from Equation (43)
and our choice of ¢.
The probability of decoding failure is at most

ny'logq < n(n)"“'log "' (q) < n°°,
where the first inequality follows from Equation (43).

By the definition of strong polarization property, we know that for some constants f, 5, A, mar-
tingale X/ is (Z’ZM, v%, B - n*)-polarizing. We use the same choice of t as in the strong polarizing
case, and using the same argument as in that case we get that the polar code has the claimed rate.
The probability of decoding error is at most

logn
log k

t A OL ,
nlogq~2_2A =nlogq-27* =nlogq-2‘"lgk §2_"ﬁ

for some f” = Q4 .4 (1), as desired. ]
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A.2.3  Arikan Martingale and Polar Coding. Here we build a correspondence between the defi-
nition of the Arikan Martingale and the process of polar coding, which was used in the proof of
Claim A 4.

LEMMA A.18. For a matrix M € IP’;X" and symmetric channel Cy|z, let {X,} be the associated
Arikan Martingale. For a given t, let L = M®" be the polarization transform, and let n = k' be the
block length. Let the channel inputs Z; be i.i.d. uniform in Fy and channel outputs Y; ~ Cy|z(Z;).

Then, for a uniformly random index i € [n], the normalized entropy H((ZL); | (ZL)<;,Y) is dis-
tributed identically as X;.

Proor. Throughout this proof, we will switch to considering vectors in F’;t as tensors in (F’;)‘X’t,
for convenience—this correspondence is induced by lexicographic ordering < on tuples [k]*. Also,
we will write H(Z) to mean the operator H acting on Z. More specifically, for a linear map defined
by matrix H, we use H(Z) = ZH. In this notation, we wish to show that the distribution of X; is
identical to H((M®*(Z)); | Y, (M®(Z));) for a uniformly random multiindex i € [k]*.

We will show by induction that for all ¢, there is some permutation of coordinates? ¢’ : [k]’ —
[k]? such that the joint distributions

{(AI,B,)}(A',B')~Dt = {(M®t(Z)’ U’(C(Z)))}ZN(]FI‘;)@“ (44)

where (A’,B’) ~ D, are the distributions defined in the tth step of the Arikan martingale, and
Z ~ (Fs)@’t is sampled with i.i.d. uniform coordinates. This is sufficient, because a permutation of
the channel outputs does not affect the relevant entropies. That is,

H(A'; | A’ «,B") =H(A'; | A’ i, 0" (B')).

First, the base case t = 0 follows by definition of the distribution Dy in the Arikan martingale
(and the fact that M(Z;) ~ ).

For the inductive step, assume the claim holds for t — 1. Let o be the permutation guaranteed
for t — 1. For each j € [k], sample an independent uniform Z ) ~ (IF"[;)@”‘1 and define

(AD, By .= (M®*1(zY)), o(C(2))). (45)

By the inductive hypothesis, (AY) B ~ D,_4, for each j € [k].

As in the Arikan martingale, define (A’, B’) deriving from {(A(j ), BY ))} je[k] as
Al

Note that B’ can equivalently be written (unwrapped) as

 =M(AY . AY) and B[, | =BY). (46)

B’ = (BY,B?, ... ,B¥),

By definition of the Arikan martingale, we have (A’, B’) ~ D,.
Finally, define Z € (Fg)@ by

Zj) = AL (47)
To finish the proof, we will show that (A’, B") = (M®!(Z), ¢’(C(Z))) for some permutation ¢’.
The main claim is the following.

CrLaIM A.19. For every instantiation of the underlying randomness in Z, we have

A’ = M®(Z).
20This is in fact just a reversal of the coordinates, i.e., o’ ((iy, iz, - - . i) = (izs - - -, iz, iy).
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Proor oF Craim A.19. Expanding the recursive definition of the tensor product, Equation (2),
we have

k
MEH(2)]p, 0 = MWD W@, w ),
where
W = MYz ) = METH(ZU)) = AD),
Here the last equality is by the inductive assumption. Thus,
k
M (2)]i,g = M(A ... A]))
=A"l . (By definition, given in Equation (46))
And so M®*(Z) = A’ as desired. ]
Continuing the proof of Lemma A.18, we now have

(A", B)= (A", BY,B?, ... BX)Y)

(c(C(ZMY), oc(C(ZP)),...,a(C(Zz®))) (Definition of sampling, Equation (45))
= (A", 0’(C(2))) (%)
= (M®'(Z), ¢’ (C(2))). (Claim A.19)

In the above, the equality in line (x) follows by taking ¢’ to be the permutation that sorts [k]’ in
the order of least significant symbol first (based on our definition in Equation (47)) and then sorts
each group (thought of as [k]*~! in the natural way) recursively according to o. Unwinding this
recursion, one can see that ¢’ is in fact the symbol-reversal permutation on [k]".

This establishes the equivalence of the distributions claimed in Equation (44) and completes the
proof. O
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