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Point-hyperplane Incidence Geometry and
the Log-rank Conjecture

NOAH SINGER and MADHU SUDAN, Harvard University

We study the log-rank conjecture from the perspective of point-hyperplane incidence geometry.We formulate

the following conjecture: Given a point set inRd that is covered by constant-sized sets of parallel hyperplanes,

there exists an affine subspace that accounts for a large (i.e., 2−polylog(d ) ) fraction of the incidences, in the

sense of containing a large fraction of the points and being contained in a large fraction of the hyperplanes.

In other words, the point-hyperplane incidence graph for such configurations has a large complete bipartite

subgraph. Alternatively, our conjecture may be interpreted linear-algebraically as follows: Any rank-d matrix

containing at most O (1) distinct entries in each column contains a submatrix of fractional size 2−polylog(d ) ,
in which each column is constant. We prove that our conjecture is equivalent to the log-rank conjecture; the

crucial ingredient of this proof is a reduction from bounds for parallelk-partitions to bounds for parallel (k−1)-
partitions. We also introduce an (apparent) strengthening of the conjecture, which relaxes the requirements

that the sets of hyperplanes be parallel.

Motivated by the connections above, we revisit well-studied questions in point-hyperplane incidence ge-

ometry without structural assumptions (i.e., the existence of partitions). We give an elementary argument for

the existence of complete bipartite subgraphs of density Ω(ϵ2d/d ) in any d-dimensional configuration with

incidence density ϵ , qualitatively matching previous results proved using sophisticated geometric techniques.

We also improve an upper-bound construction of Apfelbaum and Sharir [2], yielding a configuration whose

complete bipartite subgraphs are exponentially small and whose incidence density is Ω(1/
√
d ). Finally, we

discuss various constructions (due to others) of products of Boolean matrices which yield configurations with

incidence density Ω(1) and complete bipartite subgraph density 2−Ω(
√
d ) , and pose several questions for this

special case in the alternative language of extremal set combinatorics.

Our framework and results may help shed light on the difficulty of improving Lovett’s Õ (
√
rank( f ))

bound [20] for the log-rank conjecture. In particular, any improvement on this bound would imply the first

complete bipartite subgraph size bounds for parallel 3-partitioned configurations which beat our generic

bounds for unstructured configurations.
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1 INTRODUCTION

In this work, we present several linear-algebraic, incidence-geometric, and set-theoretic conjec-
tures which are connected to the “log-rank conjecture” in communication complexity. We also de-
scribe some mild progress on the incidence-geometric questions. We start with some background
on communication complexity and incidence geometry.

1.1 Motivation and Background

Notation. f ≤ Õ (д) denotes “f ≤ O (д ·polylog(д)).” [n] denotes the set of integers {1, . . . ,n}. All
logarithms are base 2. A submatrix of or rectangle in a matrix M ∈ RX×Y is given by two subsets
A ⊆ X and B ⊆ Y and denoted M |A×B ; we use these terms interchangeably. In real space Rd , a
j-flat is a j-dimensional affine subspace. Hence, a point is a 0-flat and a hyperplane is a (d − 1)-flat.
2X denotes the powerset of a set X.

1.1.1 Communication Complexity and the Log-rank Conjecture. The (deterministic) communica-

tion complexity of a (two-party) function f : X × Y → {0, 1}, as defined by Yao [32], measures
how much communication is needed for two cooperating parties, one knowing x ∈ X and the
other knowingy ∈ Y , to jointly determine f (x ,y). The (deterministic) communication complexity
CCdet ( f ) is the minimum over all communication protocols that compute f (x ,y) of the maximum
communication over all pairs (x ,y) ∈ X × Y .
Every function f : X × Y → {0, 1} corresponds naturally to a Boolean matrix Mf , with rows

indexed byX and columns byY , where (Mf )x,y = f (x ,y). Given a function f : X×Y → {0, 1}, we
can define its rank, denoted rank( f ), as the rank ofMf over R, which is a linear-algebraic measure
of f ’s complexity. This leads to a natural question: How is rank( f ) connected to CCdet ( f )?
A monochromatic rectangle for a function f : X ×Y → {0, 1} is a pairA ⊆ X,B ⊆ Y such that

f (a,b) is constant over all (a,b) ∈ A × B. A c-bit communication protocol for f partitions the
space X ×Y into a disjoint union of at most 2c monochromatic rectangles. Since monochromatic
rectangles for f correspond to rank-1 submatrices of Mf , log(rank( f )) ≤ CCdet ( f ) [23]. The log-
rank conjecture of Lovász and Saks [19] posits a matching upper bound up to a polynomial factor;
that is:

Conjecture 1.1 (Log-rank Conjecture [19]). For every function f : X ×Y → {0, 1},
CCdet ( f ) ≤ polylog(rank( f )).

This conjecture is a central and notorious open question in communication complexity. Cur-
rently, the best known bound for arbitrary f is due to Lovett [20], who proved the following:

Theorem 1.2 ([20]). For every function f : X ×Y → {0, 1},

CCdet ( f ) ≤ O
(√

rank( f ) log(rank( f ))
)
.

The log-rank conjecture asserts that every low-rank Boolean matrix can be partitioned into
a small number of monochromatic rectangles. An obviously necessary condition for this is the
presence of a large monochromatic rectangle. A result due to Nisan and Wigderson [24] shows
that this is in fact also a sufficient condition. Specifically, define the size of a rectangle (A,B) as
|A||B|. Then:
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Theorem 1.3 ([24], as Articulated in [20]). Suppose that there exists some function γ : N →
N such that the following is true: For every Boolean function f : X × Y → {0, 1}, f contains a

monochromatic rectangle of size at least |X||Y | · 2−γ (rank(f )) . Then for every Boolean function f :
X ×Y → {0, 1},

CCdet ( f ) ≤ O ���log2 (rank( f )) +
log(rank(f ))∑

i=0

γ

(
rank( f )

2i

)��� .
In particular, proving that the hypothesis of this theorem holds with γ (d ) = polylog(d ) would

suffice to prove the log-rank conjecture.1 See [21] for more background on the log-rank conjecture.

1.1.2 Incidence Geometry and Extremal Combinatorics. In this section, we give various defini-
tions and notations that we will use throughout the rest of the article.
In Rd , a hyperplane is the locus of points x ∈ Rd defined by an equation of the form 〈a,x〉 = b,

for some a � 0 ∈ Rd ,b ∈ R. We refer to the vector a as the normal vector of h and b as its offset
(denoted b (h)). A pair of hyperplanes h,h′ are parallel if for some constant c ∈ R we have a = ca′

(where h and h′ are defined by 〈a,x〉 = b and 〈a′,x〉 = b ′, respectively).
A point p and a hyperplane h in Rd are incident if p lies on h; we call the pair (p,h) an incidence

(and say p is incident to h and vice versa). In an ambient space Rd , we refer to a (finite) set P of
points together with a (finite) setH of hyperplanes as a configuration. Configurations determine an
incidence graph G(P,H ), an (unweighted, undirected) bipartite graph defined as follows: The left
vertices are the points P, the right vertices are the hyperplanesH , and the edge (p,h) is included
iff p is incident to h. Following Apfelbaum and Sharir [2], we denote by I(P,H ) the total number
of incidences between P and H (equiv., the number of edges in G(P,H )) and by rs(P,H ) the
largest number of edges in any complete bipartite subgraph of G(P,H ); the reader may verify the
equivalent characterization that

rs(P,H ) = max
S affine subspace ⊂Rd

( |{p ∈ P : p lies on S }| · |{h ∈ H : S lies on h}|).

Let |P | = n and |H | = m; we refer to the ratios I(P,H )
mn

and rs(P,H )
mn

as the incidence and complete

bipartite subgraph densities of the configuration (P,H ), respectively.2

Generally, bipartite graphs need not contain large complete bipartite subgraphs; indeed, even
in random bipartite graphs of constant edge density, the largest complete bipartite subgraphs are
logarithmically small [8], which is tight up to constant factors [10]. But lower bounds for com-
plete bipartite subgraph density (and various analogues in hypergraphs) have been widely studied
for specific classes of (hyper)graphs with “structure”. Previous research has explored complete
bipartite subgraph density and its analogues in settings including point-hyperplane incidences
[2, 6], line segment incidences [26], orientations of k-tuples of points [4], and common points in
simplices defined by k-tuples of points [17, 25] or bounded by k-tuples of hyperplanes [3]. All
of these problems fit into the framework of “semi-algebraic” hypergraphs, which arise from solu-
tions to systems of “low-complexity” polynomial equations; complete bipartite sub-hypergraphs
in semi-algebraic hypergraphs have been studied in [1, 5, 11, 12]. Non-geometric settings have

1This reduction is tight in a strong sense: A c-bit protocol for f partitions X × Y into ≤ 2c monochromatic rectangles,

one of which must have size at least |X | |Y | · 2−c .
2A quick note on our use of Apfelbaum and Sharir [2]’s notation: We use n to denote the number of points and m to

denote the number of hyperplanes, which is opposite to [2]. Also, [2] uses Π instead of H to denote the set of hyperplanes.

Finally, for context, in [2]’s notation rs(P, H ), r refers to the quantity | {p ∈ P : p lies on S } | and s refers to the quantity
| {h ∈ H : S lies on h } |; rs(P, H ) maximizes the product r s over all affine subspaces of Rd .

ACM Transactions on Computation Theory, Vol. 14, No. 2, Article 7. Publication date: September 2022.



7:4 N. Singer and M. Sudan

also been studied, including graphs excluding a fixed induced subgraph [9] and graphs with small
VC-dimension [13].

To the best of our knowledge, prior to the current work, the strongest known bounds for com-
plete bipartite subgraph density in point-hyperplane incidence graphs were as follows. Fox, Pach,
and Suk [12] proved the following upper bound (which holds more generally for semi-algebraic
relations) using a cell decomposition argument:

Theorem 1.4 ([12, Corollary 1.2] with k = t = 2). Let P and H be a set of n points and m

hyperplanes, respectively, in Rd , and let ϵ = I(P,H )
mn

. Then

rs(P,H ) ≥ Ω
(
ϵd+12−d (40 log(d+1)+1) ·mn

)
.

Apfelbaum and Sharir [2, Theorem 1.2] proved the related bound rs(P,H ) ≥ Ωd (ϵ
d−1 ·mn),

but did not analyze the dependence on the dimension d ; we suspect it is worse than the 2−Õ (d ) in
Theorem 1.4. [2] also proved the currently-best upper bound, using a lattice construction inspired
by Elekes and Tóth [7]:

Theorem 1.5 ([2, Theorem 1.3]). For every d ∈ N, there exist arbitrarily large n,m ∈ N such that

there exists a set P of n points and a set H ofm hyperplanes in Rd such that I(P,H ) ≥ Ω(nm/d )

and rs(P,H ) ≤ O (mn · 2−d/
√
d ).

1.1.3 Connecting Low-rank Boolean Matrices and Incidence Geometry. The rank d of a Boolean
matrix M has a natural incidence-geometric interpretation, as observed in unpublished work by
Golovnev, Meka, Sudan, and Velusamy [16]. Given a factorization M = PH where P ∈ Rn×d ,H ∈
R
d×m , we view the ith row of P as a point in Rd , and the jth column of H as the normal vector of

a pair of parallel hyperplanes with offsets 0 and 1. Then the entry at a particular row and column
in M determines which of the corresponding hyperplanes the corresponding point is incident to.
The hope that there is a large monochromatic rectangle in M translates to the hope that there
is a large complete bipartite subgraph in the point-hyperplane incidence graph, or equivalently
that there is an affine subspace that is contained in many hyperplanes and contains many points.
Moreover, the fact that the matrices under consideration are Boolean matrices implies that these
point-hyperplane configurations have an unusually large density of incidences (specifically 50%
of the point-hyperplane pairs are incident!).
One could ask if simply the high density of incidences suffices to imply the existence of a large

complete bipartite subgraph (of density 2−polylog(d ) in d dimensions). This is known to be false and

a 2016 construction of Lovett [20] with density 2−Θ(
√
d ) is a counterexample.3 See Section 5 for

discussion on this and related constructions.

1.2 Contributions

1.2.1 Moderately Large Complete Bipartite Subgraphs in General Configurations. As discussed
in the previous subsection, there exist configurations with incidence density Ω(1) but complete

bipartite subgraph density 2−Ω(
√
d ) . Only assuming incidence density Ω(1), the following conjec-

ture is the strongest possible bound that may yet turn out to be true; it is roughly an incidence-
geometric analogue of a conjecture of Lovett on sparse low-rank matrices [20, Conjecture 5.1]:

Conjecture 1.6 (Configurations with Incidence Density Ω(1) have Moderately Large
Complete Bipartite Subgraphs). The following is true for every fixed ϵ > 0. In Rd , let P be a

3Though admittedly the authors were not aware of this at earlier stages of this writing [30]. We thank Lovett [20],

Pálvölgyi [27], and Fox and Wigderson [14] for pointing this out to us, and for suggesting related counterexamples.
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collection of n points andH a collection ofm hyperplanes such that I(P,H ) ≥ ϵ ·mn. Then

rs(P,H ) ≥ mn · 2−Oϵ (
√
d ) .

(The constant in Oϵ (
√
d ) may depend arbitrarily on ϵ).

We note that Conjecture 1.6 is too weak to prove the log-rank conjecture (Conjecture 1.1). It
would, however, yield a result roughly matching the current best upper bound (Theorem 1.2, due
to [20]) on communication complexity as a function of the rank (up to some logarithmic factors).

1.2.2 Large Complete Bipartite Subgraphs in “Structured” Configurations. In view of the issues
discussed in Sections 1.1.3 and 1.2.1, we consider what additional properties of point-hyperplane
configurations could potentially lead to the presence of a large complete bipartite subgraph. As
discussed in Section 1.1.3, Boolean matrices lead to configurations where the hyperplanes can be
partitioned into parallel pairs such that each pair covers the set of points. This leads to an easy
reformulation of the log-rank conjecture (Conjecture 2.4 below). We extend this formulation to
the notion of parallel k-partitions (see Definition 2.1 below) that allow the sets of hyperplanes
to be partitioned into sets of size (at most) k for an arbitrary constant k . We conjecture that
k-parallel partitionable configurations contain large complete bipartite subgraphs (Conjecture 2.6
below), and in Theorem 2.9 below, we show that this conjecture is actually equivalent to the log-
rank conjecture. Theorem 2.9 has a natural interpretation as a reduction from bounds for parallel
k-partitioned configurations to (stronger) bounds for (k − 1)-partitioned configurations.

In the matrix corresponding to a point-hyperplane configuration, there is a natural linear-
algebraic property equivalent to the presence of a parallel k-partition, which we refer to as
k-listability: A matrix is k-listable if every column has at most k distinct entries (though these
sets may differ arbitrarily across columns). Theorem 2.9 can hence be stated linear-algebraically,
in closer spirit to the original log-rank conjecture: the log-rank conjecture is equivalent to the
assertion that every k-listable matrix contains a large 1-listable submatrix. (See Section 2 for a
more careful account of the connection between matrices, configurations, listability, and parallel
partitionability).
We believe that the covering aspect of the point-hyperplane incidences is a key element of the log-

rank conjecture and posit an extension (which does not immediately seem to be equivalent to the
log-rank conjecture, nor does it seem to have a simple linear-algebraic formulation). Specifically
in Conjecture 2.7 we suggest that if a set of hyperplanes can be partitioned (in a not-necessarily-
parallel way) into blocks of size at most k such that each block covers a given set of points, then
the incidence graph corresponding to this configuration has a large complete bipartite subgraph.

1.2.3 New Bounds for Complete Bipartite Subgraph Size in General Configurations. Returning
to the more basic question of the incidence density of a configuration versus the size of its largest
complete bipartite subgraph, we present two results that improve the state-of-the-art. Our first
result here is a lower bound on the size of complete bipartite subgraphs in incidence graphs of
constant density:

Theorem 1.7. Let P andH be a set of n points andm hyperplanes, respectively, in Rd , such that

I(P,H ) ≥ ϵmn. If n is sufficiently large (in particular, if ϵd

2 n > 1), then

rs(P,H ) ≥ Ω

(
ϵ2d

d
mn

)
.

Theorem 1.7 is proven in Section 3 using an elementary probabilistic argument. Compared to
the previously-best lower bound we are aware of (Theorem 1.4, due to Fox, Pach, and Suk [12]), for
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7:6 N. Singer and M. Sudan

fixed ϵ we get slightly better dependence on d (exponentially small in O (d ) instead of O (d logd )),
and our proof is also drastically simpler.
On the flip side, we are able to quantitatively improve the previously-best upper bound (Theo-

rem 1.5, due to Apfelbaum and Sharir [2]):

Theorem 1.8. For every d > 0, there exists a set P of n points and a setH ofm hyperplanes in Rd

such that I(P,H ) ≥ Ω(nm/
√
d ) and rs(P,H ) ≤ O (mn · 2−d/

√
d ).

The only difference between Theorem 1.8 and the earlier Theorem 1.5 is the gain of a
√
d

factor in the lower bound on I(P,H ), which we achieve by exhibiting a dense subset of [2]’s
construction (see Proposition 4.4 below). (That is, Theorem 1.5 has only I(P,H ) = Θ(mn/d ).
Other explicit constructions, discussed in Section 5, have I(P,H ) ≥ Ω(mn) but only rs(P,H ) ≤
O (mn · 2−Ω(

√
d ) ) [14, 20, 22, 27]). But since the incidence density of Theorem 1.8’s construction is

still not constant, it is too small to falsify our most general conjecture (Conjecture 1.6).

1.2.4 Explicit Constructions of Configurations Without Large Complete Bipartite Subgraphs, and
Products of Boolean Matrices. In Section 5, we analyze an explicit point-hyperplane configuration

whichwas suggested as a counterexample by Pálvölgyi [27]. Our analysis demonstrates thatO (
√
d )

is the best possible exponent in Conjecture 1.6. (A different counterexample with the same quanti-
tative parameters and a related analysis, due to Lovett [20] and also indicated by Fox and Wigder-
son [14], was already known). More generally, we observe that these constructions all arise from
products of Boolean matrices, and we pose special cases of our general conjectures for these types
of matrices as interesting variants. Since they involve products of Boolean matrices, we also de-
scribe them in the language of extremal combinatorics of set families and connect them to prior
results in those areas.

1.2.5 Discussion. We believe that our new incidence-geometric and linear-algebraic frame-
works for interpreting the log-rank conjecture shed light on several important prior results: in
particular, the positive results of Lovett [20] (i.e., Theorem 1.2), which in our incidence-geometric

language is a complete bipartite subgraph density lower bound of 2−Õ (
√
d ) for parallel 2-partitioned

configurations, and the constructions of [14, 20, 22, 27] of (unstructured) configurations with inci-

dence density Ω(1) and complete bipartite subgraph density 2−Ω(
√
d ) . For context, [20]’s analysis

relies heavily on the binarity of the matrix; roughly, monochromatic rectangles are created by us-
ing a hyperplane rounding argument that exploits the gap between the two possible values for
entries in the matrix. Altogether we are left in the following unsettling situation: The only way

we know to prove a 2−O (
√
d ) bound uses binarity, but we believe that we should be able to get

(1) a 2−polylog(d ) bound using binarity (i.e., Conjecture 2.4) and (2) a 2−O (
√
d ) bound without using

structural assumptions (i.e., Conjecture 1.6).
This situation is especially interesting in light of the reduction used to prove Theorem 2.9. Ac-

cording to this reduction, if we have a 2−f (d ) complete bipartite subgraph density lower bound

for parallel (k − 1)-partitioned configurations, then we also have a 2−(f (d ))
2
bound for parallel

k-configurations. In particular, since the best bound we know for parallel 2-partitioned configu-

rations is 2−Õ (
√
d ) (i.e., Theorem 1.2), the best bound we know for parallel 3-partitioned configu-

rations is 2−Õ (d )—which simply recovers what we already proved in Theorem 1.7! Indeed, even
a modest improvement in the bounds for parallel 2-partitioned configurations would yield a non-
trivial bound for parallel 3-partitioned configurations. While this is potentially due to a technical

weakness of the reduction, it may still help explain the difficulty in surpassing the “
√
d barrier”.
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2 INCIDENCE-GEOMETRIC REFORMULATIONS OF THE LOG-RANK CONJECTURE

In this section, we present some reformulations of the log-rank conjecture in terms of incidence
geometric questions. The conjectures start with some unpublishedwork of Golovnev,Meka, Sudan,
and Velusamy [16] who raised Conjecture 2.4 below explicitly and also went on to propose a
stronger form of Conjecture 1.6 (which was [30, Conjecture 5]). The latter turns out to be false
(and this was already known—see [20] and Section 5), so we propose several new variants here
and prove some equivalences.

2.1 The “Original” Reformulation

To begin, we introduce new notions of structured point-hyperplane configurations.

Definition 2.1 (Parallel k-partition). Let (P,H ) be a point-hyperplane configuration. A parallel

k-partition for (P,H ) is a partition ofH into disjoint blocksH1 � · · · � H� , each of size at most
k , such that (1) within each blockHi , the hyperplanes all have the same normal vector, and (2) for
each blockHi and point p ∈ P, p is incident to one of the hyperplanes ofHi .

Note that in a parallel k-partitioned configuration, every point is incident to precisely one hy-
perplane in each block.
Next, we define properties of matrices which we will soon show are analogous to parallel

k-partitionability:

Definition 2.2 (k-listability and k-arity). A matrix M ∈ Rn×m is k-listable if every column of
M contains at most k distinct entries. Moreover, M is k-ary if it contains at most k total distinct
entries.

Note that 1-listability is equivalent to every column being constant and that k-arity implies
k-listability.

Next, we describe a natural correspondence between parallel k-partitioned configurations and
k-listable matrices. Specifically, we define a matrix associated with every configuration, and con-
versely, a configuration associated with every matrix.

Given a configuration (P,H ) of n points andm hyperplanes in Rd with a parallel k-partition
H1 � · · · � H� , let Mat(P,H ) be the n ×m matrix defined as follows: Let pi be the ith point in
P and let aj be the normal vector corresponding to the hyperplanes in blockHj . Then the (i, j )th
entry ofMat(P,H ) is 〈pi ,aj 〉.
Now we describe how to define a configuration Con(M ) associated with a matrixM ∈ Rn×m of

rank d . Consider a factorization M = PQ where P ∈ Rn×d and Q ∈ Rd×m . (Con(M ) may depend
on the choice of this factorization, but picking an arbitrary one suffices for our purposes). Let
p1, . . . ,pn ∈ Rd denote the rows of P and let q1, . . . ,qm ∈ Rd denote the columns ofQ . For j ∈ [m]
let Bj denote the set of distinct entries in column j ofM . For each j ∈ [m] and b ∈ Bj , define hbj as
the hyperplane determined by the equation 〈x ,qj 〉 = b over x ∈ Rd . We define the configuration

Con(M ) :=
(
{pi : i ∈ [n]},

{
hbj : j ∈ [m],b ∈ Bj

})
.

The basic facts about the correspondence between matrices and configurations are summarized
in Proposition 2.3 below. Given a setH of hyperplanes, define the offset set B (H ) ⊆ R asB (H ) :=
{b (h) : h ∈ H }.
Proposition 2.3. (1) If (P,H ) is a parallel k-partitioned configuration inRd , thenMat(P,H )

is k-listable and |B (H ) |-ary and has rank ≤ d .
(2) If a matrix M ∈ Rn×m is k-listable and �-ary, then Con(M ) has a parallel k-partition,
|B (Con(M )) | ≤ �, and Con(M ) contains betweenm andmk hyperplanes.
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(3) Every �-ary matrix M ∈ Rn×m has a 1-listable submatrix of size at least rs(Con(P,H )) (and
hence a monochromatic rectangle of size at least rs(P,H )/�).

(4) If (P,H ) is a parallel k-partitioned configuration, andMat(P,H ) contains a monochromatic

rectangle of size t , then rs(P,H ) ≥ t .

The proofs follow immediately from the definitions and so we omit them.
We can use Proposition 2.3 to show that the following conjecture is equivalent to Conjecture 1.1:

Conjecture 2.4 (Parallel 2-partitioned Configurations have Large Complete Bipartite
Subgraphs [16]). In Rd , let (P,H ) be a parallel 2-partitioned configuration with B (H ) = {0, 1}.
Then

rs(P,H ) ≥ mn · 2−polylog(d ) .

Theorem 2.5. The log-rank conjecture (Conjecture 1.1) holds if and only if Conjecture 2.4 does.

Proof. (=⇒) Given any parallel 2-partitioned configuration (P,H ) in Rd , we may assemble
the matrix Mat(P,H ). By Proposition 2.3, rank(Mat(P,H )) ≤ d and Mat(P,H ) is binary, i.e.,

Mat(P,H ) has two distinct entries, a and b. Letting M̃ := (Mat(P,H ) − a)/(b − a), we have

rank(M̃ ) ≤ rank(Mat(P,H ))+1. M̃ is Boolean, so assuming the log-rank conjecture, it contains a

monochromatic rectangle of size at least |P | |H |·2−polylog(d ) (see the discussion above Theorem 1.3).

Hence so doesMat(P,H ), so by Proposition 2.3, rs(P,H ) ≥ |P||H | · 2−polylog(d ) . (⇐=) Given any
Boolean matrix M ∈ {0, 1}n×m of rank at most d , we may form the configuration Con(P,H )
in Rd , which has by Proposition 2.3 a parallel 2-partition and at least m hyperplanes. Assuming

Conjecture 2.4, rs(Con(P,H )) ≥ mn · 2−polylog(d ) . Hence by Proposition 2.3 again, M contains a

monochromatic rectangle of size at leastmn · 2−polylog(d )−1, which suffices by Theorem 1.3 to prove
the log-rank conjecture. �

2.2 Relaxations of Conjecture 2.4

We could hope to relax the hypothesis of Conjecture 2.4 to only require a parallel partition of
constant size:

Conjecture 2.6 (Parallel Partitioned Configurations have Large Complete Bipartite
Subgraphs). The following is true for every fixed integer k > 1. In Rd , let (P,H ) be a configuration
with a parallel k-partition. Then

rs(P,H ) ≥ mn · 2−polylog(d ) .

Equivalently, by Proposition 2.3, every k-listable matrixM ∈ Rn×m contains a 1-listable submatrix of

size at leastmn · 2−polylog(rank(M )) .

In Theorem 2.9 below, we prove that Conjecture 2.6 is actually equivalent to Conjecture 2.4 (and
thus to the log-rank conjecture). We could also relax the parallel requirement of partition:

Conjecture 2.7 (Partitioned Configurations have Large Complete Bipartite Sub-
graphs). The following is true for every fixed integer k > 1. InRd , let (P,H ) be a configuration with
a (not-necessarily-parallel) k-partition, i.e., such thatH can be partitioned into blocksH1� · · · �H�

of size at most k such that for each block Hi and point p ∈ P, p is incident to at least one of the
hyperplanes ofHi . Then

rs(P,H ) ≥ mn · 2−polylog(d ) .

We are currently unable to show that Conjecture 2.7 is implied by Conjecture 2.6.

ACM Transactions on Computation Theory, Vol. 14, No. 2, Article 7. Publication date: September 2022.



Point-hyperplane Incidence Geometry and the Log-rank Conjecture 7:9

2.3 Equivalence of Conjecture 2.4 and Conjecture 2.6

In this section, we show that Conjecture 2.6 is implied by Conjecture 2.4.

Lemma 2.8 (Folklore). If M ∈ Rn×m has rank d , and p ∈ R[X ] is a real polynomial, then the

matrix N given by Ni j = p (Mi j ) for every (i, j ) ∈ [n] × [m] has rank at most
∑

c ∈S (p ) d
c , where

S (p) := {c ≥ 0 : p contains a nonzero monomial of degree c}.

Proof. Recall that rank is subadditive: If A and B are matrices, then rank(A + B) ≤ rank(A) +
rank(B). Hence it suffices to show that for every c , the matrix N given by Ni j = Mc

i j has rank at

most dc .
If M has rank d , we can write M = PQ for some P ∈ Rn×d ,Q ∈ Rd×m ; let pi and qj denote the

ith row of P and the jth column of Q , respectively. We have Mi j = 〈pi ,qj 〉 by definition. Then let
p ′i := p⊗ci , i.e., the c-fold self-Kronecker product of pi , which is the dc -dimensional vector whose

entries correspond to products of each possible sequence of c elements ofpi . Similarly, letq′j := q
⊗c
j .

Hence we have

Ni j = Mc
i j = 〈pi ,qj 〉c = ��

d∑
k=1

pi,kqj,k��
c

=
∑

k1, ...,kc ∈[d]
pi,k1qj,k1 · · ·pi,kcqj,kc = 〈p ′i ,q′j 〉,

where pi,k and qj,k denote the kth entries of pi and qj , respectively. Hence letting P ′ ∈ Rn×dc be
the matrix whose ith row is p ′i and Q ′ ∈ Rdc×m be the matrix whose jth column is q′j , we have
N = P ′Q ′, so N has rank at most dc . �

Theorem 2.9. If the log-rank conjecture holds (in the form of Conjecture 2.4), then Conjecture 2.6

holds. In particular, assuming Conjecture 2.4, for all integers k > 2, there exists a polynomial pk such

that the following is true: Every k-listable, rank-d matrix M ∈ Rn×m has a 1-listable submatrix of

size at leastmn · 2−pk (logd ) .

Proof. To begin, we argue that it suffices to prove the theorem only for matrices M which
(1) have no 1-listable (i.e., constant) columns and (2) contain a 0 and 1 in every column. Firstly, we
reduce to the casewhere (1) holds: If at least half ofM’s columns are 1-listable, thenwe immediately
have a 1-listable submatrix of M containing all the rows and at least half the columns. Otherwise,
we may throw out all the 1-listable columns, thereby reducing the total number of columns by at
most half without increasing the rank. Next, we reduce to the case where (2) holds as well. Since
(1) holds, we can let {aj ,bj }j ∈[m] with aj � bj be such that the jth column of M contains aj and
bj . Let A ∈ Rn×m be the rank-1 matrix with column j being the constant vector (aj , . . . ,aj ). Let
D ∈ Rm×m be the diagonal matrix with (j, j )th entry being 1/(bj − aj ). Now let N := (M − A)D.
Then rank(N ) ≤ rank(M − A) ≤ d + 1 by subadditivity of rank, and moreover every column of
N contains a 0 and a 1. And proving the theorem for N immediately implies the theorem for M ,
since if S ⊆ [n],T ⊆ [m] are such that N |S×T is a 1-listable submatrix of N , then (N + AD) |S×T is
1-listable and hence so isM |S×T .

Now, we will prove the theorem by induction on k . The k = 2 case is implied by the log-rank
conjecture (in the form of Conjecture 2.4), since if every column of M is 2-listable and contains a
0 and 1,M is precisely a Boolean matrix.
Let p2 be the polynomial given by the log-rank conjecture. For general k , assume the theorem

holds for k − 1, and let pk (x ) be a polynomial satisfying pk (x ) ≥ pk−1 (log(4
x + 2x )) + p2 (x ) for

sufficiently large x (e.g., pk (x ) = pk−1 (x
2 + 1) + p2 (x )). For an arbitrary k-listable, rank-d matrix

M with a 0 and a 1 in every column, let M̃ be the matrix with M̃i j := Mi j (Mi j − 1). M̃ has rank

at most d2 + d by Lemma 2.8. Also M̃ is (k − 1)-listable (since 0’s and 1’s in M become 0’s in M̃).

So by induction M̃ has a submatrix M̃ |S×T which is 1-listable, and |S | |T | ≥ mn · 2pk−1 (log(d2+d )) .
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Now M |S×T is 2-listable, since each column of M̃ |S×T is some constant value c , and any value in
the corresponding column of M |S×T must be a root of z (z − 1) = c . Moreover, rank(M |S×T ) ≤
rank(M ) = d , since the rank of a submatrix never exceeds the original matrix’s rank. We thus
conclude, now using the base case k = 2, that there exist S ′ ⊆ S and T ′ ⊆ T with M |S ′×T ′ being
1-listable and |S ′ | |T ′ | ≥ |S | |T | · 2−p2 (logd ) . Combining the above we have |S ′ | |T ′ | ≥ mn · 2−p2 (logd ) ·
2−pk−1 (log(d

2+d )) ≥ mn · 2−pk (logd ) by assumption on pk . �

3 AN ELEMENTARY LOWER BOUND ON COMPLETE BIPARTITE
SUBGRAPH DENSITY

In this section, we use the probabilistic method to prove Theorem 1.7. We rely on the following
standard fact:

Proposition 3.1. In Rd , let f be a j-flat and h a hyperplane. Suppose that h intersects, but is not

contained in, f . Then f ∩ h is a (j − 1)-flat.

That is, the operation of “nontrivial intersection with a hyperplane” reduces the dimension of a
flat by one.

Proof of Theorem 1.7. Consider the following randomized process for choosing an affine sub-
space S : Select H1, . . . ,Hd uniformly and independently fromH , and output S := H1 ∩ · · · ∩ Hd .

Let G denote the event that “at least ϵd

2 -fraction of the points in P lie on S”. We claim that

Pr[G] ≥ ϵd

2 . Indeed, define the random variable X as the fraction of the points in P lying on S .
We can write X = Prp[p lies on S] where p ∼ P is uniformly random. For each i ∈ [d], we have
Prp,Hi

[p incident to Hi ] = ϵ , and thus by independence,

E
H1, ...,Hd

[X ] = Pr
p,H1, ...,Hd

[p incident to S] = Pr
p,H1, ...,Hd

⎡⎢⎢⎢⎢⎣
d∧
i=1

p incident to Hi

⎤⎥⎥⎥⎥⎦ = ϵd .

Conditioning, we have

ϵd = E
H1, ...,Hd

[
X | X ≥ ϵd

2

]
Pr

H1, ...,Hd

[G] + E
H1, ...,Hd

[
X | X < ϵd

2

]
Pr

H1, ...,Hd

[
X <

ϵd

2

]
≤ Pr

H1, ...,Hd

[G] +
ϵd

2
,

yielding the desired conclusion.

For j ∈ [d], let Bj denote the event “at most ϵd

3d -fraction of the hyperplanes inH don’t contain
H1 ∩ · · · ∩ Hj−1 and Hj doesn’t contain H1 ∩ · · · ∩ Hj−1”. (In the case j = 1, we define the empty

intersection as all of Rd , so that B1 never occurs). For each j ∈ [d], since Hj is independent of

H1, . . . ,Hj−1, we have Pr[Bj ] ≤ ϵd

3d .
Hence, by the union bound, the probability of the event “G doesn’t occur or Bj occurs for some j”

is at most 1− ϵd

2 +
ϵd

3 = 1− ϵd

6 < 1. So by the probabilistic method, there exists a list of hyperplanes
h1, . . . ,hd such that G occurs and none of the events Bj occur. G implies that S = h1 ∩ · · · ∩ hd
contains at least ϵd

2 -fraction of the points of P. Moreover, it cannot be the case that for all j, hj
doesn’t contain h1 ∩ · · · ∩hj−1, since then Proposition 3.1 implies that S is either a point or empty,

so G cannot occur by assumption. Hence for some j, Prh∼H [h contains h1 ∩ · · · ∩ hj−1] ≥ ϵd

3d , and

since S is contained in h1 ∩ · · · ∩hj−1, we can conclude that at least ϵd

3d -fraction of the hyperplanes
inH contain S , as desired. �
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4 EXPLICIT UPPER BOUND CONSTRUCTION WITH EXPONENTIALLY SMALL
COMPLETE BIPARTITE SUBGRAPHS BUT SUB-CONSTANT INCIDENCE DENSITY

In this section, we prove Theorem 1.8 using a lattice-based explicit upper bound construction,
which modifies an upper bound construction of Apfelbaum and Sharir [2, Theorem 1.3] (itself
based on ideas from Elekes and Tóth [7]).4 Specifically, we will construct configurations with n =

Θ(2d
√
d ) points,m = Θ(2d ) hyperplanes, I(P,H ) ≥ Ω(22d ) incidences, and a complete bipartite

subgraph upper bound rs(P,H ) ≤ O (2d ).
To prove Theorem 1.8, we assume for simplicity that d − 1 is a perfect square. Now consider the

set of points

P :=
{
(x1, . . . ,xd ) : x1, . . . ,xd−1 ∈ {−1, 1},xd ∈

{
−2
√
d − 1, . . . , 2

√
d − 1

}}
and the set of hyperplanes

H :=
⎧⎪⎨⎪⎩
⎧⎪⎨⎪⎩x ∈ Rd :

∑
i

aixi = 0
⎫⎪⎬⎪⎭ : a1, . . . ,ad−1 ∈ {0, 1},ad = −1

⎫⎪⎬⎪⎭ .
By construction, n = |P | = 2d−1 · (4

√
d − 1 + 1) = Θ(2d

√
d ) andm = |H | = 2d−1 = Θ(2d ). Also

define the “universe” of points

U := {(x1, . . . ,xd ) : x1, . . . ,xd−1 ∈ {−1, 1},xd ∈ {−(d − 1), . . . ,d − 1}} .

U contains P and has size |U | = Θ(d2d ).
Apfelbaum and Sharir [2, pp. 16–17] proved the following three claims:

Proposition 4.1. I(U ,H ) = 22d−2.

Proposition 4.2. In Rd , let f be a j-flat. Then at most 2j points inU lie on f .

Proposition 4.3. In Rd , let f be a j-flat that is contained in some hyperplane h ∈ H . Then at

most 2d−j−1 hyperplanes inH contain f .

We include proofs of all three claims in Appendix A for completeness. The latter two claims
together imply that rs(U ,H ) = O (2d ). Finally, we prove:

Proposition 4.4. I(P,H ) ≥ Ω(22d ).

Proof. We proceed probabilistically, showing that “many” settings of the variables x1, . . . ,xd−1
and a1, . . . ,ad−1 result in a value for xd =

∑d−1
i=1 aixi that lies within the interval

[−2
√
d − 1, 2

√
d − 1]. Consider the following experiment: Choose x1, . . . ,xd−1 uniformly and inde-

pendently from {−1, 1}, a1, . . . ,ad−1 uniformly and independently from {0, 1}, and output Succeed
if the sum

∑d−1
i=1 aixi lies in the aforementioned interval.

Each aixi is independently 1 w.p.
1
4 , −1 w.p.

1
4 , and 0 w.p.

1
2 . Then the Chernoff–Hoeffding bound

gives

Pr

⎡⎢⎢⎢⎢⎣
d−1∑
i=1

aixi �
[
−2
√
d − 1, 2

√
d − 1

]⎤⎥⎥⎥⎥⎦ ≤ 2 exp ��−2(2
√
d − 1)2

(d − 1) · 22
�� = 2

e2
.

Thus, the experiment outputs Succeed with probability at least 1 − 2
e2
. Hence using

Proposition 4.1, I(P,H ) ≥ (1 − 2
e2
) I(U ,H ) ≥ Ω(22d ). �

4For ease of notation, we use {−1, 1}d for our lattice; Apfelbaum and Sharir [2] used [k] for an arbitrary parameter k ∈ N.
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Given Propositions 4.1–4.4, Theorem 1.8 follows:

Proof of Theorem 1.8. Assume for simplicity that d − 1 is a perfect square. By Proposition 4.4,
I(P,H ) ≥ Ω(22d ). By Propositions 4.2 and 4.3, rs(U ,H ) ≤ 2d−1, and by definition we have

rs(P,H ) ≤ rs(U ,H ). Since n = Θ(2d
√
d ) and m = Θ(2d ), we have I(P,H ) ≥ Ω(nm/

√
d ) and

rs(P,H ) ≤ O (mn · 2−d/
√
d ), as desired. �

5 DISCUSSION: UPPER BOUNDS FROM CROSS-INTERSECTING FAMILIES

In this section, we report on constructions [14, 20, 22, 27] which show that O (
√
d ) is the best

possible exponent we could hope for in Conjecture 1.6, i.e., we exhibit explicit configurations with

rs(P,H )/mn ≤ 2−Ω(
√
d ) and I(P,H )/mn ≥ Ω(1) (see Theorem 5.2 below). These constructions all

arise from products of Boolean matrices, and there are a number of natural questions in this area
which we pose.

A length-d Boolean vector can be viewed as the indicator of a subset of [d], and using the
language of set systemswill provide another helpful perspective on the log-rank conjecture. (Using
this perspective to construct counterexamples was suggested by [14, 22]).
Let A,B ⊆ 2[d] be two set systems on [d]. Following are two notions that describe patterns

among the intersection sizes |A ∩ B | for A ∈ A,B ∈ B. For ϵ ∈ [0, 1], we say that A,B are ϵ-
almost cross-disjoint if PrA∼A,B∼B[A ∩ B � ∅] ≤ ϵ , and exactly cross-disjoint in the special case
ϵ = 0. Following [18], for L ⊆ {0, . . . ,d }, we say that A,B are L-cross-intersecting if for every
A ∈ A and B ∈ B, |A ∩ B | ∈ L.

These notions have linear-algebraic interpretations. For A,B ⊆ 2[d], we can define the matrix
Mat(A,B) ∈ {0, . . . ,d }A×B whose (A,B)-th entry is |A∩B |.A,B are ϵ-almost cross-disjoint iff all
but ϵ-fraction of Mat(A,B)’s entries are zeros. If A,B are L-cross-intersecting, then Mat(A,B)
is |L|-ary.
We have two conjectures about pairs of set systems.

5.1 Conjecture on Almost Cross-disjoint Set Systems

Our first conjecture would be implied by Conjecture 1.65:

Conjecture 5.1. The following is true for every fixed ϵ > 0. Let A,B ⊆ 2[d] be ϵ-almost cross-

disjoint. Then there exist R ⊆ A,S ⊆ B such that R and S are exactly cross-disjoint, and |R | |S| ≥
|A||B| · 2−O (

√
d ) . Equivalently,Mat(A,B) contains a 0-monochromatic rectangle of density at least

2−O (
√
d ) .

The following example based on the idea of Pálvölgyi [27] shows the necessity of the exponent

O (
√
d ) in Conjecture 5.1 (and by extension Conjecture 5.1).

Theorem 5.2. The following is true for every ϵ in a dense subset of (0, 1). There exists an infinite,

increasing sequence of dimensions d1,d2, . . ., and an infinite sequence of set systems (Ai ,Bi ) on [di ],
such that (Ai ,Bi ) is δi -almost cross-disjoint with δi → ϵ as i → ∞, but Mat(Ai ,Bi ) contains no
0-monochromatic submatrices of density larger than 2−Ωϵ (

√
di ) .

Proof. Consider any positive rational number α ; we will prove the theorem for ϵ := e−1/α (so
the set of all ϵ ’s is dense in (0, 1)).
Consider, in increasing order, all values b ∈ N such that a := αb is also an integer (there are

infinitely many such b’s by rationality). Let di := ab. We identify [di ] with [a]× [b] and subsets of

5This implication follows from viewing each A ⊆ A as a point in {0, 1}d and each B ⊆ B as a hyperplane with normal

vector in {0, 1}d and offset 0.
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[di ] with a × b Boolean matrices. Let Ai = Bi ⊂ 2[di ] be the subset of matrices that have exactly
one 1 in every column. If n := |Ai | andm := |Bi |, then we have n =m = ab .
Each A ∈ Ai is disjoint from (a − 1)b sets in Bi , so (Ai ,Bi ) is δi -almost cross-disjoint with

δi =
(a−1)b
m

. Moreover, as b approaches∞, δi approaches e−1/α .
Now consider any 0-monochromatic rectangle R ⊂ Ai ,S ⊂ Bi . Defining R∗ :=

⋃
R∈R R and

S∗ :=
⋃

S ∈S S , we see that R∗ and S∗ must be disjoint. Hence we may assume without loss of
generality that R is the set of all matrices supported on R∗ and S the set of all matrices supported
on S∗, and that R∗ and S∗ are complementary. Defining sj := |R ∩ ([a] × {j}) | (i.e., the size of
R∗’s support in column j), we see that |R | = s1 · · · sb and |S| = (a − s1) · · · (a − sb ). This product
is maximized when each sj =

a
2 ; hence |R | |S| ≤

(
a
2

)2b
. Thus, the complete bipartite subgraph

density ofMat(Ai ,Bi ) is at most

|R | |S|
|Ai | |Bi |

≤

(
a
2

)2b
a2b

= 2−Ω(b ) = 2−Ωϵ (
√
di ) . �

An alternative proof was given by Lovett [20, 22] and Fox andWigderson [14]. This construction
still takes A = B, but uses randomly sampled subsets of [d] with some appropriate sparsity. It

yields a similar 2−O (
√
d ) bound.

5.2 Conjecture on Cross-intersecting Set Systems

Our second conjecture would be implied by Conjecture 2.6 (and is thus equivalent to the log-rank
conjecture):

Conjecture 5.3. The following is true for every fixed k > 0. Let A,B ⊆ 2[d] be L-cross-
intersecting, where |L| = k . Then there exist R ⊆ A,S ⊆ B, and t ∈ L, such that R,S are {t }-cross-
intersecting, and |R | |S| ≥ |A||B| · 2−polylog(d ) . Equivalently, Mat(A,B) contains a monochromatic

rectangle of density at least 2−polylog(d ) .

Lovett [22] independently suggested studying the special case of Conjecture 5.3 where k = 2,
which is perhaps the simplest combinatorial version of the log-rank conjecture. (He notes that in
the subcase where k = 2 and 0 ∈ L, Conjecture 5.3 is known to hold, since the “log-nonnegative-
rank conjecture” is known to hold (see, e.g., [28, p. 57])). The subcase L = {k,k + 1} was described
as an implication of the log-rank conjecture by Sgall [29].
L-cross-intersecting set systems have been studied in the extremal combinatorics literature (see

e.g., [15, 18, 29, 31]). A typical goal in these works is to upper-bound the maximum size |R | |S|
over all L-cross-intersecting set systems (R,S) on [d] under certain assumptions about L, such
as being contained in a fixed number of residue classes in a fixed modulus [29]. Interestingly,
Frankl and Rödl [15] showed that in the case k = |L| = 1, we have |R | |S| ≤ 2d (see [29, p. 556]).
Thus, takingA = B = 2[d],A,B are {0, . . . ,d }-cross intersecting, butMat(A,B) cannot contain
any monochromatic rectangles of density greater than 2−d . This implies that in Conjecture 5.3
(and by extension Conjecture 2.6), we cannot hope to significantly improve the dependence on k
while maintaining polylog(d ) in the exponent; in particular, Conjecture 5.3 cannot hold for k =
O (log( |A||B|)).

APPENDIX

A PROOFS OF CLAIMS FROM APFELBAUM AND SHARIR [2]

In this appendix, for completeness, we include proofs due to Apfelbaum and Sharir [2] which we
used in the proof of Theorem 1.8. Proposition 4.1 has a short proof:
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Proof of Proposition 4.1. Consider any fixed hyperplane h ∈ H . Since ad = −1, for any
values x1, . . . ,xd−1 ∈ {−1, 1}, there is a unique value xd ∈ {−(d−1), . . . ,d−1} such that

∑d
i=1 aixi =

0, i.e., xd =
∑d−1

i=1 aixi . Thus, 2
d−1 points inU lie on h. Since |H | = 2d−1, I(U ,H ) = 22d−2. �

We need a bit more setup to prove Propositions 4.2 and 4.3. We begin with the following helpful
proposition:

Proposition A.1. For � > 0, let f ⊂ R� be a j-flat. Then f intersects {−1, 1}� in at most 2j points.

Proof. We prove by induction on the dimension �. In the base case � = 1, f is the line R, and it
intersects {−1, 1} in 2 points.
For general �, let h1 and h−1 be the hyperplanes defined by the equations x1 = 1 and x1 = −1,

respectively. If f is contained within either hyperplane, we restrict to that hyperplane and apply
the inductive hypothesis. Otherwise, by Proposition 3.1, f ∩ h1 and f ∩ h−1 are both (j − 1)-flats
or empty, so by the inductive hypothesis, f intersects each of the subcubes {−1} × {−1, 1}�−1 and
{1} × {−1, 1}�−1 in at most 2j−1 points, and hence it intersects the entire hypercube {−1, 1}� in at
most 2j points. �

This lets us prove the two remaining claims.

Proof of Proposition 4.2. Consider any hyperplane h ∈ H containing f . Let h be defined by

the equation
∑k

i=1 aixi = 0, and consider the linear map

ϕh : Rd−1 → h : (x1, . . . ,xd−1) �→ ��x1, . . . ,xd−1,
d−1∑
i=1

aixi�� .
ϕh is an isomorphism which, restricted to the hypercube {−1, 1}d−1, gives a bijection with the
points ofU which lie on h.
Since f is contained in h, its preimage ϕ−1

h
( f ) is a j-flat in Rd−1. By Proposition A.1, ϕ−1

h
( f )

intersects {−1, 1}d−1 in at most 2j points. Since ϕh restricts to a bijection between {−1, 1}d−1 and
U ∩ h, and f is contained in h, we can conclude that f intersects U in at most 2j points, as
desired. �

Proof of Proposition 4.3. Consider any hyperplane h ∈ H containing f . Let h be defined by
the equation 〈a,x〉 = 0 (using inner product notation). View f as the image of an affine injection
R
j → Rd given by x �→ Mx +v , whereM ∈ Rd×j has full rank and v ∈ Rd .
Since h contains f , for any y ∈ Rj , 〈a,My + v〉 = 0. Hence 〈a,v〉 = 0 (plugging in y = 0), so

〈a,My〉 = 0 for all y ∈ Rj (subtracting). Now a�M is simply a vector in Rj ; if its inner product
with all y ∈ Rj is zero, then it is zero. Thus, a ∈ ker(M�).

Let K := ker(M�). By rank-nullity, and since row-rank equals column-rank,

dim(K ) = d − dim(im(M�)) = d − dim(im(M )) = d − j .

Now consider the hyperplane h′ defined by the equation xd = −1. We have a ∈ K ∩h′ ∩ {−1, 1}d .
But K is not contained in h′, since K contains the origin while h′ does not. Hence K ∩ h′ is a
(d − j − 1)-flat by Proposition 3.1, so by Proposition A.1, it can intersect {−1, 1}d in at most 2d−j−1

points, upper-bounding the number of possible a’s. �
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