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Limitations of Mean-Based Algorithms for
Trace Reconstruction at Small Edit Distance

Elena Grigorescu, Madhu Sudan, Minshen Zhu

Abstract—Trace reconstructionTrace reconstruction con-
siders the task of recovering an unknown string x ∈ {0, 1}n
given a number of independent “traces”, i.e., subsequences
of x obtained by randomly and independently deleting every
symbol of x with some probability p. The information-
theoretic limit of the number of traces needed to recover
a string of length n is still unknown. This limit is essentially
the same as the number of traces needed to determine, given
strings x and y and traces of one of them, which string is
the source.

The most-studied class of algorithms for the worst-case
version of the problem are “mean-based” algorithms. These
are a restricted class of distinguishers that only use the mean
value of each coordinate on the given samples. In this work
we study limitations of mean-based algorithms on strings at
small Hamming or edit distance.

We show that, on the one hand, distinguishing strings
that are nearby in Hamming distance is “easy” for such
distinguishers. On the other hand, we show that distinguish-
ing strings that are nearby in edit distance is “hard” for
mean-based algorithms. Along the way, we also describe
a connection to the famous Prouhet-Tarry-Escott (PTE)
problem, which shows a barrier to finding explicit hard-to-
distinguish strings: namely such strings would imply explicit
short solutions to the PTE problem, a well-known difficult
problem in number theory. Furthermore, we show that the
converse is also true, thus, finding explicit solutions to
the PTE problem is equivalent to the problem of finding
explicit strings that are hard-to-distinguish by mean-based
algorithms.

Our techniques rely on complex analysis arguments that
involve careful trigonometric estimates, and algebraic tech-
niques that include applications of Descartes’ rule of signs
for polynomials over the reals.

Index Terms—Trace reconstruction, mean-based algo-
rithms, complex analysis, multiplicity of zeros

Elena Grigorescu and Minshen Zhu are with the Computer Science
Department, Purdue University, West Lafayette, IN, 47907 USA e-
mail: {elena-g, zhu628}@purdue.edu. Research supported in part by
NSF CCF-1910659 and NSF CCF-1910411

Madhu Sudan is with the Harvard John A. Paulson School of
Engineering and Applied Sciences, Harvard University, Boston, MA,
02134 e-mail: madhu@cs.harvard.edu. Research supported in part by
a Simons Investigator Award and NSF Award CCF 1715187.

This paper was presented in part at 2021 IEEE International
Symposium on Information Theory (ISIT).

Copyright (c) 2017 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes
must be obtained from the IEEE by sending a request to pubs-
permissions@ieee.org.

I. INTRODUCTION

In the trace-reconstruction problem, a string x ∈
{0, 1}n is sent over a deletion channel, which deletes
each entry independently, with probability p ∈ [0, 1),
resulting in a trace x̃ ∈ {0, 1}ℓ of smaller length.
The goal is to reconstruct x exactly, from a small set
of independent traces. The trace-reconstruction problem
was introduced by Batu, Kannan, Khanna and McGregor
[1], motivated by a natural problem in computational
biology, in which a common ancestor DNA sequence is
sought from a set of similar DNA sequences that might
have resulted from the process of random deletions in
the ancestor DNA. The information-theoretic limits and
tight complexity of this problem have proven elusive so
far, despite significant followup interest in a variety of
relevant settings [1], [2], [3], [4], [5], [6], [7], [8], [9],
[10], [11], [12], [13], [14], [15], [16], [17], [18], [19].
The current upper bound in the worst-case formulation
was recently improved by Chase [18], who showed that
exp(Õ(n1/5)) traces are sufficient for reconstruction,
thus beating the previous record of exp(O(n1/3)) traces
due to [7], [8]. However, the most general lower bound
is only Ω̃(n3/2) [11], [20], hence leaving the status of
the problem widely open.

To gain more insight into the trace-reconstruction
problem, we study the trace-distinguishing variant, in
which, given two string x,y ∈ {0, 1}n, the algorithm
receives traces from one of the two trace distribu-
tions and is tasked to output the correct one. The
trace-distinguishing problem is information theoretically
equivalent to the classical trace-reconstruction problem
[4]. From a computational standpoint, the same upper
and lower bounds as for the general problem hold for
the trace-distinguishing variant.

In this work we aim to get more insight into the worst-
case trace distinguishing problem from understanding the
role of distance in the complexity of the problem. We
ask the following questions: Are all pairs of strings that
are close in Hamming distance easily distinguishable?



Are all pairs of strings that are close in edit distance1

easily distinguishable? Note that the strings used for
showing the lower bounds in [11], [20] only differ in
two locations, and are indeed efficiently distinguish-
able (these were the strings x = (01)k101(01)k and
y = (01)k011(01)k). On the other hand, it is also
reasonable to believe that trace distributions of strings
that are very different from each other are also easily
distinguishable. In fact, there exist “codes”, namely sets
of strings that are very far from each other, whose
elements (codewords) lead to trace distributions that are
very easily distinguishable from each other [14], [16].
These codes can be constructed by efficient algorithms,
leading to some partial notion of explicitness that may
be later exploited in further algorithms for the trace-
reconstruction problem.

Here we approach the above questions by analyzing
a restricted class of algorithms, namely mean-based.
Mean-based algorithms only use the empirical mean of
individual bits, and hence they operate by disregard-
ing the actual samples, and computing only with the
information given by the averages of each bit x̃i over
the sample set S of independent traces, namely ES [x̃i].
While they appear restrictive, mean-based algorithms are
in fact a very powerful class of algorithms – for example,
the upper bounds of [8], [7] are obtained via mean-based
algorithms.

However, there exist strings x,y ∈ {0, 1}n [8],
[7] that mean-based algorithms cannot distinguish with
fewer than exp(Ω(n1/3)) traces. This lower bound is
based on a result in complex analysis [21], which only
implies the existence of such strings x and y, and
not what such strings would look like structurally. In
particular, we don’t even have efficient algorithms for
constructing such strings.

Our main results here prove that there exist explicit
strings x,y ∈ {0, 1}n at edit distance only 4, for
which every mean-based algorithm requires a super-
polynomial in n number of samples. By “explicit” strings
we mean strings whose support set can be described
mathematically, by algebraic equations (say, for example,
x ∈ {0, 1}n is such that xi = 1 iff i = 2k, for some
integer k).

On the other hand, we identify some structural proper-
ties of strings at low edit distance that yield polynomial-
time mean-based trace reconstruction. In [22], [15] the
authors show that strings at small Hamming distance are
efficiently distinguishable. We complement these results

1The term “edit distance” in this paper refers to the number of
insertions and deletions needed to transform one string into the other.
This notion does not take into account substitutions, and is sometimes
called “longest common subsequence (LCS) distance” in the literature.

by observing that they are efficiently distinguishable
even by mean-based algorithms.

We believe that understanding structural properties
that are bottlenecks (such as explicit, hard-to-distinguish
strings) for the algorithms we know of, as well as
understanding structural properties that lead to fast al-
gorithms, are necessary steps towards understanding the
complexity of the trace-reconstruction problem.

We formalize our results next.

A. Our results

We start with an observation about strings at small
Hamming distance.

Theorem 1. Let x,y ∈ {0, 1}n be two distinct strings
within Hamming distance d from each other. There is a
mean-based algorithm that distinguishes between x and
y with high probability using nO(d) traces.

The result is a slight strengthening of a recent result
of [15], who proved exactly the same bounds for gen-
eral algorithms. A weaker version was also shown in
[22], [23], where it is proved that strings at Hamming
distance 2k have distinct k-decks, i.e. multisets of all(
n
k

)
subsequences of length k. Our contribution here is

essentially to notice that the techniques of [22], [23]
imply that mean-based algorithms can in fact distinguish
such trace distributions (see Appendix B for a more
detailed discussion and the complete proof).

Our main results concern the negative results at small
edit distance.

Theorem 2. Assume the deletion probability p ∈ (0, 1).
There exist (explicit) strings x,y ∈ {0, 1}n within edit
distance 4 of each other such that any mean-based
algorithm requires exp

(
Ω(log2 n)

)
traces to distinguish

between x and y with high probability.

Along the way, we also formalize a connection to the
famous Prouhet-Tarry-Escott (PTE) [24], [25], [26] prob-
lem from number theory. The PTE problem is related to
classical variants of the Waring problem and problems
about minimizing the norm of cyclotomic polynomials,
considered by Erdös and Szekeres [27], [28]. Perhaps
not surprisingly, our explicit solution from Theorem 2 is
based on products of cyclotomic polynomials.

In the PTE problem, given an integer k ≥ 0, one
would like to find sets A and B of integer solutions,
with A = {α1, α2, . . . , αs} and B = {β1, β2, . . . , βs},
satisfying the system

∑
i∈[s] α

j
i =

∑
i∈[s] β

j
i , for all j ∈

[k], with αi ̸= βj for all i, j ∈ [s]. The goal is to find
such solutions with size s as small as possible compared
to the degree k. It is easy to show that, most generally,
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it must be the case that s ≥ k + 1; and a pigeon-hole
counting argument shows the existence of solutions with
s = O(k2) [29]. With the additional constraint that the
system is not satisfied for degree k+1, solutions of size
s = O(k2 log k) are known to exist [30]. However, all
these are existential, non-constructive solutions, and the
only general explicit solutions have size s = Θ(2k) (e.g.,
[26], [28]).

We note that connections between the trace-
reconstruction problem and the PTE problem have been
previously made. In particular, Krasikov and Roditty [22]
noticed that pairs of strings that have the same k decks
yield solutions to PTE systems.

We first show that explicit strings that are expo-
nentially hard to distinguish by mean-based algorithms
imply solutions of small size to a PTE system, as follows.
This can be viewed as a deeper reason for why the
negative result for mean-based algorithms in [7], [8] is
based on non-constructive arguments.

Theorem 3. Fix any ε ∈ (0, 1/3]. Given distinct strings
x,y ∈ {0, 1}n such that any mean-based algorithm
requires exp (Ω(nε)) traces to distinguish between x
and y, the following two sets constitute a solution to
the degree-k PTE system

D(x) = {i : xi = 1} , D(y) = {i : yi = 1} ,

with size n = (k log2 k)1/ε.

We also prove a converse of this result. However, the
converse is in terms of an upper bound on the magnitude
of the solutions to the PTE problem, rather than the size
of the solution.

We note that the counting argument [29], [30] that
shows existential results for the PTE solutions in terms
of size and degree, in fact gives solutions in which
the values of the integers are bounded from above by,
say, an integer M . When the size of the solution is
s = Ω(k3), the proof [29], [30] shows that there exist
solutions where M is polynomial in s. When the size
s is exponential in the degree k, there are constructions
with M = O(s) [26]. Hence, the size of the solution
and the magnitude of the solution lead to qualitatively
similar bounds in interesting ranges of the parameters.

Theorem 4. Suppose A,B ⊆ N form a solution to the
degree-k PTE system, and let n := maxA ∪ B. Define
the following strings x,y ∈ {0, 1}n+1:

∀i ∈ {0, 1, . . . , n} ,

xi =

{
0 if i /∈ A

1 if i ∈ A
, yi =

{
0 if i /∈ B

1 if i ∈ B
.

Then for any ε > 0, nΩ(k) traces are necessary for mean-
based algorithms to distinguish between 0ℓx and 0ℓy,
where ℓ = n3+ε.

We remark that nΩ(k) = NΩ(k) where N = ℓ + n =
Θ(n3+ε) is the length of strings 0ℓx and 0ℓy. Since
k ≤ n for any PTE solutions, the largest possible
bound we could get via Theorem 4 is NΩ(N1/(3+ε)) =
exp(N1/(3+ε) logN). This is consistent with the results
of [8], [7], which showed that exp(N1/3) traces are suf-
ficient for mean-based algorithms to distinguish between
any two strings of length N . We also note that the hard
strings obtained from general PTE solutions may have
unbounded edit distance, thus they do not directly imply
Theorem 2.

The strong connection with the PTE problem, which
is believed to be a difficult problem in Number The-
ory, may be interpreted as evidence to the difficulty
of finding explicit hard-to-distinguish strings for the
trace-reconstruction problem. Such hard instances could
be desirable when, for example, one wants to design
instance-dependent algorithms to bypass the “mean-
based barrier”. We remark that a similar reduction from
the problem of finding small-size explicit solutions for
the PTE problem to the computational hardness of the
Bounded Distance Decoding problem for Reed-Solomon
codes from [31] revealed a similar barrier for the respec-
tive decoding problem.

PTE systems appear to be intimately connected to
the trace-reconstruction problem. Indeed, the analysis
of mean-based algorithms often reduces to the study
Littlewood-type polynomials, namely polynomials with
{−1, 0, 1} coefficients, on the complex unit circle. This
in turn often involves understanding the multiplicity of
the root 1, which is again a question tightly related to
the PTE problem (see discussion in Section III).

Finally, with the tools established in this paper, we
apply the Descartes rule of signs [32] to complete
the proofs of some of our results, e.g., the proof of
Theorem 1. As another application of this rule to larger
edit distances, we also obtain the following theorem,
formalized in Section VI.

Theorem 5. (Informal) Strings x, y ∈ {0, 1}n with
dE(x, y) = d ≥ 1 and certain special block structures
are distinguishable by mean-based algorithms using
nO(d) traces. In particular, the statement holds for every
pair of strings at edit distance 2.

This version This version of our paper includes sev-
eral improvements over our previous version [33]. Some
of these improvements are inspired by recent work of
Sima and Bruck [34], which appeared after the previous
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version of our paper was published online. In particular,
here we improve Theorem 7 due to a technical lemma
in [34], whose proof we simplify further in Lemma 4.
We explain the differences between the proofs in Section
I-B after Theorem 7.

Other changes in this version include strengthening
and simplification of theorems 1, 3, 5 and of Lemma 6.
In addition, Theorem 4 is a new theorem that is es-
sentially the converse of Theorem 3. This new theorem
answers the open questions we raised in our previous
version. We suggest new open problems in Section VII.

B. Our techniques

a) The [8], [7] reduction to complex analysis:
We recall that a mean-based algorithm only works
with “mean traces” of a string. Formally, the mean
trace of string x ∈ {0, 1}n is a vector E(x) =
(E0(x), · · · , En−1(x)) ∈ [0, 1]n, where the j-th coor-
dinate is defined as

Ej(x) = E
x̃∼Dx

[x̃j ] .

It is not hard to see (e.g., [4]) that understanding the
sample complexity for distinguishing between x and y
by mean-based algorithms essentially amounts to under-
standing the ℓ1-distance between the mean traces.

Proposition 1. Given strings x,y ∈ {0, 1}n with
∥E(x)−E(y)∥ℓ1 = ε, Ω(1/ε) traces are necessary, and
O(1/ε2) traces are sufficient for mean-based algorithms
to distinguish between x and y.

Our techniques focus on analyzing the modulus of
Littlewood polynomials with {−1, 0, 1} coefficients in
certain regions of the complex plane. The reduction to
complex analysis was established in [8], [7]. They define
the associated polynomials Px(z) =

∑n−1
j=0 Ej(x) · zj

and the related polynomial Qx(p + qz) = q−1Px(z) =∑n−1
k=0 xk ·(p+ qz)

k (and hence Qx(z) =
∑n−1

k=0 xk ·zk),
which is obtained from writing the Ej’s explicitly as

Ej(x) = E
x̃∼Dx

[x̃j ] =

n−1∑
k=0

Pr [x̃j comes from xk] · xk

=
n−1∑
k=0

(
k

j

)
pk−jqj+1 · xk,

Here p is the deletion probability and q = 1 − p. The
reduction is summarized in the following theorem.

Theorem 6 ([8], [7]). The sample complexity of mean-
based algorithms for the trace-distinguishing problem

for strings x and y is lower bounded by (up to constants)
the inverse of

sup {|Qx(w)−Qy(w)| : w ∈ ∂B (p; q)} ,

where ∂B (p; q) denotes the circle of radius q centered
at p in the complex plane.

For completeness, we include the details of the re-
duction in Appendix A. Note that all coefficients of
Qx(w)−Qy(w) belong to {−1, 0, 1}.

b) Applications of Descartes’ Rule of Signs: Here
we relate the ℓ1-distance between the mean traces of
x and y to the multiplicity of zero of the polynomial
Qx−Qy at 1. Specifically, we show that as long as 1 is
a root with multiplicity no more than k, the ℓ1-distance
is at least n−O(k) (assuming the deletion probability p
is a constant).

Theorem 7. Let x,y ∈ {0, 1}n be two distinct strings.
Suppose the polynomial f(z) = Qx(z) − Qy(z) has k
roots at z = 1. Then for any deletion probability p ∈
(0, 1), we have

∥E(x)−E(y)∥ℓ1 ≥ q

e

( q
n

)k
.

Here q = 1− p is the retention probability.

Our proof of Theorem 7 is inspired by the proof of
Lemma 6 in [34]. The proof presented here is arguably
simpler than the one that appeared in a preliminary
version of this paper, and the bound is also improved
from n−O(k2) to n−O(k). The new idea of [34] was to
find a point in the complex plane with nice properties on
a circle centered at 1, whereas our initial proof revolved
around finding such a point on a circle touching 1. Their
analysis uses an averaging argument, which we simplify
to an application of the Maximum Modulus Principle in
our new proof (see Lemma 4 in Section III).

It is then desirable to upper bound the multiplicity of
zero at 1 for various polynomials. Descartes’ rule of sign
changes provides a convenient tool to achieve this.

Lemma 1 ([32], Theorem 36, Chapter 1, Part Five
of [35]). Let Z(p) be the number of real positive roots
of the real polynomial p(x) (counting with multiplicity)
and C(p) the number of changes of sign of the sequence
of its coefficients. We then have C(p) ≥ Z(p).

We note that prior work that we are aware of on
understanding the structure of polynomials with many
roots at 1 (e.g., [36], [37]) do not appear to imply our
bounds on the complex unit circle.

c) Remark: If p(x) = a0+a1x+a2x
2+. . .+anx

n

is a polynomial, we say a pair (i, j) (0 ≤ i < j ≤ n)
is a sign change if aiaj < 0 and ai+1 = ai+2 = . . . =
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aj−1 = 0. C(p) exactly counts the number of such pairs
(i, j).

We use this rule to prove the formal version of
Theorem 5, namely Theorem 10. We also use it to give
a simple proof of Theorem 1.

d) Complex analysis over shifted circles: For the
negative results (i.e., Theorem 2 and 4), our strategy
is to apply Theorem 6 and analyze the supremum of
|Qx −Qy|. For Theorem 4, we upper bound how much
the modulus of an analytic function could change in a
small neighbourhood of 1 by controlling its derivative.
For Theorem 2, the strongest barrier is that it is unclear
how to control the edit distance. This seems even more
difficult for non-constructive arguments such as the ones
in [21] and [29]. Our construction is inspired by prop-
erties of product of cyclotomic polynomials and their
relation to PTE solutions with special structures.

C. Related work
The first formulations of the problem were proposed

by [38], [39], and the precise formulation we study here
were developed in [1], [4], motivated by the connection
with DNA reconstruction. DNA sequencing recently mo-
tivated the model of “coded” trace reconstruction [14],
[16], in which the goal is to reconstruct codewords of a
known code, rather than an arbitrary string. Furthermore,
the worst-case trace-reconstruction problem was also
studied in the memoryless replication-insertion channel
[40].

Besides the worst-case trace reconstruction discussed
earlier in the introduction, a well-studied variant has
been the average-case trace-reconstruction problem,
studied in [4], [6], [5], [10]. Here, the best current lower
bound is Ω(log5/2 n) [11], [20], and the best algorithms
run in time exp

(
O(log1/3 n)

)
.

A recent intriguing result [17] considers the smooth
variant, which is an intermediate model between the
worst-case and the average-case models. In the smooth
model, the initial string is obtain from an arbitrary
worst-case string perturbed so that each coordinate is
replaced by a uniformly random bit with some constant
probability 0 < σ < 1. In [17], the authors show that in
this case reconstruction can be done efficiently.

Other variants consider string reconstruction from the
multiset of substrings [9], [13], population recovery
variants [41], matrix reconstruction and parametrized
algorithms [15], and circular trace reconstruction [19].

a) Recent Work.: After a preliminary version of
this paper was published, Davies, Rácz, Rashtchian and
Schiffer considered a relaxed problem named approxi-
mate trace reconstruction and provided efficient algo-
rithms for several classes of strings [42]. Here the goal

is to recover a string that is close to the true source
string in edit distance. Soon after, [43], [44] and [45]
showed that for random source strings an approximate
solution can be found with high probability using very
few traces. We remark that approximate solutions serve
as distinguishers for pairs of strings (in the specified
class) that are sufficiently far from each other in edit
distance. On the other hand, for distinguishing strings
that are close to each other, Sima and Bruck showed
that nO(d) traces are also sufficient, where d is their
edit distance [34]. Of course, the algorithm proposed
in [34] is not mean-based (otherwise it would contradict
Theorem 2). Nevertheless, the analysis, to a large extent,
resembles that for mean-based algorithms. Indeed, one
of their technical contributions is improving one of
our technical lemma which relates mean-based trace
reconstruction and the multiplicity of zeros of certain
polynomials.

D. Organization of the paper

In Section II we develop the necessary notations and
basic facts. In Section III we prove Theorem 7, which
is a key factor in our analysis, and use it to prove
Theorem 3. In Appendix B we prove Theorem 1. In
Section IV we prove Theorem 4. In Section V we
prove Theorem 9, which is a more concrete version of
Theorem 2. In Section VI we prove Theorem 10, which
is an equivalent and more concrete version of Theorem 5.
In the Appendix, we also explain how to reduce the
analysis of mean-based algorithms to understanding the
supremum of certain polynomials over a circle in the
complex plane.

II. PRELIMINARIES

Given z ∈ C and r ∈ R≥0, we write

B(z; r) := {w ∈ C : |w − z| ≤ r}

for the disk centered at z with radius r, and write
∂B(z; r) for its boundary.

Let p(w) = a0 + a1w + . . .+ anw
n be a polynomial

where aj ∈ C. Let A ⊆ C be a set. We define the
following norms.

∥p∥1 =
n∑

j=0

|aj |, ∥p∥2 =

 n∑
j=0

|aj |2
1/2

,

∥p∥A = sup
w∈A

|p(w)|.

When A = ∂B(0; 1) is the complex unit circle, we also
write ∥p∥A = ∥p∥∞. These norms are connected by the
following inequalities.
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Lemma 2. Let p be a degree-n polynomial with real
coefficients. Then

1√
n+ 1

· ∥p∥1 ≤ ∥p∥2 ≤ ∥p∥∞ ≤ ∥p∥1 .

Proof. The first and third inequalities are applications
of Cauchy-Schwartz and the triangle inequality, respec-
tively. The second inequality comes from the following
identity

∥p∥22 =
1

2π

∫ 2π

0

∣∣p (eiθ)∣∣2 dθ,
where the right-hand-side is clearly upper bounded by
∥p∥2∞.

We will use the following bounds for a point z ∈
∂B(p; q).

Lemma 3. Fix p ∈ (0, 1) and q = 1−p. Let z = p+qeiθ

where θ ∈ (−π, π]. The following bounds hold.
1) |z| ≤ 1− 2pq(θ/π)2.
2) |z − 1| ≤ q|θ|.
3) For any integer d ≥ 0, |zd − 1| ≤ dq|θ|.

Proof. Item 1: By convexity of sin(·) over [0, π/2], we
have

1− cosx = 2 sin2
x

2

≥ 2
((

1− x

π

)
· sin 0 + x

π
· sin π

2

)2
= 2

(x
π

)2
for x ∈ [0, π]. By substituting −x for x, we can obtain
the same inequality for x ∈ [−π, 0]. Thus we have

|w| =
√
(p+ q cos θ)

2
+ (q sin θ)

2

=
√

p2 + 2pq cos θ + q2

=
√

(p+ q)2 − 2pq(1− cos θ)

≤

√
1− 4pq

(
θ

π

)2

≤ 1− 2pq

(
θ

π

)2

,

where the last line is due to (1 + x)r ≤ 1 + rx for
r ∈ [0, 1] and x ≥ −1 (Bernoulli’s inequality).

Item 2: By elementary identities for trigonometric
functions, we have∣∣eiθ − 1

∣∣ = |cos θ − 1 + i sin θ|

=

∣∣∣∣2 sin θ

2

∣∣∣∣ · ∣∣∣∣− sin
θ

2
+ i cos

θ

2

∣∣∣∣
= 2 sin

|θ|
2
.

Therefore

|z − 1| =
∣∣p+ qeiθ − 1

∣∣ = q
∣∣eiθ − 1

∣∣
= q · 2 sin |θ|

2
≤ q|θ|.

The inequality is due to sinx ≤ x for x ≥ 0.
Item 3: Due to Item 1 and the triangle inequality, we

have

∣∣zd − 1
∣∣ = |z − 1| ·

∣∣∣∣∣∣
d−1∑
j=0

zj

∣∣∣∣∣∣ ≤ q|θ| ·
d−1∑
j=0

|z|j ≤ dq|θ|.

In this paper, “with high probability” means with
probability at least 2/3. We will use p for the deletion
probability and q = 1 − p. In this paper p and q
will be constants. Given a string a ∈ {0, 1}n, a trace
ã ∈ {0, 1}≤n is a subsequence of a obtained by deleting
each bit of a independently with probability p. The
length of ã is denoted by |ã|. For 0 ≤ j ≤ n−1, the j-th
bit of a and ã are written as aj and ãj , respectively. The
distribution of ã is denoted by Da. We also associate to
a the following polynomial

Qa(w) := a0 + a1w + a2w
2 + . . .+ an−1w

n−1.

The degree of Qa is at most n− 1.
For strings x,y ∈ {0, 1}n, we will write dH(x, y)

for the Hamming distance between x and y, where
dH(x,y) = |{i ∈ [n] : xi ̸= yi}|; and write dE(x,y) for
the edit distance between x and y, namely the minimum
number of insertions and deletions that transform x into
y.

III. LARGE ℓ1-DISTANCE BETWEEN MEAN TRACES
FROM LOW MULTIPLICITY OF ROOT 1

In this section we prove Theorem 7, which will be
a key stepping stone to obtain our main results. We
need the following lemma, which finds a point w in the
neighbourhood of 1 with nice properties. This lemma is
first proven in [34] with p ≤ 1/2, and here we give a
simpler proof which works for any p ∈ (0, 1).

Lemma 4. Let f(z) be a polynomial of degree n.
Suppose we can write

f(z) = (z − 1)kg(z)

for some polynomial g with |g(1)| ≥ 1. Then for any
p ∈ (0, 1) and q = 1 − p, there exists w ∈ C such that
|(w − p)/q|n ≤ e and |f(w)| ≥ (q/n)k.

Proof. Let Γ = B(1; q/n) denote the closed disk with
radius q/n centered at 1 on the complex plane. By the
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Maximum Modulus Principle (see, e.g., Theorem 1.3 in
Chapter III, §1 of [46]), there exists a point w ∈ ∂Γ
such that

|g(w)| = sup
z∈Γ

|g(z)| ≥ |g(1)| ≥ 1.

We denote w0 := w − 1. Therefore |w0| = q/n, and∣∣∣∣w − p

q

∣∣∣∣n =

∣∣∣∣1 + w0 − p

q

∣∣∣∣n =

∣∣∣∣q + w0

q

∣∣∣∣n
≤
(
1 +

|w0|
q

)n

=

(
1 +

1

n

)n

≤ e.

Finally, we also have

|f(w)| = |w − 1|k · |g(w)| ≥ (q/n)k.

Now we can prove Theorem 7. We recall the statement
below.

Theorem 7. Let x,y ∈ {0, 1}n be two distinct strings.
Suppose the polynomial f(z) = Qx(z) − Qy(z) has k
roots at z = 1. Then for any deletion probability p ∈
(0, 1), we have

∥E(x)−E(y)∥ℓ1 ≥ q

e

( q
n

)k
.

Here q = 1− p is the retention probability.

Proof. We recall the definition of Px:

Px(z) :=
n−1∑
j=0

Ej(x) · zj .

The following identity is proven in [8], [7] (see Ap-
pendix A for a proof):

Px

(
w − p

q

)
= q ·Qx(w). (1)

Since f(z) = Qx(z)−Qy(z) is a polynomial of degree n
with k roots at z = 1, we can write f(z) = (z−1)kg(z)
for some polynomial g such that g(1) ̸= 0. We can also
conclude that |g(1)| ≥ 1 since g has integer coefficients
(to see this, consider g(z+1) = f(z+1)/zk). Therefore,
we can apply Lemma 4 to f and obtain w such that
|(w − p)/q|n ≤ e and |f(w)| ≥ (q/n)k. By the triangle
inequality, we have∣∣∣∣Px

(
w − p

q

)
− Py

(
w − p

q

)∣∣∣∣
=

∣∣∣∣∣∣
n−1∑
j=0

(Ej(x)− Ej(y)) ·
(
w − p

q

)j
∣∣∣∣∣∣

≤e ·
n−1∑
j=0

|Ej(x)− Ej(y)| .

On the other hand, equation (1) gives∣∣∣∣Px

(
w − p

q

)
− Py

(
w − p

q

)∣∣∣∣
=q |Qx(w)−Qy(w)|

≥q
( q
n

)k
.

Putting everything together, we have obtained
n−1∑
j=0

|Ej(x)− Ej(y)| ≥
q

e

( q
n

)k
.

A. Connection to the Prouhet-Tarry-Escott problem

The following is a classical statement about the PTE
problem.

Theorem 8 (e.g. [28], Proposition 1). Given s, k ∈ N
and for αi, βi ∈ N, with i ∈ [s], the following are
equivalent:

•
∑s

i=1 α
j
i =

∑s
i=1 β

j
i , for 1 ≤ j ≤ k, and∑s

i=1 α
k+1
i ̸=

∑s
i=1 β

k+1
i .

•
∑s

i=1 x
αi −

∑s
i=1 x

βi = (x−1)k+1q(x) where q ∈
Z[x] and q(1) ̸= 0.

This connection allows us to prove Theorem 3.

Theorem 3. Fix any ε ∈ (0, 1/3]. Given distinct strings
x,y ∈ {0, 1}n such that any mean-based algorithm
requires exp (Ω(nε)) traces to distinguish between x
and y, the following two sets constitute a solution to
the degree-k PTE system

D(x) = {i : xi = 1} , D(y) = {i : yi = 1} ,

with size n = (k log2 k)1/ε.

Proof. Denote by m the multiplicity of root 1 of Qx −
Qy. We consider two cases.

Case 1: m ≥ k + 1. Let α1, α2, . . . , αs enumerate
the set D(x) where s ≤ n is the cardinality of D(x).
Similarly, we also let β1, β2, . . . , βs enumerate D(y).
Note that D(x) and D(y) must have the same cardinality
since otherwise x and y have different Hamming weights
(and thus are distinguishable using constant traces). We
have

s∑
i=1

xαi −
s∑

i=1

xβi = Qx(w)−Qy(w) = (x− 1)mq(x)

for some q ∈ Z[x], q(1) ̸= 0. Therefore, Theorem 8
implies that D(x) and D(y) form a solution to the
degree-(m − 1) PTE system. In particular, they form a
solution to the degree-k PTE system since m− 1 ≥ k.
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Case 2: m ≤ k. We will show by contradiction that
this case never occurs. Otherwise, Theorem 7 gives us

n−1∑
j=0

∣∣∣∣ E
x̃∼Dx

[x̃j ]− E
ỹ∼Dy

[ỹj ]

∣∣∣∣ ≥ q

e

( q
n

)m
≥ q

e

( q
n

)k
= exp (−O(k log n)) .

On the other hand, the relation n = (k log2 k)1/ε also
gives

nε = k log2 k, log n =
1

ε
(log k + 2 log log k) = O(log k),

which means k log n = O(k log k) = o(nε) as k, n →
∞. Therefore exp (o(nε)) traces are sufficient for a
mean-based algorithm to distinguish between x and y.
However, this is a contradiction to the assumption that
any mean-based algorithm requires exp(Ω(nε)) traces to
distinguish between x and y.

IV. FROM PTE SOLUTIONS TO
HARD-TO-DISTINGUISH STRINGS

In this section, we prove Theorem 4, which says that
PTE solutions imply “hard” strings for mean-based trace
reconstruction.

The proof uses the following lemma.

Lemma 5 (Lemma 5.4 of [47]). Suppose

p(x) =
n∑

j=0

ajx
j , |aj | ≤ 1, aj ∈ C

p(x) = (x− 1)kq(x),

q(x) =
n−k∑
j=0

bjx
j , bj ∈ C.

Then

∥q∥1 =
n−k∑
j=0

|bj | ≤ (n+ 1)
(en
k

)k
.

The following lemma is an analogue of the Mean
Value Theorem for analytic functions.

Lemma 6. Let f(z) be an analytic function on an open
set D, such that |f ′(z)| ≤ M for all z ∈ D. Then for
z0, z in the closure of D such that the line connecting z
and z0 is contained in D, we have

|f(z)| ≤ |f(z0)|+M · |z − z0| .

Proof. We write f(x + yi) = u(x, y) + iv(x, y) for
functions u, v : R2 → R.

Since f(z) is an analytic function, it satisfies the
Cauchy-Riemann equations (see, for instance, Chapter
I, §6 of [46]):

∂u

∂x
=

∂v

∂y
,
∂u

∂y
= − ∂v

∂x
, and f ′(x+ yi) =

∂u

∂x
− ∂u

∂y
i.

Let r(x, y) := |f(x+ yi)|. In other words, r2 = u2+v2.
Taking partial derivatives of x and y on both sides gives

2r · ∂r
∂x

= 2u · ∂u
∂x

+ 2v · ∂v
∂x

,

2r · ∂r
∂y

= 2u · ∂u
∂y

+ 2v · ∂v
∂y

.

Squaring both sides of both equations and combining
give

∥∇r∥2 :=

∥∥∥∥( ∂r

∂x
,
∂r

∂y

)∥∥∥∥
2

= |f ′(z)| ≤ M.

Now consider the auxiliary function

h(t) := |f ((1− t)z0 + tz)| = r (xt, yt)

where t ∈ [0, 1], and xt, yt ∈ R are such that (1− t)z0+
tz = xt + yti. By the chain rule and Cauchy-Schwartz,
for all t ∈ (0, 1) we have

h′(t) = ⟨∇r(xt, yt), (x− x0, y − y0)⟩
≤ ∥∇r∥2 · ∥(x− x0, y − y0)∥2
≤ M · |z − z0| .

By the Mean Value Theorem, there exists t̄ ∈ (0, 1) such
that

h′(t̄) =
h(1)− h(0)

1− 0
= |f(z)| − |f(z0)|.

This implies

|f(z)| = |f(z0)|+ h′(t̄) ≤ |f(z0)|+M · |z − z0| .

Lemma 7. Let f(z) be a polynomial of degree n which
can be factorized as f(z) = (z − 1)k+1q(z) for some
polynomial q(z). Then for any α > 0 we have

sup
{∣∣f (p+ qeiθ

)∣∣ : |θ| < 1/
(
qn1+α

)}
< 12n1−αk.

Proof. Let θ be such that |θ| < 1/(qn1+α), and let z =
p + qiθ. Item 2 of Lemma 3 implies |z − 1| ≤ q|θ| ≤
1/n1+α.

Denote g(z) = (z − 1)q(z). By Lemma 5, we have

∥g∥1 ≤ (n+ 1)
(en
k

)k
< 6nk+1.
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Therefore |g′(z)| ≤ (n+ 1) · ∥g∥1 ≤ 12nk+2. Applying
Lemma 6 with D being the open unit disk, z0 = 1 and
z = p+ qeiθ, we have

|g (z)| ≤ |g(1)|+ 12nk+2 · |z − 1|
≤ 12nk+2 · 1/n1+α < 12nk+1.

The lemma follows since

|f(z)| = |z − 1|k · |g(z)|

≤
(
1/n1+α

)k · 12nk+1

= 12n1−αk.

Now we are ready to prove Theorem 4. We recall the
statement below.

Theorem 4. Suppose A,B ⊆ N form a solution to the
degree-k PTE system, and let n := maxA ∪ B. Define
the following strings x,y ∈ {0, 1}n+1:

∀i ∈ {0, 1, . . . , n} ,

xi =

{
0 if i /∈ A

1 if i ∈ A
, yi =

{
0 if i /∈ B

1 if i ∈ B
.

Then for any ε > 0, nΩ(k) traces are necessary for mean-
based algorithms to distinguish between 0ℓx and 0ℓy,
where ℓ = n3+ε.

Proof of Theorem 4. We write f := Qx − Qy. Due to
Theorem 6, it suffices to show that

sup
{∣∣wℓf(w)

∣∣ : w ∈ ∂B(p; q)
}
≤ n−Ω(k).

Writing w = p+ qeiθ where θ ∈ (−π, π], we prove the
theorem in the following two cases.

Case 1: |θ| ≥ 1/(qn1+ε/3).
By Item 1 of Lemma 3, we have

|w| ≤ 1− 2pq

(
θ

π

)2

≤ 1− 2pq

(
1

4qn1+ε/3

)2

≤ 1− p

8qn2+2ε/3
.

Therefore∣∣wℓf(w)
∣∣ = |w|ℓ · |f(w)|

≤
(
1− p

8qn2+2ε/3

)n3+ε

· (n+ 1)

≤ exp
(
−Ω(pn1+ε/3/q)

)
< n−Ω(pk/q).

The last inequality is due to n1+ε/3 > n lnn ≥ k lnn
for large enough n.

Case 2: |θ| < 1/(qn1+ε/3).
We recall that A and B form a solution to the degree-

k PTE system. According to the definition of x, y
and Theorem 8, the polynomial f can be factorized
as f(z) = (z − 1)k+1q(z) for some polynomial q(z).
Therefore, we can apply Lemma 7 with α = ε/3 and
obtain that

|wℓf(w)| ≤ |f(w)| < 12n1−εk/3.

Combining the two cases, we have

sup
{∣∣wℓf(w)

∣∣ : w ∈ ∂B(p; q)
}
≤ n−Ω(k).

V. HARD STRINGS AT EDIT DISTANCE 4
The goal of this section is to prove Theorem 2, and

thus exhibit two strings at edit distance 4 such that every
mean-based algorithm requires super-polynomially many
traces.

We will prove the following theorem, which is a more
concrete version of Theorem 2.

Theorem 9. Let k be an odd integer and n =
∑k

j=0 3
j

be an even integer, and R(w) =
∏k

j=0

(
1− w3j

)
be a

polynomial of degree n. Let En(w) =
∑n/2

j=0 w
2j . Then

Qe(w) := En(w)−R(w) is a 0/1-coefficient polynomial
which corresponds to a string e ∈ {0, 1}n+1. Moreover,
any two strings x, y of the form x = a10e and y = ae01
satisfy

sup {|Qx(w)−Qy(w)| : w ∈ ∂B(p; q)}
≤ exp

(
−Ω(log2 n)

)
,

where a is an arbitrary string of length n. Here p, q ∈
(0, 1) are constants.

Proof. R(w) has the following properties: (1) The coef-
ficients of R belong to {−1, 0, 1} since each monomial
occurs only once in the expansion. (2) Odd-degree terms
have negative signs, and even-degree terms have positive
signs. It follows that En(w)−R(w) is a polynomial with
0/1 coefficients.

We can write

P (w) = Qx(w)−Qy(w)

= wn
(
(w2 − 1)Qe(w)−

(
wn+2 − 1

))
= wn(w2 − 1) (Qe(w)− En(w))

= wn(1− w2)R(w).

Consider a point w = p+ qeiθ on the circle ∂B(p; q),
where θ ∈ (−π, π]. We consider two cases.
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Case 1: |θ| ≥ 3−k/4π.
Due to Item 1 of Lemma 3, we have

|w| ≤ 1− 2pq

(
θ

π

)2

≤ 1− 2pq · 3−k/2.

Therefore

|P (w)| ≤ |w|n · 2(n+ 1)

≤
(
1− 2pq · 3−k/2

)n
· 2(n+ 1)

≤ exp
(
−Ω

(
pq
√
n
))

.

The last inequality is because 1 − x < e−x and n =∑k
j=0 3

j > 3k.
Case 2: |θ| < 3−k/4π.
By Item 3 of Lemma 3, we have

|R(w)| =
k/4−1∏
j=0

∣∣∣w3j − 1
∣∣∣ · k∏

j=k/4

∣∣∣w3j − 1
∣∣∣

≤
k/4−1∏
j=0

3jq |θ| · 23k/4

≤
k/4∏
j=1

(
3−jπ

)
· 23k/4

≤ 3−k2/32 · (8π)k/4

= exp
(
−Ω(k2)

)
= exp

(
−Ω

(
log2 n

))
.

Therefore |P (w)| ≤ 2|R(w)| ≤ exp
(
−Ω

(
log2 n

))
.

The edit distance between strings x and y constructed
in the theorem above is clearly at most 4. Thus, Theo-
rem 2 follows via Theorem 6 (see Appendix A for its
proof).

Remark 1. We make several remarks on the theorem.
First, the bound is essentially tight for the constructed
strings, since the polynomial Qx − Qy has k + 2 =
O(log n) roots at 1, and Theorem 7 implies that nO(k) =
exp(O(log2 n)) traces are also sufficient for distinguish-
ing between x and y by mean-based algorithms. Second,
the theorem exhibits two strings which attain the bound
in Theorem 7 for k = Θ(log n), meaning that Theorem 7
generally cannot be improved (at least in the regime
k = Θ(log n)). Third, by Theorem 8 the constructed
strings imply a solution to the degree-(k+1) PTE system.
However, the size of the solution is exponential, since the
sparsity of Qx −Qy is Θ(3k).

VI. HIGHER EDIT DISTANCE WITH SPECIAL
STRUCTURES

In this section we show a more general result about
strings at higher edit distance that have a special structure
which leads to easy distinguishability. At the end we also
discuss some implications about the edit distance 2 and
4 cases.

We consider pairs of strings x,y ∈ {0, 1}n with the
following block structure:

x = x1x2 · · ·xd, y = y1y2 · · ·yd,

where for each i = 1, 2, . . . , d, xi and yi are strings of
length ℓi > 0. Moreover, each block i falls into one of
the following cases:

1) xi = yi;
2) xi = aisi and yi = sibi for bits ai, bi ∈ {0, 1}

and string si;
3) xi = siai and yi = bisi for bits ai, bi ∈ {0, 1}

and string si;
4) xi = aisi and yi = bisi for distinct bits ai, bi ∈

{0, 1} and string si;
5) xi = siai and yi = sibi for distinct bits ai, bi ∈

{0, 1} and string si.

We remark that x and y of the above form must
be within edit distance 2d of each other, yet there
are certainly strings at edit distance 2d which fail to
follow this pattern (for example x = a1 . . . ads and
y = sb1 . . . bd generally do not have such a block
decomposition).

We also note that if x and y have different Hamming
weights (the Hamming weight of a string is the number
of 1s in it), this makes them easily distinguishable by a
mean-based algorithm. This is because their traces will
exhibit a difference of q in expected Hamming weight.
Using O(1/q2) traces, this difference will be noticeable
by a mean-based algorithm. Therefore, we will focus on
the more interesting case where x and y have the same
Hamming weight.

Since Qx(1) exactly equals to the Hamming weight
of x, we know that w − 1 is a factor of the polynomial
Qx(w) − Qy(w) if x and y have the same Hamming
weight. It is thus natural to factor Qx(w) − Qy(w) =
(w − 1)R(w) for some polynomial R, and study the
multiplicity of zeros of R. The special block structure
described above allows us to explicitly write down the
expression for R, and thus to study the number of
sign changes in R. This is the main idea in proving
the following theorem, which is the formal version of
Theorem 5.
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Theorem 10. Let x and y be strings with the special
structure mentioned above. Then

∥E(x)−E(y)∥ℓ1 ≥ q

e

( q
n

)3d
.

Proof. As a warm-up, let us first consider the case where
all ai’s and bi’s are zero. Under this assumption cases
4 and 5 never arise in the above block decomposition.
We can partition [n] into three sets S1, S2, S3, each of
which collecting the indices of contiguous substrings
of x (and therefore of y) of lengths ℓi corresponding
to the respective case of the first three special cases
above. Let ti =

∑i−1
j=1 ℓj be the starting index of block

i (note that t1 = 0 and td+1 = n). As we are going to
decompose the polynomials Qx(w) and Qy(w) using the
block structure, these indices will come in handy later.

Recall that the polynomial Qx(w) is defined as

Qx(w) = x0 + x1w + x2w
2 + . . .+ xn−1w

n−1.

Given the block structure of x and y, we can express
Qx(w)−Qy(w) in terms of the polynomials Qxi

(w)−
Qyi

(w) as

Qx(w)−Qy(w) =
d∑

i=1

wti (Qxi
(w)−Qyi

(w)) .

For i ∈ S2, we have

Qxi(w)−Qyi(w) = wQsi(w)−Qsi(w)

= (w − 1)Qsi(w).

Similarly for i ∈ S3, we have

Qxi(w)−Qyi(w) = Qsi(w)− wQsi(w)

= (1− w)Qsi(w).

Putting everything together, we get

Qx(w)−Qy(w)

=
∑
i∈S2

wti(w − 1)Qsi(w) +
∑
i∈S3

wti(1− w)Qsi(w)

=(w − 1)

(∑
i∈S2

wtiQsi(w)−
∑
i∈S3

wtiQsi(w)

)
.

Towards applying Lemma 1, we are going to upper
bound the number of sign changes in the second term
of the above expression. We note that Qsi(w) is a poly-
nomial with 0/1 coefficients. Each summand wtiQsi(w)
contains a set of monomials whose degrees are in an
interval [ti, ti+1), and all these intervals are disjoint from
each other. It follows that the number of sign changes is
at most d. The lemma also follows by Theorem 7.

Now let us turn to the case where ai’s and bi’s are
not necessarily zero. Due to “linearity” of the mapping

x 7→ Qx (i.e. x + y 7→ Qx + Qy), it will be helpful
to write x = x∅ + x∆, where x∅ is x but with all the
ai’s replaced by zero, and x∆ contains only the ai’s.
Similarly write y = y∅ + y∆.

We recall that x and y have the same Hamming
weight. That means the the following two sets

A = {i : ai = 1} and B = {i : bi = 1}

have the same cardinality. Let π : A → B be a matching
between the A and B. For i ∈ A let σ(i) be the index
of ai in x and let τ(i) be the index of bπ(i) in y. It
follows that σ(i) = ti or ti+1 − 1, and τ(i) = tπ(i) or
tπ(i)+1 − 1, and that

Qx∆(w)−Qy∆(w) =
∑
i∈A

(
wσ(i) − wτ(i)

)
.

We then have

Qx(w)−Qy(w)

=
(
Qx∅(w)−Qy∅(w)

)
+ (Qx∆

(w)−Qy∆
(w))

=
∑
i∈S2

wti(w − 1)Qsi(w) +
∑
i∈S3

wti(1− w)Qsi(w)

+
∑
i∈A

(
wσ(i) − wτ(i)

)
=(w − 1)

(∑
i∈S2

wtiQsi(w)−
∑
i∈S3

wtiQsi(w) +
∑
i∈A

Ji(w)

)
,

where each Ji(w) is a polynomial of the form

Ji(w) =

{
wτ(i) + wτ(i)+1 + . . .+ wσ(i)−1 if σ(i) > τ(i),

−wσ(i) − wσ(i)+1 − . . .− wτ(i)−1 if σ(i) < τ(i).

Let us focus on the polynomial R(w) = R1(w) +
R2(w) where

R1(w) :=
∑
i∈S2

wtiQsi(w)−
∑
i∈S3

wtiQsi(w),

R2(w) :=
∑
i∈A

Ji(w).

Once more we are going to bound the number of sign
changes in R. Fix an arbitrary i and consider two degrees
k1 ̸= k2 ∈ [ti + 1, ti+1 − 1). From previous discussions
we know that wk1 and wk2 have the same sign in R1. For
R2, we note that for each j ∈ A, wk1 and wk2 have the
same coefficients in Jj . This is because the coefficients
of Jj are identically 1 (or −1) in the degree interval
[τ(i), σ(i)) (or [σ(i), τ(i))), which either contains or
is disjoint with {k1, k2}. Therefore, the coefficients of
wk1 and wk2 are the same in R2. Finally, notice that
the coefficients of R1 belong to {0, 1,−1}, and that the
coefficients of R2 are integers. Therefore wk1 and wk2

have the same sign in R = R1 +R2.
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Given a sign change (i, j) in R (cf. the remark below
Lemma 1), we say an index k cuts (i, j) if i ≤ k ≤ j.
The above argument shows that any sign change in R
must be cut by some index in the set

C =
d⋃

i=1

{ti, ti+1 − 1}

= {t1} ∪
d⋃

i=2

{ti − 1, ti} ∪ {td+1 − 1} .

As t1 = 0 and td+1 − 1 = n − 1 each cuts at most 1
sign change, and for each i, ti − 1 and ti jointly cut
at most 3 sign changes, it follows that R has at most
3(d− 1) + 2 = 3d− 1 sign changes.

Now we can apply Lemma 1 and get that the multi-
plicity of zero of Qx − Qy at 1 is at most 3d (1 from
the factor (w − 1), 3d− 1 from R(w)). By Theorem 7,
we conclude that

∥E(x)−E(y)∥ℓ1 ≥ q

e

( q
n

)3d
.

a) What happens to edit distance 2 pairs?: Given
that at edit distance 4 there are already hard strings
for mean-based algorithms, this is indeed a natural
question to ask. In fact, we will show that a mean-based
algorithm can distinguish between x and y using only
polynomially many traces, and this will be an application
of Theorem 10.

Corollary 1. Let x,y ∈ {0, 1}n be two arbitrary
(distinct) strings with dE(x,y) = 2. Then nO(1) traces
are sufficient for a mean-based algorithm to distinguish
between x and y.

Proof. As before we assume x and y have the same
Hamming weight. Due to the symmetry between 0 and 1,
we may assume without loss of generality that x = a0bc
and y = ab0c for strings a,b, c with lengths a, b, c,
respectively, satisfying a+ b+ c+1 = n. We thus have
the block decompositions x = x1x2x3 and y = y1y2y3

where

x1 = a, x2 = b0, x3 = c,
y1 = a, y2 = 0b, y3 = c.

Note that this falls into the special strucutre mentioned
above for d = 3. Theorem 10 then implies

n−1∑
j=0

∣∣∣∣ E
x̃∼Dx

[x̃j ]− E
ỹ∼Dy

[ỹj ]

∣∣∣∣ ≥ q

e

( q
n

)9
,

from which it follows that nO(1) traces are sufficient to
distinguish between x and y.

In fact, with a more careful analysis one can nail down
the constant and show that the sample complexity is
O(n2), leading to a sharp transition in sample complex-
ity from edit distance 2 to 4.

b) Other cases for edit distance 4: We also mention
that the only hard pairs at edit distance 4 have the form

x = a a1 b a2 c d e,

y = a b c b1 d b2 e.

The hard strings given in Theorem 2 are also in this form
with b = d = ε (the empty string). All other pairs not
in this form will have the special structure mentioned
earlier, and are thus easy.

VII. CONCLUSIONS AND OPEN PROBLEMS

In this work we showed several results about the
power and limitation of mean-based algorithms in distin-
guishing trace distributions of strings at small Hamming
or edit distance.

Going beyond mean-based algorithms is obviously a
major concern. A very natural next step is to incorporate
“multi-bit statistics”, namely the joint distribution of
several bits of the traces. Indeed, the upper bound
obtained in [20] is based on the joint distribution of
roughly n1/5 bits. Although this seems a much more
general class of algorithms, the best bound they yield so
far is still exponential. We leave as an open problem the
power and limitation of algorithms based on multi-bit
statistics.

APPENDIX A
MEAN-BASED ALGORITHMS AND CONNECTION TO

COMPLEX ANALYSIS

Fix a string x ∈ {0, 1}n. The basic idea of [8] and [7]
is to consider the average number of “1”s at index j in
the traces of x, i.e. the expectations Ej(x) := Ex̃∼Dx [x̃j ]
for j = 0, 2, . . . , n−1, where x̃j = 0 for j > |x̃|−1. An
algorithm is said to be mean-based if its output depends
only on the statistical estimates of Ej(x) where j =
0, 1, . . . , n− 1.

A. The reduction to complex analysis

[8] and [7] showed the following bound.

Theorem 11 ([8], [7]). For all distinct x,y ∈ {0, 1}n it
is the case that

n−1∑
j=0

|Ej(x)− Ej(y)| > exp
(
−O

(
n1/3

))
. (2)

This result is sufficient to imply that exp
(
O(n1/3)

)
samples can tell the difference between Dx and Dy with
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high probability. To this end, they defined the following
polynomial

Px(z) =
n−1∑
j=0

Ej(x) · zj .

This makes the left-hand-side of (2) simply ∥Px − Py∥1.
By writing explicitly

Ej(x) =
n−1∑
k=0

Pr [x̃j comes from xk] · xk

=
n−1∑
k=0

(
k

j

)
pk−jqj+1 · xk,

we have that

Px(z) =
n−1∑
j=0

Ej(x) · zj

=
n−1∑
j=0

n−1∑
k=0

(
k

j

)
pk−jqj+1 · xk · zj

= q

n−1∑
k=0

xk

n−1∑
j=0

(
k

j

)
pk−j(qz)j

= q
n−1∑
k=0

xk · (p+ qz)
k

= q ·Qx(p+ qz).

In light of Lemma 2, one might as well bound
∥Px − Py∥∞. Keeping in mind that the map z 7→ p+qz
shifts the complex unit circle ∂B(0; 1) to ∂B (p; q), so
far we have reduced the problem to understanding the
following supremum

sup {|Qx(w)−Qy(w)| : w ∈ ∂B (p; q)} .

Using a result of [21], [8] and [7] proved that the above
supremum is at least exp

(
−O(n1/3)

)
, which is their

main technical result.
To summarize, we have the following generic lemma.

Lemma 8. Let x,y ∈ {0, 1}n be two strings. Then

1√
n+ 1

∥Px − Py∥1

≤q · sup {|Qx(w)−Qy(w)| : w ∈ ∂B (p; q)}
≤∥Px − Py∥1 .

Proof. We have that q−1Px(z) = Qx(w) where w = p+
qz. Applying Lemma 2 to the polynomial q−1 (Px − Py)
gives the lemma.

A common bound in this paper is of the form

∥Px − Py∥1 ≥ n−O(d)

for some parameter d. A standard Chernoff-Hoeffding
bound argument shows that nO(d) traces are sufficient
for a mean-based algorithm to distinguish between x and
y. On the other hand, if for some strings x and y one
can show

∥Px − Py∥1 ≤ ε,

then it is the case that Ω(1/ε) traces are required for dis-
tinguishing between x and y by mean-based algorithms.
For a formal discussion about the sample complexity
versus various notions of distances related to the trace
problem we refer the reader to [11].

APPENDIX B
DISTINGUISHING BETWEEN STRINGS WITHIN SMALL

HAMMING DISTANCE

We prove Theorem 1 in this section. We remark
that the same result was proven in [15], which uses
a previous result regarding reconstructing strings from
their “k-decks” (i.e. the multi-set of subsequences of
length k)[22]. One of the results in [22] states that strings
within Hamming distance 2k have different k-decks.
Therefore when the deletion probability p ≤ 1 − k/n,
the traces will have length at least k in expectation and
we can reconstruct the k-deck with high probability in
nO(k) traces. This is exactly the argument in [15], but we
note here that this argument does not yield a mean-based
algorithm.

Theorem 1 states that the same task can be ac-
complished also by mean-based algorithms. With the
machinery established in this paper, this will be an im-
mediate consequence of Descartes’ rule of sign changes
(Lemma 1).

Theorem 1. Let x,y ∈ {0, 1}n be two distinct strings
within Hamming distance d from each other. There is a
mean-based algorithm that distinguishes between x and
y with high probability using nO(d) traces.

Proof. Let Q(w) = Qx(w)−Qy(w). We will show that
the multiplicity of zero of Q at 1 is at most d.

We note that Q(w) is a polynomial with at most d
non-zero terms. Therefore the number of sign changes
C(Q) can never exceed d. By Lemma 1, the number
of real positive roots of Q is at most d. In particular,
the multiplicity of zero of Q at 1 is at most d. Thus by
Theorem 7 we have

∥E(x)−E(y)∥ℓ1 ≥ q

e

( q
n

)d
.

13



The sample complexity bound nO(d) follows from
Proposition 1.
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[21] P. Borwein and T. Erdélyi, “Littlewood-type problems on subarcs
of the unit circle,” Indiana University mathematics journal, pp.
1323–1346, 1997.

[22] I. Krasikov and Y. Roditty, “On a reconstruction problem for
sequences,,” J. Comb. Theory, Ser. A, vol. 77, no. 2, pp. 344–
348, 1997.

[23] A. D. Scott, “Reconstructing sequences,” Discrete Mathematics,
vol. 175, no. 1-3, pp. 231–238, 1997.
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