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Abstract: Consider a massive (inert) particle impinged from above by N Brownian
particles that are instantaneously reflected upon collision with the inert particle. The
velocity of the inert particle increases due to the influence of an external Newtonian
potential (e.g. gravitation) and decreases in proportion to the total local time of collisions
with the Brownian particles. This system models a semi-permeable membrane in a fluid
having microscopic impurities (Knight in Probab Theory Relat Fields 121:577-598,
2001). We study the long-time behavior of the process (V, Z), where V is the velocity
of the inert particle and Z is the vector of gaps between successive particles ordered by
their relative positions. The system is not hypoelliptic, not reversible, and has singular
form interactions. Thus the study of stability behavior of the system requires new ideas.
We show that this process has a unique stationary distribution that takes an explicit
product form which is Gaussian in the velocity component and exponential in the other
components. We also show that convergence in total variation distance to the stationary
distribution happens at an exponential rate. We further obtain certain law of large numbers
results for the particle locations and intersection local times.

1. Introduction

1.1. Motivation and model description. In this work we study the long-time behavior
of an interacting particle system comprising a massive (inert) particle that moves under
the combined influence of an external Newtonian potential (eg. gravitation) and a non-
Newtonian ‘inert drift’ resulting from collisions with many microscopic (Brownian)
particles. This serves as a simplified model for the motion of a semi-permeable membrane
in a fluid having microscopic impurities (see [30]). The membrane, which allows fluid
molecules to pass but is impermeable to the impurities, plays the role of the inert particle.

Mathematically, this model consists of N-Brownian particles in R, with state pro-
cesses denoted as {X;(t),t > 0}1<;i<n, interacting with the inert particle, with state
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process Xo(t), according to the following system of equations: For ¢ > 0,

t N
Xo(t) = xo +/ V(s)ds, V(t)=uvo+gt—» £i(0),
0 i=1

(1.1)
Xit)=xi+W;(t)+4£;(t), ] <i <N.

Here xop < x1 < --- < xy denote the initial positions of the N + 1 particles, vy the initial
velocity of the inert particle, {W;, 1 <i < N} are mutually independent standard real
Brownian motions, g € (0, co) denotes the gravitation constant and ¢; is the collision
local time between the i-th particle and the inert particle which, in particular, satisfies
Li(t) = fot Lix;(s)=Xo(s)1d€i(s) for 1 <i < N andt > 0. The local time interactions
model the cumulative transfer of momentum when a Brownian particle collides with the
inert particle ‘infinitely often’ on finite time intervals, with each collision resulting in
an infinitesimal momentum transfer. Such interactions lie at the heart of this model and
interesting long time behavior results from the combined effect of the ‘soft’ gravitational
potential and ‘hard’ collisions.

It follows from [8] (see Theorem 2.5 and Proposition 2.10 therein) that there is a strong
solution to the system of equations in (1.1) and the solution satisfies X((¢) < X;(¢) for
allt > 0and 1 <i < N as. Using Gronwall’s lemma and the Lipschitz property of
the Skorohod map it is easy to verify that in fact the system of equations in (1.1) has a
unique strong solution. Given this unique solution process {X; (¢), t > O}o<;j<ny of (1.1)
it will be convenient to consider the ordered particle system:

Xo@®) = X@) <--- < Xw@®), t =0,

where {X;(#) : t+ > 0} denotes the state process of the i-th particle from the bottom
(note that the lowest particle, which we call the O-th particle from the bottom, is the inert
particle, in particular, X )(-) = X¢(-)). By an application of Tanaka’s formula it is easy
to verify that this ranked particle system satisfies the following system of equations: For
t >0,

'
X)) = x0+f V(s)ds, V(t) =vg+gt— Li(2),
0
X(l)(l) ZX1+Bl(t)—%L2(l‘)+L1(Z), (1~2)
X (t) = x; + Bi (1) — %Lm(t) + %Li(t), 2<i=<N.

where xg < x1 < --- < xn, {Bi, 1 < i < N} are standard independent Brownian
motions and for 1 < i < N, L; denotes the collision local time between the i-th and
the (i — 1)-th ranked particle which satisfies L;(¢) = fot l{x(,-)(s)=x(l-,1)(s)}dLi(S) and
Lyy1(t) =0forallt >0.

We are interested in the time asymptotic behavior of the velocity and gap processes
associated with this system. Namely, denoting Z; (t) = X;)() — X(;—1)(?), the object
of interest is the stochastic process

V@), Z1(1), ..., Zn(1)).
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This process is given by the system of equations
V(1) =vo+gt — Li(1),

t
Zi(t) =z1+B1(t) — /0 V(s)ds — %Lz(t) +Li(1),

| (1.3)
Zy(t) =22+ Ba(t) — B1(t) — 5L3(1) +Ly(t) — L1 (1),

1 1
Zi(t) = zi + Bi(1) — Bi—1 (1) — ELHI(Z) +Li() — ELi—l(t), 3<i=<N.

The model described by equations (1.2) (with gaps evolving as in (1.3)), which we call
the inert drift Atlas model, lies at the interface of two well-studied classes of interacting
particle systems: inert drift models and rank-based diffusions, which we summarize
below.

1.2. Previous work. The case where N = 1 (namely the two particle system) with g = 0
was analyzed in [30], which initiated the study of inert drift models. It was shown there
that the inert particle progressively gains momentum from the local time interactions and
eventually escapes the Brownian particle (no further collisions). When g > 0, [4] showed
that the two particles never escape each other. Among other results, the paper showed that
the velocity of the inert particle and the gap between the two particles jointly converge in
total variation distance to an explicit stationary distribution having a product form density
(no rates of convergence were obtained). The two particle model with gravitation and
fluid viscosity was investigated in [2]. In [10], an inert drift model was considered where
a particle moves as a diffusion process inside a bounded smooth domain and acquires
inert drift when it hits the boundary of the domain. It was shown that the position of the
particle and the cumulative inert drift have a product form stationary measure, which
is unique under suitable conditions. A variety of related inert drift models have been
studied in [12,13,39]. When the term Y"1, ¢;(¢) in (1.1) is replaced by N~" 3" ¢ (1)
(mean field type interaction), the asymptotic behavior as N — oo has been analyzed
in [8,9] where results on hydrodynamic limits and propagation of chaos have been
obtained. Recently, unexpected connections have appeared between inert drift models
and diffusion limits of load balancing systems like the Join-the-shortest-queue policy in
heavy traffic [5,6,24]. More precisely, the joint evolution of the diffusion-scaled number
of idle servers and busy servers converges in distribution to a diffusion that resembles the
two particle inert drift system with linear drift. Consequently, there are several common
themes at the technical level between [2,4] and [5,6]. Brownian particle systems of the
form studied in the current work also arise as diffusion approximations of certain types of
queuing systems in which each queue has the same finite capacity which is dynamically
controlled in a manner that the increase in capacity is proportional to net job loss due to
capacity constraints. In this model, currently under investigation, the individual queues
play the role of Brownian particles whereas the dynamically changing queue capacity
threshold represents the massive inert particle.

In a somewhat different vein, inspired by problems in mathematical finance, the study
of rank-based diffusions [3,7,16,34-37] have gained a lot of attention in recent years.
These models consist of a collection of particles on the real line which evolve as diffusion
processes where the drift and diffusivity of each particle is a function of its relative rank
in the system. Closest in spirit to our model is the Atlas model where the lowest ranked
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particle at any time moves as a Brownian motion with constant upward drift while the
remaining particles evolve as standard Brownian motions (with zero drift).

1.3. Analytical challenges. The Atlas model and the model considered here are exam-
ples of particle systems with topological interactions in the terminology of [14]. In such
particle systems, interactions between particles are determined by their relative posi-
tions. In particular, in both the Atlas model and in the particle system considered here,
the lowest particle has different dynamical properties. Specifically, in the Atlas model
the lowest particle gets a constant upward drift whereas in the model considered here
the lowest particle experiences an inert drift. However there are some important differ-
ences between the two models. Unlike the Atlas model, where the collision local time
of the lowest two particles enters directly in the position evolution of the lowest particle,
here this local time impacts the velocity of the lowest particle. Indeed, this collision
local time is the source of the inert drift of the lowest particle. Furthermore, there is no
Brownian noise in the equation for X o) in (1.2), unlike in the Atlas model. This results
in the deterministic evolution of the velocity process in time periods with no collisions,
making the full system, whose long-time behavior is of interest, non-elliptic (in fact, the
driving diffusion process in the interior of the domain is not even hypoelliptic). More
precisely, the law of (V (¢), Z1(¢), ..., Zy(t)) forany ¢t > 0 does not have a density with
respect to Lebesgue measure, for general initial conditions. Also, we find that, unlike the
Atlas model, the system considered here is not reversible. Hence, standard techniques
for studying ergodicity behavior of elliptic diffusion processes cannot be applied, and
one needs new methods. As noted above, inert two-particle systems have been studied
in several previous works, however the current work is the first to study the ergodicity
properties of a general N-particle system. There are fundamental differences in system
behavior as one goes from N = 1 to N > 1 which make the study of ergodicity be-
havior significantly more demanding. In particular, as is crucially exploited in [2,4],
in the N = 1 case, there is a basic regenerative structure arising from the fact that at
points of decrease of the velocity process, the remaining state coordinate, namely the one
corresponding to Zi, is fully determined (in fact equal to 0). In the general N-particle
system there is no such simple regenerative structure since, although the first gap coor-
dinate Z; is once again O at points of decrease of V, the remaining coordinates, namely
Z>, ..., Zy can be arbitrary.

1.4. Main contributions. We now briefly describe the main contributions of this work.
Since the system is not hypoelliptic, one cannot apply standard existing theory to argue
uniqueness of invariant measures. Our first main result says that the Markov proces
(V,Z) = (V,Zy,...,Zy) admits at most one stationary distribution. We then pro-
duce an explicit stationary distribution for the system and together the two results (see
Theorems 2.3 and 2.4) prove existence and uniqueness of stationary distributions of
(V,Z). We in fact show that the unique stationary distribution takes a product form
whose first component (corresponding to the velocity coordinate) is Gaussian and re-
maining are Exponential (see Theorem 2.4 for the precise form). In the case N = 1,
a Gaussian-Exponential product form stationary distribution has appeared in previous
works [4,10,39]; however, this is the first work that finds such a product form structure
for a general N-particle system. This stationary distribution also has striking similarities
with the Atlas model where the stationary distribution is a product of exponentials with
rates decreasing with the ranks of the particles (see, for example, [34, Theorem 8§]).
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We next study the rate of convergence to stationarity. In Theorem 2.5, we show that
the distribution of (V' (¢), Z1(¢), ..., Zn(t)) converges to equilibrium exponentially fast
(exponential ergodicity) as t — 0. To the best of our knowledge, this is the first result on
exponential ergodicity for any type of non-hypoelliptic reflected diffusion in dimensions
higher than 2.

Finally in Theorem 2.6 we establish some law of large numbers type results. In
particular, it is shown that the whole system ‘drifts’ to infinity at speed g/N. Although
this is an intuitive result to expect, our proof crucially hinges on the rather technical
result on exponential moments of return times to certain compact sets that form the
basis of the exponential ergodicity proof. We also find, somewhat surprisingly, that the
intensity of collisions when N > 3 is maximum, in a certain sense, between the first
two Brownian particles (rather than between the inert and the first Brownian particle);
see Remark 2.7.

1.5. Approach. A common approach to proving ergodicity or exponential rates of con-
vergence to stationarity for diffusions in domains is by constructing a suitable Lyapunov
function by analyzing the interplay between the “interior drift vector field” and the re-
flection vector field (cf. [1,11,21]). For example, in polyhedral domains with constant
(oblique) reflection on each face of the boundary, the key insight in the construction
of a Lyapunov function is that the drift vector field for stable systems must lie in the
interior of the cone generated by the negatives of the reflection directions. Note that Z is
a reflected diffusion in the positive orthant RY with constant oblique reflection at each
face. The interior drift of this process is V (¢)ej, where e; is the unit vector with 1 in
the first coordinate. Due to the complicated dynamics of V, that includes in particular
the local time for the first gap process Z1, its behavior in relation to the reflection field
seems hard to analyze which makes a direct construction of a explicit form Lyapunov
function (as in the above cited works) hard.

In this work we instead take a pathwise approach. The stability in the particle system
studied here arises as a result of interplay between the intersection local times for the
various particles in the system. This interplay is distilled in Lemma 7.10 which identifies
a stabilizing ‘singular’ drift that prevents the gaps between the particles from being too
large. This key lemma allows us to prove the finiteness of exponential moments of hitting
times to certain compact sets by analyzing excursions of the process between suitably
chosen stopping times (see Sects. 7.3-7.6). In conjunction with results of [18] (see
Proposition 7.16 (a)), this analysis furnishes a general abstract form Lyapunov function,
given in terms of exponential moments of these hitting times, which is key in the proof
of exponential ergodicity. Another important ingredient in our proofs is establishing
a certain minorization estimate (see Proposition 7.16 (b)). For hypoelliptic diffusions
such an estimate follows readily from the existence of a density for the process at each
time r > 0. However, in our case, establishing a suitable minorization bound involves
substantial work and a careful exploitation of the properties of the collision local times
of the particles in the system. The proof of this estimate, which uses an intricate and
novel pathwise analysis, is the topic of Sect. 4.

1.6. Future directions. The current work is the first step in our program of analyzing
high-dimensional reflected diffusions with inert drift type interactions. The natural next
step will be to investigate ergodicity properties of the infinite-dimensional analogue of
our model. The corresponding vector of velocity and gap processes is expected to have at
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least one stationary distribution, given by the N — oo limit of (2.3) below. It is unclear
if this is the unique stationary distribution. Analogy with the Atlas model suggests
infinitely many stationary distributions, each with a non-trivial domain of attraction
[3,16,36]. Another interesting question concerns the study of hydrodynamic limits of
empirical occupation measures of the system and relate them to the path asymptotics of
the bottom k particles for k € N (see [17] for related results on the Atlas model). Both
these directions are currently under investigation.

1.7. Notation and preliminaries. The following notation will be used. For d € N and
T > 0, we denote by C([0, T'] : RY) (resp. C([0, co) : R?)) the space of continuous
functions on [0, T] (resp. [0, 00)) with values in R?, equipped with the topology of
uniform convergence (resp. local uniform convergence). The spaces C([0, T] : Rf)
(resp. C([0, 00) : Ri)) of continuous functions with values in the nonnegative orthant
Rf are defined similarly. For ¢ € [0, 0c0) and f € C([0, c0) : RY), we define Ifll: =
SUpg<s<; | f(s)|, where | - | is the Euclidean norm on R4. Borel o-fields on a metric
space S will be denoted as B(S). Inequalities for vectors and vector-valued random
variables are understood to be coordinatewise. An open set G C R is said to have a
C? boundary if each point in G has a neighborhood in which G is the graph of a C?
function of d — 1 of the coordinates (cf. [25, Section 6.2]). Throughout A will denote
the Lebesgue measure on a subset of a Euclidean space whose dimension will be clear
from the context.

The following elementary estimate will be used several times. Suppose for m € N,
El, - ,Em are mutually independent Brownian motions and o1, ...,0,, € Ry. Let
éi*(t) = SUP) <5< |§i (s)]. Then there are g1, 02 € (0, 00), such that

E (e” i af§?<f>) < 012" forall 1 > 0 and u > 0. (1.4)

The dependence of the constants o1, 02 on m and «; will usually be suppressed from the
notation.

In the next section, we outline our main results. The organization of the paper is
summarized at the end of the section.

2. Main Results

Define the N x N matrix

It is easily checked that the matrix U = I — R has the property that U7 is a transient,
substochastic matrix and thus has spectral radius strictly less than 1. Consequently, R is
invertible and W = R~! can be written as an infinite sum of matrices with nonnegative
entries. The Skorohod problem associated with such matrices R has been well studied
and the following result is well known cf. [19,20,26].
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We denote by Cy ([0, c0) : RN) the space of continuous functions f : [0, co) — RN
such that f(0) > 0.

Proposition 2.1. To each x € Cy([0, 0o) : RN) there is aunique pair (n, y) € C([0, 00) :
RY) x C([0, 00) : RY) such that,

(i) forallt > 0, y(t) = x(t) + Rn(t),
(ii) For each i € {1,...,N}, (a) ni(0) = 0, (b) n;i(¢) is non-decreasing in t, (c)
Jo? yidni(t) = 0.

The pair (n, y) is called the solution to the Skorokhod problem for x with respect to R.
The map T : Co([0, 00) : RN) — C([0, 00) : RY) x C([0, 00) : RY) given by

L) =@, y) = T1(x), '2(x))

is Lipschitz in the sense that there is a cr € (0, 00) such that for x, x' € Co([0, 00) : RM)
andt < oo,

IT1 () = D1l + 1T20x0) = T2l < erllx — x|l

For x € Co([0, o0) : RM), we occasionally write I'1 (x) = (I'11(x), ..., Tn1(x)).
The following result gives strong existence and uniqueness for the system of equations
in (1.3). Proof is given in Sect. 5. Let

1 00---00
-1 10---00

A=]10 —-11---

o .10
0O 00---—-11

Theorem 2.2. Let (2, F, {.7:',},20, IF’) be a_ﬁlteredprobability space on which are giv_en
N mutually independent standard real JF;-Brownian motions By, ..., By and, Fy-
measurable random variables VO and 7° = (ZO, e, ZON) with values in R and Riv re-

spectively. Then there is a continuous, ]:',-adapted, stochastic process (V(t), Z1(t), ...,
ZN(1))o<t<oo With values in R x Riv such that, for all t > 0,
V() =V+gr — Li(1),

Z(it) =T, [ Z° — fv d AB~> ,
() 2( e | Vio)ds+ABO) ) (1) o0
Li(t) =Ty <Z°—e1/ V(s)a’s+AB(-)) 1),

0

where B = (B1,...,By) and Z = (Z\, ..., Zy) . Furthermore, if (V(t), Z1(t), ...,
ZnN (1)) is another such process then

V@), Z1(0), ... Zn(0) = (V(1), Z1 (1), ..., ZN(@)) forallt > 0, a.s.
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We remark that, with Z, and V as in the theorem, letting

L(t) = (L1(1), ..., Ly(t)) = Ty (ZO —e / V(s)ds + AB(-)) (t) and L4 (f) = 0,
0

we have that the following system of equations holds:
V() =V +gt — Li(0),

t
Zi(t) = 2% + By (t) — / V(s)ds — %Lz(z‘) +Li(1),
0

. { 2.2)
Zy(t) = Zy + Ba(t) — B1(t) — §L3(l) + Lo(t) — Ly(1),

1 1
Zi(t) = Z) + Bi(t) — Bi—1(t) — SLin )+ Li() = SLia(0), 3<i < N.

Consider the path space Q* = C([0, 00) : RN x R x RY), F* the corresponding Borel
o-field on 2*. We also consider the space (€2, F) = (C([0, 00) : Rx Riv), B(C([0, c0) :
R x Ri\’ )). On these two measurable spaces we denote, for (v,z) € R x Ri" , by P?ul)
[resp. P(y )], the probability measures induced by (B, V, Z) [resp. (V, Z)] where (V, Z)
is the solution of (2.1) when (V°, Z% = (v, z) a.s. Then from the unique solvability
in the above theorem it follows that {P(y 2}, ,)cpr gy defines a strong Markov family.
The next result concerns the stationary distribution of this Markov family.

Theorem 2.3. There is a unique stationary distribution for the Markov family {Py z)} v,2)
e R x RY.

In fact this unique stationary distribution takes an explicit product form as given by the
theorem below. Consider the probability measure 7 on R x Ri\' given by the formula:

N _ N—i+l)..
n(dv, dz1, ...,dZN)ﬁcne—“—%)z]_[e 26 M54 ) dvdzy ..., dzy, (2.3)
i=l1

where ¢, is the normalization constant.

Theorem 2.4. The probability measure w defined in (2.3) is the unique stationary dis-
tribution Of{P(v,Z)}(u,z)eRxRi"'

Note that while Theorem 2.4 implies Theorem 2.3, we proceed by first showing that there
exists at most one stationary distribution (Theorem 5.2). The existence and explicit form
of the stationary distribution is subsequently exhibited (in Sect. 6) by proving that the
density of m solves the partial differential equation (with boundary conditions) arising
from the basic adjoint relationship [see (6.2)—(6.5)]. We have therefore separated out
these results for clarity of exposition.

Our third result gives exponential ergodicity of the Markov process. Write an element
w € Q* [resp.w € Q] asw = (B, v, ¢) [resp. w = (v, ¢)], where B € C([0, 00) : RM),
v € C([0,00) : R) and ¢ € C([0, 00) : Riv). For ¢ € [0, 0co), abusing notation,
denote the coordinate processes B(¢), V (r) and Z(¢) on (Q*, F*) [resp. V (¢) and Z(¢)
on (€2, F)] by the formulae

B(t)(w) = B(1), V()(w) =v(), Z1t)(w)=<@), t=0.
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Also, we will write B;(¢) and Z;(t) respectively for the projections of B(¢) and Z(¢)
onto their i ™ coordinates. Consider the transition probability kernel of the Markov family
{P(v’z)}(v’z)eRxRQJ defined as

P/ ((v,2), A) =P ((V(), Z(1)) € A), t >0, (v,2) e Rx RY, A e BR x RY).

Also, for a bounded and measurable ¢ : R x RY — R we write

P'((v, 2), ¢) ﬁf . ¢ (0,2) P'((v,2), db x dz).

RxRY

Similarly, for ¢ as above, 7 (¢) = f ¢ (v, Z)m(dv x dz). The following theorem shows
the convergence of the transition probability kernel to the stationary distribution in the
total variation distance at an exponential rate. Denote by BM| the class of all measurable
¢ : R x RY — R such that SUP(, 5 erxrY 19V, )] < 1.

Theorem 2.5. Thereisay € (0, 1) and, for every (v,z) € R x RY ax(v,z) € (0, 0),
such that for all t > 0,

sup [P'((v,2), ¢) — (@) < k(v 2)y".
¢pecBM,

We note here that the proof of exponential ergodicity proceeds through establishing
finiteness of exponential moments of certain hitting times. This, in turn, provides the
tightness required to furnish an independent proof of existence of a stationary distribu-
tion.

Finally, we prove a strong law of large numbers type result for the system. Recall
the ranked particle system {X;)(-)}o<i<ny from (1.2). This process can be constructed
on (2%, F*, IP’("v’Z)) for any (v, z) € R x RY by solving the system of equations in (2.1)
(or equivalently(2.2)), whose unique pathwise solutions are guaranteed by Theorem 2.2,
and then defining X ;) by the right side of (1.2).

Theorem 2.6. For any (v, z) € R x RY, the following limits hold ]P”(kv Z)—almosl surely:

X (t
lim YOO _ 8 i (2.4)
t—00 t N

Lit
im 210 _ g, 2.5)
t—>o00 t

Li(t) 2(N—i+1
fim 20 _2N=i+Dg (2.6)
f—oo  t N

Remark 2.7. Ttis natural to expect that the gaps become larger in some sense as one moves
away from the inert particle. This heuristic is quantified in the stochastic monotonicity
of the stationary gaps displayed in (2.3). From this, it might appear that the growth rate
of the local time L; () (which quantifies the intensity of collisions between the (i — 1)th
and ith particle) with ¢ should decrease as i increases from 1 to N. However, Theorem
2.6 shows that for N > 3, L, grows at a faster rate than L; and the expected decrease
in rates holds from i = 2 onwards. Hence, perhaps surprisingly, particles indexed 1 and
2 collide ‘more often’ than particles O and 1 as time progresses.
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2.1. Organization. The rest of the paper is organized as follows. In Sect. 3, we provide
the proof of Theorem 2.2. In Sect. 4, we show a technical estimate which will be integral
to the proofs of our main results. In Sect. 5, we show that there is at most one stationary
distribution (Theorem 5.2). In Sect. 6, we prove Theorem 2.4. Together, these two results
also establish Theorem 2.3. In Sect. 7, we give the proof of Theorem 2.5. Proofs of several
technical results stated in Sect. 7 (without proof) are provided in Sect. 8. In Sect. 9, we
establish Theorem 2.6.

3. Existence and Uniqueness of the Process

In this section, we prove Theorem 2.2. The proof uses the Lipschitz property in Propo-
sition 2.1, and a standard Picard iteration scheme. We provide a sketch. Fix T < oo.
Let (V9, Z%) be as in the statement of the theorem. Define, for n € Ny, continuous ;-
adapted R x Rfrv X Riv valued processes {(V " (r), Z™ (1)), L™ (t))}o<i<T, recursively,
as follows. Let

vO@®H =v0 2™y =2, LW =0, 0<t<T.

Having defined {(V®) (r), Z®) (1)), L® (1)) }o<;<7 fork =0, ...,n — 1, define

ZMW (1) =T, <z° — e f V=D (s)ds + AB(~)> (),
0

L®@) =T, (ZO —e / V=D (s)ds + AB(.)> o), @-D
0

V() = VOt gr — LI (1),
where L(I")(t) is the first coordinate of L™ (¢).

From the Lipschitz property in Proposition 2.1 it follows that, for any n > 2, and
1€[0,T],

t
2 = 20D+ L LD < er [y - vy as
0
and
— —1 —
(v —veDy, =L — L), < L LoDy,
t
<er [IVOD - vODas,
0
Letting
Ap(@) =127 =207V + L — LOD )+ v ™ — vy,

we have forn > 2andt € [0, T], A,(t) < cr fé A,—1(s)ds. Now a standard argument
shows that, a.s., (V™ Z® L) is a Cauchy sequence in C([0, T]: R x RY x RY).
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Let (V, Z, L) denote the limit. It is easy to verify that this is a J;-adapted process.
Furthermore, sending n — oo in (3.1) we see that (V, Z, L) solve, for0 <t < T,

Z(t) =T, (ZO — e / V(s)ds + AB(-)) ),
0

L) =TI, (ZO —e / V(s)ds + AB(~)> 1), (3.2)
0

V)=V +gr — L),

where L(t) is the first coordinate of L(#). In particular, (V, Z) is a solution of (2.1).
Since T > 0 is arbitrary this proves the first part of the theorem.

Now suppose that (V, Z, L) and (V, Z, L) are two continuous R x RY x RY valued
f,-adapted processes that solve (3.2). Then, for ¢ € [0, T,

t t
\Z — Zl + L — L Scr/ ||V—V||st=CF/ 1Ly — Ly llds
0 0
[ ~ ~
< Cr/ (1Z = Zlls + L — Lils)ds.
0

Using Gronwall’s lemma, it then follows that Z(t) = Z(t) and L(r) = L() for all
t € [0, T]a.s. which also says that V(1) = V (¢) forallt € [0, T] a.s. The result follows.
O

4. A Minorization Estimate

In this section we will establish a minorization estimate for the transition probability
kernel P ((v, z), A) introduced in the last section. This estimate will be a key ingredient
in the proofs of Theorems 2.3 and 2.5. The deterministic motion of the bottom (inert)
particle when Z; > 0 results in very singular behavior of our diffusion process mani-
fested, in particular, by the lack of a density of (V (), Z(¢)) with respect to Lebesgue
measure for any + > 0 when the initial condition satisfies Z;(0) > 0. Hence, one cannot
use standard techniques for establishing a minorization condition for elliptic (or hypoel-
liptic) diffusions. We take a pathwise approach here by analyzing a suitable collection
of driving Brownian paths to obtain a sub-density of the form described in Theorem 4.1.
This is done by first ‘removing the drift’ by applying Girsanov’s Theorem and analyz-
ing the simpler system given by gaps between N ordered Brownian motions and the
local time at zero of the bottom particle. This, along with an appropriate control of the
Radon-Nikodym derivative, yields the desired result.
Let

L A
T8 S TS\ )

Theorem 4.1. Let C = [0, 1551 x [5, gIV. There exists D € B(R x RY) such that

AMD N C) > 0, and such that for each (v,z) € [0, 1%] x (0, 00) x Ri\]*l, there is a
K,z € (0, 00) so that

[inf ]IP”((v, 2),S) > Ko A(S N D) for every S € B(R x RY). .1)
telg,g*
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Moreover, the map (v,z) — Ky ) is measurable and for any 0 < a; < b; < oo,
1 <i<N,a; >0, withA =0, 151 x [a1.b1] x --- x [an, by],

IEA = inf K >0.
(v,z)eA

In proving the above it will be convenient to introduce a probability measure IP( v.2) that
is mutually absolutely continuous to IP’(U 2) and which is somewhat simpler to analyze.
This measure corresponds to the law of the processes (B, V, Z) given as in (2.2) but with
V on the right side of equation for Z; replaced by the O process. Recall the path space
(2%, F*) and the coordinate processes (B, V, Z) given on this space. Let {F;"};>0 be

the filtration generated by these coordinate processes. For (v, z) € R x RY let IP(U » D
the probability measure on (2*, F*) such that under IP’(U 2 the following hold:

(i) B is the standard N-dimensional F;*-Brownian motion.
(ii) Foreacht € [0, 00), with L(t) = T'1(z+ AB("))(?),

Z(t) =2+ AB(t)+ RL(t), V(t) =v+gt— Li(¢). 4.2)

4.1. Outline of proof. The proof of Theorem 4.1 is organized as follows. In Lemma 4.2,
we establish a version of Novikov’s criterion which allows us to relate IPZ‘ 20 IP’( v.2) via
Girsanov’s Theorem. In Corollary 4.3, we use the preceding lemma to invoke Girsanov’s
Theorem and make explicit the relation between the two measures.

We next prove a number of technical results in support of Theorem 4.1. In Lemma
4.4, we establish a minorization condition for a ‘killed’” version of Z under law ]P’(v 2
when Z(0) lies in a certain compact set F. In Lemma 4.5, we prove the existence of a
subdensity for the supremum of Brownian motion over a compact time interval under
certain constraints on its infimum and final location. This supremum, in turn, is connected
to the local time L; via the Skorohod map. As under law IP”(k 2 existence of a subdensity
at a fixed time for (Z, V) is implied by that for (Z, L) (see (4 2)), the above two lemmas
are crucial in proving Theorem 4.1. Lemmas 4.6 and 4.7 provide a version of the ‘support
theorem’ where a tractable event in terms of the driving Brownian motions is constructed
under which the gap process Z at a prescribed time ¢ /4 lies in F almost surely under
P?v 2)’

Lastly, we prove Theorem 4.1. Using the strong Markov property, we analyze the
process pathwise between appropriately chosen stopping times. We first let Z; hit zero
at time 77 after which, under the event on the driving Brownian motions described in
Lemma 4.7, the local time L lies in a given Borel set and the gaps Z lie in the set F'
introduced in Lemma 4.4 at time 71 + ¢ /4. Theorem 4.1 now follows upon combining
this and the minorization condition on the killed gap process obtained in Lemma 4.4,
which is used in analyzing the subsequent process path.

4.2. Proof of Theorem4.1. Inorder to relate ]P’*v with IP’ ) we establish the following
integrability property which will be used to Verlfy a Varlatlon of Novikov’s criterion. In
the following, [E ( v.2) denotes the expectation under the probability measure P* (v.2)" Under
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I?’Z‘v 2 the local times L;, | <i < N (and with L y4+; = 0) have the following pathwise
representation:

1
Li(t) = sup(—z1 + ELz(s) — Bi(s)™,

s<t

1
Lo(t) = sup(—z2 + §L3(s) +L1(s) + Bi(s) — Ba(s)", 4.3)
s<t

Li(#) = sup(—z; + %(Lm(S) +Li—1(s)) + Bi—1(s) = Bi(s))*, i =3,...,N.

s<t

Lemma 4.2. Foreveryc € (0,00) andr € N, thereisam € N such that with t, = k/m,
k=0,1,...,rm — 1, for each (v,z) € R x RY,

~ ¢ rlk+1 2
EZ"U 2 o2 T VErds o

Proof. Fix ¢ € (0,00) and r € N. Also, fix (v,z) € R x Ri‘]. All equalities and

inequalities in the proof are almost sure with respect to the measure IP’E*U 0"
Note that, for t > 0, by (4.3),

1
Li(t) < ELz(t) +sup(—Bi(s)),
s<t

1
La(t) = 5L3(1) + L1 (¢) + sup(Bi (s) — Ba(s)),

s<t
Li(t) < %(Lm (t)+ Li—1(2)) +sup(B;—1(s) — Bi(s)), i =3,..., N.
s<t
Define
Bi (1) = SliIt)(_Bl(S))
B;“(t) =sup(Bi—1(s) — Bi(s)), fori =2,...,N “4.4)
s<t

B*(1) = (B} (1), ..., B{(1)).

Recall the matrices U = I — Rand W = (I — U)~!. Then, it is easy to verify that

01000--00
101 00--00

u=[020 3 000 4.5)
00 - evviiee 30

and so from the above inequalities we can write, for r > 0,

L(t) < UL(t) + B* ().
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In particular, recalling that W can be written as an infinite sum of matrices with non-
negative entries, we have that

L) <= (WB* ().

Now fixm € N which will be chosen suitably below. Definety = k/m,k =0, 1, ..., rm—
1. Then, for any k as above,

T+l
f V(s)zds <m™! sup V(s)2
T SEltk k1]
_ -1 2 -1 2 -1 2
=m sup (v+gs—Li(s)” <2m™ (Jv|+rg) +2m  (L1(r))".
s€ltg,tre1]

It then follows

- ol
max e% ffkk+l V(S)zds S Cn‘lil (WB*("))%

0<k<rm-—1

cle

where ¢; = e (W79 The expectation of the right side under ]P)Zku 2) (which is
independent of (v, z) € R x Ri\' ) is finite for sufficiently large m. The result follows. O

For (v,z) € R x Ri\’ and r € N, with an abuse of notation, denote the projection of

P, ,) [resp. fP)z‘v)z)] on Q" = C([0, r] : RY x R x RY) once more as P¥ . [resp. Pt o)

(v,2)

Denote by F” the Borel o-field on ©". The coordinate processes B, V, Z on (", F")
and the canonical filtration {F] }o<;<, are defined in an analogous manner. Denote by
e; the unit vector (1, 0,0, ..., 0) in RV,

Corollary 4.3. Fixr € N. Define fort € [0, r], real measurable maps E(t) on (", F")
as

—lg, 2
Et) = e~ YN V(s AT e)id Bi(s)— A8 V(syds

Then for every (v,z) € R x RN, E*

(v’z)[E(r)] = 1 and for every F € B(C([0,r] :
R x RY))

P, (V. 2) € F) =K, , U v.z)erE()].
Proof. Fix (v,z) € R x RY and r € N. For ¢ € [0, r], define
t
B(1) iB(t)+/ V(s)A ‘e ds.
0

By Lemma4.2 withc = |A_1e1 |2 and (a slight modification of) [28, Corollary 3.5.14], it
follows that {€(¢)}o</<, is a martingale with respect to the filtration {F} }o<;<, under the

probability measure I@’fv " Hence, from Girsanov’s theorem, {ﬁ (s)}o<s<r 1s a Brownian
motion under the probability measure QE"U’Z) defined by d@;‘v’z) =& (r)d[?’fv,z). Also,
under the measure Qz‘v 2 We have

Z(t) = To(z+ AB() (1) = Iy <z +A (B(-) - / V(s)Alelds>> )
0

=1, <z+ AB(-) — f V(s)ds el) (1).
0
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By the unique solvability given in Theorem 2.2 and the definition of IP”(k v.2) it now follows

that the law of (V, Z) under Qz‘v 2 is same as that under IP’Z‘U 2 The result follows. O

We next prove several technical estimates that will be needed in the proof of Theorem
4.1.

Lemma 4.4. Let

(L 8 N-2
[16 4] [ 2g]><[ ,2g10

Let G C (Riv ) be an open and bounded domain with C* boundary such that
. 8 8 3g N-2
FCF =[=, —=.,2 —,2 G.
ChH [16g]><[10 g]><[4 glm " C

Let o = infyer, yesG |A=V(x — y)| and choose € > 0 so that G| = {x € G :
infyepc [A~ (x — y)| > €} satisfies G D G1 D F| D F. Define on (Q*, F*), 1 =
inf{tr > 0 : Z(t) ¢ G}. Also, fix a ‘cemetery point’ 9* € (Riv)c and define the ‘killed
process’ {Z*(t)} by

- {Z(r) ift <716 “46)

a*  ift > g,
Then, there is a cg € (0, 00) such that for any J € B(Riv),

inf (v z)(Z*(S) € J) > cgA(J NGy).
se[§.6*].(v.))ERXF

Proof. Fixs € [§,¢*], (v,z) € R x F and J € B(RY) with A(J N G;) > 0. Since,

under P* Z(t) = z+ AB(¢) until the first time it has hit the boundary of the positive

orthant,

(v,2)’

Bf, ) (Z*(s) € ) =P, , (Z*(s) € TN G)
=P}, @+ AB(s) € JNG.z+AB(u) € G forall u < s)
=P}, ,(A"'z+B(s) e AT (J N G),
A7'z+B) € A7N(G), forallu < ).

Denote the transition probability density at time ¢ of an N-dimensional standard Brow-
nian motion in A~ G, started from x and killed at the boundary of A~'G, by p, (x, -).
Then from the above identities it follows

Bon@en=[ palzd. 47
-1GnJ)

From [40, Theorem 1.1] we have that there exists 7 > 0 and ¢y, ¢ € (0, 00) such
that forall x, y € A~LG:

pi(x,y) > (Io(x)tp(y) A 1) t;1/26_02|x_y|2/l’ tel0,T]

pi(x,y) = cip(x)p(y)e ¥, te(T,00),
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where p(x) = inf,cyg |x — A7 1r].
Note that there is a n € (0, 0o) such that
AMA~H(C)) = nA(C) for all C € BRY).

We now estimate the right side of (4.7). First suppose that s > 7. Then since z € F and
s <1,

/ ps(A7'z, y)dy > / c1p(A™'2)p(y)e ¥ dy
A-LGNT) A-NGND)

> clope” / p(y)dy = ciope”Zen\(G1 N J).
A-1(G N

Letting cg,1 = ciore”“2en, we have from (4.7), when s > T,
Pf, 0 (Z*(s) € J) = cg1A(J N G). (4.8)

Now consider the case s < T'. Then, a similar estimate shows,

A7z _
f ps(A7'z, y)dy > / PA_ DD 1) malaanalsgy
A=1(JNG) A-1(JNG) s s/

>cc2AJ NGy

—4c2() " sup, g1 =yl

where cg 2 = nc1((eor) A 1e . Thus, once more from (4.7),

whens < T,
Pf, 0 (Z*(s) € 1) = cgoA(J N G). 4.9)
Setting cg = ¢G.1 A ¢G.2, we have the result on combining (4.8) and (4.9). O

For z1 € R, let P,, denote a probability measure on * under which the coordinate
process { By (¢)} is a standard Brownian motion starting at z1. We will use similar notation
for the corresponding expectation.

Lemma 4.5. There exists a % € (0, 00) such that for every I € B(R),

: 6g S g8 8
P B I, inf B —= B (> - =
0(()58:115)5 1(u) € 05135% 1(u) > 10 1(4)6[ 2 16]
g
> A N[0, =]).
> ( [63])

Proof. Let I € B(R). We assume without loss of generality that, I C [0, 6g—3] and [ is
of the form I = [B1, B2] C Ry for 0 < B < B (the choice of " will be independent
of B1, Bo). Let y = 5(—% — %) be the midpoint of [—£, —+%]. For a level ¢ € R, let

7. =inf{t > 0: By(t) = c}. Define 0 = 7_¢4,10 and rl.ﬂ =18, fori =1, 2. Then

. 6g S g8 8
7’0(5151%)(31(14)) el, uuilf% Bi(u) > 10’ BI(Z) €l 3 BD
g g 8 8
= B I 2, Bi(2) e[-2,—=).
Po(sup(Bi(u)) €1, 0 > 1 1(4)6[ g’ l6])

s
U=y
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Using the strong Markov property of the Brownian motion, we obtain,

S S 8 8
P B 17 ) B - ~ o’ Tz
0(522( 1(w) e U>4 1(4)6[ 3 16])
B S S S 8 8
> Po(ry < PR 52};(31(@) €lo>7 Bi(p)e [—g, _E])
B
:PO(I{IfSS%/\O‘}@(Tl ))v

where, for t € [0, %],

Ot) = Pp, ( sup (Bi(u)) < fo. 0 > %—t, Bl(g —ne [—g, —1%1).

u<$—t

By another application of the strong Markov property, for ¢ € [0, %],

O@) = Pp, (1 = Tf A % Bi(s) € [—%, —]‘%] forall s € [r,, % —1])

/
— Pﬁ1 (l{TySTfAI%} ® (‘L'),))
where for u € [0, 1,
O'(u) = Py, (Bi(s) € [-%, —1%] for all s € [0, % —t—u)).
Thus letting
k1 =P, (B(s) € [-%, —%] for all s & [0, %])
we have that, for ¢ € [0, %],
B .S
O = k1Pg(ty <15 A %).
Also, by an application of the reflection principle,
S
Po(ty <75 A 6 = Palty

S B S
= R)_Pﬁl(fz <7 = E)

A

S S
=Ppi(ty = 1¢) — Porsacgr-p0(ty = 10)-
From the definition of the stopping times we see,

Pp, (zy < %) = PoCsup (Biw)) = fi = »).

U=Tg

Pprapr—py) (T < %) = Po(sup (Bi(0) = 1 +2(B2 = p1) = ).

U=Tg
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Using the explicit form for the probability density for the law of the maximum of a
Brownian motion, we then obtain,

B1+2(B2—P1)—y 4ﬁ
g § —8 2
Pp(ty = T Ppi+28—pn (ty = e = fm—y \/T_ge /s
82
>

2
> — inf e 8/5 By — Bi).
VTS Bi—y=z=p1+2(B—B1)—y

Since
2¢ 3¢ g
+2(p2 — -y <2B—y < —=+—_—==<-,
B1+2(B2—B1)—y =28 Y2t Sy
we have
2 5'2
inf e 8/ > 070

i
B1—y=<z=2(B2—P1)—v

Thus, for ¢ € [0, ¢/8],

8v2 &
O(1) = k1 Pp (ty < T4 A 116) 21— %y — P1).

Finally, observe that, as I C [0, %],

. 6. .
Po(ef < % Ao) = Po(sup(Bi(s)) > 653 inf (B1(5) > —1—§) = k2.

us<g
2
. _ 8v2 —52
The result now follows on setting %~ = k1«3 Jree < O
For0 <s <1land(z2,23,...,2N) € Riv_l, define

Li(s) = sup(—B1 (1)), Z1(s) = Bi(s) + L1(s)

Li(s) = sup(—zi + Bi_1(w) — Biu)*, i =2,...,N.

u=<s
Lemma 4.6. Let I € B(R) be such that I C [0, &]and (v,z) € R x {0} x [g, 37‘5’]1\’_1.
Let H € F*. Then the following are equivalent:

(a)On H, P, as, (i) Li(§) € 1, (ii) Li(§) < &, foralli = 2,....N, (iii)

Supg<,<5 Bi(u) < ?—g, (iv)supg<, << |Bi ()| < £ foralli=2,....,N,(v)Z1(5) €
[ 51 A A

(b) On H, P?U‘Z) a.s., (i’) Ll(%) e I, (ii’) Li(%) < %, foralli = 2,...,N, (iii’)
SUPo<y<§ Bi(u) < ?—f)', (iv’) SUPg<y<§ |Bi ()| < %, oralli = 2,...,N, (v')

Zi(5) e [£. 41

Furthermore, under these equivalent conditions, on H, ]f”’(“v 2) @5 Li(c/4) = f,l(g/4)
and Li(¢/4) =0fori =2,...,N.
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Proof. Fix (v,z) € R x {0} x [g, 37g]N_1. Noting that z; > g fori =2,...,N, we see
that, when conditions (i) — (v) hold, forall u < &,

1
—zi + Bi—1(u) — Bi(u) + E(Li—l(u) +Liy(w) < —g+—+

I
LS

<0,i=3,...,N,

1 6g & .8 8

—722+B —B + =L +L <—g+—+-+—+—<0.

72+ Bi1(u) — Ba(u) > s+ Li(w) < —g TRERETAE

Hence, when conditions (i) — (v) hold on H, by (4.3), I@fv 2 &Se Li(§) = I:,-(%) =0

fori =2,..., N which in turn says that L1 (§) = il(%) and Z(5) = 21(%). Thus in
this case (i") — (v’) hold on H, ]f”;‘v,z) a.s.

. On the other hand, suppose that (i") — (v") holdon H, HNJ)?U,Z) a.s. Consider the stopping

times,

v =inf{t > 0: —z20+ B1(t) — B2(¢) + %L3(t) +Li(t) = 0}

1
v =inf{t > 0: —z; + Bi_1(¢t) — B;i (¢) + E(LHI(I) +Li—1(t)) >0}, i=3,....,N

and let v = mina<;<py V;.
Then, fors < v, L;(s) = L;(s) =0, foralli =2,..., N and so Li(s) = Li(s)
and Z;(s) = Z;(s). Thus, if v < £,

1 ~
—22+B1(v) — Bo(v) + §L3(V) +Li(v) =—22+Bi(v) — Bo(v) + L1 (v)

and, fori =3,..., N,

1
—zi+Bi_1(v) — B;(v) + E(Li+1(V) +Li1(v) ==z +Bi_1(v) — Bi(v)

<-—g+ & + £ 0.
8 8
This contradicts the definition of v and consequently we must have that v > %. Thus
(i) — (v) hold on H, ]f"(v’z) a.s., and the result follows. ]
Recall the set F introduced in Lemma 4.4.
Lemma 4.7. Let I € B(R) be such that I C [0, &]and (v,z) € R x {0} x [g, %g]N—l.
Let H € F* and suppose the equivalent conditions of Lemma 4.6 hold on H. Then, on

H, I?’z‘v’z) as, Z(5) € F.

Proof. Under assumptions of the lemma, on H, If”(v,z) a.s.,

1
22(s/4) =22+ Ba(s/4) = Bi(s/4) — 7 L3(s/4) + La(s/4) — Li(s/4)

g 6g g g
= B 4)— B 4)—L 4)y>g -2 -2 - 2 > 2
22+ Ba(s/4) 1(s/4) 1(s/4) > g s 10 6210

1
Zi(¢/4) =zi + Bi(¢/4) — Bi_1(¢/4) — E(Li71(§/4) +Liv(s/4))+Li(s/4)

3
=z + Bi(¢/4) — Bi—1(s/4) > Zg i=3,....N.
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From Lemma 4.6, under the assumptions of the current lemma, L(5/4) = il (c/4)
and so

S > Litc/4) = Li(g/4) = sup (—=Bi(w)) = —Bi(c/4).
63 u<c/4

Thus we have the upper bound,

3
Z5(c/4) = 22+ Ba(s/4) — Bi(g/4) — L1(c/4) < f + % + 6‘% <2g,
Also, fori =3,..., N,
_ 38 g &
Zi(§/4)—Zi+Bi(§/4)_Bi—1(§/4)S7+§+§§2g~

Hence, (Z>(c/4), ..., Zn(5/4)) € [%, 2g] x [%Tg, Zg]N_z. Also, under the conditions
of the lemma Z; € [{%, £]. Thus Z(g/4) € F and the lemma is proved. |

We can now complete the proof of Theorem 4.1.

Proof of Theorem 4.1 Recall F, G and G| from Lemma 4.4. We will prove the theorem
with D = Dy x Gy where D; = [0, g/128]. Let (v, 2) € [0, 551 x (0,00) x RY ™.
All equalities and inequalities of random quantities in the proof are under the measure
I@?‘U’Z). Let r € [g, ¢*] be given. It suffices to establish the estimate in (4.1) for S €
B@R x RY) of the form S = I x J, I € B(R), J € B(RY) with I € D; and
J € Gy, for a choice of the constant K, 5 independent of I, J. For such an S, letting

B(t) = ZlN:l(A_l)U B;(t), by Corollary 4.3,

P ((v.2), S) = Ef, , LvinerzmenED) = B, p lyvimerzmenér)

~ Ty dé |A71e1|2 Ty '2d‘ (410)
= BY, plivmerzmene b VOIBO=T g Vs,

On the set {V(r) € I}, Li(r) = gr — V(r)+v < gr+v < gr + {33, so that by
monotonicity, Li(s) < g(r + llﬁ) for all s < r. This implies that, on this set, for s < r,
—2g < —gr+ %) < V(s) < gr+v <2g,ie.,|V(s)| < 2g. Using this estimate in
(4.10) we get

A=l 2,2~ oy 5
P ((v,2),S) = e 214 el Ef, »livinerzoene Jo V©dBe) (4.11)

By It6’s formula,
— /r V(s)dB(s) = /r B(s)dV (s) — V(r)B(r)
0 0

= —/r B(s)dL(s) +g/r B(s)ds — V(r)B(r).
0 0

Define the stopping time

7p =inf{t > 0: Z{(t) = 0},
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and let

2
< S
Z(-L—1+Z)GF,Z(S) >0, forall s € [r1+Z,i’], Z(r) € J}-

. 3¢ n_
H={f1 S%,(Zz(fl) ..... Zy(m) € [g. =V 1,L1<n+§)ev+gr—1,

Note that
HcCc{(V(r),Zr) el xJ}. 4.12)

On H we have,
—V()B(r) > —28|B(r)| = —28|B(r) — B(r; + §)| —2g|B(r, + %)
— B(t1)| — 2g|B(t1)|.
In addition, on H,

ro L3 'L'1+% - - gs_ -
g/ B(s)ds:gf B(s)ds+g/ (B(s)—B(rl))ds+TB(r1)
0 0

71

+ g/r . (B(s) — B(t; + %))ds +gB(1 + %)(r —(t1 + %))

1+3

T n+g . -
28/0 B(s)ds+g/ 4(B(S) — B(t1))ds + gB(t1)(r —71)

1

ve [ (B~ B+ s +gBn+ ) - e - i+ ).

1+

Also, by the definition of 71, on H,

_fré(s)dmm:—/” Y B(s)dL1(s)
0

3

‘L'1+i - - -
= —/ ’ (B(s) — B(t1))dL1(s) — B(t1)(L1(71 + %) — Li(71))

‘L'1+£ - - -
z—/ Y (B(s) — Ba)dLi(s) — gl B(m)).

Now let
U, = g/ (B(s) — B(t; + %))ds —2g|B(r) — B(t; + %)I,
Il+%
. ~ g ~ S ~ S ~
Uy = g(B(t1 + Z) — B(t))(r — (11 + Z)) —2g|B(t1 + Z) — B(1)|
7:1+%

I]+£ - - - -
—f "(Bs) —B(fl))dLl(S)+gf (B(s) — B(t1))ds,

71 71

Us = —3g[B(t1)| +g/0 B(s)ds + gB(t1)(r — 11).
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Then, by (4.12), we have the lower bound
U1+Ux+U3 )

(4.13)

TV (s)dB(s) > fE’(kv,z)lHe*f(; v<x)dé(s)21~E>(.<v’z

]EEKU,Z)I{V(V)GI,Z(r)eJ}67f() )lHe

Recall the killed process Z* from (4.6). Define the sets
Hi(s) ={Z*(s) e J}, 0 <5 <1,

62
H@) = LX) egrtv—ILLi(2)<Sfor2<i<N, sup Bi(u) < -2,
4 4= % vt 10

g .
B; S i=2,...,N, Z 22
::gl l(u)|<8 i 1( )e[16 4]}

where v € [0, g/128].

3
H; = {11<Z(Zz(f1) sz))e[g,?g]N—l}.

Also, set

t
UHOE g/o B(s)ds —21B(0)]. 0<1 <1,
s

U, = —3g|1§(%)| - /OZ B(s)dL(s) +g/04 B(s)ds.

Applying the Strong Markov Property at 71 + % and then 71, we have

Ef ,1geVt02tUs > inf E* - 1g, (e Ui (s)
(v.2) (.2)€RXF, §<s<r (@,7) - Hi(s)
X inf DN | Ub S B 1ol
(ﬁyi)ERx[g,%g]N—l (,(0,2)) H{L1(§)egr+v—1,Z(§)EF} 5ol
4.14)
Note that since by assumption / C [0, g/128],r € [¢, ¢*], and v € [0, g/128],
I =gr+v—1Cl0,g/63]. (4.15)
Thus, using Lemma 4.7, we see
E?v,z)lHeU1+U2+U3 > inf E(v )1H1 )€ Ui (s)

(0,2)€RXF, §<s<r

. Tk U, Tk Us
- 0 i)eRiIg 3¢ N-1 E(ﬁ’(o’i))lHZ(v)e X E(”’Z)1H3e ’
. 2

For the final term, note that, on H3, U3 > —5g SUP)<g<c* |1§(s)|. Now, for M’ > 0,
define o

HyM') =1 sup |B(s)| <M, Zi(s) >0 foralls <
0<s<¢*

)

oo [N

nf Zi(s) =0,
<

in
=s

oo
ENTY

]

(Z2(s), ..., ZN(5)) € [g, :%g]N*] forall s € [%

-MV\
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Clearly H;(M') C H3. For any (v, z) € [0, 1%] x (0, 00) x Riv_l, one can construct
suitable Brownian paths to obtain a measurable choice of M’ = M’ (v, z) such that

Kwa) = P, ) (H5(M' (v, 2))) > 0.

This definition readily implies the measurability of (v, z) — «(y,z) through the mea-
k

surability of the maps (v, z) +— M'(v,z) and (v,z) — ED(U’Z)(AO) for any A° € F.

Recall the set A from the statement of Theorem 4.1. Using continuity properties of the
transition kernel of Brownian motion in its starting point, the choice of M’ (v, z) can be
made such that

sup M'(v,z) <oo, inf K@z > 0. (4.16)
(U,Z)EA (v,2)eA

It now follows that,

Ez‘v’z)lmew > Ezkv,z)lHS’(M’(v,z))eU3 > ¢ 8M (U’Z)K(U’z). 4.17)

Now consider the term involving Hj(s). Note that, on the set Hi(s), AB(u) +z € G
forall u < s. Since G is bounded, we have that for some «g € (0, c0), under ]P’E‘U 2 for
all (v,z) e Rx F

sup |B(u)| < kg on Hy(s), foralls € [¢c/4,r]and r € [c, ¢*].

0<u<s

Thus, from Lemma 4.4,

inf E* g (5el1®) > 385G inf P*  (Z*(s) e J)
WDERxE, §szr D T (.2)eRxF, §<s<r P
> e 38G e N J N GY). (4.18)

Consider finally the term involving H (v). From Lemma 4.6 (and recalling (4.15)) it
follows that, on H»(v), forv € [0, g/128] and 0 < s < ¢/4,

—Bi(s) < SUI;4(—31(M)) =Li(s/4) =< g/63.
us<g

Using this and other properties of the set H> (v), we see that withcy = G—g zNzl (A~ D],
on H;(v),

sup |B(s)| < ca.
0<s=<g/4

It then follows that, on H» (v),
/ 8¢
Uy > —3gca — 5 A caLli(s/4) = —4gca.

Thus, we have

. k- Uj =~ ,—4gca . ko
@‘z)engégw—' Fooaplmwe? = ¢ (ﬁ,i)eRlxrg,%]N—l P02 )

(4.19)
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Note that the conditions sup, . /4(—B2(u)) = —13g/30 + Zp and SUP, << Bi(u) <
6g/10 imply that i2(§/4) < g/6. Thus from Lemma 4.6, and using (4.15) again,
Pfﬁ,(o,i)) (Hp(v))

|B(u)|<§f0r2<l<N

=
IA

- F Sy e F LS
_P(v (OZ))( (Z)GI,L1(4)§

O’\\OQ
J:-\V\’U

68 5 ¢S
sup Bi(u) < 10, 21(3) € [1‘%,—

B e
N————

u<$
> P 0.2 (L1(4)€1 :gl;( Bz(u))<—¥+z2,Lz( S InG =g
s
sup Bi(u) < 6—g, sup |B; (w)| < = for2 <i <N, zl(g) c [f ,]
usg 107, <5 8 4" 6 4
— K, P* Pi(Syel, sup B 08 5 4.20
1P 0a) | L1(3) € ust<1p 1(u)<f0 e )e[E Z] (4.20)
7
where
K; =P su( B(u))<—13_g+z L( ) < g L (E)
2= 1(5,00,2) P 2 30 T3 o LG
=< E, sup |B; (u)| < gfor2§i <N |,
6 u<$ 8
and in the last step we have used the independence of By and (B2, ..., By).

NotethatZl( )= Bi(§ )+L1( ), s01fL1( ) € [0, 63]and Bi(5) € [%’ %],then
Z1(%) € [£, £]. Consequently,

]P)*

6g
(v(Oz))(Ll( )yel, SupBl(M)<— Zl( yel£, 8

16° 4

u<j
S B (sup(—Biw)) € T, sup Bin) < 5, By e (5,8
su u su u <— _— =
=0 u<§ ! u;%’ ! 100 13 6 3
6g S g 8
= ]P)(v (0, Z))(SUP(Bl () € I uH<1f§ Bi(u) > — 10 Bl(4) [— 8 _E])’

u<*

where in the last line we have used the fact that {B(s)} s<§ is equal in distribution to
{_B(s)}sf%'
Applying Lemma 4.5 we have
IP’(U . z))(sup(Bl (n)) e I mf B (u)

u<7 ”<Z

10 Bl( ) € [—— ——]) > AN N0, —])

=NI) = %?\(1) = NI N Dy), 4.21)
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where for the last equality we have used that I C [0, g/128] = D;. Thus, letting
K= inf K;
ie[g. FIN-!

we have on combining estimates in (4.11), (4.13), (4.14), (4.17), (4.18), (4.19), (4.20),
4.21),

P (v, 2), §) > e 2IAT I8 =SgM WD) 0 38KG 0048 R N(J N GA(I N DY)
= KwapM(I x J)N D)
where
Kz = e—Z\A—lel|2g2e_SgM/(v,z)K(v’z)e—3gKGCGe—4gcA | &2

This proves the first statement in the theorem. The second statement is immediate from
the measurability of (v, z) = k(y, z) indicated earlier in the proof and (4.16). O

5. Stationary Distribution: Uniqueness

In this section, we establish uniqueness of the stationary distribution by using the mi-
norization estimate in Theorem 4.1 in conjunction with the following lemma. This lemma
also plays a crucial role in establishing exponential ergodicity of the system.

Lemma 5.1. For each (v,z) € R x Riv, there exists ro = ro(v, z) € N such that
P((v,2), R) > 0,

where
£
128

Furthermore, if v > g/128, we can take ry = 1.

R = (0 ) x (0, 00) x RN 1,

Proof. Let (v,z) € R x RY be given. In view of Corollary 4.3 it suffices to show that
for some rg € N

Ip)zkv,z)((v(rO)a Z(rp)) € R) > 0.
Consider first the case where v < g/128. Define
% -, v < %

8 g

Ul i 1 g ’
3(m3g =), v €55 %)

Set vo) = v+ wv;. Write vy = g(k+ 1) withk € Npand #; € [0, 1). Letrg = k+ 1 and
tr = (k+1t1)/2.Letvs = gro—wv;.Fix§ € (0, v3) such that [v, —§, v2+68] C (0, g/128).
Consider the set A; € F* defined as

Ay ={Li(tr) € [v3 = 8,v3+6], Z1(t) > Oforallt € (12, ro]}.
Then on Ay, Z(ro) € (0, 00) x R¥~! and

Vg =v+k+1)g—Li(rg) =v+k+1)g—Li(rrp) ev+(k+1)g —[v3—6,v3+5]
=v+k+1)g—v3—68,v+(k+1)g—v3+46]
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Also
v+k+Dg—v3=v+k+Dg—(gk+1)—v)=v+v1 =1

Thuson Ay, V(rg) € [v2—3, v2+8] C (0, g/128) and consequently A; C {(V (rp), Z(rg)) €
R}. It is easily verified that P?v,z)(Al) > 0 which proves the result for the case v <
g/128.

Now consider the case v > g/128. Let v = v+ g — g/256 and fix § € (0, g/256).
Consider the set Ay, € F* defined as

Ay ={Li(1/2) € [v] —§,v1+38], Z1(¢t) > Oforallt € (1/2,1]}.
Then, with ro = 1, we see, on Az, Z(rg) € (0, 00) x Ri\’—l and
V(rg) =v+g—Li(ro) =v+g—Li(1/2) ev+g—[v) —8,v1+8]

=[v+g—vi =65, v+g—v +68] =[g/256 -6, g/256 + §]
= [vy — 3, v2+68] C (0, g/128).

Thus Ay C {(V(rg), Z(ro)) € R}. Once again, it is easily verified that ]F”(“v Z)(Az) >0
proving the result for the case v > g/128 with ro = 1. O

Theorem 5.2. The Markov family {P, z)} (v,2)eRXRY has at most one stationary distri-
bution.

Proof. By Birkhoff’s ergodic theorem, if there are multiple stationary distributions,
then we can find two that are mutually singular [23, Chapter 4, Theorem 4.4 and Lemma
4.6]. Suppose that 7, 7’ are mutually singular stationary distributions. Then there is a
A e B(R x Riv) such that w(A) = 7'(A°) = 0. Recall the set D from Theorem 4.1.
Since A(D) > 0, it follows that either A(D N A) > 0 or A(D N A€) > 0. For specificity,
suppose A(D N A) > 0. We will now argue that 7(A) > 0, arriving at a contradiction.
By Theorem 4.1, with R as in Lemma 5.1, for every (v,z) € R, thereis a K(, z) > 0
such that

P ((v,2), A) = K@ A(AN D).

Define the transition probability kernel Q on R x RY as
1
QE.2),8) =Y P (3.9, 5). (7.7 R xR}, S BRxRY).
i=1
Since 7 is a stationary distribution, we have
7= [ 0. D). 5.1)
R

xRY

Also, for any (v,Z) € R x ]Riv and with ro = r9(v,Z) € N as in Lemma 5.1,
QU(D,2), A) = 27OPO*((,2), A) = 2_’°/ P ((v,2), (dv, dz2))P* (v, z), A)
R
>27"0AN(AN D)/ P((®, ), (dv, dz2))K(y.z) > 0.
R

From (5.1) it now follows that 7(A) > 0 which gives a contradiction and proves the
result. =
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6. Product Form of Stationary Density

In this section, we prove Theorem 2.4. The proof relies on ‘guessing’ a product form for
the stationary joint density and showing that it satisfies the partial differential equations
(along with appropriate boundary conditions) that characterize such stationary densities.
This guess is inspired by [4], where a product form joint density was obtained for the
velocity and gap processes of the system comprising one inert particle and one Brownian
particle.

Proof of Theorem 2.4. The generator of the process (V, Z) given by (1.3) acts on any
f:Rx Ri\’ — R that is continuously differentiable in v and twice continuously
differentiable in (z, . .., zx), and compactly supported in the interior of R x RY, by

1 9
Lf(w,2) =5 > hl,,lef (v, z)+g—f(v 7)

1<i,j<N

—vi(v, z), (v,z) € R x (0, oo)N,
az1

where hyy = 1,h;; =2for2 <i < N,h;; = —1for|i —j| = 1,and h;; = O otherwise.
Moreover, from the pathwise existence and uniqueness (Theorem 2.2) it readily follows
that the associated submartingale problem [27, Definition 2.1] for our process is well-
posed. For ¢, c1, ..., cny, ¢ > 0, consider the function

N
7(v,2) = cre” 0 [Te 4%, (v,2) e R x RY, 6.1)
i=I

where c;; is the normalization constant ensuring fRXRN 7 (v,z)dvdz = 1. Translating
+

the conditions (1)—(3) of [27, Theorem 3], 7 is the density of a stationary distribution if
7 satisfies the interior condition

o1 o
E*JT(U,Z) = 5 Z hljm(v Z) g—(v Z)

1<i,j<N e
0
évn) (v.2) =0, (v.2) € R x (0, 00)", (6.2)
21

and boundary conditions

2vn(v,z)+ (v 7) — (v )+ ”(v,z) =0 ifz =0, (6.3)
(v, z)+2 (v z) — om (v,z) =0 ifz; =0, forsome2 <i <N — 1,
321 1 Zl-l—

(6.4)
- (v, )+2 (v z) =0 ifzy = 0. (6.5)

3ZN7
We will solve for the constants cg, ¢, ..., cy, cr to obtain a 7 satisfying the above

conditions.
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The conditions (6.4) and (6.5) applied to (6.1) yield that
ci_1 —2¢ci+ciy1 =0, i=2,...,N—1,
cN_1 —2cy =0. (6.6)
From these identities, we obtain that
cn—1 = 2cpN
CN_2 =2cN_1 —cN = 3cn.

Fix j € {2,..., N — 1}. Suppose that we have ¢; = (N —i + 1)cy forall j <i < N.
Then, from (6.6),

Cj—1=2cj—cjp1 = 2N —j+1) = (N — j)ewn
—(N=(—1)+en.

Hence, we have by induction that ¢; = (N —i + l)cy fori = 1, ..., N. Substituting
this into (6.3), we see that

2v—ci+cy —2co(v+¢) =0, forall veR.
Since this holds for all v € R, we must have ¢y = 1, and so
20 =cp—c1 = (N —1)ey — Ney = —cn
and thus cy = —2¢. Next substituting (6.1) in (6.2),
1
3 Z hijcicj +2gco(v+¢) —civ =0, forall veR. 6.7)
1<i,j<N

Again, since this holds for all v € R, we must have,

2¢ =c1 = Ncy.
From the above relations, we obtain
co=1, c,~=2<u>g, i=1,...,N, ¢ =—=. (6.8)
N N

To show that this choice of constants yields a valid density for some stationary distri-
bution, it remains only to demonstrate that (6.2) holds for all (v,z) € R x (0, oo), or
equivalently, from (6.7) and (6.8),

1 g2
3 > hijeici — 25, =0. (6.9)
1<i,j<N

To see this, note that

1 1 N—i+1 N—j+1
5 Z hijCiCj:E Z h,-j< N )( N )4g2

I<i,j<N I<i,j<N

2g2 N N
- WZ(N—i+1)Zhij(N—j+1).
i=1 j=1
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From the formulae of {A;;}1<; j<n, it follows that

N
Zwa—j+D=&ﬁimmi=L“qM
j=1

where 81 ; is the Kronecker delta function. Hence,

N
1 2g2 . 2¢2
3 E hijcicj = W E (N—-i+1é,; = T’
1<i,j<N i=1

which proves (6.9). We have therefore shown that = with constants as in (6.8) is indeed
the density for a stationary distribution of the process (V, Z). Uniqueness follows from
Theorem 2.3. o

7. Exponential Ergodicity

In this section we will prove Theorem 2.5. Since the main source of stability in our system
is the local time interactions between particles, standard PDE techniques for construct-
ing Lyapunov functions [22,29,31] for hypoelliptic diffusions are hard to implement.
Furthermore, the singular nature of the dynamics arising from the motion of the inert
particle, and the spatial dependence of the drift (which contains a V term), make it chal-
lenging to adapt the Lyapunov function constructions for reflected Brownian motions,
which proceed via an analysis of the associated noiseless system [1,21].

7.1. Outline of approach. Here, we take a different approach to exponential ergodicity
by analyzing excursions of the process between appropriately chosen stopping times
(see (7.14)) as the velocity of the inert particle ‘toggles’ between two levels. Con-
trol on the exponential moments of these stopping times is established in Sects. 7.3
and 7.4. In Sect. 7.5, it is shown that the intersection local time between the bot-
tom two particles creates a ‘singular’ drift that results in a reduction of the function

Zy(t) = vaz_l iZn—_i+1(t) of the gaps when observed at successive stopping times.
These estimates are combined in Sect. 7.6 to show that the distribution of return times of
the process to an appropriately chosen compact set C* has exponentially decaying tails.
Finally, in Sect. 7.7, the exponential moments of this return time are used to construct
a suitable Lyapunov function. The minorization estimate in Theorem 4.1 is utilized to
show that C* is a ‘petite’ (or small) set in the language of [18]. These facts together
imply exponential ergodicity using the machinery developed in [18] (see Theorem 6.2
there). Proofs of some technical lemmas are deferred to Sect. 8 in order to make it easier
to see the overall idea.

We note here that the connection between finiteness of exponential moments of certain
hitting times, Lyapunov functions and exponential ergodicity is not new [18,32]. The
main work in this section is in establishing that exponential moments of associated hitting
times are finite through a detailed pathwise analysis of the process. A general treatment
of the above connection in the context of diffusion processes has been undertaken in
[15,33], among others. However, typically the diffusion processes are assumed to be
hypoelliptic and/or reversible with respect to the stationary measure, neither of which
apply to our setting.
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7.2. An inequality for the local time. In this section we establish an estimate on local
times which will be used several times. Recall the matrix W from Sect. 2 and the process
B* from (4.4).

Lemma 7.1. For any (v,z) € R x Riv and t > 0, the following inequality holds,

]P’Z"U’Z) —as, foralli=1,2,..., N,
N
Li(t) < Wiat sup (V(s)*+ Y Wi ;B (0). (7.1)
0<s<t =1
Moreover, with Y (1) = Zlsz(N —i+1)Bf(1),
2N — 1) 2
Ly(t) < ———Li(t) + =Y(), t > 0. 7.2
2(8) < N 1(2) I ), t = (7.2)

Proof. Let (v,z) € R x RY be given. All inequalities in the proof are a.s. under ]P”(“v 2
For 1 <i < N, the local times L; are given as

Ly(t) = sup(—z; + %Lz(s) +/ V(uw)du — B1(s))*
s<t 0
1
Ly(t) = S}i}:(—zz + §L3(S) + L1(s) + Bi(s) — Ba(s)* (7.3)

Li(t) = sup(—z; + %(Li_1<s) ¥ Lis1(5)) + Bioi(s) — Bi(s)*, i=3,....N.

s<t
Using these identities we see that

1
Li(t) = sup (V(s))*t + 7 La(®) +sup(=Bi(s))

0<s<t s<t

1

Lo(t) < ELs(l‘) +Li(t) + Sliltb(Bl(S) — By(s)) (7.4)
1

Li(t) < E(Li+1(t) +L;—1(2)) +SliIt>(Bi71(S) — Bi(s)), i=3,...,N.

Recalling the matrix U from (4.5) the above inequalities can be written as

L(t) < sup (V(s))*te; + UL(t) +B*(t), t>0.

0<s<t
Using the factthat W = (I — U )’1 is a matrix with nonnegative entries, we have,

L) < sup (V(s))"tWe; + WB*(t), t>0.

0<s<t

This proves the first statement in the lemma. For the second inequality, note that from
(7.4) we have

N

1 1 1
E (N —i+D(Li() — ELi+1(t) - ELi_l(t)) +(N = D(La(t) — L1 (1) — §L3(l))
i=3

N
<Y (N—i+D)B}(t) =Y.

i=2
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Simplifying the left side, we see,
N -
5 La®) = (N =DLi(1) = Y1)

which proves the second statement. O

7.3. Hitting time of an upper velocity level. Forc € R, let 7, = inf{t > 0: V(r) = c}.
The main result of this section is the following control on exponential moments of this
hitting time.

Proposition 7.2. There exists a y € (0, 00) such that

sup Ef,.z€" ™ < oo.

(v,z
(v.z)el 55 28] xRY

Proof of the proposition relies on the three lemmas given below. Proofs of these lemmas
are given in Sect. 8.1. The proposition is proved after the statements of these lemmas.

Lemma 7.3. There exists a B € (0, 00) so that

sup By, ef /e < oo,
zeRY

Lemma 7.4. We have

inf NIP)fv’Z)(fétg <7)=p>0.
(v,z)€el 55 . 28] xRY

Lemma 7.5. There exists y| > 0 so that

sup Ef, .z €” (EA %) < o0,
(v,2)€[0,4g]xRY

We now prove the main result of the section.

Proof of Proposition 7.2. Define t_1 = t9p = 0 and for i € Ny, define
i+l = Inf{t > 10; 1 V(1) =4g or 0}, w2 =inf{t > 141 : V(@) = % or 4g}.
Define
A =inf{k > 0: V(1) = 4g}.
From Lemma 7.4 it follows that

sup P{ (A =k <1 -p)' k=0
v Del g 2g1xRY
Note that

N N +1
Tgg < Z(sz —0i-1) < Z (r2i — T2i-2)- (7.5)

i=0 i=1
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By Lemmas 7.3 and 7.5 there are c1, ¢ € (0, 0o0) such that

—cot
sup ]P”("v’z)(rz > 1) <cre 2.
(,2)€l Fy 281 xRY

It then follows that, for 0 < o < c3,

o
sup E?v,z) et 5/ ae*s sup PZ‘U,Z)(Q > s)ds
(v.z)el 5 281 xRY —00 (v.z)el 5 281 xRY
e e ac
< l+ac1/ @S g — 1 4 L
0 ) —

Choose § € (0, 1) such that (1 +§)(1 — p) = k < 1. Now choose o > 0 sufficiently
small such that

sup B, e < (1+9).
(.)€l A 28 1xRY

Applying Cauchy-Schwarz and the Strong Markov property we now see that, for any
(v,2) € [55,2¢] x RY,
N +1 ad k+1
E?v’z)e“ ity (mi—Ti-2) _ Z]E?v,z)ea Zizl(fzi—fzpz)l{e/;/:k}

k=0

> K+ 1 1
< Z(E?v,z)eza Zizl(fzi—IZi—Z))f (]P)?v,z) (N =k))?2

k=0

<% i(l +OK2(1 = p)t < i/ck/z <0
S a-p = '
k=0 k=0
The result now follows on combining the above estimate with (7.5). O

7.4. Hitting time of a lower velocity level. Let o1 = T4 = inf{t > 0: V() = 4g} and
set oy = inf{r > o1 : V(¢) = 2g}. The main result of the section is the following.

Proposition 7.6. There is y» > 0 such that

* Y202
sup E(zg,o,i) e < 0.

2eRY !

The proof relies on the following three lemmas. Proofs of these lemmas are given in
Sect. 8.2. The proposition is proved after the statements of the lemmas.

Lemma 7.7. There is a y3 > 0 such that

* y3 Zi(o)'/?
suNp 1IE(zg’Oj)e < 0.

ZeRy ™



The Inert Drift Atlas Model
Lemma 7.8. Define 7' = inf{r > 0 : Zi(t) = 0). There is a ys > 0 and k1, k2 €
(0, 00) such that for any z1 € Ry and y € (0, y4]

N yrz| szZI/Z
sup E(4g’m’i)e 0 < ref?r

zeRY !

Lemma 7.9. There exists a ys > 0 and k1, k5 € (0, 00) such that for all y € (0, ys)
and v € [2g, 00),

* ¥ Tag 7 Khyv
sup E(v,o,i)e < ke 2’7,
2eRY !

We now prove the main result of this section.
Proof of Proposition 7.6 Let o € (0, 1) be such that
a <ys, a(l+irg) <ya, 2a(l+Kk58)k2 <3, 2a(l+xhg) <y, (7.6)

where ys and Ké are as in Lemma 7.9, k> and y4 are as in Lemma 7.8, y3 is as in Lemma
7.7 and y is as in Proposition 7.2.

Fix z € RY 1. Define stopping time
m =inf{t > o1 : Z1(t) = 0}. (1.7)

Note that o = inf{t > n; : V() = 2g}. From the strong Markov property, Lemma 7.9,
and recalling the first condition on « from (7.6),

* a0y _ Tk * oo * Ik KhaV(ni)+an
Ee05 ¢ " =Ep 0 [E(zg,o,i)(e 2 ‘7:771)] = K Epgope T

I Tk Kha(dg+gny )+an 1 Ak ag a(l+khg)n
< KIE(zg,o,i)e 2 < ke E(Zg,O,i)e 2801
Thus, with dj = | e*2%¢ and dy = (1 +«}g),
* a0 * adyng
E(2g,0,i) e S dlE(2g’0’i)e . (7.8)
Using the strong Markov property again,
E* eoldzr]l _ E* E* (eotdzm | j_‘* )
(2¢,0,2) — T(28,0,2) | ~(28,0,2) a1
* Kzadzzl(al)]/2+(xdzo'1
< Kl]E(zg,O,i)e
1/2 1/2
* 2krady Z1(o1)' /2 * 20dy0
=K (Eag,o,i)e Etg0ne ,

where the second inequality is from Lemma 7.8 and on recalling the second condition
on « from (7.6), and the last line is from Cauchy-Schwarz inequality. Next, applying
Lemma 7.7, and recalling the third condition on « from (7.6),

2c0adr Z) (a1)'/?

* -
) su/\[])i1 E(2g’0’2)e =d3 < o0.

zeRy
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Finally, applying Proposition 7.2 and recalling the fourth condition on « from (7.6) we
have

* 2adrop -
) suA;]) IE(Zg,O,i)e = d4 < 00.

zeRy ™

Combining the above estimates we have

sup E?Zg,(),i) ev? < d1x1d3]/2di/2 < o0.

2eRN!

The result follows. O

7.5. A negative singular drift property. Forz € Riv, define z, = ZzN:z(N —i+1)z.
Similarly, for Riv valued process {Z(t)}, we define for t > 0,

N-1

N
) =) (N =i+ DZit) = ) iZn—ini (). (7.9)

=2 i=1

The main result of this section is Propositon 7.11, where we will show that if z5 is
large, then the process Z;(-) decreases in expectation in the course of an appropriately
large number of excursions of the velocity process between the levels 2g and 4g (see
(7.14)).

The following lemma gives a key algebraic representation of Z,(-) in terms of L,
Lyyy fork € {1,..., N — 1}, and additional error terms. If z, is large, then there exists
ke{l,..., N — 1} such that Z;;1(0) = zx41 is large. Thus, it takes a long time for this
gap to hit zero. Before this time, the lowest (inert) particle ‘pushes’ the bottom & + 1
particles up and thereby reduces Z(-), as captured by the L term in the lemma. This
‘singular’ drift through local times results in stability and, in turn, exponential ergodicity,
of the system.

Lemma 7.10. Ler Y\ (1) = 0and YV (1) = Y¥_,(k—i+1)B*(1), 1 > 0, 2 <k < N.
Also define M(t) = Zlsz Bi(t) — (N — 1)B\ (1), t > 0. Then for all (v,z) € R x RY,
P* | a.s.

(v,2) ’

_ _ N . . N (N — k)
Zr(t)— 722 < M(t)+;Yk (1) + = Lg+1(0) — T

Li(t),t>0,1<k<N,
% 1(1), t >

(7.10)

with equality for k = 1.
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Proof. Note that, for (v,z) € R x Ri", under Ptv,z)’ fort > 0,

N
Ll(t)+Z(N—i+1)

i=2

1
[(Bi (1) = Bi—1(1) — E(Lm(l) +Li—1(2)) + Li(1) +Zii|

- N -1
Zz(l)=—( 5 )

(N-1) =

= L)+ ?:1 i
1

[(BN—m(t) — By_i(t) — E(LN—i+2(t) +Ly_i(1)+Ly_it1(t) + ZN—i+1i|

N—-1 N-1 N—-1

Li(t)+ Y iByixi(t) = Y iBy—i(t)+ Y i(Ly—isi(1)

i=1 i=1 i=1

1
— E(LN_HQ(I) +Ly-i(1))).

(N-D

:Zz—

Also,
N—-1 N—1 N-2 N—1
D iBy i1 ()= Y iBy ()= Y (i+1)By_i(t) = Y iBy_i(1)
i=1 i=1 i=0 i=1

N
= Z Bi(t) — (N — 1)B;(t).

i=2
Moreover,

N-1

1
D LNt () = S (Ln—isa () + Ly (1)
i=1
N—-1 N—-1

= —% 2:; i(Ly—ix2(t) = Ly—is1 (D)) + % Z:; i(Ly—ix1(t) = Ly—i (1))
1 N-2 1 N-—1
=-5 g(’ DLy (0) = Ly (D) + 5 ; i(Ly—is1(t) — Ly—i(1))
(N -1

1
= (LZ(t)_Ll(f))+§L2(f)-
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Hence,

(N-1
2

N
Li(t)+ Y Bi(t) = (N — B (t)

i=2

Zo(t) =7 —

(N-1 1
(L) = Li@) + 5 La(0)
N
- N
=%+ Bi() = (N =DBi()+ 5 La() = (N = DLi(1).
i=2

Consider the martingale M (1) = Zlsz B;(t) — (N — 1)Bq(t). Then

- N
Z5(1) =Zz+M(t)+3L2(t)—(N— 1)Ly(2). (7.11)

This proves (7.10) for k = 1. Now, we will use this along with some local time inequal-
ities to prove (7.10) for k > 2. Note that, from (7.4),

1
Ly(t) < Li(t) + By (1) + > L@
1
L; < Bf(t)+ E(Lm(t) +Li_1()), i=3,...,N. (7.12)
From these identities it follows that, for k € {3, ..., N},

k
1 1
Z(k —i+1) [(Li(t) - E(Lm(t) + Li1(t)))] +(k — D(L2(r) — L1 (1) — 5L3(t))

i=3

k
<> k-i+DB} ) =10,
=2
On the other hand,

k
1 1
k=i DL = S Lii 0+ L 0) + (k= D) = Li(1) = 5 L3(0))
i=3
= kL k—1L lL
= 5La(0) = (k= DL1(1) = S Ly ().

Combining the last two displays and multiplying through by %,
2k — 1)
k

1 2
Ly(r) < Ll(t)+%Lk+1(t)+EYk(l)(t), k=3,...,N. (7.13)

The last display holds trivially for k = 1 and also for k = 2, as can be seen from (7.12).
Hence, forall 1 <k < N, using (7.11),

- N
Zr(t) —z2=M()+ 5L2(t) — (N =DL ()

N2 4y, 20k—1) 1
SM(t)+E(%Yk (t)+TL1(l)+%Lk+1(I))—(N—1)L1(t)
—M(t)+EY(1)(t)+ﬁL ) — W=k, t)
- Kk 2k ko

This proves the lemma. O
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Define the sequence of stopping times {0, }m>0 as o9 = 0, and for i > 0,
o2i+1 = 1nf{t > op; : V(1) = 4g}, oniv0 = inf{t > 0241 : V() =2g}. (7.14)

Forz € RY !, abusing notation, write Zlsz(N —i+1)z; as 2.

Proposition 7.11. There exists Ay > 0 so that, for every A > Ay, thereisal € N such
that

sup  Eqg.0.2)(Z2(02) —72) < 0.

ieRi\Fl:ZzzA

This proposition will be proven using the following two lemmas. Proofs of the lemmas
are given in Sect. 8.3.

Lemma 7.12. There existsanly € Nandcy > 0, suchthatforalll <k < N,z € Riv_l,
andl >y,

*

- _ N
(2g.0.5)(Z2(021) = 22) < —cal + ﬂE?zg,()i)LkH(O'Zl)- (7.15)

To complete the proof of Proposition 7.11 we will estimate, in the next lemma, the
second term in the bound (7.15).

Take A > 0 and suppose Z € Sy = {Z € RY™' : Z5 > A}. Then there is a
kef{l,..., N — 1} so that

A
Zk+l = m (7.16)
We will work with this k in the following.
Lemma 7.13. For A > 0 and z € Sa, let k = k(A) satisfy (7.16). There exist positive
constants A1, D1, Dy, D3 such that for any A > Ay andl € N,

3/2
ETZg,O,i)LkH (o21) < Dy1°? (xfle_DNZ/l + e~ DAY )

Proof of Proposition 7.11. With [y as in Lemma 7.12 and A as in Lemma 7.13, let
A = max{Aj, lé}. Setting [ = I[(A) = |A'#] + 1, we use Lemma 7.12 and Lemma
7.13 to obtain positive constants ¢, D, D} such that for all A > Afj and z € Sa,

- ND; /
(22(0,21) _22) < —C/zAl/4+T1A3/4e_D2A]/4_

*
E(zg,o,i)

The result now follows upon taking Ag > Aj, such that the above bound is negative for
all A > Ayp. O

The next proposition shows that |Z>(02) — Z»(0)| has a finite exponential moment.

Proposition 7.14. There exists ys > 0 so that

* Y6l Z2(02)—22
su}s) IE(Zg,O,i)e < 00.

2eRy ™
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Proof. From (7.11) and (7.2), under P?zg,o,i)’

|Z2(02) — 22| < |M(02)| + %Lz(dz) +(N = DLi(02)
< [M(02)| + Y (02)| + 2(N — 1)Ly (02).
Also note that
Li(03) =2g+goy — V(02) =28 +gor — 28 = goo.
Thus
1 Z2(02) — 22| < 2(N — Dgoa + M (02)| + [Y (02)].

Hence, writing Y°(¢t) := [M(t)| + Y (1)|, for any y > 0, using Cauchy Schwarz in-
equalty,

E* . p¥|Z2(02)-2a] < (E*

1/2
(2¢.0,2) (2g,0,2) €4(N—1)g)/02) (IE*

: OA)esz%azn)”z
8,Y,Z :

(7.17)

Recall y, from Proposition 7.6, and write D := sup, RN Eég,o,i)

ceeding as in the proof of Lemma 7.7 (see Sect. 8.2.1), observe using (1.4), Proposition
7.6 and Markov’s inequality that there exist ¢, ¢’ > 0 such that for any y € (0, y2/2)
and any z € RY !,

e?2%2 < oo. Pro-

e 1/2
* 291Y°(02)| 4y supg<s<p41 1Y () * 172
Ep 0P < )" (E?zg,o,i)e 7 Pom ke R ) (Pl 002 = k)
k=0

oo
< c«/BZ ¢V D =vk,

k=0

The proposition follows from the above bound, (7.17) and Proposition 7.6 upon choosing
y € (0, min{y»/(4(N — 1)g), y2/2}) small enough so that the sum on the right side in
the above display is finite. O

7.6. Hitting time of a compact set. Recall the sequence of stopping times {0} jen,

introduced in (7.14) and the process 75 defined in (7.9). Also fix A > Ao where Ag is
as in Proposition 7.11. Define

" = inf{ooy > 0:k €N, Zy(o) < A},
I =inf{t >0:Z1(t) =0, Z>(t) < A, V(t) = 2g}. (7.18)

Recall that for Z € Ri\]*l, we write Zlsz(N — i+ 1)z as 2.

Proposition 7.15. There exist y; > 0 and ¢, ¢’ > 0 such that for any Z € Rﬁ’ ~1 with
72> Aandanyt > c'73,

P*

(20,05 >0 = ce V1,
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Proof. From the definition of the stopping times {0} j N it follows that, foreach k € N,

o2 1s a point of decrease of the velocity process and, consequently, Z1 (o2) = 0. Indeed,

if this is not the case, one can produce an open interval containing oo; where the velocity is

strictly increasing, leading to a contradiction to the definition of o2. Since Z1 (o2x) = 0,

it follows that I'” > T. It therefore suffices to show the result with " replaced by I"'.
By Proposition 7.11, we can obtain /, € N and p, > O such that for any j € N,

sup {E(zg,o,i)(zz(vzjz*) — Za(02(j-1)1,) IJ::ZU,U,*) + M*} Lirsoy ;s =0,

ZeRY !

(7.19)
where 7, G denotes the filtration associated with the process stopped at time 07 1y, -
Write X := Zz(azjl*) — 22(02(]'_1)1*), .7:-]',1 = .7:;2(]_71)1*, j € N. By Proposition
7.14 and the strong Markov property,
E* . Yol Xjl | T.
sup suplEi, o5 (€ | Fj-1) < oc.
2RV -1 jeN
This in particular says that SUP; N1 SUP jeNy E>(k2g,0,i) (|X,-| ‘ .7?]_1) < 00. From these

observations and Markov’s inequality, we conclude that there exist positive constants
c1, ¢z such that for any j € N,

sup By, 0 (|X,- B | Fj_p)| = x |ﬁj_1) < e, x > 0.

Hence, by [38, Theorem 2.2] and its proof, there exist non-negative numbers (v, b) such
that for any j € N,

sup E(kzg,o,i) (e)‘(X-/_]E(X-/ | Fj=1)) |.7-'j_1) < e”z)‘z/z, for all |A| < 1/b.
zeRY !

Therefore, by [38, Theorem 2.3], there exist positive constants c3, c4 such that for any
zeRY!withz, > Aandany s > (l%+%>22,

*

2003 (I > 02,11))

L]
= P04 Z Xj>AN—=2, "> o,
=1
[7] ;
<P 0.5 Z(Xj —EXj | Fj—1) > A — 2o+ pilt], T > oo, 4]
=1
[7] }
<P, 0.5 Z(Xj —EXj | Fj—1) > A+ pyt/4
=1
< cze” (7.20)
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In the above display the first inequality is from (7.19) while the second inequality is
from the facts that due to our condition on z; and ¢ we have that p.(r — 1) > 2z and
t > 2, which says that

_ 1 _ 1 1 _ 1 1
milt] — 72 = 5 Mo [t] —Z2+ 5 Mo 7] = E(M* 1] —2z22) + Mt Z
Now, Proposition 7.6 and the strong Markov property imply that there exists A > 1 such
that
sup By, g5 (€7271) = A, 1> 0.

zeRy ™

Hence, taking @ > 0 such that ¢”2¢ > A, we obtain positive constants c’3, cﬁl such that
for any ¢ > 0,
* ro—cht
sup P(Zg,o,i) (GZI*LtJ > at) < cze 4t (7.21)

2eRY !

Using (7.20) and (7.21), we conclude that there exist positive constants cs, cg such that
forany z € RY ! withz, > A andany 7 > (/% + %) 22,

P?Zg,o,i)(rl > at) < ]P)>(k2g,0,i) ([‘/ > 09y, LU) + sup ]P)>(k2g,0,i) (Gzl*l_lj > at) < Cse_cﬁt,
2eRY !
The result follows upon taking ¢ = ¢s, ¥7 = ¢g and ¢’ = a (Ml* + %) o

7.7. Completing the proof of exponential ergodicity. In this section, we will complete
the proof of Theorem 2.5. We begin with the following proposition the proof of which
will be completed in Sect. 8.4. Fix A > Ag where Ay is as in Proposition 7.11. Define

C*={(v,2) eRxRY :v=2g, 21 =0, 7o < A}. (7.22)
Let te+(1) = inf{t > 1 : (V(¢), Z(t)) € C*}.

Proposition 7.16.

1. There exists n > 0 such that
Vo(v,z) = E?v,z)e”rC*(l) <00, forall (v,z) € R x Riv.
Furthermore,

sup Vo(v, 7)) =M < o0.
(v,2)eC*

2. There exists a non-zero measure v on B(R x Riv) and r1 € (0, 00) such that, for all
(v,z) € C*,

P ((v,z), A) > v(A) forall A € BR x Riv).



The Inert Drift Atlas Model

Part (2) of the above proposition shows that, in the terminology of Down, Meyn
and Tweedie (cf. [18, Section 3], the set C* is v—petite (or small) for the Markov
family {P,2)}, ) erx RY- Together with part (1) of the proposition, this shows that the
conditions of [18, Theorem 6.2] are satisfied and consequently, the function V{y defined
as

1 1.
Vo, z) =1 — —+—-Vy(v,2), (v,2) e RxRY, (7.23)
n n

satisfies the drift condition (Dr) in [18, Section 5]. We will now like to apply [18,
Theorem 5.2] to conclude the proof of exponential ergodicity. For this we show in the
next two results that the Markov process {P(y.2)}(, ,)er gy 18 itrreducible and aperiodic.

Recall the set D from Theorem 4.1.

Proposition 7.17. Define the measure ¥ on B(R x Riv) as y(A) = AMAND), A €
B(R x Riv). Then the Markov process {P(v,l)}(v,z)eRxRﬁ’ is Y-irreducible.

Proof. Fix (v,z) € R x RY. Let B € B(R x RY) be such that A\(B N D) > 0. To
establish ¥ -irreducibility it suffices to show

o0
El'l,z)/() Lv@).zayep)dt > 0.

From Theorem 4.1, foreach t € [¢, ¢*] and (v/,2') € R = (0, %) x (0, 00) X Riv_l,
P'((v',Z), B) > K z7»AN(B N D).

Also, from Lemma 5.1, for any (v,z) € R x Rfrv, there exists ro = ro(v, z) € N such
that

P((v, z), R) > 0. (7.24)

Observe that for 7 € [rg + ¢, ro + ¢*],

P'((v,z), B) = / i POV, 7)), BYdP (v, 7), dv', dz') > A(B N D)
RxRY
/ Ky 2)dP((v,2), dV', dz)).
R

The latter expression is strictly positive in view of (7.24), the positivity of K, 4 for
(v,z) € R and our assumption concerning B. Finally note that

00 00 ro+g*
E?v,z)f 1{(V(t),Z(t))eB}dt = / IF”((v, z), B)dt > / IP”((v, z), B)dt > 0.
0 0 ro+¢
The result follows. O

Proposition 7.18. The Markov process {IP(, z }(U 2)eRxRY is aperiodic.
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Proof. Recall the set C and the constant K 4 from Theorem 4.1 and let K = K¢.Define

the measure v on B(R x Riv) as v(B) = KA(B N D), for B € B(R x Riv). From
Theorem 4.1 it follows that the set C in the statement of the theorem is v-small. Hence,
for aperiodicity, it suffices to show that, for some 7y > 0

P'((v,z),C) >0, foralls > 1y, and (v, z) € C. (7.25)

Since A(C N D) > 0, we have that (7.25) holds for ¢ € [¢, ¢*] and all (v, z) € C. Let
8 = ¢* — ¢, We now claim that, for all m € N,

P'((v,z),C) >0, forallt e [mc,mc+mb]and (v,z) € C.

Indeed, clearly the result is true with m = 1, and if the result is true with m = k then it
is also true form = k + 1 since any t € [(k+ 1)g, (k+ 1)¢ + (k + 1)3] can be written as
t + 1ty with t) € [kg, k¢ +ké]and 1, € [g, ¢ + 6], and

P'((v, z), C) z/ P ((v,2), (dD, dZ)) P2 ((§, %), C) > O forall (v,z) € C.
C

Now choose kg € N such that kg6 > ¢. Then P ((v, z), C) > 0 for all (v,z) € C and
t € ke, (k+ 1)¢] for all k > ko. We conclude that P'((v, z), C) > O forall (v,z) € C
and for all t > kg¢. The result follows. O

We can now complete the proof of exponential ergodicity.

Proof of Theorem 2.5 As noted previously, Proposition 7.16 shows that the conditions
of [18, Theorem 6.2] are satisfied and consequently, the function Vy defined in (7.23)
satisfies the drift condition (D7) in [18, Section 5]. Also from Propositions 7.17 and
7.18 the Markov process is y-irreducible and aperiodic. The result is now immediate
from [18, Theorem 5.2].

8. Proofs of Some Results from Sect. 7

In this section we present proofs of some technical results stated without proof in Sect. 7.

8.1. Proofs of lemmas for Proposition 7.2. In this section we provide the proofs of
Lemmas 7.3, 7.4, and 7.5 stated in Sect. 7.3 that were used in the proof of Proposition
7.2.

8.1.1. Proof of Lemma 7.3 Fix z € RY. All inequalities in the proof will be a.s. under
szo,z)' Using (7.1), we have that for t < T,/02n),

Li(t) < i Wy BE (1) + S
= ,iDj .
i=1 2N

It can be verified that

Wii=N, and Wy =2N —2(i—1), i=2,...,N.
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Using this and since V(#) = gt — L1 (1), it follows that

N N

Wi 8t .

LOES Zl WLiB] (1) + (1 = o)t = — 21 WLiB () + = = Q).
1= 1=

Define 6, /@N) = = inf{t > 0: Q(¢t) = g/(2N)}. Then the above inequality implies that

ag /2N) = 'Cg /N)- By a standard concentration bound (see (1.4)) it follows that there

are o1, 02 € (0, co) such that

N *
Efy e’ Tt MiB®) < 0,002 forall s > 0 and 6 € (0, 00).

Then, for an arbitrary 6, 8 > 0, we have
. > . In(s)
Ez‘o’z)eﬁfg/(ZN) = /0 ]Py(k(),z) (‘L'g/(ZN) > T) ds
© . In(s)
=< /O Plo.2 (Gg/n) > 5w

S In(s)
5/0 Plon (@) < 55 ds

gln(s) 8
1+/1 P55~ <—+ZW1,

o0 g In(s)
| 4 f8/@N) / (IO B SO WLiB ()
1

IA

IA

IA

o
1+Q1€9g/(2N)/ 508128 6%02/B g
1

Now take
0 é = %g.
Then
—0g/2B +0%02/B = 2.
The result follows. O

8.1.2. Proof of Lemma 7.4 We will first show that

inf . l]P”(kv’z)(ﬁ;g < Tg) = p1 > 0. 8.1)
(v, z)el JAg]x[1,00) xRy

Note that, for # > 0, on the set {74, > t}, for (v,2) € [, 4g] x R , under P¥

4N (v,z)°

1 1
Li(t) < sup (—z1 — Bi(s) + Lz(s) +4gs)" < sup (—z; — Bi(s) +4gs)* + ELZ(t)

O<s=<t 0<s<t

_1)

s, WV
< sup (—z1 — Bi(s) +4gs)" +

0<s<t

Li(t) + N?(t),
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where the last inequality uses (7.2). Thus

Li(t) < N sup (—z1 — Bi(s) +4gs)" + Y (1). (8.2)

0<s<t
Consider the set A; € F* defined as
Al = {—Bj(s)+4gs — 1 <Oforall s € [0,8] and Y (8) < g/8N}.
Note that

BP0 2510
v,Z xR

Also, for (v, z) € [%, 4g] x [1, 00) x Rf_l, under IP’E"U 2> ON A,

Li(8ATa) <N sup (—z1 — Bi(s) +4gs)"+Y(8) = Y(8) < g/8N < 4g.

0<s<8A1i4g
So, in particular,
V(8 ATag) = V(Tag) iz, <8) + V() iz, 8y = 4811z, <8) + B8 — 48) (3, -8) = 48

and consequently f4g < 8. Also, under the same conditions, for s < 8,

~ ~ ~ g 8
Vs A >v—Li(s A >v—Li(8A —_ =
(sAT4e) >V 15 AT4g) >V 18 A Tgg) > aN &N
Thus we have
Pl = inf P?v,z)(f“g < Tg) > inf NPTv,z)(Al) =p]>0.

(.)€l 7 4g1x[1,00) xRY ™! (v,2)eRXR}

This proves (8.1).
Let vi = inf{r > 0 : Z1(t) > 1}. In order to complete the proof, from the strong
Markov property, it suffices to show that

inf NP?U’Z)(W A f4g < fg/4N) = p> > 0. (8.3)
(.2)el 5% . 28] xRE

Fix § € (0, 1) such that

2gNS+ LgNs? < 5
ENOT 8RO = T6N
Define A, € F* as
Ay = (B1(8) > 1 +4gNo+ gN& + 5 F(8)+ NBI(6) < —5—).
= 16N = 16N
It is easy to check that
inf Py, 4 (A2) = p5 > 0.

(v.z)el 5. 28] xRY
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Furthermore, as in (8.2), for (v, z) € [2N’ gl x RN under P¥

(U Z)’ on A27

B

_ - 1

L1(8) < NBY(§)+7(8) + N/ V*(s)ds < NB(8) + Y(8) + 2gN& + EgNaz.
0

Also, under the same conditions, from (7.2),

2. } 2
Lo() < 2L1(8) + . V(8) < 2NB{(5) +27(8) +4gN5 + gN&% + 576,

Thus

1 8
Z1(0) =z1+B1(6) +L1(5) — ELz(S) - /(; V(s)ds

3 _ 1
> 1+4gNs+gNs> + % — NBj(8) — Y (8) —2gN§ — 5gN32

11?(3) 205 — L g5?
N g0 58
> 1.

Again, under the same conditions, for 0 < s < 4,

1
V(s) > 3>——NBa Y(8) —2gNS§ — —gN§?
(S)_2N Li(3) 18 —Y(6) —2¢g »8
1
zi_i_zgm__gmz_i_i_i>i
2N 16N 2 2N 16N 16N 4N
It then follows
P2 = inf P2 (V1 A Tag < Tg/an)
(v.2)el 5 28] xRY
> 1nf NP?u,z)(‘)l < Tg/4N)
(v, z)e[ ,2g1xRY
> 1nf P, 4 (A2) = p5 > 0.

(v.z)el . 28] xRY

This proves (8.3) and completes the proof of the lemma.

m}

8.1.3. Proof of Lemma 7.5 By the strong Markov property, it suffices to show that for

some m € N

. " A A
(v z)E[})nIg]XRN P(v’z) (tag A o < m) > 0.

We will prove (8.4) with m = 5. We consider two cases:
Case 1: z; > 1. Define A; € F* as

Al ={—Bi(s)+4gs — 1 <0forall0<s <5, Y(5) < g}.
It is easily seen that

(v‘z)e[z)lzljg]xRN (v (A1) =K1 > 0.

8.4)
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From (7.2) and (8.2) it follows that, for (v, z) € [0, 4g]x[1, 00) x R¥ ™!, under PY,
onAr N {‘f4g A To > 5},

L1(5) < Nsup(—1+4gs — Bi(s)T+Y(5) < g,

s<5
and consequently
V(5) =58 —Li(5) > 58 —g =4g.

This says that A N {T4g A To > 5} is IE”’("U’Z) trivial and so

inf PG ntosS) = inf P (AD) =k > 0.
(v,2)€[0,4g]1x[1,00) xR} (v,2)€[0,4g]xRY

This proves (8.4) when z1 > 1.
Case 2: 71 < 1. Define Ay € F* as

Ay ={Bi1(5) < —1—-9g}.
Clearly

inf P, (A2) =k > 0.
(v,2)€[0,4g] xR

Also, for (v, z) € [0,4g]x[0, 1) x RY ™!, under P* . on Ay N {44 A 7o > 5},

(v,2)°

Li(5) = sup (=z1+ %LZ(S) +/ V(wdu — Bi(s))" = sup (=1 = Bi(s))" > 9g
0

0<s<5 0<s<5
and consequently
V() <4g+5g—Li(5) <O.

This shows that Ay N {74 A Tp > 5} is ]P”(“v 2 trivial and so

inf . P?v,z)(f4g ATy <5) > inf . ]P’fv’z)(Az) =k > 0.
(v,2)€[0,4g]x[0,1) xRy (v,2)€[0,4g]x Ry
This completes the proof of (8.4) when z; < 1. The result follows. O

8.2. Proofs of lemmas for Proposition 7.6. In this section we provide the proofs of
Lemmas 7.7, 7.8, and 7.9 stated in Sect. 7.4 that were used in the proof of Proposition
7.6.
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8.2.1. Proof of Lemma 7.7 Fix 2 € RVN~!. All inequalities in this proof are P .05
Observe that4g = V(01) = go1 — L1(o1) +2g, sothat Li(o1) = go1 — 2g. Then

I o
Z1(01) = Bi(o) ~ 5 La(on) + Lio1) —/0 V(s)ds

go.2 al
< sup (BI(s) +go1 — 500~ 20+ / Li(s)ds
0

0<s<o}

< sup (Bi(s)) + Li(o1)oy

0<s<o

< sup (Bi(s)) +got.

0<s<o0}

Thus, for g > 0,

PZIEN'? . BuBy<i<oy (BI()+go))!/?

< PUPozszoy Bi ()48 /201 < — 2B(UPo<so, Bis)'? | %eZﬁﬁal7

(8.5)

| =

where in the final step we use Young’s inequality. We now estimate each of the terms in
(8.5). We begin by recalling that from Proposition 7.2, we can find 8y € (0, 1/2) such
that

sup ]E?zg,o,i)eﬂoal = c(By) < oo.
2eRY !

Hence, taking 8 € (0, Bo/(2,/g)], the second term in (8.5) is bounded as

sup IEEg’Oj)emﬁgl < c(Bo).

zeRY ™
With 8 € (0, Bo] for the first term in (8.5), we have,

E* 2B(suPozs<oy BION'? _ 28 4 2B Uy <o

Bi(s)
(24,0,2)¢ P supy o, Bi(9)>1)

*
(25.0,2) ¢

o
2 2 su B1(s)
<e® 4} Ehpome” T MOz cha)
k=0

oo
2 2 B
= P4 Y By e B O o, .
k=0
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Using Cauchy-Schwarz inequality,

* 2B(sUPg<y<o, B1(s)/?
El26.0.5¢ ==

o
<+ Z(Ezﬁzg,o,i) et Pkt Bl(s))l/z(PTZg,o,i) (o1 = k)2
k=0

oo
2
<P vy MEED®Y 01 = k)"
k=0

o0
)
< & 4 gie(p) PSR 3 SO = ¢ () < o0, (8.6)
k=0

where the finiteness follows on choosing B € (0, 8] for sufficiently small 81 € (0, Bo].
The second line above follows from a standard concentration inequality (see (1.4)) and
the last line from Markov’s inequality. Thus for any g € (0, 8],

2B (Sup(]gvgcq B (S))l/z

sup E?zg,o,i) e =c1(B) < oo.
ZeRN !
The result now follows on setting y3 = min{Bo/(2,/2), B1}. O

8.2.2. Proof of Lemma 7.8 Let (z1,2) € (0, 00) x RY~!. All inequalities of random

quantities in this proof are IP’Z;g 2 i>—almost sure. For ¢t < ‘L'OZ ' we have

1 t
Zi(t) =21+ B(1) — ELz(t) —/O V(s)ds

1 t
=z1+Bi(t) - S L) - /0 (g5 +4g)ds

g1’ .
< Z1+ sup B](S)—TZH(I)

0<s<t

Consequently, Z; (¢) must hit zero before H (¢), and so r(f{ =inf{r >0: H(t) =0} >
Z .
75 . Thus, for arbitrary y > 0,

* Z1 ln(s)
»(T >

J

/Oo P* i)(r(f’ > In(s) )ds
1 14

J

Z)
* YT _
Blagpe’™ =1+

)ds

A
+

o In(s)
(4g,z.,2)(H(

A
+

) > 0)ds.
Y
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Thus, using Markov’s inequality, for 6 > 0,

7 o' (h‘ﬂ 2
Y
Blyg e’ ™ = 1+/1 Plag 0@+ sup Bi(s) > — )ds
05145%
© In(s)
<i+ [ P @ sup Bion'2 > 2 s
| (4g,21,2) 1() 2y
0<u<n) n(s
1/2 O(sup, _ _ings) Bi(s)/?
R

g92
<1+Q]e / \/_ 2

where in the last line we have used a standard concentration inequality (see (1.4)). Now
take y4 = g/(1607) and for fixed y € (0, y4], take 0 = 4«/5)//@. Then it follows that

0 02
_\/g_+g2_§_2
2y 14
Thus

7, 12
sup Ef, e’ < 140V,

2eRY 1

The result follows. O

8.2.3. Proof of Lemma 7.9 Letv € [2g,00), Z € Riv_l, and y > 0. All inequalities of
random quantities in this proof are IP’( 0.3) -almost sure. For t < 754, V(¢) > 2g, so

t
0<Zi(1) = Bi1(t) + L1(1) — %Lz(t) —/0 V(s)ds < sup Bi(s)+Ly(r) —2g1,

0<s<t

from which it follows that —L () < SUpg<s<; Bi (s) — 2gt. Hence,

V(t)=gt —Li(t)+v < sup Bi(s) —gt+v=0().

0<s<t

From this inequality we see that ti, = inf{t > 0 : Q(t) = 2g} satisfies 12% > Tog.

Then, for any 6 > 0,

o0

oo . 1 1
Ef, 00 2 = /O P, 0.5 (P2g = ;ln(s))ds < /0 Pl 05 (T = ;ln(s))ds

o 1
<1 +/1 (U Oz)(Q(y In(s)) > 2g)ds.
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Thus by Markov’s inequality,

0 1
* yi2e —2g0 * 00 In(s))
wopne = l+e /1 E(v’o,i)e v ds
0 0 . 6 sup 1 B (1)
_ 0(v—2¢) — & In(s) o 0<t<L In(s)
=1l+e /1 e v E(u,o,i)e v ds
80, 0260°
<

o0
1+Q189(v728)/ s77+7ds,
1
where we have once again used (1.4). Now let y5 = gz/(SQz) and for fixed y € (0, ys),

take 6 = 4y /g. Then, for any y € (0, y5),

0 62
_80 e
Y 12

<-2.

It then follows, for y € (0, ys),

* y 4y (v—2¢8)/g
sup E(u,o,i)e ¢ <1+p1€ .
2eRN!

The result follows. |

8.3. Proofs of lemmas for Proposition 7.11. In this section we provide the proofs of
Lemmas 7.12 and 7.13 stated in Sect. 7.5 that were used in the proof of Proposition
7.11.

8.3.1. Proof of Lemma 7.12 Fix (2g,0,2) € R x RY. Since M(t) = Zlsz Bi(t) —
(N — 1)B(t), from Proposition 7.6 (which implies E?‘Zg 0,202 < 00 for any / € N)
and optional sampling theorem (cf. [28, Section 1.3.C]), we have from Lemma 7.10, for

leN,

E?Zg,o,i)(ZZ(o—Zl) —22)

N o (N — k) N
<E04 (M(Gzl) + ;Yk (o21) — r Li(oa) + ﬂLkH(UZZ)
N (N —k)
= 7 Ees0a vy (o) — % Eagon L1low)
N
+ ﬁE?zg,o,i) L1 (o). (8.7)

Using standard martingale maximal inequalities we have

12
!
Ergg,()’i)B;k(O—Zl) < Co,/Ez‘zg,o,i)fm =cp (Z E?Zg,o,i) (02i — UZ(i—l))) < ey,

i=1

where ¢, ¢, € (0, 00) are independent of Z and /, and the last inequality once more uses
Proposition 7.6. Thus, for some c; € (0, 00), forallk =1,...,N,l € N,

sup By 0¥ (02) < 1l (8.8)
1

2eRY
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Next note that

[
Efsg0 L1002 = ) B0 (L1(o2) = Lilox—2) 21 inf Efy, g5(L1(02)
zeRY

i=1

> gl inf Pl ;5 (Li(02) > g)
zeRY

=gl iﬂngil Phg.0(802 = V(02) +2¢ > g)
zeRy

=gl ieiIéllg’l Pzﬁzg,()yi) (o2 >1)=z¢gl, (8.9
where the last equality follows on observing that, under ]P”(“zg 0.4 02 > 01 > 1 as.
The result follows from (8.7), (8.8) and (8.9). O
8.3.2. Proof of Lemma 7.13 Fix A > 0 and (2g,0,%2) € R x RY such thatZ € Sa. All
inequalities will be a.s. under P’(kzg 0.3)" Let k = k(A) satisfy (7.16). Define

Oy = inf{t > 0 : Zy4+1(t) = 0}.

Then for t < 6,
1
Zix1(t) = Zks1 + Biy1 (1) — B (1) — E(Lk(t) + Li42(1))

A 1
= 5+ B () = Bu(t) = 5 (Lit) + Lica 1), (8.10)

To bound IEZ‘Zg 0 2)LkJrl((ry), we will obtain an upper bound on the probability that

Ly+1(021) > 0, or equivalently, the probability that Z(-) hits zero before time o7y,
using (8.10). Next, we will estimate E?Zg, 0.3) (Li+1(02)?). These two will be combined
using a Cauchy-Schwarz inequality to obtain an upper bound for E?Zg,o,i) Lis1(o2).

We will first obtain an upper bound for Li(¢) fork < N and t < 6. When 3 < k <
N — 1, from (7.4), for t < 6,

1
Li(1) < Bi(1) + ELk—l(t)

1
Li(t) < B/ () + E(Li—l(l) +Lis1(1), 3<i<k-—1if k>4,

Lo(t) < L1(I)+B;(t)+%L3(t). (8.11)
Thus,

k—1 |

Z(i — D(Li() — E(Lm(t) +Li—1(1)))

i=3

1 1
+(La(r) = L1(1) — §L3(l)) + (k= D(Li(r) — ELk—l(t))

k
<Y G- DB =Y,

i=2
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where the first sum is taken to be zero if k = 3. The left side in the above inequality
equals %Lk(t) — L1(¢) and so we have, whenever N > k > 3,1 < 6,

W) = 2L+ Y 0. 8.12)
Note that the above inequality holds trivially if k = 1, and by (8.11) if k = 2, and so in
fact the above holds under P’("zg 0.3)’ with Z € Sy, for k satisfying (7.16) and ¢ < 6y .

We now obtain a similar upper bound on L4 (¢) when k < N and ¢ < 6. From
(7.4), whenk < N — 1, fort < 6y,

N-1

1
(N —k = D (Lgs2(t) — —Lk+3(t)) + Z (N —i)(Liw1 (1) — —(L (1) + Liw2(1)))
i=k+2

< Z (N —i)B,, (1) = Y2 (0).

i=k+1

The left side equals NT*]‘LkJrz(t) and so we have, whenk < N — 1,
2 L0
Liwn(t) < mYk (), forallz < 6. (8.13)

Note that when &k = N — 1 the inequality is trivially true. Using (8.12) and (8.13) in

(8.10), we have for r < 9k, under P, 5

N
A 2 2 2

Zir1 (1) > — — BX(t) — ZLi(t) — 2P Y(3)t

k+1()_N2 ;:1 S (1) kl() kk() N & ()

4
MO Ll(t),

where Y (1) = Y0 BX(0) + 272 (1) + 2 Y7 (1). Note that if Ly1(027) > 0, then
info<s<gy Zi+1(s) = 0, which in turn implies that 6; € [0, o2;] and so from the above
display

2 v @0+ 21100 < VP o) + 2 Li(o).
N2_ k k

As a consequence,

P 0 (L @2) > 0) < Py o (- < V¥ (03 + Ll(Uzl))

N2 -

P* <y® P <2
= (zgyo,i)(m = (o21)) + (2goz)(2N2 =% 1(021)).
(8.14)

Consider now the first term on the right side. Then, for 7 > 1,
4
Pl 05 (53 N2 < ¥P(ow) <Py 05 (0 >T) +IP( <y )
2
</ sup IP(ngz)(az > T/l)+cle 2A%/T
ze]R -

< c3le™ 4T/ 4 e a®/T (8.15)
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where ¢; € (0, 00) are constants that do not depend on A orz € Sa, the second inequality
uses the strong Markov property and a standard concentration estimate (see (1.4)) and
the last inequality is a consequence of Proposition 7.6. Now consider the second term
on the right side of (8.14). For T > 1,

2
—Li(oy)) <P

(2g0z>(2Nz = Ly(T))

(20.0.5) (021 > T)+P(2g01)(2N2 5 X

Ak
< c3le=T/! + P 0 L1(T) = W)' (8.16)

Note that under ]P’(2 0.3)

sup V(s) <2g+gT.

0<s<T

Thus, using (7.2) and (7.3), forany T > 1,

Li(T)

A

< %LZ(T) + Qg+ gT)T + BE(T)

W=D
- N

Li(T)+ %Y(T) +(2g+gT)T + B{(T)

and thus, with ¥ (T) = Y(T) + NB}(T) and ¢5 = 3gN
Li(T) < Y(T)+ (g +gT)TN + NB}(T)<Y(T) +csT?. (8.17)

Take T = T(A) = ﬁ,/% and observe that csT? < Ak/(8N?) for all k €

{1,..., N}. Choose A > 0 such that T(A1) > 1. Then, it follows by a concentration
estimate that, for A > Aj,

Ak Ak )
Plogom (L1 2 535) S Pl 0 (F (1) 2 505 — esT7)

< JP’* (Y(T) > sT?) < cge~ 1T (8.18)

(2,0,2)
Then, using (8.18), (8.16) and (8.15) in (8.14), we obtain constants c’z, c’7, cg,c9g >0
such that for all A > Ay,

7 A3)2 A2
Py 0.3 (Lis1(021) > 0) < 2¢3le™ VAL o1 om0y pgemrA

< 2031V 4 g2 (8.19)

We will now obtain an upper bound for E(y4 0,7)(Lk+1 (021)%). From (7.3) we have
that, form > 2 and r > 0,

N-2

(Ln(r) — —LN 1(1) + Z(N — D(Ljw1(0) = —(L,+2(t) +Lj(0))

j=m

N—1
< ) (N=DB, 0 =10,
j=m
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The left side above equals N+”+1Lm+1 ) — Nz;mLm (t) and so

N—-—m+1
2
Dividing by (N — m)(N — m + 1)/2 throughout, we have

Lot (1) = —Lu(6) < YO 1),

Lm+l(t) -

—  Lat) < YO, 2<m<N—1.
N—m Nomii O S NN —meny i O 2=ms

Summing over m from 2 to k, the above yields

L L) < ‘ 2v, (1) =y
N —k ! N-17 —nz_z(zv—m)(zv—mn)_ ke A
and thus

Lin (1) = Z—= La() + (N = )Y, (0).

From (7.13) (recall it holds for any value of £ > 1) we have

Lisi(t) < x:'j (?L (1) + —Y(”(r) + Lk+1(r)) +(N =Y @),
Thus
Nk —1) 20k — 1)(N — k) 2N —k) ) L
KN = )Lk+1(t) < AN D Li() + KN — )Y )+ (N —k)Y, (@)
and consequently, when k > 1,
2N — k) XN —k) oy, k(N —K)N —=1)_
Lin(0) = === Li@) + Ga— i 0+ =m0
= Z(NT_’C)LW) +v o), (8.20)

where Yk(7) (1) = %V(a, ]1‘; Y, 0 () + %Yk@ (7). Recalling the inequality (7.2) we

see that (8.20) also holds with k = 1 and ¥\” (1) = 27 (1).
Using this, we obtain that

8(N —k)*

E(zg 0,2) (Li+1 (021) ) < 2E(2g 0 z)(Yk(7) (021))2 N—Ez}g 0.%) 1((721)
16(N — k)2
< 2E>(k2g 0.%) (Y(7) (0*21))2 + T (2g 0.,2) (Y(O'zl))
16(N k)2c? .
N2 E?gg 0,2) (o21)™.

where the last line is from (8.17). Thus, using the above bound, the strong Markov
property, and Proposition 7.6, there is a b1 € (0, oo) such that, for all [ € N, Z € Sa,
and k satisfying (7.16),

E?Zg,o,i)(LkH(Uzl)z) < bl°.
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Applying Cauchy-Schwarz inequality and using (8.19), we obtain positive constants
Dy, D>, D3 such that for all A > Ay,

Elg0 bt ©02) = (Efzg,o,i)LkH(azz)z)l/z(P?zg,o,i)(Lk+1(021) > 0)'/?
=< b{/215/2(203le—64vﬂ/l + Cge_C9A3/2)1/2
= D2 (e P2VBIL 4 o= D32y

as desired. O

8.4. Proof of Proposition 7.16. In this section we give the proof of Proposition 7.16.
Proofrelies on five preliminary lemmas which extend some estimates derived in Sects. 7.3
and 7.4 to more general starting configurations. The first four are required to verify part
(1) of the proposition and the last one is used to check part (2). Proof of the proposition
is at the end of the section. Recall the set C* from (7.22) and stopping times o1, o2 from
Sect. 7.4. Recall I from (7.18).

Lemma 8.1. There exists a pg > 0 and by, by > 0 such that, for all p € (0, po), there
is a b3(p) € (0, 00) such that for any (v,z) € R x Riv,

]E*

(v’z)epf‘ < bs (,O)Eblp(|U|+ZI+EZ)E>€U,Z)€b2le )

Proof. Define the stopping time
o* =inf{t > op : (V(2),Z(t)) € C*}.

From Proposition 7.15, there exist positive constants dg, ¢’ such that for any y €
(0, y7/2), where y7 is as in that lemma,

* yI v s N—1
E(zg,o,i)e < dpe , Z2eRI .

Fix p, > 0 such that p; < min{y7, ys, y4} and p((1+«5g) < ya, where ys and k) are as
in Lemma 7.9 and y;4 is as in Lemma 7.8. Then, for (v, z) € R x Riv and p € (0, p6/2),

B S B = Bl Bl [0 1 75, ]] = do, o072

12 - 12
<do (B, e7) " (Ef,e202) " s21)

Recall the stopping time 7| > o7 defined in (7.7). Proceeding as in the proof of Propo-
sition 7.6 (see (7.8)), withd| = 1 + K{eSP"ég and dy = (1 +«5g), using Lemmas 7.8 and
7.9,

IE:zﬂv,z)ezpa2 = IE?v,z) |:1'71<02]E>(kv,z) I:eZpaz | ‘7::;1]] + IEy(kv,z)ezm71
< KiE?v’z)eZP’(év('7‘)+2’”“ +E’{v’z)e2p’7‘
< dlE’("U’z)ez"dm
_ dlE?U,z) I:eZPdZUI]EZ“U’Z) [62,0612(711—01) | j:;l]]

12
< G diE, ) [eZpdzm p2pd2i2Z1(01) ]

1/2 1/2
< x1d; (ETv,z)e“deZZl(gl)l/z) (]ETU’Z)eélpdza]) , (8.22)
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where we used Lemma 7.9 for the second inequality, V(11) < 4g + gn; in the third
inequality, and Lemma 7.8 in the penultimate inequality (and the observation that
pod2 < y4). Now we estimate exponential moments of Z 1(o1)'/2. Note that, under
P?v,z)’ Li(o1) = goy +v — 4g, from which it follows that

Zi(01) < sup Bi(s)+2z1 +go? +goy +2[v|oy +|v]
0<s<oy

and so, using /a + b < /a + Vb and Vab <(a+b)/2fora,b >0,

1/2
1
21(01)1/2 < ( sup Bl(s)> + (@+3/2)01 + E(Zl +3jv|+g+1).

0<s=<o

Using this bound in (8.22) and Young’s inequality, we obtain a finite positive constant
dsz not depending on v, z, p such that

E?v 1)62002 < d362pd2K2(Z1+3|v\)

172
* 8pdaic (SUP0<S<¢1 1-’31(8))1/2 * 8pdaka(\/g+3/2)0 1/2
(v,2)€ T + (E(U,Z)e )

12
(Efv,z)e“/’dzal) . (8.23)

The expectation involving supy ., Bi(s) above is bounded as in the proof of Lemma
7.7 (see (8.6)) to obtain py, da, ds € (0, o0) suchthatdsp < da,andforany p € (0, p(
and (v, z) eRxRi\’,

]E*

[o/e]
! )egpdzm(suposxsal Bi(s))'/? < Bpdaka d4ed5p2 (Ezk )e4pd201)1/2 Zedspzk—Zpdzk
v,z = v,z
k=0

12
< 082 4 dg(p) (B, et ) (8.24)

where dg(p) = d4ed5p2 (1 — e=P42)~1 Using this bound in (8.23), we conclude that for
every 0 < p < min{ p(/) /2, ,0(/)/ }, there exists a finite positive constant d7(p) satisfying

E’(“U’Z)ezpf’z < eZPd2K2(21+3|U|)d7 (p)Ez(v,z)edépal ’ (8.25)

where dﬁ = max{4d,, Sdzxg(ﬁf 3/2)}.
Now, we estimate Ef, z)ezc/"ZZ("z). From (7.11) and (7.2), Z»(t) < 7o + M(t) +
Y(1),t > 0. Hence, writing ¥ (t) = M (t) + Y (1),
E?v,z) P YAIC) < e2c’p22]E>(kv,Z) eZc/,of(Uz).
1"

Proceeding exactly as in (8.24), we obtain p;" > 0 such that forevery p € (0, ,06/ ", there
exists a dg(p) € (0, 0o) such that

s s ad , S \1/2
E?v,z)eh pY(@2) ~ Z (anz)e% P SUPQ<s<k+1 Y(S)) (Prv,z) (02 > k))1/2
k=0

1/2
< ds(p) (Ef, ™)
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which, along with (8.25), gives
;5 ;- 1/2 ,
E?v’z)e% pZ>(02) < eZc /Jzzdg (0) (E?v,z)ezp@) < eZc pzzepdzxz(z1+3|v\)d8 (p)d7 (,0)1/2

, 12
(E?U,z)ed2”“‘> . (8.26)

ua

The result, with pg = min pO /2, ,00 Py}, now follows upon using (8.25) and (8.26) in
(8.21). O

Lemma 8.2. Let O = 744 A To. Then there is a B1 > 0 and D1 > 0 such that, for all
(v,z) e Rx RY,
E(v Z)e S Dlelgl(‘vh’zl)'

Proof. Fix (v,z) € R x Rfrv . We consider three cases.
Case 1: v € [0, 4¢]. In this case the result is immediate from Lemma 7.5.
Case 2: v > 4g. In this case, for all t <, V(¢) > 4g. Thus, for such ¢, we have

1 t
Z1(t)y=z1+B1(t)+L{(t) — ELz(t) —/(; V(s)ds

<z1+ sup Bi(s)+ Li(t) —4gt.

0<s<t

Consequently, —L1(¢) < z1 + SUP( <5< B1(s) — 4gt. Thus we have, forr < 19,

V() =gt —Li(t)+v <z1+ sup Bi(s) —3gt+v = Q1(t).

0<s<t

Letting 7,2' = inf{r > 0 : 0 (t) = 4g}, we have 7,2 > 9. Thus, for 1,6 > 0,
9 o0
Efvyz)eﬂl < 1+/; (v z)(Ql(ﬂ In(s)) > 4g)ds

< 14t / Ef, ¢ Q10 M) g
1

01 S“PoSgﬁln(.v) By (1)

o0
1+ e—4g9/31+9/31(11+v)/ e ln(S)E?v,Z)e @

1
o
< 1+Qle—4g0ﬁ1+9ﬁl(21+v)/ e—39gln(s)+Q202ﬁ1 ]n(s)ds
1

1

where the last line uses the estimate (1.4). Taking # = g~ ! and B = g2/02, we now

see that
E(v z)e S 1+ Qle*4g9ﬂ1+9ﬂ1(11+v)

which completes the proof for Case 2.
Case 3: v < 0. In this case, for r < ¢}, we have V (¢) < 0. Thus for such ¢, from (7.3)
and (7.2),

Ly(t) = sup (—z1 — Bi(s) + %Lz(s) +/0 V(u)du)t < By (1) + %L2(t) < B{ (1)

0<s<t

+

_ 1L (z)+lY(z)
1 N .
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Consequently,
Li(t) < NBf(H)+Y(t)
and so
V(t)=gt —Li(t)+v>gt — NBf(t) — Y () +v = Q2(2).

Letting, 2 = inf{t > 0: Q»(¢t) = 0}, we then have, 22 > 9. Thus, for 0, B1 >0,
0 0

pro > In(s)
]E(U Z)e S 1 + 1 (v z)(Qz( ﬂ ) < O) dS
> 1
:1+/ Plon(&—— n(s) +v < NBf I, , y 6
1 ,3 ,3 ’3
o * ln(i) ln(s)
<1 40P f sy, SIVBICET R 4
1

o

_ 2

< 1+ngeﬂ1\v|/ 508 502B10% g
1

where in the last line we have used the estimate (1.4). Take @ = 4g~ ! and 81 = g2/(802),
then

E. )eﬂ“9 < 1+g1P1lV
This completes the proof for Case 3 and thus the result follows. O
Lemma 8.3. There is a B2 > 0 and k1, k» > 0 such that, for all (v,z) € R x RY,

E?v,z) P2 < K1eK2(‘v|+Z1).
Proof. From Proposition 7.2, with y as in that proposition,

sup ]E

e’ = gy < 0. (8.27)
zeRY W

Also, from Lemma 7.3, with 8 as in that lemma,

sup Efy ) ef /20 = d) < oo (8.28)

zeRN

With 81 as in Lemma 8.2, let 8> € (0, min{y, 8, B1}). Recall the stopping time ¥ from
Lemma 8.2. Define stopping times

Y =inf{t >0 : V() =g/(2N)}, U =inf{t > ¥ : V(¢) = 4g}.
Then, for (v,z) € R x RN,
Ef, 2 €”7 < Ef o [Lio=o) €7 ) +EF, ) [Lor=0) €71
From Lemma 8.2, with 81 and D as in the lemma,

Ef,  [Lonmsy €] S Ef, ) [€#7] < Dyefr (e,
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Next, from (8.27),

% %
Bty [Uor=9) €2] < B, ) [Nior=01 7] = B, ) [Vior20) By [€77 1 75,

= dlEZkv,z) [1{01>17}eﬂ20]] :

Also, from (8.28),

v 9
E?v,z) [1{61>19}e/32 1] = E?v,z) [1{01>0}E>(kv,z) [eﬂz 1 f;]]
= dz]ETv,z) [1{01>z9}€ﬂ279] < dy Dy PV

where the last line is from Lemma 8.2. Combining the above estimates, for all (v, z) €
R x RY,

E(kv,z) P20 < Dleﬁl(lvHZl) +d1d2D1€/31(\v|+21)_
The result follows. O

Lemma 8.4. There is a k € (0, 00) such that for every o > O there is a s, > 0 with
]E?U’Z)ea(lV(l)HZl(1)+Zz(1)) < SaeKOt(\v|+Zl+Zz)’ forall (v,z) € R x Ri\/‘

Proof. Since V(t) < g+ |v| fort < 1, we have from (7.1)

N N
Li(1) < (g+ )W+ Y Wi Bf (1) = N(g+[v])+ Yy Wi ;B (1).

i=1 i=1

Thus, under P*

(v,2)’

1 1
ZiM+ V(DI =z +Bi(1) + Li(1) — §L2(1) —/0 Vi(s)ds + g+ Li(1) +[v]

<20l + % +z1+ sup Bi(s)+3L1(1)

0<s<l

N
§2|v|+§+zl+ sup By (s) +3(N(g+[v]) + Y WiiBj(1)).

0<s<lI i1

Moreover, from (7.11) and (7.2), Z>(1) < Zo + M(1) + Y (1), ¢ > 0. The result is now
immediate from the estimate in (1.4). m]

For K € N, with K > 256/g, define

1 g 1
K 128 K

Lemma 8.5. Thereisa K € N, K > 256/g, such that

Rk = ] x [%,K] x [0, K]V~

inf P'((v,z), Rk) = cx > 0.
(v,z)eC*
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Proof. Suppose that, for every K € N, K > 256/g,

inf P'((v,z), Rx) =0.
(v,z)eC*

Then, we can find a sequence {(vg, Zx)}ken C C* such that
1
P'((vk, 26), RK) < - (8.29)

Since C* is compact, we can find (v*, z*) € C* such that, along a subsequence (labeled
again with K), (v, zg) — (v*, z*). From the second statement in Lemma 5.1,

P'((v*,z*), R) > 0.
Since Rk increase to R as K — oo, we can find a K* € N, K* > 256/¢, such that
P'((v*, %), Rg+) = ag+ > 0.

Choose a real, continuous function f : R x Riv suchthat 0 < f <1, f = 1 on Rg=
and f = 0 on RS.. Then

liminf P'((vk, zk), Ragx+) > liminf/ f v, 2P (v, zx), (dv, dz))
K—oo K—o00

=/f(u,z)]Pl((v*,z*),(du,dz))
> PY((v*, z%), Rx+) = ak» > 0,

where the middle equality follows from the Feller property of the transition probability
kernel P'. The Feller property can be verified by analyzing two copies of the process
(1.3) starting from different initial conditions but driven by the same Brownian motion.
Using the Lipschitz property of the Skorohod map and Gronwall’s lemma, the distance
between the coupled processes in sup-norm on any given compact time interval can be
made small (in a pathwise sense) if the initial conditions are close enough.

On the other hand, from (8.29)

lim sup P! ((vg, zk), Rag+) < limsup P! (v, zk), Rg) = 0.
K—o0 K—o0

This is a contradiction which completes the proof of the lemma. O
We can now complete the proof of Proposition 7.16.

Proof of Proposition 7.16 Fix n > 0 such that n < pg and byn < B, where pg and by
are as Lemma 8.1 and f; is as in Lemma 8.3. Combining Lemmas 8.1 and 8.3, for all
(v,z) e R x RY,

Ef z)e"F < b3(n)ebm(\vl+m+iz>E>(k z)ebznol < by (n)icy 11V HzHE) R (vlH2)
v, — v, —_ .
Thus

Bty e’ D =Bl By [ 1 77|

< ba(n)k1"EY, e @D AVIORZIDZ2(1),
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: N
Consequently, with o = byn + k2, for all (v,z) € R x Ry},
E?v,z)entc*(]) < b3(7})l€1saen€lm(|v|+m+22),

where s, and « are as in Lemma 8.4. This immediately implies part (1) of the proposition.
We now consider part (2). Let K be as in Lemma 8.5. From Theorem 4.1, with
M, = inf(v,z)eRK K(v,z) (which is positive)

inf  PS((v,z), B) = A(BND) inf Kz =MABND).
(v,z)ERk

(v,z)eRk

Also, from Lemma 8.5, with K as in the lemma, for (v, z) € C* and B € B(R x Riv),

P*S((v,2), B) > / P'((v, 2), (dD, dz))PS (D, Z), B)
Rk

> MiA(B N D)P'((v,z), Rx) = MicgA(B N D).

The result now follows on taking v(-) = MicgkA(-N D)andr; =1 +¢. O

9. Law of Large Numbers

In this section, we prove Theorem 2.6. We begin with the following lemma.

Lemma 9.1. For any (v,z) € R x Riv, IE”?U z)-almost every w, there exists a m*(w) €
(0, 00) such that

N
IVt o)+ Y Zi(t, 0) < m*(w)(logt)*, forallt > 2.
i=1

Proof. Recall the set C* from (7.22) and the stopping time t¢+ (1) defined just after. Let

() =|V(@)|+ ZlNzl Zi(t),t > 0. We will first show that there exist positive constants
c1, ¢a such that

sup ]P”(kv’z) ( sup X(r) > x) < cle_cz‘/;, x> 0. 9.1)
(v,2)eC* t<tex (1)

Note that, from (1.3) and Lemma 7.1, for (v,z) € C* and t > 0,

() = |v|+ ﬁ:z +By(t)+gt+Li(t)+ lLN(t)
! 2

i=1

N N
<28+ A+By(t)+gt+y Wit sup (V(s)*+ Y Wi ;B
i=1 O<s=<t i j=1
N N N

<28+ A+gr+2gty Wir+gt? Yy Wir+By(t)+ Y Wi B0
i=1 i=1 ij=1
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Using this bound along with part (1) of Proposition 7.16 and (1.4), we obtain posi-
tive constants ¢y, ¢2, xo such that, for any (v,z) € C*, x > x, and choosing § > 0
sufficiently small,

P?v,z) sup (1) >x ) < P?U,z)(fc*(l) > §/x) +IP?U,Z) sup X(¢) > x
1<t (1) 1<87

N
<P (tes(1) = 8V%) + P, | sup | B+ Y Wi Bi(@) | =

1<8/x ij=1

X
2
< c1e_cz*/}.
This proves (9.1). Define the following stopping times:
T0=0, Ty =infr >7T+1:(V(@),Z1)) € C*}, i >0.

Using (9.1), there exists a positive constant ¢3 such that for any (v,z) € C*, n > 2 and
m > 0,

P}, (@) = m(log1)* for some ¢ € [n,n + 1])

<P, < sup (1) > cam(log(n + 1))2) <P}, ( sup X (1) > cm(log(n + 1))2>

r<n+ 1<Te1

<@m+1) sup P

(v.2)
(v,2)eC* t<tex* (1)

( sup (1) = cam(log(n + 1))2> < ¢1(n + 1)e~2V/eamlogln+l)

where we used the strong Markov property to obtain the third inequality. Choosing m
sufficiently large, we see from the Borel-Cantelli Lemma that, for any (v, z) € C*,

(1 (1)
(v,z) | liImsup ——— < o0 ) = 1.
1—»o0o (logt)
(1)

Finally for an arbitrary (v, z) € Rx RY,andwithT"asin(7.18)and A = {lim SUp; _, oo Togn?

< 00}, applying Lemma 8.1,
P:, 0 (A) =Pl (AT < 00) =E, ) (]P”(“U’Z) (A F7) 1{r<oo}) =P, (T <o00)=1.

The result follows. a

Proof of Theorem 2.6. All limits in the proof hold IP’Z‘U‘Z)—almost surely for arbitrary
(v,z) e R x Rf. From (1.2),

CYLiXpo  VO+YL X0 g
hm _— = hm = —.
1—00 Nt 1—00 Nt N

where we used Lemma 9.1 in the first equality. Moreover, again using Lemma 9.1, for
anyi € {0, 1,..., N},

9.2)

N N
1 1 1 1
" X (1) — N E XjHD)| = n | X (@) — X)) < " E Zi(t) — 0 (9.3)
=1 i=1
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as t — o00. The statement in (2.4) now follows from (9.2) and (9.3). Also, (2.5) follows
from Lemma 9.1 on noting
V() L)

0= lim — =g — lim .
t—o0 t—>o0 t

To prove (2.6), note that from (1.2), (1.3) and Lemma 9.1,
L)

Z1(@) = — lim —X(O)(t) —l lim —Lz(t) + lim

t—>o0 t 1—00 t 2t—o0 t t—oo

Loy() _ 2(N—-D)g
- N

which gives lim;—, 0 =%

. Again using (1.3) and Lemma 9.1,

. Za(t) I L3@) . L@ . L@
0= lim = —— lim + lim — lim ,
t—oo 2t—o00 t t—oo t—oo

from which, we obtain lim;_, o,

L3t(t) _ %, Suppose N > 4 and, for some i €
{3,..., N — 1}, the limit lim;_, oo L’T(t) exists and equals —Z(N_,\{+1)g forall3 < j <i.

Lin1 (1)
t

Zi(t) 11. Lix1()
— = —— lim —=+

exists and

Then, using (1.3), lim;_,

) . Lty 1 .. Li1(t)
0= lim lim — — - lim ——
t—oo t 2 t—00 t t—oo t 2 t—00 t

which implies lim;_, oo 208 The statement in (2.6) now follows by induc-
tion. O

Lin@® _ 2(N—
t - N
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