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Abstract: Consider a massive (inert) particle impinged from above by N Brownian
particles that are instantaneously reflected upon collision with the inert particle. The
velocity of the inert particle increases due to the influence of an external Newtonian
potential (e.g. gravitation) and decreases in proportion to the total local time of collisions
with the Brownian particles. This system models a semi-permeable membrane in a fluid
having microscopic impurities (Knight in Probab Theory Relat Fields 121:577–598,
2001). We study the long-time behavior of the process (V,Z), where V is the velocity
of the inert particle and Z is the vector of gaps between successive particles ordered by
their relative positions. The system is not hypoelliptic, not reversible, and has singular
form interactions. Thus the study of stability behavior of the system requires new ideas.
We show that this process has a unique stationary distribution that takes an explicit
product form which is Gaussian in the velocity component and exponential in the other
components. We also show that convergence in total variation distance to the stationary
distributionhappens at an exponential rate.We further obtain certain lawof large numbers
results for the particle locations and intersection local times.

1. Introduction

1.1. Motivation and model description. In this work we study the long-time behavior
of an interacting particle system comprising a massive (inert) particle that moves under
the combined influence of an external Newtonian potential (eg. gravitation) and a non-
Newtonian ‘inert drift’ resulting from collisions with many microscopic (Brownian)
particles. This serves as a simplifiedmodel for themotion of a semi-permeablemembrane
in a fluid having microscopic impurities (see [30]). The membrane, which allows fluid
molecules to pass but is impermeable to the impurities, plays the role of the inert particle.

Mathematically, this model consists of N -Brownian particles in R, with state pro-
cesses denoted as {Xi (t), t ≥ 0}1≤i≤N , interacting with the inert particle, with state
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process X0(t), according to the following system of equations: For t ≥ 0,

X0(t) = x0 +
∫ t

0
V (s)ds, V (t) = v0 + gt −

N∑

i=1

!i (t),

Xi (t) = xi +Wi (t) + !i (t), 1 ≤ i ≤ N .

(1.1)

Here x0 ≤ x1 ≤ · · · ≤ xN denote the initial positions of the N +1 particles, v0 the initial
velocity of the inert particle, {Wi , 1 ≤ i ≤ N } are mutually independent standard real
Brownian motions, g ∈ (0,∞) denotes the gravitation constant and !i is the collision
local time between the i-th particle and the inert particle which, in particular, satisfies
!i (t) =

∫ t
0 1{Xi (s)=X0(s)}d!i (s) for 1 ≤ i ≤ N and t ≥ 0. The local time interactions

model the cumulative transfer of momentum when a Brownian particle collides with the
inert particle ‘infinitely often’ on finite time intervals, with each collision resulting in
an infinitesimal momentum transfer. Such interactions lie at the heart of this model and
interesting long time behavior results from the combined effect of the ‘soft’ gravitational
potential and ‘hard’ collisions.

It follows from [8] (seeTheorem2.5 andProposition 2.10 therein) that there is a strong
solution to the system of equations in (1.1) and the solution satisfies X0(t) ≤ Xi (t) for
all t ≥ 0 and 1 ≤ i ≤ N a.s. Using Gronwall’s lemma and the Lipschitz property of
the Skorohod map it is easy to verify that in fact the system of equations in (1.1) has a
unique strong solution. Given this unique solution process {Xi (t), t ≥ 0}0≤i≤N of (1.1)
it will be convenient to consider the ordered particle system:

X(0)(t) ≤ X(1)(t) ≤ · · · ≤ X(N )(t), t ≥ 0,

where {X(i)(t) : t ≥ 0} denotes the state process of the i-th particle from the bottom
(note that the lowest particle, which we call the 0-th particle from the bottom, is the inert
particle, in particular, X(0)(·) = X0(·)). By an application of Tanaka’s formula it is easy
to verify that this ranked particle system satisfies the following system of equations: For
t ≥ 0,

X(0)(t) = x0 +
∫ t

0
V (s)ds, V (t) = v0 + gt − L1(t),

X(1)(t) = x1 + B1(t) − 1
2
L2(t) + L1(t),

X(i)(t) = xi + Bi (t) − 1
2
Li+1(t) +

1
2
Li (t), 2 ≤ i ≤ N .

(1.2)

where x0 ≤ x1 ≤ · · · ≤ xN , {Bi , 1 ≤ i ≤ N } are standard independent Brownian
motions and for 1 ≤ i ≤ N , Li denotes the collision local time between the i-th and
the (i − 1)-th ranked particle which satisfies Li (t) =

∫ t
0 1{X(i)(s)=X(i−1)(s)}dLi (s) and

LN+1(t) = 0 for all t ≥ 0 .
We are interested in the time asymptotic behavior of the velocity and gap processes

associated with this system. Namely, denoting Zi (t)
.= X(i)(t) − X(i−1)(t), the object

of interest is the stochastic process

(V (t), Z1(t), . . . , ZN (t)).
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This process is given by the system of equations

V (t) = v0 + gt − L1(t),

Z1(t) = z1 + B1(t) −
∫ t

0
V (s)ds − 1

2
L2(t) + L1(t),

Z2(t) = z2 + B2(t) − B1(t) − 1
2
L3(t) + L2(t) − L1(t),

Zi (t) = zi + Bi (t) − Bi−1(t) − 1
2
Li+1(t) + Li (t) − 1

2
Li−1(t), 3 ≤ i ≤ N .

(1.3)

Themodel described by equations (1.2) (with gaps evolving as in (1.3)), whichwe call
the inert drift Atlas model, lies at the interface of two well-studied classes of interacting
particle systems: inert drift models and rank-based diffusions, which we summarize
below.

1.2. Previous work. The casewhere N = 1 (namely the two particle system)with g = 0
was analyzed in [30], which initiated the study of inert drift models. It was shown there
that the inert particle progressively gains momentum from the local time interactions and
eventually escapes theBrownian particle (no further collisions).When g > 0, [4] showed
that the two particles never escape each other. Among other results, the paper showed that
the velocity of the inert particle and the gap between the two particles jointly converge in
total variation distance to an explicit stationary distribution having a product formdensity
(no rates of convergence were obtained). The two particle model with gravitation and
fluid viscosity was investigated in [2]. In [10], an inert drift model was considered where
a particle moves as a diffusion process inside a bounded smooth domain and acquires
inert drift when it hits the boundary of the domain. It was shown that the position of the
particle and the cumulative inert drift have a product form stationary measure, which
is unique under suitable conditions. A variety of related inert drift models have been
studied in [12,13,39]. When the term

∑N
i=1 !i (t) in (1.1) is replaced by N−1 ∑N

i=1 !i (t)
(mean field type interaction), the asymptotic behavior as N → ∞ has been analyzed
in [8,9] where results on hydrodynamic limits and propagation of chaos have been
obtained. Recently, unexpected connections have appeared between inert drift models
and diffusion limits of load balancing systems like the Join-the-shortest-queue policy in
heavy traffic [5,6,24]. More precisely, the joint evolution of the diffusion-scaled number
of idle servers and busy servers converges in distribution to a diffusion that resembles the
two particle inert drift system with linear drift. Consequently, there are several common
themes at the technical level between [2,4] and [5,6]. Brownian particle systems of the
form studied in the current work also arise as diffusion approximations of certain types of
queuing systems in which each queue has the same finite capacity which is dynamically
controlled in a manner that the increase in capacity is proportional to net job loss due to
capacity constraints. In this model, currently under investigation, the individual queues
play the role of Brownian particles whereas the dynamically changing queue capacity
threshold represents the massive inert particle.

In a somewhat different vein, inspired by problems inmathematical finance, the study
of rank-based diffusions [3,7,16,34–37] have gained a lot of attention in recent years.
Thesemodels consist of a collection of particles on the real linewhich evolve as diffusion
processes where the drift and diffusivity of each particle is a function of its relative rank
in the system. Closest in spirit to our model is the Atlas model where the lowest ranked
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particle at any time moves as a Brownian motion with constant upward drift while the
remaining particles evolve as standard Brownian motions (with zero drift).

1.3. Analytical challenges. The Atlas model and the model considered here are exam-
ples of particle systems with topological interactions in the terminology of [14]. In such
particle systems, interactions between particles are determined by their relative posi-
tions. In particular, in both the Atlas model and in the particle system considered here,
the lowest particle has different dynamical properties. Specifically, in the Atlas model
the lowest particle gets a constant upward drift whereas in the model considered here
the lowest particle experiences an inert drift. However there are some important differ-
ences between the two models. Unlike the Atlas model, where the collision local time
of the lowest two particles enters directly in the position evolution of the lowest particle,
here this local time impacts the velocity of the lowest particle. Indeed, this collision
local time is the source of the inert drift of the lowest particle. Furthermore, there is no
Brownian noise in the equation for X(0) in (1.2), unlike in the Atlas model. This results
in the deterministic evolution of the velocity process in time periods with no collisions,
making the full system, whose long-time behavior is of interest, non-elliptic (in fact, the
driving diffusion process in the interior of the domain is not even hypoelliptic). More
precisely, the law of (V (t), Z1(t), . . . , ZN (t)) for any t > 0 does not have a density with
respect to Lebesgue measure, for general initial conditions. Also, we find that, unlike the
Atlas model, the system considered here is not reversible. Hence, standard techniques
for studying ergodicity behavior of elliptic diffusion processes cannot be applied, and
one needs new methods. As noted above, inert two-particle systems have been studied
in several previous works, however the current work is the first to study the ergodicity
properties of a general N -particle system. There are fundamental differences in system
behavior as one goes from N = 1 to N > 1 which make the study of ergodicity be-
havior significantly more demanding. In particular, as is crucially exploited in [2,4],
in the N = 1 case, there is a basic regenerative structure arising from the fact that at
points of decrease of the velocity process, the remaining state coordinate, namely the one
corresponding to Z1, is fully determined (in fact equal to 0). In the general N -particle
system there is no such simple regenerative structure since, although the first gap coor-
dinate Z1 is once again 0 at points of decrease of V , the remaining coordinates, namely
Z2, . . . , ZN can be arbitrary.

1.4. Main contributions. We now briefly describe the main contributions of this work.
Since the system is not hypoelliptic, one cannot apply standard existing theory to argue
uniqueness of invariant measures. Our first main result says that the Markov proces
(V,Z) = (V, Z1, . . . , ZN ) admits at most one stationary distribution. We then pro-
duce an explicit stationary distribution for the system and together the two results (see
Theorems 2.3 and 2.4) prove existence and uniqueness of stationary distributions of
(V,Z). We in fact show that the unique stationary distribution takes a product form
whose first component (corresponding to the velocity coordinate) is Gaussian and re-
maining are Exponential (see Theorem 2.4 for the precise form). In the case N = 1,
a Gaussian-Exponential product form stationary distribution has appeared in previous
works [4,10,39]; however, this is the first work that finds such a product form structure
for a general N -particle system. This stationary distribution also has striking similarities
with the Atlas model where the stationary distribution is a product of exponentials with
rates decreasing with the ranks of the particles (see, for example, [34, Theorem 8]).
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We next study the rate of convergence to stationarity. In Theorem 2.5, we show that
the distribution of (V (t), Z1(t), . . . , ZN (t)) converges to equilibrium exponentially fast
(exponential ergodicity) as t → ∞. To the best of our knowledge, this is the first result on
exponential ergodicity for any type of non-hypoelliptic reflected diffusion in dimensions
higher than 2.

Finally in Theorem 2.6 we establish some law of large numbers type results. In
particular, it is shown that the whole system ‘drifts’ to infinity at speed g/N . Although
this is an intuitive result to expect, our proof crucially hinges on the rather technical
result on exponential moments of return times to certain compact sets that form the
basis of the exponential ergodicity proof. We also find, somewhat surprisingly, that the
intensity of collisions when N ≥ 3 is maximum, in a certain sense, between the first
two Brownian particles (rather than between the inert and the first Brownian particle);
see Remark 2.7.

1.5. Approach. A common approach to proving ergodicity or exponential rates of con-
vergence to stationarity for diffusions in domains is by constructing a suitable Lyapunov
function by analyzing the interplay between the “interior drift vector field” and the re-
flection vector field (cf. [1,11,21]). For example, in polyhedral domains with constant
(oblique) reflection on each face of the boundary, the key insight in the construction
of a Lyapunov function is that the drift vector field for stable systems must lie in the
interior of the cone generated by the negatives of the reflection directions. Note that Z is
a reflected diffusion in the positive orthant RN

+ with constant oblique reflection at each
face. The interior drift of this process is V (t)e1, where e1 is the unit vector with 1 in
the first coordinate. Due to the complicated dynamics of V , that includes in particular
the local time for the first gap process Z1, its behavior in relation to the reflection field
seems hard to analyze which makes a direct construction of a explicit form Lyapunov
function (as in the above cited works) hard.

In this work we instead take a pathwise approach. The stability in the particle system
studied here arises as a result of interplay between the intersection local times for the
various particles in the system. This interplay is distilled in Lemma 7.10 which identifies
a stabilizing ‘singular’ drift that prevents the gaps between the particles from being too
large. This key lemma allows us to prove the finiteness of exponential moments of hitting
times to certain compact sets by analyzing excursions of the process between suitably
chosen stopping times (see Sects. 7.3–7.6). In conjunction with results of [18] (see
Proposition 7.16 (a)), this analysis furnishes a general abstract form Lyapunov function,
given in terms of exponential moments of these hitting times, which is key in the proof
of exponential ergodicity. Another important ingredient in our proofs is establishing
a certain minorization estimate (see Proposition 7.16 (b)). For hypoelliptic diffusions
such an estimate follows readily from the existence of a density for the process at each
time t > 0. However, in our case, establishing a suitable minorization bound involves
substantial work and a careful exploitation of the properties of the collision local times
of the particles in the system. The proof of this estimate, which uses an intricate and
novel pathwise analysis, is the topic of Sect. 4.

1.6. Future directions. The current work is the first step in our program of analyzing
high-dimensional reflected diffusions with inert drift type interactions. The natural next
step will be to investigate ergodicity properties of the infinite-dimensional analogue of
our model. The corresponding vector of velocity and gap processes is expected to have at
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least one stationary distribution, given by the N → ∞ limit of (2.3) below. It is unclear
if this is the unique stationary distribution. Analogy with the Atlas model suggests
infinitely many stationary distributions, each with a non-trivial domain of attraction
[3,16,36]. Another interesting question concerns the study of hydrodynamic limits of
empirical occupation measures of the system and relate them to the path asymptotics of
the bottom k particles for k ∈ N (see [17] for related results on the Atlas model). Both
these directions are currently under investigation.

1.7. Notation and preliminaries. The following notation will be used. For d ∈ N and
T > 0, we denote by C([0, T ] : Rd) (resp. C([0,∞) : Rd)) the space of continuous
functions on [0, T ] (resp. [0,∞)) with values in Rd , equipped with the topology of
uniform convergence (resp. local uniform convergence). The spaces C([0, T ] : Rd

+)

(resp. C([0,∞) : Rd
+)) of continuous functions with values in the nonnegative orthant

Rd
+ are defined similarly. For t ∈ [0,∞) and f ∈ C([0,∞) : Rd), we define ‖ f ‖t .=

sup0≤s≤t | f (s)|, where | · | is the Euclidean norm on Rd . Borel σ -fields on a metric
space S will be denoted as B(S). Inequalities for vectors and vector-valued random
variables are understood to be coordinatewise. An open set G ⊂ Rd is said to have a
C2 boundary if each point in ∂G has a neighborhood in which ∂G is the graph of a C2
function of d − 1 of the coordinates (cf. [25, Section 6.2]). Throughout λ will denote
the Lebesgue measure on a subset of a Euclidean space whose dimension will be clear
from the context.

The following elementary estimate will be used several times. Suppose for m ∈ N,
B̃1, . . . ,B̃m are mutually independent Brownian motions and α1, . . . ,αm ∈ R+. Let
B̃∗
i (t)

.= sup0≤s≤t |B̃i (s)|. Then there are %1, %2 ∈ (0,∞), such that

E
(
eu

∑m
i=1 αi B̃∗

i (t)
)

≤ %1e%2u2t for all t ≥ 0 and u ≥ 0. (1.4)

The dependence of the constants %1, %2 onm and αi will usually be suppressed from the
notation.

In the next section, we outline our main results. The organization of the paper is
summarized at the end of the section.

2. Main Results

Define the N × N matrix

R .=





1 − 1
2 0 0 · · · 0

−1 1 − 1
2 0 · · · 0

0 − 1
2 1 − 1

2 · · · 0
...

...
...

...
...

...

0 · · · · · · · · · − 1
2 1




.

It is easily checked that the matrix U = I − R has the property that UT is a transient,
substochastic matrix and thus has spectral radius strictly less than 1. Consequently, R is
invertible and W = R−1 can be written as an infinite sum of matrices with nonnegative
entries. The Skorohod problem associated with such matrices R has been well studied
and the following result is well known cf. [19,20,26].
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We denote by C0([0,∞) : RN ) the space of continuous functions f : [0,∞) → RN

such that f (0) ≥ 0.

Proposition 2.1. Toeach x ∈ C0([0,∞) : RN ) there is auniquepair (η, y) ∈ C([0,∞) :
RN
+ ) × C([0,∞) : RN

+ ) such that,

(i) for all t ≥ 0, y(t) = x(t) + Rη(t),
(ii) For each i ∈ {1, . . . , N }, (a) ηi (0) = 0, (b) ηi (t) is non-decreasing in t, (c)∫ ∞

0 yi (t)dηi (t) = 0.

The pair (η, y) is called the solution to the Skorokhod problem for x with respect to R.
The map ' : C0([0,∞) : RN ) → C([0,∞) : RN

+ ) × C([0,∞) : RN
+ ) given by

'(x) = (η, y) = ('1(x),'2(x))

is Lipschitz in the sense that there is a c' ∈ (0,∞) such that for x, x ′ ∈ C0([0,∞) : RN )
and t < ∞,

‖'1(x) − '1(x ′)‖t + ‖'2(x) − '2(x ′)‖t ≤ c'‖x − x ′‖t .

For x ∈ C0([0,∞) : RN ), we occasionally write '1(x) = ('11(x), . . . ,'N1(x)).
The following result gives strong existence anduniqueness for the systemof equations

in (1.3). Proof is given in Sect. 5. Let

A .=





1 0 0 · · · 0 0
−1 1 0 · · · 0 0

0 −1 1 · · · ...
...

...
...

...
. . . 1 0

0 0 0 · · · −1 1




.

Theorem 2.2. Let ((̄, F̄, {F̄t }t≥0, P̄) be a filtered probability space on which are given
N mutually independent standard real F̄t -Brownian motions B1, . . . , BN and, F̄0-
measurable random variables V 0 and Z0 = (Z0

1, . . . , Z
0
N ) with values in R and RN

+ re-
spectively. Then there is a continuous, F̄t -adapted, stochastic process (V (t), Z1(t), . . . ,
ZN (t))0≤t<∞ with values in R × RN

+ such that, for all t ≥ 0,

V (t) = V 0 + gt − L1(t),

Z(t) = '2

(
Z0 − e1

∫ ·

0
V (s)ds + AB(·)

)
(t),

L1(t) = '11

(
Z0 − e1

∫ ·

0
V (s)ds + AB(·)

)
(t),

(2.1)

where B = (B1, . . . , BN )
′ and Z = (Z1, . . . , ZN )

′. Furthermore, if (Ṽ (t), Z̃1(t), . . . ,
Z̃N (t)) is another such process then

(Ṽ (t), Z̃1(t), . . . ,Z̃N (t)) = (V (t), Z1(t), . . . , ZN (t)) for all t ≥ 0, a.s.
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We remark that, with Z, and V as in the theorem, letting

L(t) = (L1(t), . . . , LN (t)) = '1

(
Z0 − e1

∫ ·

0
V (s)ds + AB(·)

)
(t) and LN+1(t) = 0,

we have that the following system of equations holds:

V (t) = V 0 + gt − L1(t),

Z1(t) = Z0
1 + B1(t) −

∫ t

0
V (s)ds − 1

2
L2(t) + L1(t),

Z2(t) = Z0
2 + B2(t) − B1(t) − 1

2
L3(t) + L2(t) − L1(t),

Zi (t) = Z0
i + Bi (t) − Bi−1(t) − 1

2
Li+1(t) + Li (t) − 1

2
Li−1(t), 3 ≤ i ≤ N .

(2.2)

Consider the path space (∗ = C([0,∞) : RN ×R×RN
+ ), F∗ the corresponding Borel

σ -field on(∗.We also consider the space ((,F)
.= (C([0,∞) : R×RN

+ ),B(C([0,∞) :
R × RN

+ )). On these two measurable spaces we denote, for (v, z) ∈ R × RN
+ , by P∗

(v,z)
[resp.P(v,z)], the probability measures induced by (B, V,Z) [resp. (V,Z)] where (V,Z)
is the solution of (2.1) when (V 0,Z0) = (v, z) a.s. Then from the unique solvability
in the above theorem it follows that {P(v,z)}(v,z)∈R×RN

+
defines a strong Markov family.

The next result concerns the stationary distribution of this Markov family.

Theorem 2.3. There is aunique stationarydistribution for theMarkov family {P(v,z)}(v,z)
∈ R × RN

+ .

In fact this unique stationary distribution takes an explicit product form as given by the
theorem below. Consider the probability measure π on R × RN

+ given by the formula:

π(dv, dz1, . . . , dzN )
.= cπe−(v− g

N )2
N∏

i=1

e
−2g

(
N−i+1

N

)
zi dv dz1 . . . , dzN , (2.3)

where cπ is the normalization constant.

Theorem 2.4. The probability measure π defined in (2.3) is the unique stationary dis-
tribution of {P(v,z)}(v,z)∈R×RN

+
.

Note that while Theorem 2.4 implies Theorem 2.3, we proceed by first showing that there
exists at most one stationary distribution (Theorem 5.2). The existence and explicit form
of the stationary distribution is subsequently exhibited (in Sect. 6) by proving that the
density of π solves the partial differential equation (with boundary conditions) arising
from the basic adjoint relationship [see (6.2)–(6.5)]. We have therefore separated out
these results for clarity of exposition.

Our third result gives exponential ergodicity of theMarkov process.Write an element
ω ∈ (∗ [resp. ω ∈ (] as ω = (β,υ, ζ ) [resp. ω = (υ, ζ )], where β ∈ C([0,∞) : RN ),
υ ∈ C([0,∞) : R) and ζ ∈ C([0,∞) : RN

+ ). For t ∈ [0,∞), abusing notation,
denote the coordinate processes B(t), V (t) and Z(t) on ((∗,F∗) [resp. V (t) and Z(t)
on ((,F)] by the formulae

B(t)(ω) = β(t), V (t)(ω) = υ(t), Z(t)(ω) = ζ(t), t ≥ 0.
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Also, we will write Bi (t) and Zi (t) respectively for the projections of B(t) and Z(t)
onto their i th coordinates. Consider the transition probability kernel of theMarkov family
{P(v,z)}(v,z)∈R×RN

+
defined as

Pt ((v, z), A) .= P(v,z)((V (t),Z(t)) ∈ A), t ≥ 0, (v, z) ∈ R × RN
+ , A ∈ B(R × RN

+ ).

Also, for a bounded and measurable φ : R × RN
+ → R we write

Pt ((v, z), φ)
.=

∫

R×RN
+

φ(ṽ, z̃)Pt ((v, z), d ṽ × d z̃).

Similarly, for φ as above, π(φ) .=
∫

φ(ṽ, z̃)π(d ṽ × d z̃). The following theorem shows
the convergence of the transition probability kernel to the stationary distribution in the
total variation distance at an exponential rate. Denote by BM1 the class of all measurable
φ : R × RN

+ → R such that sup(v,z)∈R×RN
+
|φ(v, z)| ≤ 1.

Theorem 2.5. There is a γ ∈ (0, 1) and, for every (v, z) ∈ R×RN
+ , a κ(v, z) ∈ (0,∞),

such that for all t ≥ 0,

sup
φ∈BM1

|Pt ((v, z), φ) − π(φ)| ≤ κ(v, z)γ t .

We note here that the proof of exponential ergodicity proceeds through establishing
finiteness of exponential moments of certain hitting times. This, in turn, provides the
tightness required to furnish an independent proof of existence of a stationary distribu-
tion.

Finally, we prove a strong law of large numbers type result for the system. Recall
the ranked particle system {X(i)(·)}0≤i≤N from (1.2). This process can be constructed
on ((∗,F∗,P∗

(v,z)) for any (v, z) ∈ R×RN
+ by solving the system of equations in (2.1)

(or equivalently(2.2)), whose unique pathwise solutions are guaranteed by Theorem 2.2,
and then defining X(i) by the right side of (1.2).

Theorem 2.6. For any (v, z) ∈ R × RN
+ , the following limits hold P∗

(v,z)-almost surely:

lim
t→∞

X(i)(t)
t

= g
N
, 0 ≤ i ≤ N , (2.4)

lim
t→∞

L1(t)
t

= g, (2.5)

lim
t→∞

Li (t)
t

= 2(N − i + 1)g
N

, 2 ≤ i ≤ N . (2.6)

Remark 2.7. It is natural to expect that the gaps become larger in some sense as onemoves
away from the inert particle. This heuristic is quantified in the stochastic monotonicity
of the stationary gaps displayed in (2.3). From this, it might appear that the growth rate
of the local time Li (t) (which quantifies the intensity of collisions between the (i −1)th
and i th particle) with t should decrease as i increases from 1 to N . However, Theorem
2.6 shows that for N ≥ 3, L2 grows at a faster rate than L1 and the expected decrease
in rates holds from i = 2 onwards. Hence, perhaps surprisingly, particles indexed 1 and
2 collide ‘more often’ than particles 0 and 1 as time progresses.
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2.1. Organization. The rest of the paper is organized as follows. In Sect. 3, we provide
the proof of Theorem 2.2. In Sect. 4, we show a technical estimate which will be integral
to the proofs of our main results. In Sect. 5, we show that there is at most one stationary
distribution (Theorem 5.2). In Sect. 6, we prove Theorem 2.4. Together, these two results
also establish Theorem2.3. In Sect. 7, we give the proof of Theorem2.5. Proofs of several
technical results stated in Sect. 7 (without proof) are provided in Sect. 8. In Sect. 9, we
establish Theorem 2.6.

3. Existence and Uniqueness of the Process

In this section, we prove Theorem 2.2. The proof uses the Lipschitz property in Propo-
sition 2.1, and a standard Picard iteration scheme. We provide a sketch. Fix T < ∞.
Let (V 0,Z0) be as in the statement of the theorem. Define, for n ∈ N0, continuous F̄t -
adaptedR×RN

+ ×RN
+ valued processes {(V (n)(t),Z(n)(t)),L(n)(t))}0≤t≤T , recursively,

as follows. Let

V (0)(t) .= V 0, Z(n)(t)) .= Z0, L(n)(t) = 0, 0 ≤ t ≤ T .

Having defined {(V (k)(t),Z(k)(t)),L(k)(t))}0≤t≤T for k = 0, . . . ,n − 1, define

Z(n)(t) = '2

(
Z0 − e1

∫ ·

0
V (n−1)(s)ds + AB(·)

)
(t),

L(n)(t) = '1

(
Z0 − e1

∫ ·

0
V (n−1)(s)ds + AB(·)

)
(t),

V (n)(t) = V 0 + gt − L(n)
1 (t),

(3.1)

where L(n)
1 (t) is the first coordinate of L(n)(t).

From the Lipschitz property in Proposition 2.1 it follows that, for any n ≥ 2, and
t ∈ [0, T ],

‖Z(n) − Z(n−1)‖t + ‖L(n) − L(n−1)‖t ≤ c'

∫ t

0
‖V (n−1) − V (n−2)‖sds

and

‖V (n) − V (n−1)‖t = ‖L(n)
1 − L(n−1)

1 ‖t ≤ ‖L(n) − L(n−1)‖t

≤ c'

∫ t

0
‖V (n−1) − V (n−2)‖sds.

Letting

1n(t)
.= ‖Z(n) − Z(n−1)‖t + ‖L(n) − L(n−1)‖t + ‖V (n) − V (n−1)‖t ,

we have for n ≥ 2 and t ∈ [0, T ], 1n(t) ≤ c'

∫ t
0 1n−1(s)ds. Now a standard argument

shows that, a.s., (V (n),Z(n),L(n)) is a Cauchy sequence in C([0, T ] : R × RN
+ × RN

+ ).



The Inert Drift Atlas Model

Let (V,Z,L) denote the limit. It is easy to verify that this is a F̄t -adapted process.
Furthermore, sending n → ∞ in (3.1) we see that (V,Z,L) solve, for 0 ≤ t ≤ T ,

Z(t) = '2

(
Z0 − e1

∫ ·

0
V (s)ds + AB(·)

)
(t),

L(t) = '1

(
Z0 − e1

∫ ·

0
V (s)ds + AB(·)

)
(t),

V (t) = V 0 + gt − L1(t),

(3.2)

where L1(t) is the first coordinate of L(t). In particular, (V,Z) is a solution of (2.1).
Since T > 0 is arbitrary this proves the first part of the theorem.

Now suppose that (V,Z,L) and (Ṽ , Z̃, L̃) are two continuous R×RN
+ ×RN

+ valued
F̄t -adapted processes that solve (3.2). Then, for t ∈ [0, T ],

‖Z − Z̃‖t + ‖L − L̃‖t ≤ c'

∫ t

0
‖V − Ṽ ‖sds = c'

∫ t

0
‖L1 − L̃1‖sds

≤ c'

∫ t

0
(‖Z − Z̃‖s + ‖L − L̃‖s)ds.

Using Grönwall’s lemma, it then follows that Z(t) = Z̃(t) and L(t) = L̃(t) for all
t ∈ [0, T ] a.s. which also says that V (t) = Ṽ (t) for all t ∈ [0, T ] a.s. The result follows.
,-

4. A Minorization Estimate

In this section we will establish a minorization estimate for the transition probability
kernel Pt ((v, z), A) introduced in the last section. This estimate will be a key ingredient
in the proofs of Theorems 2.3 and 2.5. The deterministic motion of the bottom (inert)
particle when Z1 > 0 results in very singular behavior of our diffusion process mani-
fested, in particular, by the lack of a density of (V (t),Z(t)) with respect to Lebesgue
measure for any t > 0 when the initial condition satisfies Z1(0) > 0. Hence, one cannot
use standard techniques for establishing a minorization condition for elliptic (or hypoel-
liptic) diffusions. We take a pathwise approach here by analyzing a suitable collection
of driving Brownian paths to obtain a sub-density of the form described in Theorem 4.1.
This is done by first ‘removing the drift’ by applying Girsanov’s Theorem and analyz-
ing the simpler system given by gaps between N ordered Brownian motions and the
local time at zero of the bottom particle. This, along with an appropriate control of the
Radon-Nikodym derivative, yields the desired result.

Let

ς
.= 1
128

, ς∗ .= ς +
(

1
63

− 1
64

)
.

Theorem 4.1. Let C = [0, g
128 ] × [ g2 , g]N . There exists D ∈ B(R × RN

+ ) such that
λ(D ∩ C) > 0, and such that for each (v, z) ∈ [0, g

128 ] × (0,∞) × RN−1
+ , there is a

K(v,z) ∈ (0,∞) so that

inf
t∈[ς,ς∗]

Pt ((v, z), S) ≥ K(v,z)λ(S ∩ D) for every S ∈ B(R × RN
+ ). (4.1)
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Moreover, the map (v, z) /→ K(v,z) is measurable and for any 0 ≤ ai < bi < ∞,
1 ≤ i ≤ N, a1 > 0, with Ā = [0, g

128 ] × [a1, b1] × · · · × [aN , bN ],

K̄ Ā
.= inf

(v,z)∈ Ā
K(v,z) > 0.

In proving the above itwill be convenient to introduce a probabilitymeasure P̃∗
(v,z) that

is mutually absolutely continuous to P∗
(v,z) and which is somewhat simpler to analyze.

This measure corresponds to the law of the processes (B, V,Z) given as in (2.2) but with
V on the right side of equation for Z1 replaced by the 0 process. Recall the path space
((∗,F∗) and the coordinate processes (B, V,Z) given on this space. Let {F∗

t }t≥0 be
the filtration generated by these coordinate processes. For (v, z) ∈ R×RN

+ let P̃∗
(v,z) be

the probability measure on ((∗,F∗) such that under P̃∗
(v,z) the following hold:

(i) B is the standard N -dimensional F∗
t -Brownian motion.

(ii) For each t ∈ [0,∞), with L(t) = '1(z + AB(·))(t),

Z(t) = z + AB(t) + RL(t), V (t) = v + gt − L1(t). (4.2)

4.1. Outline of proof. The proof of Theorem 4.1 is organized as follows. In Lemma 4.2,
we establish a version of Novikov’s criterion which allows us to relate P∗

(v,z) to P̃
∗
(v,z) via

Girsanov’s Theorem. In Corollary 4.3, we use the preceding lemma to invoke Girsanov’s
Theorem and make explicit the relation between the two measures.

We next prove a number of technical results in support of Theorem 4.1. In Lemma
4.4, we establish a minorization condition for a ‘killed’ version of Z under law P̃∗

(v,z),
when Z(0) lies in a certain compact set F . In Lemma 4.5, we prove the existence of a
subdensity for the supremum of Brownian motion over a compact time interval under
certain constraints on its infimumandfinal location. This supremum, in turn, is connected
to the local time L1 via the Skorohodmap. As under law P̃∗

(v,z), existence of a subdensity
at a fixed time for (Z, V ) is implied by that for (Z, L1) (see (4.2)), the above two lemmas
are crucial in proving Theorem 4.1. Lemmas 4.6 and 4.7 provide a version of the ‘support
theorem’where a tractable event in terms of the driving Brownianmotions is constructed
under which the gap process Z at a prescribed time ς/4 lies in F almost surely under
P̃∗
(v,z).
Lastly, we prove Theorem 4.1. Using the strong Markov property, we analyze the

process pathwise between appropriately chosen stopping times. We first let Z1 hit zero
at time τ1 after which, under the event on the driving Brownian motions described in
Lemma 4.7, the local time L1 lies in a given Borel set and the gaps Z lie in the set F
introduced in Lemma 4.4 at time τ1 + ς/4. Theorem 4.1 now follows upon combining
this and the minorization condition on the killed gap process obtained in Lemma 4.4,
which is used in analyzing the subsequent process path.

4.2. Proof of Theorem 4.1. In order to relateP∗
(v,z) with P̃

∗
(v,z) we establish the following

integrability property which will be used to verify a variation of Novikov’s criterion. In
the following, Ẽ∗

(v,z) denotes the expectation under the probability measure P̃∗
(v,z). Under
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P̃∗
(v,z), the local times Li , 1 ≤ i ≤ N (and with LN+1 = 0) have the following pathwise

representation:

L1(t) = sup
s≤t

(−z1 +
1
2
L2(s) − B1(s))+,

L2(t) = sup
s≤t

(−z2 +
1
2
L3(s) + L1(s) + B1(s) − B2(s))+,

Li (t) = sup
s≤t

(−zi +
1
2
(Li+1(s) + Li−1(s)) + Bi−1(s) − Bi (s))+, i = 3, . . . , N .

(4.3)

Lemma 4.2. For every c ∈ (0,∞) and r ∈ N, there is a m ∈ N such that with tk = k/m,
k = 0, 1, . . . , rm − 1, for each (v, z) ∈ R × RN

+ ,

Ẽ∗
(v,z) e

c
2

∫ tk+1
tk

V (s)2ds
< ∞.

Proof. Fix c ∈ (0,∞) and r ∈ N. Also, fix (v, z) ∈ R × RN
+ . All equalities and

inequalities in the proof are almost sure with respect to the measure P̃∗
(v,z).

Note that, for t ≥ 0, by (4.3),

L1(t) ≤ 1
2
L2(t) + sup

s≤t
(−B1(s)),

L2(t) ≤ 1
2
L3(t) + L1(t) + sup

s≤t
(B1(s) − B2(s)),

Li (t) ≤ 1
2
(Li+1(t) + Li−1(t)) + sup

s≤t
(Bi−1(s) − Bi (s)), i = 3, . . . , N .

Define

B∗
1 (t) = sup

s≤t
(−B1(s))

B∗
i (t) = sup

s≤t
(Bi−1(s) − Bi (s)), for i = 2, . . . , N

B∗(t) = (B∗
1 (t), . . . , B

∗
N (t)).

(4.4)

Recall the matrices U = I − R and W = (I −U )−1. Then, it is easy to verify that

U =





0 1
2 0 0 0 · · · 0 0

1 0 1
2 0 0 · · · 0 0

0 1
2 0 1

2 0 · · · 0 0
...
...

...
...

...
...

...
...

0 0 · · · · · · · · · · · · 1
2 0




. (4.5)

and so from the above inequalities we can write, for t ≥ 0,

L(t) ≤ UL(t) + B∗(t).
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In particular, recalling that W can be written as an infinite sum of matrices with non-
negative entries, we have that

L1(t) ≤ (WB∗(t))1.

Nowfixm ∈ Nwhichwill be chosen suitably below.Define tk = k/m, k = 0, 1, . . . ,rm−
1. Then, for any k as above,

∫ tk+1

tk
V (s)2ds ≤ m−1 sup

s∈[tk ,tk+1]
V (s)2

= m−1 sup
s∈[tk ,tk+1]

(v + gs − L1(s))2 ≤ 2m−1(|v| + rg)2 + 2m−1(L1(r))2.

It then follows

max
0≤k≤rm−1

e
c
2

∫ tk+1
tk

V (s)2ds ≤ c1ecm
−1(WB∗(r))21

where c1 = ecm
−1(|v|+rg)2 . The expectation of the right side under P∗

(v,z) (which is
independent of (v, z) ∈ R×RN

+ ) is finite for sufficiently large m. The result follows. ,-
For (v, z) ∈ R × RN

+ and r ∈ N, with an abuse of notation, denote the projection of
P∗
(v,z) [resp. P̃

∗
(v,z)] on (r .= C([0, r ] : RN ×R×RN

+ ) once more as P∗
(v,z) [resp. P̃

∗
(v,z)].

Denote by Fr the Borel σ -field on (r . The coordinate processes B, V,Z on ((r ,Fr )
and the canonical filtration {Fr

t }0≤t≤r are defined in an analogous manner. Denote by
e1 the unit vector (1, 0, 0, . . . , 0)′ in RN .

Corollary 4.3. Fix r ∈ N. Define for t ∈ [0, r ], real measurable maps E(t) on ((r ,Fr )
as

E(t) .= e−∑N
i=1

∫ t
0 V (s)(A−1e1)i d Bi (s)− |A−1e1|2

2
∫ t
0 V (s)2ds .

Then for every (v, z) ∈ R × RN
+ , Ẽ∗

(v,z)[E(r)] = 1 and for every F ∈ B(C([0, r ] :
R × RN

+ ))

P∗
(v,z)((V,Z) ∈ F) = Ẽ∗

(v,z)[1{(V,Z)∈F}E(r)].

Proof. Fix (v, z) ∈ R × RN
+ and r ∈ N. For t ∈ [0, r ], define

B̃(t) .= B(t) +
∫ t

0
V (s)A−1e1ds.

ByLemma 4.2 with c = |A−1e1|2 and (a slight modification of) [28, Corollary 3.5.14], it
follows that {E(t)}0≤t≤r is a martingale with respect to the filtration {Fr

t }0≤t≤r under the
probability measure P̃∗

(v,z). Hence, from Girsanov’s theorem, {B̃(s)}0≤s≤r is a Brownian

motion under the probability measure Q∗
(v,z) defined by dQ∗

(v,z)
.= E(r)dP̃∗

(v,z). Also,
under the measure Q∗

(v,z) we have

Z(t) = '2(z + AB(·))(t) = '2

(
z + A

(
B̃(·) −

∫ ·

0
V (s)A−1e1ds

))
(t)

= '2

(
z + AB̃(·) −

∫ ·

0
V (s)ds e1

)
(t).
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By the unique solvability given in Theorem 2.2 and the definition of P∗
(v,z) it now follows

that the law of (V,Z) under Q∗
(v,z) is same as that under P∗

(v,z). The result follows. ,-
We next prove several technical estimates that will be needed in the proof of Theorem

4.1.

Lemma 4.4. Let

F .= [ g
16

,
g
4
] × [ g

10
, 2g] × [3g

4
, 2g]N−2.

Let G ⊂ (RN
+ )

o be an open and bounded domain with C2 boundary such that

F ⊂ F1
.= [ g

16
, g] × [ g

10
, 2g] × [3g

4
, 2g]N−2 ⊂ G.

Let σF
.= infx∈F, y∈∂G |A−1(x − y)| and choose ε > 0 so that G1

.= {x ∈ G :
inf y∈∂G |A−1(x − y)| > ε} satisfies G ⊃ G1 ⊃ F1 ⊃ F. Define on ((∗,F∗), τG =
inf{t ≥ 0 : Z(t) /∈ G}. Also, fix a ‘cemetery point’ ∂∗ ∈ (RN

+ )
c and define the ‘killed

process’ {Z∗(t)} by

Z∗(t) .=
{
Z(t) if t < τG

∂∗ if t ≥ τG ,
(4.6)

Then, there is a cG ∈ (0,∞) such that for any J ∈ B(RN
+ ),

inf
s∈[ ς

4 ,ς
∗],(v,z)∈R×F

P̃∗
(v,z)(Z

∗(s) ∈ J ) ≥ cGλ(J ∩ G1).

Proof. Fix s ∈ [ ς
4 , ς

∗], (v, z) ∈ R × F and J ∈ B(RN
+ ) with λ(J ∩ G1) > 0. Since,

under P̃∗
(v,z), Z(t) = z + AB(t) until the first time it has hit the boundary of the positive

orthant,

P̃∗
(v,z)(Z

∗(s) ∈ J ) = P̃∗
(v,z)(Z

∗(s) ∈ J ∩ G)

= P̃∗
(v,z)(z + AB(s) ∈ J ∩ G, z + AB(u) ∈ G for all u ≤ s)

= P̃∗
(v,z)(A

−1z + B(s) ∈ A−1(J ∩ G),

A−1z + B(u) ∈ A−1(G), for all u ≤ s).

Denote the transition probability density at time t of an N -dimensional standard Brow-
nian motion in A−1G, started from x and killed at the boundary of A−1G, by pt (x, ·).
Then from the above identities it follows

P̃∗
(v,z)(Z

∗(s) ∈ J ) =
∫

A−1(G∩J )
ps(A−1z, y)dy. (4.7)

From [40, Theorem 1.1] we have that there exists T > 0 and c1, c2 ∈ (0,∞) such
that for all x, y ∈ A−1G:

pt (x, y) ≥
(

ρ(x)ρ(y)
t

∧ 1
)

c1
t N/2 e

−c2|x−y|2/t , t ∈ [0, T ]

pt (x, y) ≥ c1ρ(x)ρ(y)e−c2t , t ∈ (T,∞),
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where ρ(x) = infr∈∂G |x − A−1r |.
Note that there is a η ∈ (0,∞) such that

λ(A−1(C)) = ηλ(C) for all C ∈ B(RN ).

We now estimate the right side of (4.7). First suppose that s > T . Then since z ∈ F and
s ≤ 1,

∫

A−1(G∩J )
ps(A−1z, y)dy ≥

∫

A−1(G∩J )
c1ρ(A−1z)ρ(y)e−c2sdy

≥ c1σFe−c2
∫

A−1(G1∩J )
ρ(y)dy ≥ c1σFe−c2εηλ(G1 ∩ J ).

Letting cG,1 = c1σFe−c2εη, we have from (4.7), when s > T ,

P̃∗
(v,z)(Z

∗(s) ∈ J ) ≥ cG,1λ(J ∩ G1). (4.8)

Now consider the case s ≤ T . Then, a similar estimate shows,
∫

A−1(J∩G)
ps(A−1z, y)dy ≥

∫

A−1(J∩G)

(
ρ(A−1z)ρ(y)

s
∧ 1

)
c1

sN/2 e
−c2|A−1z−y|2/sdy

≥ cG,2 λ(J ∩ G1)

where cG,2 = ηc1((εσF ) ∧ 1)e−4c2(ς)−1 supx,y∈A−1G |x−y|2
. Thus, once more from (4.7),

when s ≤ T ,

P̃∗
(v,z)(Z

∗(s) ∈ J ) ≥ cG,2λ(J ∩ G1). (4.9)

Setting cG = cG,1 ∧ cG,2, we have the result on combining (4.8) and (4.9). ,-
For z1 ∈ R, let Pz1 denote a probability measure on (∗ under which the coordinate

process {B1(t)} is a standard Brownianmotion starting at z1.Wewill use similar notation
for the corresponding expectation.

Lemma 4.5. There exists a K ∈ (0,∞) such that for every I ∈ B(R),

P0

(

sup
0≤u≤ ς

4

B1(u) ∈ I, inf
0≤u≤ ς

4

B1(u) > −6g
10

, B1(
ς

4
) ∈ [−g

8
,− g

16
]
)

≥ K λ(I ∩ [0, g
63

]).

Proof. Let I ∈ B(R). We assume without loss of generality that, I ⊂ [0, g
63 ] and I is

of the form I = [β1,β2] ⊂ R+ for 0 ≤ β1 ≤ β2 (the choice of K will be independent
of β1,β2). Let γ

.= g
2 (− 1

8 − 1
16 ) be the midpoint of [− g

8 ,−
g
16 ]. For a level c ∈ R, let

τc
.= inf{t ≥ 0 : B1(t) = c}. Define σ

.= τ−6g/10 and τ
β
i

.= τβi for i = 1, 2. Then

P0(sup
u≤ ς

4

(B1(u)) ∈ I, inf
u≤ ς

4

B1(u) > −6g
10

, B1(
ς

4
) ∈ [−g

8
,− g

16
])

= P0(sup
u≤ ς

4

(B1(u)) ∈ I, σ >
ς

4
, B1(

ς

4
) ∈ [−g

8
,− g

16
]).



The Inert Drift Atlas Model

Using the strong Markov property of the Brownian motion, we obtain,

P0(sup
u≤ ς

4

(B1(u)) ∈ I, σ >
ς

4
, B1(

ς

4
) ∈ [−g

8
,− g

16
])

≥ P0(τ
β
1 ≤ ς

8
∧ σ, sup

u≤ ς
4

(B1(u)) ∈ I, σ >
ς

4
, B1(

ς

4
) ∈ [−g

8
,− g

16
])

= P0(1{τβ
1 ≤ ς

8 ∧σ }6(τ
β
1 )),

where, for t ∈ [0, ς
8 ],

6(t) .= Pβ1( sup
u≤ ς

4 −t
(B1(u)) ≤ β2, σ >

ς

4
− t, B1(

ς

4
− t) ∈ [−g

8
,− g

16
]).

By another application of the strong Markov property, for t ∈ [0, ς
8 ],

6(t) ≥ Pβ1(τγ ≤ τ
β
2 ∧ ς

16
, B1(s) ∈ [−g

8
,− g

16
] for all s ∈ [τγ ,

ς

4
− t])

= Pβ1(1{τγ ≤τ
β
2 ∧ ς

16 }
6′(τγ ))

where for u ∈ [0, ς
16 ],

6′(u) .= Pγ (B1(s) ∈ [−g
8
,− g

16
] for all s ∈ [0, ς

4
− t − u]).

Thus letting

κ1
.= Pγ (B1(s) ∈ [−g

8
,− g

16
] for all s ∈ [0, ς

4
])

we have that, for t ∈ [0, ς
8 ],

6(t) ≥ κ1Pβ1(τγ ≤ τ
β
2 ∧ ς

16
).

Also, by an application of the reflection principle,

Pβ1(τγ ≤ τ
β
2 ∧ ς

16
) = Pβ1(τγ ≤ ς

16
) − Pβ1(τ

β
2 < τγ ≤ ς

16
)

= Pβ1(τγ ≤ ς

16
) − Pβ1+2(β2−β1)(τγ ≤ ς

16
).

From the definition of the stopping times we see,

Pβ1(τγ ≤ ς

16
) = P0( sup

u≤ ς
16

(B1(u)) ≥ β1 − γ ),

Pβ1+2(β2−β1)(τγ ≤ ς

16
) = P0( sup

u≤ ς
16

(B1(u)) ≥ β1 + 2(β2 − β1) − γ ).
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Using the explicit form for the probability density for the law of the maximum of a
Brownian motion, we then obtain,

Pβ1(τγ ≤ ς

16
) − Pβ1+2(β2−β1)(τγ ≤ ς

16
) =

∫ β1+2(β2−β1)−γ

β1−γ

4
√
2√

πς
e−8z2/ς

≥ 8
√
2√

πς
inf

β1−γ≤z≤β1+2(β2−β1)−γ
e−8z2/ς (β2 − β1).

Since

β1 + 2(β2 − β1) − γ ≤ 2β2 − γ ≤ 2g
63

+
3g
32

≤ g
4
,

we have

inf
β1−γ≤z≤2(β2−β1)−γ

e−8z2/ς ≥ e− g2
2ς .

Thus, for t ∈ [0, ς/8],

6(t) ≥ κ1Pβ1(τγ ≤ τ
β
2 ∧ ς

16
) ≥ κ1

8
√
2√

πς
e− g2

2ς (β2 − β1).

Finally, observe that, as I ⊂ [0, g
63 ],

P0(τ
β
1 ≤ ς

8
∧ σ ) ≥ P0(sup

u≤ ς
8

(B1(s)) >
g
63

, inf
u≤ ς

8

(B1(s)) > −6g
10

)
.= κ2.

The result now follows on setting K = κ1κ2
8
√
2√

πς
e− g2

2ς . ,-

For 0 ≤ s ≤ 1 and (z2, z3, . . . , zN ) ∈ RN−1
+ , define

L̂1(s) = sup
u≤s

(−B1(u)), Ẑ1(s) = B1(s) + L̂1(s)

L̂i (s) = sup
u≤s

(−zi + Bi−1(u) − Bi (u))+, i = 2, . . . , N .

Lemma 4.6. Let I ∈ B(R) be such that I ⊂ [0, g
63 ] and (v, z) ∈ R× {0}× [g, 3g

2 ]N−1.
Let H ∈ F∗. Then the following are equivalent:

(a) On H, P̃∗
(v,z) a.s., (i) L1(

ς
4 ) ∈ I , (ii) Li (

ς
4 ) ≤ g

6 , for all i = 2, . . . , N, (iii)

sup0≤u≤ ς
4
B1(u) <

6g
10 , (iv) sup0≤u≤ ς

4
|Bi (u)| < g

8 , for all i = 2, . . . , N, (v) Z1(
ς
4 ) ∈

[ g
16 ,

g
4 ].

(b) On H, P̃∗
(v,z) a.s., (i’) L̂1(

ς
4 ) ∈ I , (ii’) L̂i (

ς
4 ) ≤ g

6 , for all i = 2, . . . , N, (iii’)

sup0≤u≤ ς
4
B1(u) < 6g

10 , (iv’) sup0≤u≤ ς
4
|Bi (u)| < g

8 , for all i = 2, . . . , N, (v’)

Ẑ1(
ς
4 ) ∈ [ g

16 ,
g
4 ].

Furthermore, under these equivalent conditions, on H, P̃∗
(v,z) a.s., L1(ς/4) = L̂1(ς/4)

and Li (ς/4) = 0 for i = 2, . . . , N.
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Proof. Fix (v, z) ∈ R× {0}× [g, 3g
2 ]N−1. Noting that zi ≥ g for i = 2, . . . ,N , we see

that, when conditions (i) − (v) hold, for all u ≤ ς
4 ,

−zi + Bi−1(u) − Bi (u) +
1
2
(Li−1(u) + Li+1(u)) ≤ −g +

g
4
+
g
6

≤ 0, i = 3, . . . , N ,

−z2 + B1(u) − B2(u) +
1
2
L3(u) + L1(u) ≤ −g +

6g
10

+
g
8
+

g
12

+
g
63

≤ 0.

Hence, when conditions (i) − (v) hold on H , by (4.3), P̃∗
(v,z) a.s., Li (

ς
4 ) = L̂i (

ς
4 ) = 0

for i = 2, . . . , N which in turn says that L1(
ς
4 ) = L̂1(

ς
4 ) and Z1(

ς
4 ) = Ẑ1(

ς
4 ). Thus in

this case (i ′) − (v′) hold on H , P̃∗
(v,z) a.s.

On the other hand, suppose that (i ′)−(v′) hold on H , P̃∗
(v,z) a.s. Consider the stopping

times,

ν2 = inf{t ≥ 0 : −z2 + B1(t) − B2(t) +
1
2
L3(t) + L1(t) ≥ 0}

νi = inf{t ≥ 0 : −zi + Bi−1(t) − Bi (t) +
1
2
(Li+1(t) + Li−1(t)) ≥ 0}, i = 3, . . . , N

and let ν = min2≤i≤N νi .
Then, for s ≤ ν, Li (s) = L̂ i (s) = 0, for all i = 2, . . . , N and so L1(s) = L̂1(s)

and Z1(s) = Ẑ1(s). Thus, if ν ≤ ς
4 ,

−z2 + B1(ν) − B2(ν) +
1
2
L3(ν) + L1(ν) = −z2 + B1(ν) − B2(ν) + L̂1(ν)

≤ −g +
6g
10

+
g
8
+

g
63

< 0,

and, for i = 3, . . . , N ,

−zi + Bi−1(ν) − Bi (ν) +
1
2
(Li+1(ν) + Li−1(ν)) = − zi + Bi−1(ν) − Bi (ν)

≤ − g +
g
8
+
g
8
< 0.

This contradicts the definition of ν and consequently we must have that ν > ς
4 . Thus

(i) − (v) hold on H , P̃(v,z) a.s., and the result follows. ,-
Recall the set F introduced in Lemma 4.4.

Lemma 4.7. Let I ∈ B(R) be such that I ⊂ [0, g
63 ] and (v, z) ∈ R× {0}× [g, 3g

2 ]N−1.
Let H ∈ F∗ and suppose the equivalent conditions of Lemma 4.6 hold on H. Then, on
H, P̃∗

(v,z) a.s., Z(
ς
4 ) ∈ F.

Proof. Under assumptions of the lemma, on H , P̃(v,z) a.s.,

Z2(ς/4) = z2 + B2(ς/4) − B1(ς/4) − 1
2
L3(ς/4) + L2(ς/4) − L1(ς/4)

= z2 + B2(ς/4) − B1(ς/4) − L1(ς/4) ≥ g − g
8

− 6g
10

− g
63

≥ g
10

,

Zi (ς/4) = zi + Bi (ς/4) − Bi−1(ς/4) − 1
2
(Li−1(ς/4) + Li+1(ς/4)) + Li (ς/4)

= zi + Bi (ς/4) − Bi−1(ς/4) ≥ 3g
4
, i = 3, . . . , N .
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From Lemma 4.6, under the assumptions of the current lemma, L1(ς/4) = L̂1(ς/4)
and so

g
63

≥ L1(ς/4) = L̂1(ς/4) = sup
u≤ς/4

(−B1(u)) ≥ −B1(ς/4).

Thus we have the upper bound,

Z2(ς/4) = z2 + B2(ς/4) − B1(ς/4) − L1(ς/4) ≤ 3g
2

+
g
8
+

g
63

≤ 2g,

Also, for i = 3, . . . , N ,

Zi (ς/4) = zi + Bi (ς/4) − Bi−1(ς/4) ≤ 3g
2

+
g
8
+
g
8

≤ 2g.

Hence, (Z2(ς/4), . . . , ZN (ς/4)) ∈ [ g
10 , 2g]× [ 3g4 , 2g]N−2. Also, under the conditions

of the lemma Z1 ∈ [ g
16 ,

g
4 ]. Thus Z(ς/4) ∈ F and the lemma is proved. ,-

We can now complete the proof of Theorem 4.1.

Proof of Theorem 4.1 Recall F,G and G1 from Lemma 4.4. We will prove the theorem
with D .= D1 × G1 where D1 = [0, g/128]. Let (v, z) ∈ [0, g

128 ] × (0,∞) × RN−1
+ .

All equalities and inequalities of random quantities in the proof are under the measure
P̃∗
(v,z). Let r ∈ [ς, ς∗] be given. It suffices to establish the estimate in (4.1) for S ∈

B(R × RN
+ ) of the form S = I × J, I ∈ B(R), J ∈ B(RN

+ ) with I ⊆ D1 and
J ⊆ G1, for a choice of the constant K(v,z) independent of I, J . For such an S, letting
B̃(t) .= ∑N

i=1(A
−1)i,1Bi (t), by Corollary 4.3,

Pr ((v, z), S) = Ẽ∗
(v,z)1{V (r)∈I,Z(r)∈J }E(1) = Ẽ∗

(v,z)1{V (r)∈I,Z(r)∈J }E(r)

= Ẽ∗
(v,z)1{V (r)∈I,Z(r)∈J }e−

∫ r
0 V (s)d B̃(s)− |A−1e1|2

2
∫ r
0 V (s)2ds .

(4.10)

On the set {V (r) ∈ I }, L1(r) = gr − V (r) + v ≤ gr + v ≤ gr + g
128 , so that by

monotonicity, L1(s) ≤ g(r + 1
128 ) for all s ≤ r . This implies that, on this set, for s ≤ r,

−2g ≤ −g(r + 1
128 ) ≤ V (s) ≤ gr + v ≤ 2g, i.e., |V (s)| ≤ 2g. Using this estimate in

(4.10) we get

Pr ((v, z), S) ≥ e−2|A−1e1|2g2 Ẽ∗
(v,z)1{V (r)∈I,Z(r)∈J }e−

∫ r
0 V (s)d B̃(s). (4.11)

By Itô’s formula,

−
∫ r

0
V (s)d B̃(s) =

∫ r

0
B̃(s)dV (s) − V (r)B̃(r)

= −
∫ r

0
B̃(s)dL1(s) + g

∫ r

0
B̃(s)ds − V (r)B̃(r).

Define the stopping time

τ1
.= inf{t ≥ 0 : Z1(t) = 0},
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and let

H .=
{
τ1 ≤ ς

4
, (Z2(τ1), . . . , ZN (τ1)) ∈ [g, 3g

2
]N−1, L1(τ1 +

ς

4
) ∈ v + gr − I,

Z(τ1 +
ς

4
) ∈ F,Z(s) > 0, for all s ∈ [τ1 +

ς

4
, r ], Z(r) ∈ J

}
.

Note that

H ⊂ {(V (r),Z(r)) ∈ I × J }. (4.12)

On H we have,

−V (r)B̃(r) ≥ −2g|B̃(r)| ≥ −2g|B̃(r) − B̃(τ1 +
ς

4
)| − 2g|B̃(τ1 +

ς

4
)

− B̃(τ1)| − 2g|B̃(τ1)|.
In addition, on H ,

g
∫ r

0
B̃(s)ds = g

∫ τ1

0
B̃(s)ds + g

∫ τ1+
ς
4

τ1

(B̃(s) − B̃(τ1))ds +
gς
4

B̃(τ1)

+ g
∫ r

τ1+
ς
4

(B̃(s) − B̃(τ1 +
ς

4
))ds + gB̃(τ1 +

ς

4
)(r − (τ1 +

ς

4
))

= g
∫ τ1

0
B̃(s)ds + g

∫ τ1+
ς
4

τ1

(B̃(s) − B̃(τ1))ds + gB̃(τ1)(r − τ1)

+ g
∫ r

τ1+
ς
4

(B̃(s) − B̃(τ1 +
ς

4
))ds + g(B̃(τ1 +

ς

4
) − B̃(τ1))(r − (τ1 +

ς

4
)).

Also, by the definition of τ1, on H ,

−
∫ r

0
B̃(s)dL1(s) = −

∫ τ1+
ς
4

τ1

B̃(s)dL1(s)

= −
∫ τ1+

ς
4

τ1

(B̃(s) − B̃(τ1))dL1(s) − B̃(τ1)(L1(τ1 +
ς

4
) − L1(τ1))

≥ −
∫ τ1+

ς
4

τ1

(B̃(s) − B̃(τ1))dL1(s) − g|B̃(τ1)|.

Now let

U1
.= g

∫ r

τ1+
ς
4

(B̃(s) − B̃(τ1 +
ς

4
))ds − 2g|B̃(r) − B̃(τ1 +

ς

4
)|,

U2
.= g(B̃(τ1 +

ς

4
) − B̃(τ1))(r − (τ1 +

ς

4
)) − 2g|B̃(τ1 +

ς

4
) − B̃(τ1)|

−
∫ τ1+

ς
4

τ1

(B̃(s) − B̃(τ1))dL1(s) + g
∫ τ1+

ς
4

τ1

(B̃(s) − B̃(τ1))ds,

U3
.= −3g|B̃(τ1)| + g

∫ τ1

0
B̃(s)ds + gB̃(τ1)(r − τ1).
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Then, by (4.12), we have the lower bound

Ẽ∗
(v,z)1{V (r)∈I,Z(r)∈J }e−

∫ r
0 V (s)d B̃(s) ≥ Ẽ∗

(v,z)1He
−

∫ r
0 V (s)d B̃(s)≥Ẽ∗

(v,z)1He
U1+U2+U3 .

(4.13)

Recall the killed process Z∗ from (4.6). Define the sets

H1(s) = {Z∗(s) ∈ J }, 0 ≤ s ≤ 1,

H2(v) =
{

L1(
ς

4
) ∈ gr + v − I, Li (

ς

4
) ≤ g

6
for 2 ≤ i ≤ N , sup

u≤ ς
4

B1(u) <
6g
10

,

sup
u≤ ς

4

|Bi (u)| <
g
8

i = 2, . . . , N , Z1(
ς

4
) ∈ [ g

16
,
g
4
]
}

,

where v ∈ [0, g/128].

H3 =
{
τ1 ≤ ς

4
, (Z2(τ1), . . . , ZN (τ1)) ∈ [g, 3g

2
]N−1

}
.

Also, set

U ′
1(t)

.= g
∫ t

0
B̃(s)ds − 2g|B̃(t)|, 0 ≤ t ≤ 1,

U ′
2
.= −3g|B̃(ς

4
)| −

∫ ς
4

0
B̃(s)dL1(s) + g

∫ ς
4

0
B̃(s)ds.

Applying the Strong Markov Property at τ1 +
ς
4 and then τ1, we have

Ẽ∗
(v,z)1He

U1+U2+U3 ≥ inf
(ṽ,z̃)∈R×F, ς

4 ≤s≤r
Ẽ∗
(ṽ,z̃)1H1(s)e

U ′
1(s)

× inf
(v̂,ẑ)∈R×[g, 3g2 ]N−1

Ẽ∗
(v̂,(0,ẑ))1{L1(

ς
4 )∈gr+v−I,Z( ς

4 )∈F}e
U ′
2 × Ẽ∗

(v,z)1H3e
U3 .

(4.14)

Note that since by assumption I ⊆ [0, g/128], r ∈ [ς, ς∗], and v ∈ [0, g/128],
Ĩ .= gr + v − I ⊆ [0, g/63]. (4.15)

Thus, using Lemma 4.7, we see

Ẽ∗
(v,z)1He

U1+U2+U3 ≥ inf
(ṽ,z̃)∈R×F, ς

4 ≤s≤r
Ẽ∗
(ṽ,z̃)1H1(s)e

U ′
1(s)

× inf
(v̂,ẑ)∈R×[g, 3g2 ]N−1

Ẽ∗
(v̂,(0,ẑ))1H2(v)e

U ′
2 × Ẽ∗

(v,z)1H3e
U3 .

For the final term, note that, on H3, U3 ≥ −5g sup0≤s≤ς∗ |B̃(s)|. Now, for M ′ > 0,
define

H ′
3(M

′) =
{

sup
0≤s≤ς∗

|B̃(s)| < M ′, Z1(s) > 0 for all s ≤ ς

8
, inf

ς
8 ≤s≤ ς

4

Z1(s) = 0,

(Z2(s), . . . ,ZN (s)) ∈ [g, 3g
2
]N−1 for all s ∈ [ς

8
,
ς

4
]
}

.
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Clearly H ′
3(M

′) ⊂ H3. For any (v, z) ∈ [0, g
128 ] × (0,∞) × RN−1

+ , one can construct
suitable Brownian paths to obtain a measurable choice of M ′ = M ′(v, z) such that

κ(v,z)
.= P̃∗

(v,z)(H
′
3(M

′(v, z))) > 0.

This definition readily implies the measurability of (v, z) /→ κ(v,z) through the mea-
surability of the maps (v, z) /→ M ′(v, z) and (v, z) /→ P̃∗

(v,z)(A
◦) for any A◦ ∈ F .

Recall the set Ā from the statement of Theorem 4.1. Using continuity properties of the
transition kernel of Brownian motion in its starting point, the choice of M ′(v, z) can be
made such that

sup
(v,z)∈ Ā

M ′(v, z) < ∞, inf
(v,z)∈ Ā

κ(v,z) > 0. (4.16)

It now follows that,

Ẽ∗
(v,z)1H3e

U3 ≥ Ẽ∗
(v,z)1H ′

3(M
′(v,z))e

U3 ≥ e−5gM ′(v,z)κ(v,z). (4.17)

Now consider the term involving H1(s). Note that, on the set H1(s), AB(u) + z ∈ G
for all u ≤ s. Since G is bounded, we have that for some κG ∈ (0,∞), under P̃∗

(v,z), for
all (v, z) ∈ R × F

sup
0≤u≤s

|B̃(u)| ≤ κG on H1(s), for all s ∈ [ς/4, r ] and r ∈ [ς, ς∗].

Thus, from Lemma 4.4,

inf
(v,z)∈R×F, ς

4 ≤s≤r
Ẽ∗
(v,z)1H1(s)e

U ′
1(s) ≥ e−3gκG inf

(v,z)∈R×F, ς
4 ≤s≤r

P̃∗
(v,z)(Z

∗(s) ∈ J )

≥ e−3gκG cGλ(J ∩ G1). (4.18)

Consider finally the term involving H2(v). From Lemma 4.6 (and recalling (4.15)) it
follows that, on H2(v), for v ∈ [0, g/128] and 0 ≤ s ≤ ς/4,

−B1(s) ≤ sup
u≤ς/4

(−B1(u)) = L1(ς/4) ≤ g/63.

Using this andother properties of the setH2(v),we see thatwith cA
.= 6g

10
∑N

i=1 |(A−1)i1|,
on H2(v),

sup
0≤s≤ς/4

|B̃(s)| ≤ cA.

It then follows that, on H2(v),

U ′
2 ≥ −3gcA − gς

4
cA − cAL1(ς/4) ≥ −4gcA.

Thus, we have

inf
(v̂,ẑ)∈R×[g, 3g2 ]N−1

Ẽ∗
(v̂,(0,ẑ))1H2(v)e

U ′
2 ≥ e−4gcA inf

(v̂,ẑ)∈R×[g, 3g2 ]N−1
P̃∗
(v̂,(0,ẑ))(H2(v)).

(4.19)
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Note that the conditions supu≤ς/4(−B2(u)) ≤ −13g/30 + ẑ2 and supu≤ ς
4
B1(u) <

6g/10 imply that L̂2(ς/4) ≤ g/6. Thus from Lemma 4.6, and using (4.15) again,

P̃∗
(v̂,(0,ẑ))(H2(v))

= P̃∗
(v̂,(0,ẑ))



L̂1(
ς

4
) ∈ Ĩ , L̂i (

ς

4
) ≤ g

6
, sup
u≤ ς

4

|Bi (u)| <
g
8
for 2 ≤ i ≤ N ,

sup
u≤ ς

4

B1(u) <
6g
10

, Ẑ1(
ς

4
) ∈ [ g

16
,
g
4
]





≥ P̃∗
(v̂,(0,ẑ))



L̂1(
ς

4
) ∈ Ĩ , sup

u≤ ς
4

(−B2(u)) ≤ −13g
30

+ ẑ2, L̂3(
ς

4
) ≤ g

6
, . . . , L̂ N (

ς

4
) ≤ g

6
,

sup
u≤ ς

4

B1(u) <
6g
10

, sup
u≤ ς

4

|Bi (u)| <
g
8
for 2 ≤ i ≤ N , Ẑ1(

ς

4
) ∈ [ g

16
,
g
4
]





= K ẑ P̃∗
(v̂,(0,ẑ))



L̂1(
ς

4
) ∈ Ĩ , sup

u≤ ς
4

B1(u) <
6g
10

, Ẑ1(
ς

4
) ∈ [ g

16
,
g
4
]



 , (4.20)

where

K ẑ = P̃∗
(v̂,(0,ẑ))

(

sup
u≤ ς

4

(−B2(u)) ≤ −13g
30

+ ẑ2, L̂3(
ς

4
) ≤ g

6
, . . . , L̂ N (

ς

4
)

≤ g
6
, sup
u≤ ς

4

|Bi (u)| <
g
8
for 2 ≤ i ≤ N

)

,

and in the last step we have used the independence of B1 and (B2, . . . , BN ).
Note that Ẑ1(

ς
4 ) = B1(

ς
4 )+ L̂1(

ς
4 ), so if L̂1(

ς
4 ) ∈ [0, g

63 ] and B1(
ς
4 ) ∈ [ g

16 ,
g
8 ], then

Ẑ1(
ς
4 ) ∈ [ g

16 ,
g
4 ]. Consequently,

P̃∗
(v̂,(0,ẑ))(L̂1(

ς

4
) ∈ Ĩ , sup

u≤ ς
4

B1(u) <
6g
10

, Ẑ1(
ς

4
) ∈ [ g

16
,
g
4
])

≥ P̃∗
(v̂,(0,ẑ))(sup

u≤ ς
4

(−B1(u)) ∈ Ĩ , sup
u≤ ς

4

B1(u) <
6g
10

, B1(
ς

4
) ∈ [ g

16
,
g
8
])

= P̃∗
(v̂,(0,ẑ))(sup

u≤ ς
4

(B1(u)) ∈ Ĩ , inf
u≤ ς

4

B1(u) > −6g
10

, B1(
ς

4
) ∈ [−g

8
,− g

16
]),

where in the last line we have used the fact that {B(s)}s≤ ς
4
is equal in distribution to

{−B(s)}s≤ ς
4
.

Applying Lemma 4.5 we have

P̃∗
(v̂,(0,ẑ))(sup

u≤ ς
4

(B1(u)) ∈ Ĩ , inf
u≤ ς

4

B1(u)

> −6g
10

, B1(
ς

4
) ∈ [−g

8
,− g

16
]) ≥ K λ( Ĩ ∩ [0, g

63
])

= K λ( Ĩ ) = K λ(I ) = K λ(I ∩ D1), (4.21)
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where for the last equality we have used that I ⊆ [0, g/128] = D1. Thus, letting

K̂ .= inf
ẑ∈[g, 3g2 ]N−1

K ẑ,

we have on combining estimates in (4.11), (4.13), (4.14), (4.17), (4.18), (4.19), (4.20),
(4.21),

Pr ((v, z), S) ≥ e−2|A−1e1|2g2e−5gM ′(v,z)κ(v,z)e−3gκG cGe−4gcA K̂K λ(J ∩ G1)λ(I ∩ D1)

= K(v,z)λ((I × J ) ∩ D)

where

K(v,z) = e−2|A−1e1|2g2e−5gM ′(v,z)κ(v,z)e−3gκG cGe−4gcA K̂K .

This proves the first statement in the theorem. The second statement is immediate from
the measurability of (v, z) /→ κ(v,z) indicated earlier in the proof and (4.16). ,-

5. Stationary Distribution: Uniqueness

In this section, we establish uniqueness of the stationary distribution by using the mi-
norization estimate inTheorem4.1 in conjunctionwith the following lemma. This lemma
also plays a crucial role in establishing exponential ergodicity of the system.

Lemma 5.1. For each (v, z) ∈ R × RN
+ , there exists r0

.= r0(v, z) ∈ N such that

Pr0((v, z), R) > 0,

where

R .= (0,
g
128

) × (0,∞) × RN−1
+ .

Furthermore, if v ≥ g/128, we can take r0 = 1.

Proof. Let (v, z) ∈ R × RN
+ be given. In view of Corollary 4.3 it suffices to show that

for some r0 ∈ N

P̃∗
(v,z)((V (r0),Z(r0)) ∈ R) > 0.

Consider first the case where v < g/128. Define

v1
.=

{
g
256 − v, v < g

256 ,
1
2 (

g
128 − v), v ∈ [ g

256 ,
g
128 ).

Set v2
.= v + v1. Write v1 = g(k + t1) with k ∈ N0 and t1 ∈ [0, 1). Let r0 .= k + 1 and

t2
.= (k+t1)/2. Let v3

.= gr0−v1. Fix δ ∈ (0, v3) such that [v2−δ, v2+δ] ⊂ (0, g/128).
Consider the set A1 ∈ F∗ defined as

A1
.= {L1(t2) ∈ [v3 − δ, v3 + δ], Z1(t) > 0 for all t ∈ (t2, r0]}.

Then on A1, Z(r0) ∈ (0,∞) × RN−1
+ and

V (r0) = v + (k + 1)g − L1(r0) = v + (k + 1)g − L1(t2) ∈ v + (k + 1)g − [v3 − δ, v3 + δ]
= [v + (k + 1)g − v3 − δ, v + (k + 1)g − v3 + δ].
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Also

v + (k + 1)g − v3 = v + (k + 1)g − (g(k + 1) − v1) = v + v1 = v2

Thuson A1,V (r0) ∈ [v2−δ, v2+δ] ⊂ (0, g/128) and consequently A1 ⊂ {(V (r0),Z(r0)) ∈
R}. It is easily verified that P̃∗

(v,z)(A1) > 0 which proves the result for the case v <

g/128.
Now consider the case v ≥ g/128. Let v1

.= v + g − g/256 and fix δ ∈ (0, g/256).
Consider the set A2 ∈ F∗ defined as

A2
.= {L1(1/2) ∈ [v1 − δ, v1 + δ], Z1(t) > 0 for all t ∈ (1/2, 1]}.

Then, with r0 = 1, we see, on A2, Z(r0) ∈ (0,∞) × RN−1
+ and

V (r0) = v + g − L1(r0) = v + g − L1(1/2) ∈ v + g − [v1 − δ, v1 + δ]
= [v + g − v1 − δ, v + g − v1 + δ] = [g/256 − δ, g/256 + δ]
= [v2 − δ, v2 + δ] ⊂ (0, g/128).

Thus A2 ⊂ {(V (r0),Z(r0)) ∈ R}. Once again, it is easily verified that P̃∗
(v,z)(A2) > 0

proving the result for the case v ≥ g/128 with r0 = 1. ,-
Theorem 5.2. The Markov family {P(v,z)}(v,z)∈R×RN

+
has at most one stationary distri-

bution.

Proof. By Birkhoff’s ergodic theorem, if there are multiple stationary distributions,
then we can find two that are mutually singular [23, Chapter 4, Theorem 4.4 and Lemma
4.6]. Suppose that π,π ′ are mutually singular stationary distributions. Then there is a
A ∈ B(R × RN

+ ) such that π(A) = π ′(Ac) = 0. Recall the set D from Theorem 4.1.
Since λ(D) > 0, it follows that either λ(D ∩ A) > 0 or λ(D ∩ Ac) > 0. For specificity,
suppose λ(D ∩ A) > 0. We will now argue that π(A) > 0, arriving at a contradiction.
By Theorem 4.1, with R as in Lemma 5.1, for every (v, z) ∈ R, there is a K(v,z) > 0
such that

Pς ((v, z), A) ≥ K(v,z)λ(A ∩ D).

Define the transition probability kernel Q on R × RN
+ as

Q((ṽ, z̃), S) .=
∞∑

i=1

1
2i
Pi+ς ((ṽ, z̃), S), (ṽ, z̃) ∈ R × RN

+ , S ∈ B(R × RN
+ ).

Since π is a stationary distribution, we have

π(A) =
∫

R×RN
+

Q((ṽ, z̃), A)dπ(ṽ, z̃). (5.1)

Also, for any (ṽ, z̃) ∈ R × RN
+ and with r0 = r0(ṽ, z̃) ∈ N as in Lemma 5.1,

Q((ṽ, z̃), A) ≥ 2−r0Pr0+ς ((ṽ, z̃), A) ≥ 2−r0
∫

R
Pr0((ṽ, z̃), (dv, dz))Pς ((v, z), A)

≥ 2−r0λ(A ∩ D)

∫

R
Pr0((ṽ, z̃), (dv, dz))K(v,z) > 0.

From (5.1) it now follows that π(A) > 0 which gives a contradiction and proves the
result. ,-
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6. Product Form of Stationary Density

In this section, we prove Theorem 2.4. The proof relies on ‘guessing’ a product form for
the stationary joint density and showing that it satisfies the partial differential equations
(along with appropriate boundary conditions) that characterize such stationary densities.
This guess is inspired by [4], where a product form joint density was obtained for the
velocity and gap processes of the system comprising one inert particle and one Brownian
particle.

Proof of Theorem 2.4. The generator of the process (V,Z) given by (1.3) acts on any
f : R × RN

+ → R that is continuously differentiable in v and twice continuously
differentiable in (z1, . . . , zN ), and compactly supported in the interior of R × RN

+ , by

L f (v, z) = 1
2

∑

1≤i, j≤N

hi j
∂ f

∂zi∂z j
(v, z) + g

∂ f
∂v

(v, z)

−v
∂ f
∂z1

(v, z), (v, z) ∈ R × (0,∞)N ,

where h11 = 1, hii = 2 for 2 ≤ i ≤ N , hi j = −1 for |i− j | = 1, and hi j = 0 otherwise.
Moreover, from the pathwise existence and uniqueness (Theorem 2.2) it readily follows
that the associated submartingale problem [27, Definition 2.1] for our process is well-
posed. For c0, c1, . . . , cN ,φ > 0, consider the function

π(v, z) = cπe−c0(v+φ)2
N∏

i=1

e−ci zi , (v, z) ∈ R × RN
+ , (6.1)

where cπ is the normalization constant ensuring
∫
R×RN

+
π(v, z)dvdz = 1. Translating

the conditions (1)–(3) of [27, Theorem 3], π is the density of a stationary distribution if
π satisfies the interior condition

L∗π(v, z) .= 1
2

∑

1≤i, j≤N

hi j
∂π

∂zi∂z j
(v, z) − g

∂π

∂v
(v, z)

+
∂(vπ)

∂z1
(v, z) = 0, (v, z) ∈ R × (0,∞)N , (6.2)

and boundary conditions

2vπ(v, z) +
∂π

∂z1
(v, z) − ∂π

∂z2
(v, z) +

∂π

∂v
(v, z) = 0 if z1 = 0, (6.3)

− ∂π

∂zi−1
(v, z) + 2

∂π

∂zi
(v, z) − ∂π

∂zi+1
(v, z) = 0 if zi = 0, for some 2 ≤ i ≤ N − 1,

(6.4)

− ∂π

∂zN−1
(v, z) + 2

∂π

∂zN
(v, z) = 0 if zN = 0. (6.5)

We will solve for the constants c0, c1, . . . , cN , cπ to obtain a π satisfying the above
conditions.
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The conditions (6.4) and (6.5) applied to (6.1) yield that

ci−1 − 2ci + ci+1 = 0, i = 2, . . . , N − 1,
cN−1 − 2cN = 0. (6.6)

From these identities, we obtain that

cN−1 = 2cN
cN−2 = 2cN−1 − cN = 3cN .

Fix j ∈ {2, . . . , N − 1}. Suppose that we have ci = (N − i + 1)cN for all j ≤ i ≤ N .
Then, from (6.6),

c j−1 = 2c j − c j+1 = (2(N − j + 1) − (N − j))cN
= (N − ( j − 1) + 1)cN .

Hence, we have by induction that ci = (N − i + 1)cN for i = 1, . . . , N . Substituting
this into (6.3), we see that

2v − c1 + c2 − 2c0(v + φ) = 0, for all v ∈ R.
Since this holds for all v ∈ R, we must have c0 = 1, and so

2φ = c2 − c1 = (N − 1)cN − NcN = −cN

and thus cN = −2φ. Next substituting (6.1) in (6.2),

1
2

∑

1≤i, j≤N

hi j ci c j + 2gc0(v + φ) − c1v = 0, for all v ∈ R. (6.7)

Again, since this holds for all v ∈ R, we must have,

2g = c1 = NcN .

From the above relations, we obtain

c0 = 1, ci = 2
(
N − i + 1

N

)
g, i = 1, . . . , N , φ = − g

N
. (6.8)

To show that this choice of constants yields a valid density for some stationary distri-
bution, it remains only to demonstrate that (6.2) holds for all (v, z) ∈ R × (0,∞)N , or
equivalently, from (6.7) and (6.8),

1
2

∑

1≤i, j≤N

hi j ci c j − 2
g2

N
= 0. (6.9)

To see this, note that

1
2

∑

1≤i, j≤N

hi j ci c j =
1
2

∑

1≤i, j≤N

hi j

(
N − i + 1

N

) (
N − j + 1

N

)
4g2

= 2g2

N 2

∑

1≤i, j≤N

hi j (N − i + 1)(N − j + 1)

= 2g2

N 2

N∑

i=1

(N − i + 1)
N∑

j=1

hi j (N − j + 1).
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From the formulae of {hi j }1≤i, j≤N , it follows that

N∑

j=1

hi j (N − j + 1) = δ1,i , for all i = 1, . . . , N ,

where δ1,i is the Kronecker delta function. Hence,

1
2

∑

1≤i, j≤N

hi j ci c j =
2g2

N 2

N∑

i=1

(N − i + 1)δ1,i =
2g2

N
,

which proves (6.9). We have therefore shown that π with constants as in (6.8) is indeed
the density for a stationary distribution of the process (V,Z). Uniqueness follows from
Theorem 2.3. ,-

7. Exponential Ergodicity

In this sectionwewill proveTheorem2.5. Since themain source of stability in our system
is the local time interactions between particles, standard PDE techniques for construct-
ing Lyapunov functions [22,29,31] for hypoelliptic diffusions are hard to implement.
Furthermore, the singular nature of the dynamics arising from the motion of the inert
particle, and the spatial dependence of the drift (which contains a V term), make it chal-
lenging to adapt the Lyapunov function constructions for reflected Brownian motions,
which proceed via an analysis of the associated noiseless system [1,21].

7.1. Outline of approach. Here, we take a different approach to exponential ergodicity
by analyzing excursions of the process between appropriately chosen stopping times
(see (7.14)) as the velocity of the inert particle ‘toggles’ between two levels. Con-
trol on the exponential moments of these stopping times is established in Sects. 7.3
and 7.4. In Sect. 7.5, it is shown that the intersection local time between the bot-
tom two particles creates a ‘singular’ drift that results in a reduction of the function
Z̄2(t)

.= ∑N−1
i=1 i ZN−i+1(t) of the gaps when observed at successive stopping times.

These estimates are combined in Sect. 7.6 to show that the distribution of return times of
the process to an appropriately chosen compact set C∗ has exponentially decaying tails.
Finally, in Sect. 7.7, the exponential moments of this return time are used to construct
a suitable Lyapunov function. The minorization estimate in Theorem 4.1 is utilized to
show that C∗ is a ‘petite’ (or small) set in the language of [18]. These facts together
imply exponential ergodicity using the machinery developed in [18] (see Theorem 6.2
there). Proofs of some technical lemmas are deferred to Sect. 8 in order to make it easier
to see the overall idea.

Wenote here that the connection betweenfiniteness of exponentialmoments of certain
hitting times, Lyapunov functions and exponential ergodicity is not new [18,32]. The
mainwork in this section is in establishing that exponentialmoments of associated hitting
times are finite through a detailed pathwise analysis of the process. A general treatment
of the above connection in the context of diffusion processes has been undertaken in
[15,33], among others. However, typically the diffusion processes are assumed to be
hypoelliptic and/or reversible with respect to the stationary measure, neither of which
apply to our setting.
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7.2. An inequality for the local time. In this section we establish an estimate on local
times which will be used several times. Recall the matrixW from Sect. 2 and the process
B∗ from (4.4).

Lemma 7.1. For any (v, z) ∈ R × RN
+ and t ≥ 0, the following inequality holds,

P∗
(v,z) − a.s., for all i = 1, 2, . . . , N,

Li (t) ≤ Wi,1t sup
0≤s≤t

(V (s))+ +
N∑

j=1

Wi, j B∗
j (t). (7.1)

Moreover, with Ȳ (t) .= ∑N
i=2(N − i + 1)B∗

i (t),

L2(t) ≤ 2(N − 1)
N

L1(t) +
2
N
Ȳ (t), t ≥ 0. (7.2)

Proof. Let (v, z) ∈ R× RN
+ be given. All inequalities in the proof are a.s. under P∗

(v,z).
For 1 ≤ i ≤ N , the local times Li are given as

L1(t) = sup
s≤t

(−z1 +
1
2
L2(s) +

∫ s

0
V (u)du − B1(s))+

L2(t) = sup
s≤t

(−z2 +
1
2
L3(s) + L1(s) + B1(s) − B2(s))+

Li (t) = sup
s≤t

(−zi +
1
2
(Li−1(s) + Li+1(s)) + Bi−1(s) − Bi (s))+, i = 3, . . . , N .

(7.3)

Using these identities we see that

L1(t) ≤ sup
0≤s≤t

(V (s))+t +
1
2
L2(t) + sup

s≤t
(−B1(s))

L2(t) ≤ 1
2
L3(t) + L1(t) + sup

s≤t
(B1(s) − B2(s))

Li (t) ≤ 1
2
(Li+1(t) + Li−1(t)) + sup

s≤t
(Bi−1(s) − Bi (s)), i = 3, . . . , N .

(7.4)

Recalling the matrix U from (4.5) the above inequalities can be written as

L(t) ≤ sup
0≤s≤t

(V (s))+te1 +UL(t) + B∗(t), t ≥ 0.

Using the fact that W = (I −U )−1 is a matrix with nonnegative entries, we have,

L(t) ≤ sup
0≤s≤t

(V (s))+tWe1 +WB∗(t), t ≥ 0.

This proves the first statement in the lemma. For the second inequality, note that from
(7.4) we have

N∑

i=3

(N − i + 1)(Li (t) − 1
2
Li+1(t) − 1

2
Li−1(t)) + (N − 1)(L2(t) − L1(t) − 1

2
L3(t))

≤
N∑

i=2

(N − i + 1)B∗
i (t) = Ȳ (t).
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Simplifying the left side, we see,

N
2
L2(t) − (N − 1)L1(t) ≤ Ȳ (t)

which proves the second statement. ,-

7.3. Hitting time of an upper velocity level. For c ∈ R, let τ̂c
.= inf{t ≥ 0 : V (t) = c}.

The main result of this section is the following control on exponential moments of this
hitting time.

Proposition 7.2. There exists a γ ∈ (0,∞) such that

sup
(v,z)∈[ g

2N ,2g]×RN
+

E∗
(v,z) e

γ τ̂4g < ∞.

Proof of the proposition relies on the three lemmas given below. Proofs of these lemmas
are given in Sect. 8.1. The proposition is proved after the statements of these lemmas.

Lemma 7.3. There exists a β ∈ (0,∞) so that

sup
z∈RN

+

E∗
(0,z) e

β τ̂g/(2N ) < ∞.

Lemma 7.4. We have

inf
(v,z)∈[ g

2N ,2g]×RN
+

P∗
(v,z)(τ̂4g < τ̂0)

.= p > 0.

Lemma 7.5. There exists γ1 > 0 so that

sup
(v,z)∈[0,4g]×RN

+

E∗
(v,z) e

γ1 (τ̂4g∧τ̂0) < ∞.

We now prove the main result of the section.

Proof of Proposition 7.2. Define τ−1 = τ0
.= 0 and for i ∈ N0, define

τ2i+1
.= inf{t ≥ τ2i : V (t) = 4g or 0}, τ2i+2

.= inf{t ≥ τ2i+1 : V (t) = g
2N

or 4g}.

Define

N = inf{k ≥ 0 : V (τ2k+1) = 4g}.
From Lemma 7.4 it follows that

sup
(v,z)∈[ g

2N ,2g]×RN
+

P∗
(v,z)(N = k) ≤ (1 − p)k−1, k ≥ 0.

Note that

τ̂4g ≤
N∑

i=0

(τ2i+1 − τ2i−1) ≤
N +1∑

i=1

(τ2i − τ2i−2). (7.5)
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By Lemmas 7.3 and 7.5 there are c1, c2 ∈ (0,∞) such that

sup
(v,z)∈[ g

2N ,2g]×RN
+

P∗
(v,z)(τ2 ≥ t) ≤ c1e−c2t .

It then follows that, for 0 < α < c2,

sup
(v,z)∈[ g

2N ,2g]×RN
+

E∗
(v,z) e

α τ2 ≤
∫ ∞

−∞
αeαs sup

(v,z)∈[ g
2N ,2g]×RN

+

P∗
(v,z)(τ2 ≥ s)ds

≤ 1 + αc1

∫ ∞

0
e(α−c2)sds = 1 +

αc1
c2 − α

.

Choose δ ∈ (0, 1) such that (1 + δ)(1 − p) .= κ < 1. Now choose α > 0 sufficiently
small such that

sup
(v,z)∈[ g

2N ,2g]×RN
+

E∗
(v,z) e

2α τ2 ≤ (1 + δ).

Applying Cauchy-Schwarz and the Strong Markov property we now see that, for any
(v, z) ∈ [ g

2N , 2g] × RN
+ ,

E∗
(v,z)e

α
∑N +1

i=1 (τ2i−τ2i−2) =
∞∑

k=0

E∗
(v,z)e

α
∑k+1

i=1(τ2i−τ2i−2)1{N =k}

≤
∞∑

k=0

(E∗
(v,z)e

2α
∑k+1

i=1(τ2i−τ2i−2))
1
2 (P∗

(v,z)(N = k))
1
2

≤ 2
(1 − p)1/2

∞∑

k=0

(1 + δ)k/2(1 − p)
k
2 ≤

∞∑

k=0

κk/2 < ∞.

The result now follows on combining the above estimate with (7.5). ,-

7.4. Hitting time of a lower velocity level. Let σ1
.= τ̂4g = inf{t ≥ 0 : V (t) = 4g} and

set σ2
.= inf{t ≥ σ1 : V (t) = 2g}. The main result of the section is the following.

Proposition 7.6. There is γ2 > 0 such that

sup
ẑ∈RN−1

+

E∗
(2g,0,ẑ) e

γ2σ2 < ∞.

The proof relies on the following three lemmas. Proofs of these lemmas are given in
Sect. 8.2. The proposition is proved after the statements of the lemmas.

Lemma 7.7. There is a γ3 > 0 such that

sup
ẑ∈RN−1

+

E∗
(2g,0,ẑ)e

γ3 Z1(σ1)
1/2

< ∞.
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Lemma 7.8. Define τ
Z1
0

.= inf{t ≥ 0 : Z1(t) = 0}. There is a γ4 > 0 and κ1, κ2 ∈
(0,∞) such that for any z1 ∈ R+ and γ ∈ (0, γ4]

sup
ẑ∈RN−1

+

E∗
(4g,z1,ẑ)e

γ τ
Z1
0 ≤ κ1eκ2γ z

1/2
1 .

Lemma 7.9. There exists a γ5 > 0 and κ ′
1, κ

′
2 ∈ (0,∞) such that for all γ ∈ (0, γ5)

and v ∈ [2g,∞),

sup
ẑ∈RN−1

+

E∗
(v,0,ẑ)e

γ τ̂2g ≤ κ ′
1e

κ ′
2γ v.

We now prove the main result of this section.

Proof of Proposition 7.6 Let α ∈ (0, 1) be such that

α < γ5, α(1 + κ ′
2g) ≤ γ4, 2α(1 + κ ′

2g)κ2 ≤ γ3, 2α(1 + κ ′
2g) ≤ γ , (7.6)

where γ5 and κ ′
2 are as in Lemma 7.9, κ2 and γ4 are as in Lemma 7.8, γ3 is as in Lemma

7.7 and γ is as in Proposition 7.2.
Fix ẑ ∈ RN−1

+ . Define stopping time

η1
.= inf{t ≥ σ1 : Z1(t) = 0}. (7.7)

Note that σ2 = inf{t ≥ η1 : V (t) = 2g}. From the strong Markov property, Lemma 7.9,
and recalling the first condition on α from (7.6),

E∗
(2g,0,ẑ) e

ασ2 = E∗
(2g,0,ẑ)

[
E∗
(2g,0,ẑ)(e

ασ2 | F∗
η1
)
]

≤ κ ′
1E∗

(2g,0,ẑ)e
κ ′
2αV (η1)+αη1

≤ κ ′
1E∗

(2g,0,ẑ)e
κ ′
2α(4g+gη1)+αη1 ≤ κ ′

1e
4κ ′

2αgE∗
(2g,0,ẑ)e

α(1+κ ′
2g)η1 .

Thus, with d1 = κ ′
1e

4κ ′
2αg and d2 = (1 + κ ′

2g),

E∗
(2g,0,ẑ) e

ασ2 ≤ d1E∗
(2g,0,ẑ)e

αd2η1 . (7.8)

Using the strong Markov property again,

E∗
(2g,0,ẑ)e

αd2η1 = E∗
(2g,0,ẑ)

[
E∗
(2g,0,ẑ)(e

αd2η1 | F∗
σ1
)
]

≤ κ1E∗
(2g,0,ẑ)e

κ2αd2Z1(σ1)
1/2+αd2σ1

≤ κ1

(
E∗
(2g,0,ẑ)e

2κ2αd2Z1(σ1)
1/2

)1/2 (
E∗
(2g,0,ẑ)e

2αd2σ1
)1/2

,

where the second inequality is from Lemma 7.8 and on recalling the second condition
on α from (7.6), and the last line is from Cauchy-Schwarz inequality. Next, applying
Lemma 7.7, and recalling the third condition on α from (7.6),

sup
ẑ∈RN−1

+

E∗
(2g,0,ẑ)e

2κ2αd2Z1(σ1)
1/2 .= d3 < ∞.
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Finally, applying Proposition 7.2 and recalling the fourth condition on α from (7.6) we
have

sup
ẑ∈RN−1

+

E∗
(2g,0,ẑ)e

2αd2σ1 .= d4 < ∞.

Combining the above estimates we have

sup
ẑ∈RN−1

+

E∗
(2g,0,ẑ) e

ασ2 ≤ d1κ1d
1/2
3 d1/24 < ∞.

The result follows. ,-

7.5. A negative singular drift property. For z ∈ RN
+ , define z̄2

.= ∑N
i=2(N − i + 1)zi .

Similarly, for RN
+ valued process {Z(t)}, we define for t ≥ 0,

Z̄2(t)
.=

N∑

i=2

(N − i + 1)Zi (t) =
N−1∑

i=1

i ZN−i+1(t). (7.9)

The main result of this section is Propositon 7.11, where we will show that if z̄2 is
large, then the process Z̄2(·) decreases in expectation in the course of an appropriately
large number of excursions of the velocity process between the levels 2g and 4g (see
(7.14)).

The following lemma gives a key algebraic representation of Z̄2(·) in terms of L1,
Lk+1 for k ∈ {1, . . . , N − 1}, and additional error terms. If z̄2 is large, then there exists
k ∈ {1, . . . , N − 1} such that Zk+1(0) = zk+1 is large. Thus, it takes a long time for this
gap to hit zero. Before this time, the lowest (inert) particle ‘pushes’ the bottom k + 1
particles up and thereby reduces Z̄2(·), as captured by the L1 term in the lemma. This
‘singular’ drift through local times results in stability and, in turn, exponential ergodicity,
of the system.

Lemma 7.10. Let Y (1)
1 (t) = 0 and Y (1)

k (t) .= ∑k
i=2(k− i +1)B∗

i (t), t ≥ 0, 2 ≤ k ≤ N.
Also define M(t) .= ∑N

i=2 Bi (t)− (N − 1)B1(t), t ≥ 0. Then for all (v, z) ∈ R×RN
+ ,

P∗
(v,z) a.s.,

Z̄2(t) − z̄2 ≤ M(t) +
N
k
Y (1)
k (t) +

N
2k

Lk+1(t) − (N − k)
k

L1(t), t ≥ 0, 1 ≤ k ≤ N ,

(7.10)

with equality for k = 1.
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Proof. Note that, for (v, z) ∈ R × RN
+ , under P∗

(v,z), for t ≥ 0,

Z̄2(t) = − (N − 1)
2

L1(t) +
N∑

i=2

(N − i + 1)

[
(Bi (t) − Bi−1(t) − 1

2
(Li+1(t) + Li−1(t)) + Li (t) + zi

]

= − (N − 1)
2

L1(t) +
N−1∑

i=1

i

[
(BN−i+1(t) − BN−i (t) − 1

2
(LN−i+2(t) + LN−i (t)) + LN−i+1(t) + zN−i+1

]

= z̄2 − (N − 1)
2

L1(t) +
N−1∑

i=1

i BN−i+1(t) −
N−1∑

i=1

i BN−i (t) +
N−1∑

i=1

i(LN−i+1(t)

− 1
2
(LN−i+2(t) + LN−i (t))).

Also,

N−1∑

i=1

i BN−i+1(t) −
N−1∑

i=1

i BN−i (t) =
N−2∑

i=0

(i + 1)BN−i (t) −
N−1∑

i=1

i BN−i (t)

=
N∑

i=2

Bi (t) − (N − 1)B1(t).

Moreover,

N−1∑

i=1

i(LN−i+1(t) − 1
2
(LN−i+2(t) + LN−i (t)))

= −1
2

N−1∑

i=1

i(LN−i+2(t) − LN−i+1(t)) +
1
2

N−1∑

i=1

i(LN−i+1(t) − LN−i (t)))

= −1
2

N−2∑

i=0

(i + 1)(LN−i+1(t) − LN−i (t)) +
1
2

N−1∑

i=1

i(LN−i+1(t) − LN−i (t))

= (N − 1)
2

(L2(t) − L1(t)) +
1
2
L2(t).
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Hence,

Z̄2(t) = z̄2 − (N − 1)
2

L1(t) +
N∑

i=2

Bi (t) − (N − 1)B1(t)

+
(N − 1)

2
(L2(t) − L1(t)) +

1
2
L2(t)

= z̄2 +
N∑

i=2

Bi (t) − (N − 1)B1(t) +
N
2
L2(t) − (N − 1)L1(t).

Consider the martingale M(t) .= ∑N
i=2 Bi (t) − (N − 1)B1(t). Then

Z̄2(t) = z̄2 + M(t) +
N
2
L2(t) − (N − 1)L1(t). (7.11)

This proves (7.10) for k = 1. Now, we will use this along with some local time inequal-
ities to prove (7.10) for k ≥ 2. Note that, from (7.4),

L2(t) ≤ L1(t) + B∗
2 (t) +

1
2
L3(t)

Li ≤ B∗
i (t) +

1
2
(Li+1(t) + Li−1(t)), i = 3, . . . , N . (7.12)

From these identities it follows that, for k ∈ {3, . . . , N },
k∑

i=3

(k − i + 1)
[
(Li (t) − 1

2
(Li+1(t) + Li−1(t)))

]
+(k − 1)(L2(t) − L1(t) − 1

2
L3(t))

≤
k∑

i=2

(k − i + 1)B∗
i (t)

.= Y (1)
k (t).

On the other hand,
k∑

i=3

(k − i + 1)(Li (t) − 1
2
(Li+1(t) + Li−1(t))) + (k − 1)(L2(t) − L1(t) − 1

2
L3(t))

= k
2
L2(t) − (k − 1)L1(t) − 1

2
Lk+1(t).

Combining the last two displays and multiplying through by 2
k ,

L2(t) ≤ 2(k − 1)
k

L1(t) +
1
k
Lk+1(t) +

2
k
Y (1)
k (t), k = 3, . . . , N . (7.13)

The last display holds trivially for k = 1 and also for k = 2, as can be seen from (7.12).
Hence, for all 1 ≤ k ≤ N , using (7.11),

Z̄2(t) − z̄2 = M(t) +
N
2
L2(t) − (N − 1)L1(t)

≤ M(t) +
N
2
(
2
k
Y (1)
k (t) +

2(k − 1)
k

L1(t) +
1
k
Lk+1(t)) − (N − 1)L1(t)

= M(t) +
N
k
Y (1)
k (t) +

N
2k

Lk+1(t) − (N − k)
k

L1(t).

This proves the lemma. ,-



The Inert Drift Atlas Model

Define the sequence of stopping times {σm}m≥0 as σ0 = 0, and for i ≥ 0,

σ2i+1
.= inf{t ≥ σ2i : V (t) = 4g}, σ2i+2

.= inf{t ≥ σ2i+1 : V (t) = 2g}. (7.14)

For ẑ ∈ RN−1
+ , abusing notation, write

∑N
i=2(N − i + 1)ẑi as z̄2.

Proposition 7.11. There exists 10 > 0 so that, for every 1 ≥ 10, there is a l ∈ N such
that

sup
ẑ∈RN−1

+ :z̄2≥1

E(2g,0,ẑ)(Z̄2(σ2l) − z̄2) < 0.

This propositionwill be proven using the following two lemmas. Proofs of the lemmas
are given in Sect. 8.3.

Lemma 7.12. There exists an l0 ∈ N and c2 > 0, such that for all 1 ≤ k < N, ẑ ∈ RN−1
+ ,

and l ≥ l0,

E∗
(2g,0,ẑ)(Z̄2(σ2l) − z̄2) ≤ −c2l +

N
2k

E∗
(2g,0,ẑ)Lk+1(σ2l). (7.15)

To complete the proof of Proposition 7.11 we will estimate, in the next lemma, the
second term in the bound (7.15).

Take 1 > 0 and suppose ẑ ∈ S1
.= {ẑ ∈ RN−1

+ : z̄2 ≥ 1}. Then there is a
k ∈ {1, . . . , N − 1} so that

zk+1 ≥ 1

N 2 . (7.16)

We will work with this k in the following.

Lemma 7.13. For 1 > 0 and ẑ ∈ S1, let k = k(1) satisfy (7.16). There exist positive
constants 11, D1, D2, D3 such that for any 1 ≥ 11 and l ∈ N,

E∗
(2g,0,ẑ)Lk+1(σ2l) ≤ D1l5/2

(√
le−D2

√
1/ l + e−D31

3/2
)
.

Proof of Proposition 7.11. With l0 as in Lemma 7.12 and 11 as in Lemma 7.13, let
1′

0
.= max{11, l40}. Setting l = l(1) = 511/46 + 1, we use Lemma 7.12 and Lemma

7.13 to obtain positive constants c′
2, D

′
1, D

′
2 such that for all 1 ≥ 1′

0 and ẑ ∈ S1,

E∗
(2g,0,ẑ)(Z̄2(σ2l) − z̄2) ≤ −c′

21
1/4 +

ND′
1

4k
13/4e−D′

21
1/4
.

The result now follows upon taking 10 ≥ 1′
0 such that the above bound is negative for

all 1 ≥ 10. ,-
The next proposition shows that |Z̄2(σ2)− Z̄2(0)| has a finite exponential moment.

Proposition 7.14. There exists γ6 > 0 so that

sup
ẑ∈RN−1

+

E∗
(2g,0,ẑ)e

γ6|Z̄2(σ2)−z̄2| < ∞.
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Proof. From (7.11) and (7.2), under P∗
(2g,0,ẑ),

|Z̄2(σ2) − z̄2| ≤ |M(σ2)| +
N
2
L2(σ2) + (N − 1)L1(σ2)

≤ |M(σ2)| + |Ȳ (σ2)| + 2(N − 1)L1(σ2).

Also note that

L1(σ2) = 2g + gσ2 − V (σ2) = 2g + gσ2 − 2g = gσ2.

Thus

|Z̄2(σ2) − z̄2| ≤ 2(N − 1)gσ2 + |M(σ2)| + |Ȳ (σ2)|.

Hence, writing Y ◦(t) := |M(t)| + |Ȳ (t)|, for any γ > 0, using Cauchy Schwarz in-
equalty,

E∗
(2g,0,ẑ)e

γ |Z̄2(σ2)−z̄2| ≤
(
E∗
(2g,0,ẑ) e

4(N−1)gγ σ2
)1/2 (

E∗
(2g,0,ẑ)e

2γ |Y ◦(σ2)|
)1/2

.

(7.17)

Recall γ2 from Proposition 7.6, and write D := supẑ∈RN−1
+

E∗
(2g,0,ẑ) e

γ2σ2 < ∞. Pro-
ceeding as in the proof of Lemma 7.7 (see Sect. 8.2.1), observe using (1.4), Proposition
7.6 and Markov’s inequality that there exist c, c′ > 0 such that for any γ ∈ (0, γ2/2)
and any ẑ ∈ RN−1

+ ,

E∗
(2g,0,ẑ)e

2γ |Y ◦(σ2)| ≤
∞∑

k=0

(
E∗
(2g,0,ẑ)e

4γ sup0≤s≤k+1 |Y ◦(s)|
)1/2

(P∗
(2g,0,ẑ)(σ2 ≥ k))1/2

≤ c
√
D

∞∑

k=0

ec
′γ 2(k+1)−γ k .

The proposition follows from the above bound, (7.17) and Proposition 7.6 upon choosing
γ ∈ (0,min{γ2/(4(N − 1)g), γ2/2}) small enough so that the sum on the right side in
the above display is finite. ,-

7.6. Hitting time of a compact set. Recall the sequence of stopping times {σ j } j∈N0

introduced in (7.14) and the process Z̄2 defined in (7.9). Also fix 1 ≥ 10 where 10 is
as in Proposition 7.11. Define

'′ .= inf{σ2k ≥ 0 : k ∈ N, Z̄2(σ2k) ≤ 1},
'

.= inf{t ≥ 0 : Z1(t) = 0, Z̄2(t) ≤ 1, V (t) = 2g}. (7.18)

Recall that for ẑ ∈ RN−1
+ , we write

∑N
i=2(N − i + 1)ẑi as z̄2.

Proposition 7.15. There exist γ7 > 0 and c, c′ > 0 such that for any ẑ ∈ RN−1
+ with

z̄2 ≥ 1 and any t ≥ c′ z̄2,

P∗
(2g,0,ẑ)(' > t) ≤ ce−γ7t .
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Proof. From the definition of the stopping times {σ j } j∈N0 it follows that, for each k ∈ N,
σ2k is a point of decrease of the velocity process and, consequently, Z1(σ2k) = 0. Indeed,
if this is not the case, one can produce an open interval containingσ2l where the velocity is
strictly increasing, leading to a contradiction to the definition of σ2k . Since Z1(σ2k) = 0,
it follows that '′ ≥ '. It therefore suffices to show the result with ' replaced by '′.

By Proposition 7.11, we can obtain l∗ ∈ N and µ∗ > 0 such that for any j ∈ N,

sup
ẑ∈RN−1

+

{
E(2g,0,ẑ)(Z̄2(σ2 jl∗) − Z̄2(σ2( j−1)l∗) |F∗

σ2( j−1)l∗
) + µ∗

}
1{'′>σ2( j−1)l∗ } ≤ 0,

(7.19)

whereF∗
σ2( j−1)l∗

denotes thefiltration associatedwith theprocess stopped at timeσ2( j−1)l∗ .

Write X j := Z̄2(σ2 jl∗) − Z̄2(σ2( j−1)l∗), F̃ j−1 := F∗
σ2( j−1)l∗

, j ∈ N. By Proposition
7.14 and the strong Markov property,

sup
ẑ∈RN−1

+

sup
j∈N

E∗
(2g,0,ẑ)

(
eγ6|X j | | F̃ j−1

)
< ∞.

This in particular says that supẑ∈RN−1
+

sup j∈N E∗
(2g,0,ẑ)

(
|X j |

∣∣∣ F̃ j−1

)
< ∞. From these

observations and Markov’s inequality, we conclude that there exist positive constants
c1, c2 such that for any j ∈ N,

sup
ẑ∈RN−1

+

P∗
(2g,0,ẑ)

(
|X j − E(X j | F̃ j−1)| ≥ x | F̃ j−1

)
≤ c1e−c2x , x ≥ 0.

Hence, by [38, Theorem 2.2] and its proof, there exist non-negative numbers (ν, b) such
that for any j ∈ N,

sup
ẑ∈RN−1

+

E∗
(2g,0,ẑ)

(
eλ(X j−E(X j | F̃ j−1)) | F̃ j−1

)
≤ eν2λ2/2, for all |λ| < 1/b.

Therefore, by [38, Theorem 2.3], there exist positive constants c3, c4 such that for any
ẑ ∈ RN−1

+ with z̄2 ≥ 1 and any t >
(

2
µ∗ + 2

1

)
z̄2,

P∗
(2g,0,ẑ)

(
'′ > σ2l∗5t6

)

= P∗
(2g,0,ẑ)




5t6∑

j=1

X j > 1 − z̄2, '′ > σ2l∗5t6





≤ P∗
(2g,0,ẑ)




5t6∑

j=1

(X j − E(X j | F̃ j−1)) > 1 − z̄2 + µ∗5t6, '′ > σ2l∗5t6





≤ P∗
(2g,0,ẑ)




5t6∑

j=1

(X j − E(X j | F̃ j−1)) > 1 + µ∗t/4





≤ c3e−c4t . (7.20)
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In the above display the first inequality is from (7.19) while the second inequality is
from the facts that due to our condition on z̄2 and t we have that µ∗(t − 1) > 2z̄2 and
t > 2, which says that

µ∗5t6 − z̄2 =
1
2
µ∗5t6 − z̄2 +

1
2
µ∗5t6 ≥ 1

2
(µ∗5t6 − 2z̄2) +

1
4
µ∗t ≥ 1

4
µ∗t.

Now, Proposition 7.6 and the strongMarkov property imply that there exists A ≥ 1 such
that

sup
ẑ∈RN−1

+

E∗
(2g,0,ẑ)

(
eγ2σ2l∗5t6

)
≤ A5t6, t > 0.

Hence, taking a > 0 such that eγ2a > A, we obtain positive constants c′
3, c

′
4 such that

for any t > 0,

sup
ẑ∈RN−1

+

P∗
(2g,0,ẑ)

(
σ2l∗5t6 > at

)
≤ c′

3e
−c′

4t . (7.21)

Using (7.20) and (7.21), we conclude that there exist positive constants c5, c6 such that
for any ẑ ∈ RN−1

+ with z̄2 ≥ 1 and any t >
(

2
µ∗ + 2

1

)
z̄2,

P∗
(2g,0,ẑ)('

′ > at) ≤ P∗
(2g,0,ẑ)

(
'′ > σ2l∗5t6

)
+ sup

ẑ∈RN−1
+

P∗
(2g,0,ẑ)

(
σ2l∗5t6 > at

)
≤ c5e−c6t .

The result follows upon taking c = c5, γ7 = c6 and c′ = a
(

2
µ∗ + 2

1

)
. ,-

7.7. Completing the proof of exponential ergodicity. In this section, we will complete
the proof of Theorem 2.5. We begin with the following proposition the proof of which
will be completed in Sect. 8.4. Fix 1 ≥ 10 where 10 is as in Proposition 7.11. Define

C∗ .= {(v, z) ∈ R × RN
+ : v = 2g, z1 = 0, z̄2 ≤ 1}. (7.22)

Let τC∗(1) .= inf{t ≥ 1 : (V (t),Z(t)) ∈ C∗}.
Proposition 7.16.

1. There exists η > 0 such that

Ṽ0(v, z)
.= E∗

(v,z)e
ητC∗ (1) < ∞, for all (v, z) ∈ R × RN

+ .

Furthermore,

sup
(v,z)∈C∗

Ṽ0(v, z)
.= M < ∞.

2. There exists a non-zero measure ν on B(R×RN
+ ) and r1 ∈ (0,∞) such that, for all

(v, z) ∈ C∗,

Pr1((v, z), A) ≥ ν(A) for all A ∈ B(R × RN
+ ).
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Part (2) of the above proposition shows that, in the terminology of Down, Meyn
and Tweedie (cf. [18, Section 3], the set C∗ is ν−petite (or small) for the Markov
family {P(v,z)}(v,z)∈R×RN

+
. Together with part (1) of the proposition, this shows that the

conditions of [18, Theorem 6.2] are satisfied and consequently, the function V0 defined
as

V0(v, z)
.= 1 − 1

η
+
1
η
Ṽ0(v, z), (v, z) ∈ R × RN

+ , (7.23)

satisfies the drift condition (DT ) in [18, Section 5]. We will now like to apply [18,
Theorem 5.2] to conclude the proof of exponential ergodicity. For this we show in the
next two results that the Markov process {P(v,z)}(v,z)∈R×RN

+
is irreducible and aperiodic.

Recall the set D from Theorem 4.1.

Proposition 7.17. Define the measure ψ on B(R × RN
+ ) as ψ(A) .= λ(A ∩ D), A ∈

B(R × RN
+ ). Then the Markov process {P(v,z)}(v,z)∈R×RN

+
is ψ-irreducible.

Proof. Fix (v, z) ∈ R × RN
+ . Let B ∈ B(R × RN

+ ) be such that λ(B ∩ D) > 0. To
establish ψ-irreducibility it suffices to show

E∗
(v,z)

∫ ∞

0
1{(V (t),Z(t))∈B}dt > 0.

From Theorem 4.1, for each t ∈ [ς, ς∗] and (v′, z′) ∈ R = (0, g
128 )× (0,∞)×RN−1

+ ,

Pt ((v′, z′), B) ≥ K(v′,z′)λ(B ∩ D).

Also, from Lemma 5.1, for any (v, z) ∈ R × RN
+ , there exists r0

.= r0(v, z) ∈ N such
that

Pr0((v, z), R) > 0. (7.24)

Observe that for t ∈ [r0 + ς, r0 + ς∗],

Pt ((v, z), B) =
∫

R×RN
+

Pt−r0((v′, z′), B)dPr0((v, z), dv′, dz′) ≥ λ(B ∩ D)

∫

R
K(v′,z′)dPr0((v, z), dv′, dz′).

The latter expression is strictly positive in view of (7.24), the positivity of K(v,z) for
(v, z) ∈ R and our assumption concerning B. Finally note that

E∗
(v,z)

∫ ∞

0
1{(V (t),Z(t))∈B}dt =

∫ ∞

0
Pt ((v, z), B)dt ≥

∫ r0+ς∗

r0+ς
Pt ((v, z), B)dt > 0.

The result follows. ,-
Proposition 7.18. The Markov process {P(v,z)}(v,z)∈R×RN

+
is aperiodic.
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Proof. Recall the set C and the constant K̄ Ā from Theorem 4.1 and let K̄ .= K̄C . Define
the measure ν on B(R × RN

+ ) as ν(B) .= K̄λ(B ∩ D), for B ∈ B(R × RN
+ ). From

Theorem 4.1 it follows that the set C in the statement of the theorem is ν-small. Hence,
for aperiodicity, it suffices to show that, for some t0 > 0

Pt ((v, z),C) > 0, for all t ≥ t0, and (v, z) ∈ C. (7.25)

Since λ(C ∩ D) > 0, we have that (7.25) holds for t ∈ [ς, ς∗] and all (v, z) ∈ C . Let
δ = ς∗ − ς , We now claim that, for all m ∈ N,

Pt ((v, z),C) > 0, for all t ∈ [mς,mς + mδ] and (v, z) ∈ C.

Indeed, clearly the result is true with m = 1, and if the result is true with m = k then it
is also true for m = k + 1 since any t ∈ [(k + 1)ς, (k + 1)ς + (k + 1)δ] can be written as
t1 + t2 with t1 ∈ [kς, kς + kδ] and t2 ∈ [ς, ς + δ], and

Pt ((v, z),C) ≥
∫

C
Pt1((v, z), (d ṽ, d z̃))Pt2((ṽ, z̃),C) > 0 for all (v, z) ∈ C.

Now choose k0 ∈ N such that k0δ ≥ ς . Then Pt ((v, z),C) > 0 for all (v, z) ∈ C and
t ∈ [kς, (k + 1)ς ] for all k ≥ k0. We conclude that Pt ((v, z),C) > 0 for all (v, z) ∈ C
and for all t ≥ k0ς . The result follows. ,-

We can now complete the proof of exponential ergodicity.

Proof of Theorem 2.5 As noted previously, Proposition 7.16 shows that the conditions
of [18, Theorem 6.2] are satisfied and consequently, the function V0 defined in (7.23)
satisfies the drift condition (DT ) in [18, Section 5]. Also from Propositions 7.17 and
7.18 the Markov process is ψ-irreducible and aperiodic. The result is now immediate
from [18, Theorem 5.2].

8. Proofs of Some Results from Sect. 7

In this section we present proofs of some technical results stated without proof in Sect. 7.

8.1. Proofs of lemmas for Proposition 7.2. In this section we provide the proofs of
Lemmas 7.3, 7.4, and 7.5 stated in Sect. 7.3 that were used in the proof of Proposition
7.2.

8.1.1. Proof of Lemma 7.3 Fix z ∈ RN
+ . All inequalities in the proof will be a.s. under

P∗
(0,z). Using (7.1), we have that for t ≤ τ̂g/(2N ),

L1(t) ≤
N∑

i=1

W1,i B∗
i (t) +

gW1,1t
2N

.

It can be verified that

W1,1 = N , and Wi,1 = 2N − 2(i − 1), i = 2, . . . , N .
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Using this and since V (t) = gt − L1(t), it follows that

V (t) ≥ −
N∑

i=1

W1,i B∗
i (t) + g(1 − W1,1

2N
)t = −

N∑

i=1

W1,i B∗
i (t) +

gt
2

.= Q(t).

Define σ̂g/(2N )
.= inf{t ≥ 0 : Q(t) = g/(2N )}. Then the above inequality implies that

σ̂g/(2N ) ≥ τ̂g/(2N ). By a standard concentration bound (see (1.4)) it follows that there
are %1, %2 ∈ (0,∞) such that

E∗
(0,z)e

θ
∑N

i=1 W1,i B∗
i (s) ≤ %1e%2θ

2s for all s ≥ 0 and θ ∈ (0,∞).

Then, for an arbitrary θ,β > 0, we have

E∗
(0,z)e

βτ̂g/(2N ) =
∫ ∞

0
P∗
(0,z)(τ̂g/(2N ) >

ln(s)
β

) ds

≤
∫ ∞

0
P∗
(0,z)(σ̂g/(2N ) >

ln(s)
β

) ds

≤
∫ ∞

0
P∗
(0,z)(Q(

ln(s)
β

) <
g
2N

) ds

≤ 1 +
∫ ∞

1
P∗
(0,z)(

g ln(s)
2β

<
g
2N

+
N∑

i=1

W1,i B∗
i (

ln(s)
β

)) ds

≤ 1 + eθg/(2N )

∫ ∞

1
e−θg ln(s)/2βE∗

(0,z)e
θ

∑N
i=1 W1,i B∗

i (
ln(s)

β ) ds

≤ 1 + %1eθg/(2N )

∫ ∞

1
s−θg/2βsθ2%2/β ds.

Now take

θ
.= g
4%2

, β
.= θg

8
.

Then

−θg/2β + θ2%2/β = −2.

The result follows. ,-

8.1.2. Proof of Lemma 7.4 We will first show that

inf
(v,z)∈[ g

4N ,4g]×[1,∞)×RN−1
+

P∗
(v,z)(τ̂4g < τ̂0)

.= p1 > 0. (8.1)

Note that, for t > 0, on the set {τ̂4g > t}, for (v, z) ∈ [ g
4N , 4g] × RN

+ , under P∗
(v,z),

L1(t) ≤ sup
0≤s≤t

(−z1 − B1(s) +
1
2
L2(s) + 4gs)+ ≤ sup

0≤s≤t
(−z1 − B1(s) + 4gs)+ +

1
2
L2(t)

≤ sup
0≤s≤t

(−z1 − B1(s) + 4gs)+ +
(N − 1)

N
L1(t) +

1
N
Ȳ (t),
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where the last inequality uses (7.2). Thus

L1(t) ≤ N sup
0≤s≤t

(−z1 − B1(s) + 4gs)+ + Ȳ (t). (8.2)

Consider the set A1 ∈ F∗ defined as

A1
.= {−B1(s) + 4gs − 1 < 0 for all s ∈ [0, 8] and Ȳ (8) < g/8N }.

Note that

inf
(v,z)∈R×RN

+

P∗
(v,z)(A1)

.= p′
1 > 0.

Also, for (v, z) ∈ [ g
4N , 4g] × [1,∞) × RN−1

+ , under P∗
(v,z), on A1,

L1(8 ∧ τ̂4g) ≤ N sup
0≤s≤8∧τ̂4g

(−z1 − B1(s) + 4gs)+ + Ȳ (8) = Ȳ (8) < g/8N < 4g.

So, in particular,

V (8 ∧ τ̂4g) = V (τ̂4g)1{τ̂4g≤8} + V (8)1{τ̂4g>8} ≥ 4g1{τ̂4g≤8} + (8g − 4g)1{τ̂4g>8} = 4g

and consequently τ̂4g ≤ 8. Also, under the same conditions, for s < 8,

V (s ∧ τ̂4g) ≥ v − L1(s ∧ τ̂4g) ≥ v − L1(8 ∧ τ̂4g) >
g
4N

− g
8N

> 0.

Thus we have

p1 = inf
(v,z)∈[ g

4N ,4g]×[1,∞)×RN−1
+

P∗
(v,z)(τ̂4g < τ̂0) ≥ inf

(v,z)∈R×RN
+

P∗
(v,z)(A1) = p′

1 > 0.

This proves (8.1).
Let ν1

.= inf{t ≥ 0 : Z1(t) ≥ 1}. In order to complete the proof, from the strong
Markov property, it suffices to show that

inf
(v,z)∈[ g

2N ,2g]×RN
+

P∗
(v,z)(ν1 ∧ τ̂4g < τ̂g/4N )

.= p2 > 0. (8.3)

Fix δ ∈ (0, 1) such that

2gNδ +
1
2
gNδ2 ≤ g

16N
.

Define A2 ∈ F∗ as

A2
.= {B1(δ) ≥ 1 + 4gNδ + gNδ2 +

3g
16N

, Ȳ (δ) + N B∗
1 (δ) ≤ g

16N
}.

It is easy to check that

inf
(v,z)∈[ g

2N ,2g]×RN
+

P∗
(v,z)(A2)

.= p′
2 > 0.
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Furthermore, as in (8.2), for (v, z) ∈ [ g
2N , 2g] × RN

+ , under P∗
(v,z), on A2,

L1(δ) ≤ N B∗
1 (δ) + Ȳ (δ) + N

∫ δ

0
V +(s)ds ≤ N B∗

1 (δ) + Ȳ (δ) + 2gNδ +
1
2
gNδ2.

Also, under the same conditions, from (7.2),

L2(δ) ≤ 2L1(δ) +
2
N
Ȳ (δ) ≤ 2N B∗

1 (δ) + 2Ȳ (δ) + 4gNδ + gNδ2 +
2
N
Ȳ (δ).

Thus

Z1(δ) = z1 + B1(δ) + L1(δ) − 1
2
L2(δ) −

∫ δ

0
V (s)ds

≥ 1 + 4gNδ + gNδ2 +
3g
16N

− N B∗
1 (δ) − Ȳ (δ) − 2gNδ − 1

2
gNδ2

− 1
N
Ȳ (δ) − 2gδ − 1

2
gδ2

≥ 1.

Again, under the same conditions, for 0 ≤ s ≤ δ,

V (s) ≥ g
2N

− L1(δ) ≥ g
2N

− N B∗
1 (δ) − Ȳ (δ) − 2gNδ − 1

2
gNδ2

≥ g
2N

− g
16N

− 2gNδ − 1
2
gNδ2 ≥ g

2N
− g

16N
− g

16N
>

g
4N

.

It then follows

p2 = inf
(v,z)∈[ g

2N ,2g]×RN
+

P∗
(v,z)(ν1 ∧ τ̂4g < τ̂g/4N )

≥ inf
(v,z)∈[ g

2N ,2g]×RN
+

P∗
(v,z)(ν1 < τ̂g/4N )

≥ inf
(v,z)∈[ g

2N ,2g]×RN
+

P∗
(v,z)(A2) = p′

2 > 0.

This proves (8.3) and completes the proof of the lemma. ,-

8.1.3. Proof of Lemma 7.5 By the strong Markov property, it suffices to show that for
some m ∈ N

inf
(v,z)∈[0,4g]×RN

+

P∗
(v,z)(τ̂4g ∧ τ̂0 ≤ m) > 0. (8.4)

We will prove (8.4) with m = 5. We consider two cases:
Case 1: z1 ≥ 1. Define A1 ∈ F∗ as

A1
.= {−B1(s) + 4gs − 1 ≤ 0 for all 0 ≤ s ≤ 5, Ȳ (5) < g}.

It is easily seen that

inf
(v,z)∈[0,4g]×RN

+

P∗
(v,z)(A1)

.= κ1 > 0.
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From (7.2) and (8.2) it follows that, for (v, z) ∈ [0, 4g]×[1,∞) × RN−1
+ , under P∗

(v,z),
on A1 ∩ {τ̂4g ∧ τ̂0 > 5},

L1(5) ≤ N sup
s≤5

(−1 + 4gs − B1(s))+ + Ȳ (5) < g,

and consequently

V (5) ≥ 5g − L1(5) > 5g − g = 4g.

This says that A1 ∩ {τ̂4g ∧ τ̂0 > 5} is P∗
(v,z) trivial and so

inf
(v,z)∈[0,4g]×[1,∞)×RN−1

+

P∗
(v,z)(τ̂4g ∧ τ̂0 ≤ 5) ≥ inf

(v,z)∈[0,4g]×RN
+

P∗
(v,z)(A1) = κ1 > 0.

This proves (8.4) when z1 ≥ 1.
Case 2: z1 < 1. Define A2 ∈ F∗ as

A2
.= {B1(5) < −1 − 9g}.

Clearly

inf
(v,z)∈[0,4g]×RN

+

P∗
(v,z)(A2)

.= κ2 > 0.

Also, for (v, z) ∈ [0, 4g]×[0, 1) × RN−1
+ , under P∗

(v,z), on A2 ∩ {τ̂4g ∧ τ̂0 > 5},

L1(5) = sup
0≤s≤5

(−z1 +
1
2
L2(s) +

∫ s

0
V (u)du − B1(s))+ ≥ sup

0≤s≤5
(−1 − B1(s))+ > 9g

and consequently

V (5) ≤ 4g + 5g − L1(5) < 0.

This shows that A2 ∩ {τ̂4g ∧ τ̂0 > 5} is P∗
(v,z) trivial and so

inf
(v,z)∈[0,4g]×[0,1)×RN−1

+

P∗
(v,z)(τ̂4g ∧ τ̂0 ≤ 5) ≥ inf

(v,z)∈[0,4g]×RN
+

P∗
(v,z)(A2) = κ2 > 0.

This completes the proof of (8.4) when z1 < 1. The result follows. ,-

8.2. Proofs of lemmas for Proposition 7.6. In this section we provide the proofs of
Lemmas 7.7, 7.8, and 7.9 stated in Sect. 7.4 that were used in the proof of Proposition
7.6.
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8.2.1. Proof of Lemma 7.7 Fix ẑ ∈ RN−1. All inequalities in this proof are P∗
(2g,0,ẑ)-a.s.

Observe that 4g = V (σ1) = gσ1 − L1(σ1) + 2g, so that L1(σ1) = gσ1 − 2g. Then

Z1(σ1) = B1(σ1) − 1
2
L2(σ1) + L1(σ1) −

∫ σ1

0
V (s)ds

≤ sup
0≤s≤σ1

(B1(s)) + gσ1 − gσ 2
1

2
− 2gσ1 +

∫ σ1

0
L1(s)ds

≤ sup
0≤s≤σ1

(B1(s)) + L1(σ1)σ1

≤ sup
0≤s≤σ1

(B1(s)) + gσ 2
1 .

Thus, for β > 0,

eβ(Z1(σ1))
1/2 ≤ eβ(sup0≤s≤σ1

(B1(s))+gσ 2
1 )

1/2

≤ eβ(sup0≤s≤σ1
B1(s))1/2+β

√
gσ1 ≤ 1

2
e2β((sup0≤s≤σ1

B1(s))1/2 +
1
2
e2β

√
gσ1 ,

(8.5)

where in the final step we use Young’s inequality. We now estimate each of the terms in
(8.5). We begin by recalling that from Proposition 7.2, we can find β0 ∈ (0, 1/2) such
that

sup
ẑ∈RN−1

+

E∗
(2g,0,ẑ)e

β0σ1 .= c(β0) < ∞.

Hence, taking β ∈ (0,β0/(2
√
g)], the second term in (8.5) is bounded as

sup
ẑ∈RN−1

+

E∗
(2g,0,ẑ)e

2β
√
gσ1 ≤ c(β0).

With β ∈ (0,β0] for the first term in (8.5), we have,

E∗
(2g,0,ẑ)e

2β(sup0≤s≤σ1
B1(s))1/2 ≤ e2β + E∗

(2g,0,ẑ) e
2β sup0≤s≤σ1

B1(s)1{sup0≤s≤σ1
B1(s)>1}

≤ e2β +
∞∑

k=0

E∗
(2g,0,ẑ) e

2β sup0≤s≤σ1
B1(s)1{k≤σ1<k+1}

≤ e2β +
∞∑

k=0

E∗
(2g,0,ẑ) e

2β sup0≤s≤k+1 B1(s)1{k≤σ1<k+1}.
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Using Cauchy-Schwarz inequality,

E∗
(2g,0,ẑ)e

2β(sup0≤s≤σ1
B1(s))1/2

≤ e2β +
∞∑

k=0

(E∗
(2g,0,ẑ) e

4β sup0≤s≤k+1 B1(s))1/2(P∗
(2g,0,ẑ)(σ1 ≥ k))1/2

≤ e2β + %1

∞∑

k=0

e8β
2%2(k+1)(P∗

(2g,0,ẑ)(σ1 ≥ k))1/2

≤ e2β + %1c(β0)
1/2e8β

2%2

∞∑

k=0

e8β
2%2k− βk

2
.= c1(β) < ∞, (8.6)

where the finiteness follows on choosing β ∈ (0,β1] for sufficiently small β1 ∈ (0,β0].
The second line above follows from a standard concentration inequality (see (1.4)) and
the last line from Markov’s inequality. Thus for any β ∈ (0,β1],

sup
ẑ∈RN−1

+

E∗
(2g,0,ẑ) e

2β(sup0≤s≤σ1
B1(s))1/2 .= c1(β) < ∞.

The result now follows on setting γ3 = min{β0/(2
√
g),β1}. ,-

8.2.2. Proof of Lemma 7.8 Let (z1, ẑ) ∈ (0,∞) × RN−1
+ . All inequalities of random

quantities in this proof are P∗
(4g,z1,ẑ)

-almost sure. For t ≤ τ
Z1
0 , we have

Z1(t) = z1 + B1(t) − 1
2
L2(t) −

∫ t

0
V (s)ds

= z1 + B1(t) − 1
2
L2(t) −

∫ t

0
(gs + 4g)ds

≤ z1 + sup
0≤s≤t

B1(s) − gt2

2
.= H(t).

Consequently, Z1(t) must hit zero before H(t), and so τ H
0

.= inf{t ≥ 0 : H(t) = 0} ≥
τ
Z1
0 . Thus, for arbitrary γ > 0,

E∗
(4g,z1,ẑ)e

γ τ
Z1
0 = 1 +

∫ ∞

1
P∗
(4g,z1,ẑ)(τ

Z1
0 >

ln(s)
γ

)ds

≤ 1 +
∫ ∞

1
P∗
(4g,z1,ẑ)(τ

H
0 >

ln(s)
γ

)ds

≤ 1 +
∫ ∞

1
P∗
(4g,z1,ẑ)(H(

ln(s)
γ

) > 0)ds.
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Thus, using Markov’s inequality, for θ > 0,

E∗
(4g,z1,ẑ)e

γ τ
Z1
0 ≤ 1 +

∫ ∞

1
P∗
(4g,z1,ẑ)(z1 + sup

0≤u≤ ln(s)
γ

B1(s) >
g( ln(s)γ )2

2
)ds

≤ 1 +
∫ ∞

1
P∗
(4g,z1,ẑ)(z

1/2
1 + ( sup

0≤u≤ ln(s)
γ

B1(s))1/2 >

√
g
2
ln(s)
γ

)ds

≤ 1 + eθ z1/21

∫ ∞

1
s−

√ g
2

θ
γ E∗

(4g,z1,ẑ)e
θ(sup

0≤u≤ ln(s)
γ

B1(s))1/2

ds

≤ 1 + %1eθ z1/21

∫ ∞

1
s−

√ g
2

θ
γ s

%2θ2

γ ds,

where in the last line we have used a standard concentration inequality (see (1.4)). Now
take γ4

.= g/(16%2) and for fixed γ ∈ (0, γ4], take θ = 4
√
2γ /

√
g. Then it follows that

−
√
g
2

θ

γ
+

%2θ
2

γ
≤ − 2.

Thus

sup
ẑ∈RN−1

+

E∗
(4g,z1,ẑ)e

γ τ
Z1
0 ≤ 1 + %1e4

√
2γ z1/21 /

√
g.

The result follows. ,-

8.2.3. Proof of Lemma 7.9 Let v ∈ [2g,∞), ẑ ∈ RN−1
+ , and γ > 0. All inequalities of

random quantities in this proof are P∗
(v,0,ẑ)-almost sure. For t ≤ τ̂2g , V (t) ≥ 2g, so

0 ≤ Z1(t) = B1(t) + L1(t) − 1
2
L2(t) −

∫ t

0
V (s)ds ≤ sup

0≤s≤t
B1(s) + L1(t) − 2gt,

from which it follows that −L1(t) ≤ sup0≤s≤t B1(s) − 2gt. Hence,

V (t) = gt − L1(t) + v ≤ sup
0≤s≤t

B1(s) − gt + v
.= Q(t).

From this inequality we see that τ
Q
2g

.= inf{t ≥ 0 : Q(t) = 2g} satisfies τ
Q
2g ≥ τ̂2g .

Then, for any θ > 0,

E∗
(v,0,ẑ)e

γ τ̂2g =
∫ ∞

0
P∗
(v,0,ẑ)(τ̂2g ≥ 1

γ
ln(s))ds ≤

∫ ∞

0
P∗
(v,0,ẑ)(τ

Q
2g ≥ 1

γ
ln(s))ds

≤ 1 +
∫ ∞

1
P∗
(v,0,ẑ)(Q(

1
γ
ln(s)) > 2g)ds.
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Thus by Markov’s inequality,

E∗
(v,0,ẑ)e

γ τ̂2g ≤ 1 + e−2gθ
∫ ∞

1
E∗
(v,0,ẑ)e

θQ( 1γ ln(s))ds

= 1 + eθ(v−2g)
∫ ∞

1
e− gθ

γ ln(s)E∗
(v,0,ẑ)e

θ sup
0≤t≤ 1

γ ln(s)
B1(t)

ds

≤ 1 + %1eθ(v−2g)
∫ ∞

1
s− gθ

γ + %2θ2

γ ds,

where we have once again used (1.4). Now let γ5
.= g2/(8%2) and for fixed γ ∈ (0, γ5),

take θ = 4γ /g. Then, for any γ ∈ (0, γ5),

−gθ
γ

+
%2θ

2

γ
≤ − 2.

It then follows, for γ ∈ (0, γ5),

sup
ẑ∈RN−1

+

E∗
(v,0,ẑ)e

γ τ̂2g ≤ 1 + %1e4γ (v−2g)/g.

The result follows. ,-

8.3. Proofs of lemmas for Proposition 7.11. In this section we provide the proofs of
Lemmas 7.12 and 7.13 stated in Sect. 7.5 that were used in the proof of Proposition
7.11.

8.3.1. Proof of Lemma 7.12 Fix (2g, 0, ẑ) ∈ R × RN
+ . Since M(t) = ∑N

i=2 Bi (t) −
(N − 1)B1(t), from Proposition 7.6 (which implies E∗

(2g,0,ẑ)σ2l < ∞ for any l ∈ N)
and optional sampling theorem (cf. [28, Section 1.3.C]), we have from Lemma 7.10, for
l ∈ N,

E∗
(2g,0,ẑ)(Z̄2(σ2l) − z̄2)

≤ E∗
(2g,0,ẑ)

(
M(σ2l) +

N
k
Y (1)
k (σ2l) − (N − k)

k
L1(σ2l) +

N
2k

Lk+1(σ2l)

)

= N
k
E∗
(2g,0,ẑ) Y

(1)
k (σ2l) − (N − k)

k
E∗
(2g,0,ẑ) L1(σ2l)

+
N
2k

E∗
(2g,0,ẑ) Lk+1(σ2l). (8.7)

Using standard martingale maximal inequalities we have

E∗
(2g,0,ẑ)B

∗
i (σ2l) ≤ c0

√
E∗
(2g,0,ẑ)σ2l = c0

(
l∑

i=1

E∗
(2g,0,ẑ)(σ2i − σ2(i−1))

)1/2

≤ c′
0

√
l,

where c0, c′
0 ∈ (0,∞) are independent of ẑ and l, and the last inequality once more uses

Proposition 7.6. Thus, for some c1 ∈ (0,∞), for all k = 1, . . . , N , l ∈ N,

sup
ẑ∈RN−1

+

E∗
(2g,0,z)Y

(1)
k (σ2l) ≤ c1l1/2. (8.8)
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Next note that

E∗
(2g,0,ẑ) L1(σ2l) =

l∑

i=1

E∗
(2g,0,ẑ)(L1(σ2i ) − L1(σ2i−2)) ≥ l inf

z̃∈RN−1
+

E∗
(2g,0,z̃)(L1(σ2))

≥ gl inf
z̃∈RN−1

+

P∗
(2g,0,z̃)(L1(σ2) > g)

= gl inf
z̃∈RN−1

+

P∗
(2g,0,z̃)(gσ2 − V (σ2) + 2g > g)

= gl inf
z̃∈RN−1

+

P∗
(2g,0,z̃)(σ2 > 1) = gl, (8.9)

where the last equality follows on observing that, under P∗
(2g,0,z̃), σ2 > σ1 > 1 a.s.

The result follows from (8.7), (8.8) and (8.9). ,-

8.3.2. Proof of Lemma 7.13 Fix 1 > 0 and (2g, 0, ẑ) ∈ R×RN
+ such that ẑ ∈ S1. All

inequalities will be a.s. under P∗
(2g,0,ẑ). Let k = k(1) satisfy (7.16). Define

θk = inf{t ≥ 0 : Zk+1(t) = 0}.
Then for t ≤ θk ,

Zk+1(t) = zk+1 + Bk+1(t) − Bk(t) − 1
2
(Lk(t) + Lk+2(t))

≥ 1

N 2 + Bk+1(t) − Bk(t) − 1
2
(Lk(t) + Lk+2(t)). (8.10)

To bound E∗
(2g,0,ẑ)Lk+1(σ2l), we will obtain an upper bound on the probability that

Lk+1(σ2l) > 0, or equivalently, the probability that Zk+1(·) hits zero before time σ2l ,
using (8.10). Next, we will estimate E∗

(2g,0,ẑ)(Lk+1(σ2l)
2). These two will be combined

using a Cauchy-Schwarz inequality to obtain an upper bound for E∗
(2g,0,ẑ)Lk+1(σ2l).

We will first obtain an upper bound for Lk(t) for k < N and t ≤ θk . When 3 ≤ k ≤
N − 1, from (7.4), for t ≤ θk ,

Lk(t) ≤ B∗
k (t) +

1
2
Lk−1(t)

Li (t) ≤ B∗
i (t) +

1
2
(Li−1(t) + Li+1(t)), 3 ≤ i ≤ k − 1 if k ≥ 4,

L2(t) ≤ L1(t) + B∗
2 (t) +

1
2
L3(t). (8.11)

Thus,

k−1∑

i=3

(i − 1)(Li (t) − 1
2
(Li+1(t) + Li−1(t)))

+ (L2(t) − L1(t) − 1
2
L3(t)) + (k − 1)(Lk(t) − 1

2
Lk−1(t))

≤
k∑

i=2

(i − 1)B∗
i (t)

.= Y (2)
k (t),
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where the first sum is taken to be zero if k = 3. The left side in the above inequality
equals k

2 Lk(t) − L1(t) and so we have, whenever N > k ≥ 3, t ≤ θk ,

Lk(t) ≤ 2
k
L1(t) +

2
k
Y (2)
k (t). (8.12)

Note that the above inequality holds trivially if k = 1, and by (8.11) if k = 2, and so in
fact the above holds under P∗

(2g,0,ẑ), with ẑ ∈ S1, for k satisfying (7.16) and t ≤ θk .
We now obtain a similar upper bound on Lk+2(t) when k < N and t ≤ θk . From

(7.4), when k < N − 1, for t ≤ θk ,

(N − k − 1)(Lk+2(t) − 1
2
Lk+3(t)) +

N−1∑

i=k+2

(N − i)(Li+1(t) − 1
2
(Li (t) + Li+2(t)))

≤
N−1∑

i=k+1

(N − i)B∗
i+1(t)

.= Y (3)
k (t).

The left side equals N−k
2 Lk+2(t) and so we have, when k < N − 1,

Lk+2(t) ≤ 2
N − k

Y (3)
k (t), for all t ≤ θk . (8.13)

Note that when k = N − 1 the inequality is trivially true. Using (8.12) and (8.13) in
(8.10), we have for t ≤ θk , under P∗

(2g,0,ẑ)

Zk+1(t) ≥ 1

N 2 −
N∑

i=1

B∗
i (t) − 2

k
L1(t) − 2

k
Y (2)
k (t) − 2

N − k
Y (3)
k (t)

≥ 1

N 2 − Y (4)
k (t) − 2

k
L1(t),

where Y (4)
k (t) = ∑N

i=1 B
∗
i (t) +

2
k Y

(2)
k (t) + 2

N−k Y
(3)
k (t). Note that if Lk+1(σ2l) > 0, then

inf0≤s≤σ2l Zk+1(s) = 0, which in turn implies that θk ∈ [0, σ2l ] and so from the above
display

1

N 2 ≤ Y (4)
k (θk) +

2
k
L1(θk) ≤ Y (4)

k (σ2l) +
2
k
L1(σ2l).

As a consequence,

P∗
(2g,0,ẑ)(Lk+1(σ2l) > 0) ≤ P∗

(2g,0,ẑ)(
1

N 2 ≤ Y (4)
k (σ2l) +

2
k
L1(σ2l))

≤ P∗
(2g,0,ẑ)(

1

2N 2 ≤ Y (4)
k (σ2l)) + P∗

(2g,0,ẑ)(
1

2N 2 ≤ 2
k
L1(σ2l)).

(8.14)

Consider now the first term on the right side. Then, for T ≥ 1,

P∗
(2g,0,ẑ)(

1

2N 2 ≤ Y (4)
k (σ2l)) ≤ P∗

(2g,0,ẑ)(σ2l > T ) + P( 1

2N 2 ≤ Y (4)
k (T ))

≤ l sup
z̃∈RN−1

+

P∗
(2g,0,z̃)(σ2 > T/ l) + c1e−c212/T

≤ c3le−c4T/ l + c1e−c212/T , (8.15)
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where ci ∈ (0,∞) are constants that do not depend on1 or ẑ ∈ S1, the second inequality
uses the strong Markov property and a standard concentration estimate (see (1.4)) and
the last inequality is a consequence of Proposition 7.6. Now consider the second term
on the right side of (8.14). For T ≥ 1,

P∗
(2g,0,ẑ)(

1

2N 2 ≤ 2
k
L1(σ2l)) ≤ P∗

(2g,0,ẑ)(σ2l > T ) + P∗
(2g,0,ẑ)(

1

2N 2 ≤ 2
k
L1(T ))

≤ c3le−c4T/ l + P∗
(2g,0,ẑ)(L1(T ) ≥ 1k

4N 2 ). (8.16)

Note that under P∗
(2g,0,ẑ),

sup
0≤s≤T

V (s) < 2g + gT .

Thus, using (7.2) and (7.3), for any T ≥ 1,

L1(T ) ≤ 1
2
L2(T ) + (2g + gT )T + B∗

1 (T )

≤ (N − 1)
N

L1(T ) +
1
N
Ȳ (T ) + (2g + gT )T + B∗

1 (T )

and thus, with Ỹ (T ) = Ȳ (T ) + N B∗
1 (T ) and c5 = 3gN

L1(T ) ≤ Ȳ (T ) + (2g + gT )T N + N B∗
1 (T )≤Ỹ (T ) + c5T 2. (8.17)

Take T = T (1)
.= 1

2N

√
1
2c5

and observe that c5T 2 ≤ 1k/(8N 2) for all k ∈
{1, . . . , N }. Choose 11 > 0 such that T (11) ≥ 1. Then, it follows by a concentration
estimate that, for 1 ≥ 11,

P∗
(2g,0,ẑ)(L1(T ) ≥ 1k

4N 2 ) ≤ P∗
(2g,0,ẑ)(Ỹ (T ) ≥ 1k

4N 2 − c5T 2)

≤ P∗
(2g,0,ẑ)(Ỹ (T ) ≥ c5T 2) ≤ c6e−c7T 3

. (8.18)

Then, using (8.18), (8.16) and (8.15) in (8.14), we obtain constants c′
2, c

′
7, c8, c9 > 0

such that for all 1 ≥ 11,

P∗
(2g,0,ẑ)(Lk+1(σ2l) > 0) ≤ 2c3le−c4ν

√
1/ l + c1e−c′

21
3/2

+ c6e−c′
71

3/2

≤ 2c3le−c4ν
√

1/ l + c8e−c913/2
. (8.19)

We will now obtain an upper bound for E(2g,0,ẑ)(Lk+1(σ2l)
2). From (7.3) we have

that, for m ≥ 2 and t ≥ 0,

(LN (t) − 1
2
LN−1(t)) +

N−2∑

j=m

(N − j)(L j+1(t) − 1
2
(L j+2(t) + L j (t)))

≤
N−1∑

j=m

(N − j)B∗
j+1(t)

.= Y (5)
m (t).
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The left side above equals N−m+1
2 Lm+1(t) − N−m

2 Lm(t) and so

N − m + 1
2

Lm+1(t) − N − m
2

Lm(t) ≤ Y (5)
m (t).

Dividing by (N − m)(N − m + 1)/2 throughout, we have

1
N − m

Lm+1(t) − 1
N − m + 1

Lm(t) ≤ 2
(N − m)(N − m + 1)

Y (5)
m (t), 2 ≤ m ≤ N − 1.

Summing over m from 2 to k, the above yields

1
N − k

Lk+1(t) − 1
N − 1

L2(t) ≤
k∑

m=2

2Y (5)
m (t)

(N − m)(N − m + 1)
.= Y (6)

k (t).

and thus

Lk+1(t) ≤ N − k
N − 1

L2(t) + (N − k)Y (6)
k (t).

From (7.13) (recall it holds for any value of k ≥ 1) we have

Lk+1(t) ≤ N − k
N − 1

(
2(k − 1)

k
L1(t) +

2
k
Y (1)
k (t) +

1
k
Lk+1(t)

)
+ (N − k)Y (6)

k (t).

Thus

N (k − 1)
k(N − 1)

Lk+1(t) ≤ 2(k − 1)(N − k)
k(N − 1)

L1(t) +
2(N − k)
k(N − 1)

Y (1)
k (t) + (N − k)Y (6)

k (t)

and consequently, when k > 1,

Lk+1(t) ≤ 2(N − k)
N

L1(t) +
2(N − k)
N (k − 1)

Y (1)
k (t) +

k(N − k)(N − 1)
N (k − 1)

Y (6)
k (t)

= 2(N − k)
N

L1(t) + Y (7)
k (t), (8.20)

where Y (7)
k (t) = 2(N−k)

N (k−1)Y
(1)
k (t) + k(N−k)(N−1)

N (k−1) Y (6)
k (t). Recalling the inequality (7.2) we

see that (8.20) also holds with k = 1 and Y (7)
1 (t) .= 2

N Ȳ (t).
Using this, we obtain that

E∗
(2g,0,ẑ)(Lk+1(σ2l)

2) ≤ 2E∗
(2g,0,ẑ)(Y

(7)
k (σ2l))

2 +
8(N − k)2

N 2 E∗
(2g,0,ẑ)L

2
1(σ2l)

≤ 2E∗
(2g,0,ẑ)(Y

(7)
k (σ2l))

2 +
16(N − k)2

N 2 E∗
(2g,0,ẑ)(Ỹ (σ2l))

2

+
16(N − k)2c25

N 2 E∗
(2g,0,ẑ)(σ2l)

4.

where the last line is from (8.17). Thus, using the above bound, the strong Markov
property, and Proposition 7.6, there is a b1 ∈ (0,∞) such that, for all l ∈ N, ẑ ∈ S1,
and k satisfying (7.16),

E∗
(2g,0,ẑ)(Lk+1(σ2l)

2) ≤ b1l5.
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Applying Cauchy-Schwarz inequality and using (8.19), we obtain positive constants
D1, D2, D3 such that for all 1 ≥ 11,

E∗
(2g,0,ẑ)Lk+1(σ2l) ≤ (E∗

(2g,0,ẑ)Lk+1(σ2l)
2)1/2(P∗

(2g,0,ẑ)(Lk+1(σ2l) > 0))1/2

≤ b1/21 l5/2(2c3le−c4ν
√

1/ l + c8e−c913/2
)1/2

= D1l5/2(
√
le−D2

√
1/ l + e−D31

3/2
),

as desired. ,-

8.4. Proof of Proposition 7.16. In this section we give the proof of Proposition 7.16.
Proof relies onfivepreliminary lemmaswhich extend someestimates derived inSects. 7.3
and 7.4 to more general starting configurations. The first four are required to verify part
(1) of the proposition and the last one is used to check part (2). Proof of the proposition
is at the end of the section. Recall the set C∗ from (7.22) and stopping times σ1, σ2 from
Sect. 7.4. Recall ' from (7.18).

Lemma 8.1. There exists a ρ0 > 0 and b1, b2 > 0 such that, for all ρ ∈ (0, ρ0), there
is a b3(ρ) ∈ (0,∞) such that for any (v, z) ∈ R × RN

+ ,

E∗
(v,z)e

ρ' ≤ b3(ρ)eb1ρ(|v|+z1+z̄2)E∗
(v,z)e

b2ρσ1 .

Proof. Define the stopping time

σ ∗ .= inf{t ≥ σ2 : (V (t),Z(t)) ∈ C∗}.
From Proposition 7.15, there exist positive constants d0, c′ such that for any γ ∈
(0, γ7/2), where γ7 is as in that lemma,

E∗
(2g,0,ẑ)e

γ' ≤ d0ec
′γ z̄2 , ẑ ∈ RN−1

+ .

Fix ρ′
0 > 0 such that ρ′

0 < min{γ7, γ5, γ4} and ρ′
0(1+κ ′

2g) < γ4, where γ5 and κ ′
2 are as

in Lemma 7.9 and γ4 is as in Lemma 7.8. Then, for (v, z) ∈ R×RN
+ and ρ ∈ (0, ρ′

0/2),

E∗
(v,z)e

ρ' ≤ E∗
(v,z)e

ρσ ∗ = E∗
(v,z)

[
E∗
(v,z)

[
eρσ ∗ | F∗

σ2

]]
≤ d0E∗

(v,z)e
ρσ2+c′ρ Z̄2(σ2)

≤ d0
(
E∗
(v,z)e

2ρσ2
)1/2 (

E∗
(v,z)e

2c′ρ Z̄2(σ2)
)1/2

. (8.21)

Recall the stopping time η1 ≥ σ1 defined in (7.7). Proceeding as in the proof of Propo-
sition 7.6 (see (7.8)), with d1 = 1+ κ ′

1e
8ρκ ′

2g and d2 = (1+ κ ′
2g), using Lemmas 7.8 and

7.9,

E∗
(v,z)e

2ρσ2 ≤ E∗
(v,z)

[
1η1<σ2E∗

(v,z)

[
e2ρσ2 | F∗

η1

]]
+ E∗

(v,z)e
2ρη1

≤ κ ′
1E∗

(v,z)e
2ρκ ′

2V (η1)+2ρη1 + E∗
(v,z)e

2ρη1

≤ d1E∗
(v,z)e

2ρd2η1

= d1E∗
(v,z)

[
e2ρd2σ1E∗

(v,z)

[
e2ρd2(η1−σ1) | F∗

σ1

]]

≤ κ1d1E∗
(v,z)

[
e2ρd2σ1e2ρd2κ2Z1(σ1)

1/2
]

≤ κ1d1
(
E∗
(v,z)e

4ρd2κ2Z1(σ1)
1/2

)1/2 (
E∗
(v,z)e

4ρd2σ1
)1/2

, (8.22)
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where we used Lemma 7.9 for the second inequality, V (η1) ≤ 4g + gη1 in the third
inequality, and Lemma 7.8 in the penultimate inequality (and the observation that
ρ′
0d2 < γ4). Now we estimate exponential moments of Z1(σ1)

1/2. Note that, under
P∗
(v,z), L1(σ1) = gσ1 + v − 4g, from which it follows that

Z1(σ1) ≤ sup
0≤s≤σ1

B1(s) + z1 + gσ 2
1 + gσ1 + 2|v|σ1 + |v|

and so, using
√
a + b ≤ √

a +
√
b and

√
ab ≤ (a + b)/2 for a, b ≥ 0,

Z1(σ1)
1/2 ≤

(

sup
0≤s≤σ1

B1(s)

)1/2

+ (
√
g + 3/2)σ1 +

1
2
(z1 + 3|v| + g + 1).

Using this bound in (8.22) and Young’s inequality, we obtain a finite positive constant
d3 not depending on v, z, ρ such that

E∗
(v,z)e

2ρσ2 ≤ d3e2ρd2κ2(z1+3|v|)



(

E∗
(v,z)e

8ρd2κ2
(
sup0≤s≤σ1

B1(s)
)1/2)1/2

+
(
E∗
(v,z)e

8ρd2κ2(
√
g+3/2)σ1

)1/2




(
E∗
(v,z)e

4ρd2σ1
)1/2

. (8.23)

The expectation involving sup0≤s≤σ1
B1(s) above is bounded as in the proof of Lemma

7.7 (see (8.6)) to obtainρ′′
0 , d4, d5 ∈ (0,∞) such that d5ρ′′

0 < d2, and for anyρ ∈ (0, ρ′′
0 )

and (v, z) ∈ R × RN
+ ,

E∗
(v,z)e

8ρd2κ2(sup0≤s≤σ1
B1(s))1/2 ≤ e8ρd2κ2 + d4ed5ρ

2
(
E∗
(v,z)e

4ρd2σ1
)1/2 ∞∑

k=0

ed5ρ
2k−2ρd2k

≤ e8ρd2κ2 + d6(ρ)
(
E∗
(v,z)e

4ρd2σ1
)1/2

, (8.24)

where d6(ρ)
.= d4ed5ρ

2
(1− e−ρd2)−1. Using this bound in (8.23), we conclude that for

every 0 < ρ < min{ρ′
0/2, ρ

′′
0 }, there exists a finite positive constant d7(ρ) satisfying

E∗
(v,z)e

2ρσ2 ≤ e2ρd2κ2(z1+3|v|)d7(ρ)E∗
(v,z)e

d ′
2ρσ1 , (8.25)

where d ′
2 = max{4d2, 8d2κ2(√g + 3/2)}.

Now, we estimate E∗
(v,z)e

2c′ρ Z̄2(σ2). From (7.11) and (7.2), Z̄2(t) ≤ z̄2 + M(t) +

Ȳ (t), t ≥ 0. Hence, writing Ỹ (t) .= M(t) + Ȳ (t),

E∗
(v,z)e

2c′ρ Z̄2(σ2) ≤ e2c
′ρ z̄2E∗

(v,z)e
2c′ρỸ (σ2).

Proceeding exactly as in (8.24), we obtain ρ′′′
0 > 0 such that for every ρ ∈ (0, ρ′′′

0 ), there
exists a d8(ρ) ∈ (0,∞) such that

E∗
(v,z)e

2c′ρỸ (σ2) ≤
∞∑

k=0

(
E∗
(v,z)e

4c′ρ sup0≤s≤k+1 Ỹ (s)
)1/2

(P∗
(v,z)(σ2 ≥ k))1/2

≤ d8(ρ)
(
E∗
(v,z)e

2ρσ2
)1/2

,
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which, along with (8.25), gives

E∗
(v,z)e

2c′ρ Z̄2(σ2) ≤ e2c
′ρ z̄2d8(ρ)

(
E∗
(v,z)e

2ρσ2
)1/2

≤ e2c
′ρ z̄2eρd2κ2(z1+3|v|)d8(ρ)d7(ρ)1/2

(
E∗
(v,z)e

d ′
2ρσ1

)1/2
. (8.26)

The result, with ρ0
.= min{ρ′

0/2, ρ
′′
0 , ρ

′′′
0 }, now follows upon using (8.25) and (8.26) in

(8.21). ,-
Lemma 8.2. Let ϑ

.= τ̂4g ∧ τ̂0. Then there is a β1 > 0 and D1 > 0 such that, for all
(v, z) ∈ R × RN

+ ,

E∗
(v,z)e

β1ϑ ≤ D1eβ1(|v|+z1).

Proof. Fix (v, z) ∈ R × RN
+ . We consider three cases.

Case 1: v ∈ [0, 4g]. In this case the result is immediate from Lemma 7.5.
Case 2: v > 4g. In this case, for all t ≤ ϑ , V (t) > 4g. Thus, for such t , we have

Z1(t) = z1 + B1(t) + L1(t) − 1
2
L2(t) −

∫ t

0
V (s)ds

≤ z1 + sup
0≤s≤t

B1(s) + L1(t) − 4gt.

Consequently, −L1(t) ≤ z1 + sup0≤s≤t B1(s) − 4gt . Thus we have, for t ≤ ϑ ,

V (t) = gt − L1(t) + v ≤ z1 + sup
0≤s≤t

B1(s) − 3gt + v
.= Q1(t).

Letting τ
Q1
4g

.= inf{t ≥ 0 : Q1(t) = 4g}, we have τ
Q1
4g ≥ ϑ . Thus, for β1, θ > 0,

E∗
(v,z)e

β1ϑ ≤ 1 +
∫ ∞

1
P∗
(v,z)(Q1(

1
β1

ln(s)) > 4g)ds

≤ 1 + e−4gθβ1
∫ ∞

1
E∗
(v,z)e

θβ1Q1(
1
β1

ln(s))ds

= 1 + e−4gθβ1+θβ1(z1+v)
∫ ∞

1
e−3θg ln(s)E∗

(v,z)e
θβ1 sup0≤t≤ 1

β1
ln(s)

B1(t)
ds

≤ 1 + %1e−4gθβ1+θβ1(z1+v)
∫ ∞

1
e−3θg ln(s)+%2θ

2β1 ln(s)ds

where the last line uses the estimate (1.4). Taking θ = g−1 and β1 = g2/%2, we now
see that

E∗
(v,z)e

β1ϑ ≤ 1 + %1e−4gθβ1+θβ1(z1+v)

which completes the proof for Case 2.
Case 3: v < 0. In this case, for t ≤ ϑ , we have V (t) < 0. Thus for such t , from (7.3)
and (7.2),

L1(t) = sup
0≤s≤t

(−z1 − B1(s) +
1
2
L2(s) +

∫ s

0
V (u) du)+ ≤ B∗

1 (t) +
1
2
L2(t) ≤ B∗

1 (t)

+
N − 1
N

L1(t) +
1
N
Ȳ (t).
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Consequently,

L1(t) ≤ N B∗
1 (t) + Ȳ (t)

and so

V (t) = gt − L1(t) + v ≥ gt − N B∗
1 (t) − Ȳ (t) + v

.= Q2(t).

Letting, τ Q2
0

.= inf{t ≥ 0 : Q2(t) = 0}, we then have, τ Q2
0 ≥ ϑ . Thus, for θ,β1 > 0,

E∗
(v,z)e

β1ϑ ≤ 1 +
∫ ∞

1
P∗
(v,z)(Q2(

ln(s)
β1

) < 0) ds

= 1 +
∫ ∞

1
P∗
(v,z)(g

ln(s)
β1

+ v < N B∗
1 (

ln(s)
β1

) + Ȳ (
ln(s)
β1

)) ds

≤ 1 + e−θβ1v

∫ ∞

1
s−θgE∗

(v,z)e
θβ1(N B∗

1 (
ln(s)
β1

)+Ȳ ( ln(s)β1
)) ds

≤ 1 + %1eθβ1|v|
∫ ∞

1
s−θgs%2β1θ

2
ds,

where in the last linewe have used the estimate (1.4). Take θ = 4g−1 andβ1 = g2/(8%2),
then

E∗
(v,z)e

β1ϑ ≤ 1 + %1eθβ1|v|.

This completes the proof for Case 3 and thus the result follows. ,-
Lemma 8.3. There is a β2 > 0 and κ1, κ2 > 0 such that, for all (v, z) ∈ R × RN

+ ,

E∗
(v,z) e

β2σ1 ≤ κ1eκ2(|v|+z1).

Proof. From Proposition 7.2, with γ as in that proposition,

sup
z∈RN

+

E∗
(

g
2N ,z)e

γ τ̂4g .= d1 < ∞. (8.27)

Also, from Lemma 7.3, with β as in that lemma,

sup
z∈RN

+

E∗
(0,z) e

β τ̂g/(2N )
.= d2 < ∞. (8.28)

With β1 as in Lemma 8.2, let β2 ∈ (0,min{γ ,β,β1}). Recall the stopping time ϑ from
Lemma 8.2. Define stopping times

ϑ1
.= inf{t ≥ ϑ : V (t) = g/(2N )}, ϑ2

.= inf{t ≥ ϑ1 : V (t) = 4g}.

Then, for (v, z) ∈ R × RN
+ ,

E∗
(v,z) e

β2σ1 ≤ E∗
(v,z)

[
1{σ1=ϑ} eβ2σ1

]
+ E∗

(v,z)
[
1{σ1>ϑ} eβ2σ1

]
.

From Lemma 8.2, with β1 and D1 as in the lemma,

E∗
(v,z)

[
1{σ1=ϑ} eβ2σ1

]
≤ E∗

(v,z)
[
eβ2ϑ

]
≤ D1eβ1(|v|+z1).
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Next, from (8.27),

E∗
(v,z)

[
1{σ1>ϑ} eβ2σ1

]
≤ E∗

(v,z)
[
1{σ1>ϑ} eβ2ϑ2

]
= E∗

(v,z)

[
1{σ1>ϑ} E∗

(v,z)
[
eβ2ϑ2 | F∗

ϑ1

]]

≤ d1E∗
(v,z)

[
1{σ1>ϑ}eβ2ϑ1

]
.

Also, from (8.28),

E∗
(v,z)

[
1{σ1>ϑ}eβ2ϑ1

]
= E∗

(v,z)

[
1{σ1>ϑ}E∗

(v,z)
[
eβ2ϑ1 | F∗

ϑ

]]

≤ d2E∗
(v,z)

[
1{σ1>ϑ}eβ2ϑ

]
≤ d2D1eβ1(|v|+z1),

where the last line is from Lemma 8.2. Combining the above estimates, for all (v, z) ∈
R × RN

+ ,

E∗
(v,z) e

β2σ1 ≤ D1eβ1(|v|+z1) + d1d2D1eβ1(|v|+z1).

The result follows. ,-
Lemma 8.4. There is a κ ∈ (0,∞) such that for every α > 0 there is a sα > 0 with

E∗
(v,z)e

α(|V (1)|+Z1(1)+Z̄2(1)) ≤ sαeκα(|v|+z1+z̄2), for all (v, z) ∈ R × RN
+ .

Proof. Since V (t) ≤ g + |v| for t ≤ 1, we have from (7.1)

L1(1) ≤ (g + |v|)W11 +
N∑

i=1

W1,i B∗
i (1) = N (g + |v|) +

N∑

i=1

W1,i B∗
i (1).

Thus, under P∗
(v,z),

Z1(1) + |V (1)| ≤ z1 + B1(1) + L1(1) − 1
2
L2(1) −

∫ 1

0
V (s)ds + g + L1(1) + |v|

≤ 2|v| + g
2
+ z1 + sup

0≤s≤1
B1(s) + 3L1(1)

≤ 2|v| + g
2
+ z1 + sup

0≤s≤1
B1(s) + 3(N (g + |v|) +

N∑

i=1

W1,i B∗
i (1)).

Moreover, from (7.11) and (7.2), Z̄2(1) ≤ z̄2 + M(1) + Ȳ (1), t ≥ 0. The result is now
immediate from the estimate in (1.4). ,-

For K ∈ N, with K > 256/g, define

RK
.= [ 1

K
,

g
128

− 1
K
] × [ 1

K
, K ] × [0, K ]N−1.

Lemma 8.5. There is a K ∈ N, K > 256/g, such that

inf
(v,z)∈C∗

P1((v, z), RK )
.= cK > 0.
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Proof. Suppose that, for every K ∈ N, K > 256/g,

inf
(v,z)∈C∗ P

1((v, z), RK ) = 0.

Then, we can find a sequence {(vK , zK )}K∈N ⊂ C∗ such that

P1((vK , zK ), RK ) ≤ 1
K
. (8.29)

Since C∗ is compact, we can find (v∗, z∗) ∈ C∗ such that, along a subsequence (labeled
again with K ), (vK , zK ) → (v∗, z∗). From the second statement in Lemma 5.1,

P1((v∗, z∗), R) > 0.

Since RK increase to R as K → ∞, we can find a K ∗ ∈ N, K ∗ > 256/g, such that

P1((v∗, z∗), RK ∗)
.= aK ∗ > 0.

Choose a real, continuous function f : R × RN
+ such that 0 ≤ f ≤ 1, f = 1 on RK ∗

and f = 0 on Rc
2K ∗ . Then

lim inf
K→∞

P1((vK , zK ), R2K ∗) ≥ lim inf
K→∞

∫
f (v, z)P1((vK , zK ), (dv, dz))

=
∫

f (v, z)P1((v∗, z∗), (dv, dz))

≥ P1((v∗, z∗), RK ∗) = aK ∗ > 0,

where the middle equality follows from the Feller property of the transition probability
kernel P1. The Feller property can be verified by analyzing two copies of the process
(1.3) starting from different initial conditions but driven by the same Brownian motion.
Using the Lipschitz property of the Skorohod map and Grönwall’s lemma, the distance
between the coupled processes in sup-norm on any given compact time interval can be
made small (in a pathwise sense) if the initial conditions are close enough.

On the other hand, from (8.29)

lim sup
K→∞

P1((vK , zK ), R2K ∗) ≤ lim sup
K→∞

P1((vK , zK ), RK ) = 0.

This is a contradiction which completes the proof of the lemma. ,-
We can now complete the proof of Proposition 7.16.

Proof of Proposition 7.16 Fix η > 0 such that η < ρ0 and b2η ≤ β2, where ρ0 and b2
are as Lemma 8.1 and β2 is as in Lemma 8.3. Combining Lemmas 8.1 and 8.3, for all
(v, z) ∈ R × RN

+ ,

E∗
(v,z)e

η' ≤ b3(η)eb1η(|v|+z1+z̄2)E∗
(v,z)e

b2ησ1 ≤ b3(η)κ1eb1η(|v|+z1+z̄2)+κ2(|v|+z1).

Thus

E∗
(v,z)e

ητC∗ (1) = E∗
(v,z)

[
E∗
(v,z)

[
eητC∗ (1) | F∗

1

]]

≤ b3(η)κ1eηE∗
(v,z)e

(b1η+κ2)(|V (1)|+Z1(1)+Z̄2(1)).
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Consequently, with α = b1η + κ2, for all (v, z) ∈ R × RN
+ ,

E∗
(v,z)e

ητC∗ (1) ≤ b3(η)κ1sαeηeκα(|v|+z1+z̄2),

where sα and κ are as in Lemma 8.4. This immediately implies part (1) of the proposition.
We now consider part (2). Let K be as in Lemma 8.5. From Theorem 4.1, with

M1
.= inf(v,z)∈RK K(v,z) (which is positive)

inf
(v,z)∈RK

Pς ((v, z), B) ≥ λ(B ∩ D) inf
(v,z)∈RK

K(v,z) = M1λ(B ∩ D).

Also, from Lemma 8.5, with K as in the lemma, for (v, z) ∈ C∗ and B ∈ B(R × RN
+ ),

P1+ς ((v, z), B) ≥
∫

RK

P1((v, z), (d ṽ, d z̃))Pς ((ṽ, z̃), B)

≥ M1λ(B ∩ D)P1((v, z), RK ) ≥ M1cKλ(B ∩ D).

The result now follows on taking ν(·) = M1cKλ(· ∩ D) and r1 = 1 + ς . ,-

9. Law of Large Numbers

In this section, we prove Theorem 2.6. We begin with the following lemma.

Lemma 9.1. For any (v, z) ∈ R × RN
+ , P∗

(v,z)-almost every ω, there exists a m∗(ω) ∈
(0,∞) such that

|V (t,ω)| +
N∑

i=1

Zi (t,ω) ≤ m∗(ω)(log t)2, for all t ≥ 2.

Proof. Recall the set C∗ from (7.22) and the stopping time τC∗(1) defined just after. Let
<(t) .= |V (t)|+∑N

i=1 Zi (t), t ≥ 0. We will first show that there exist positive constants
c1, c2 such that

sup
(v,z)∈C∗

P∗
(v,z)

(

sup
t≤τC∗ (1)

<(t) ≥ x

)

≤ c1e−c2
√
x , x > 0. (9.1)

Note that, from (1.3) and Lemma 7.1, for (v, z) ∈ C∗ and t ≥ 0,

<(t) = |v| +
N∑

i=1

zi + BN (t) + gt + L1(t) +
1
2
LN (t)

≤ 2g + 1 + BN (t) + gt +
N∑

i=1

Wi,1t sup
0≤s≤t

(V (s))+ +
N∑

i, j=1

Wi, j B∗
j (t)

≤ 2g + 1 + gt + 2gt
N∑

i=1

Wi,1 + gt2
N∑

i=1

Wi,1 + BN (t) +
N∑

i, j=1

Wi, j B∗
j (t).
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Using this bound along with part (1) of Proposition 7.16 and (1.4), we obtain posi-
tive constants c1, c2, x0 such that, for any (v, z) ∈ C∗, x ≥ x0, and choosing δ > 0
sufficiently small,

P∗
(v,z)

(

sup
t≤τC∗ (1)

<(t) ≥ x

)

≤ P∗
(v,z)(τC∗(1) ≥ δ

√
x) + P∗

(v,z)

(

sup
t≤δ

√
x
<(t) ≥ x

)

≤ P∗
(v,z)(τC∗(1) ≥ δ

√
x) + P∗

(v,z)



 sup
t≤δ

√
x



BN (t) +
N∑

i, j=1

Wi, j B∗
j (t)



 ≥ x
2





≤ c1e−c2
√
x .

This proves (9.1). Define the following stopping times:

τ̄0 = 0, τ̄i+1
.= inf{t ≥ τ̄i + 1 : (V (t),Z(t)) ∈ C∗}, i ≥ 0.

Using (9.1), there exists a positive constant c3 such that for any (v, z) ∈ C∗, n ≥ 2 and
m > 0,

P∗
(v,z)

(
<(t) ≥ m(log t)2 for some t ∈ [n, n + 1]

)

≤ P∗
(v,z)

(

sup
t≤n+1

<(t) ≥ c3m(log(n + 1))2
)

≤ P∗
(v,z)

(

sup
t≤τ̄n+1

<(t) ≥ c3m(log(n + 1))2
)

≤ (n + 1) sup
(v,z)∈C∗

P∗
(v,z)

(

sup
t≤τC∗ (1)

<(t) ≥ c3m(log(n + 1))2
)

≤ c1(n + 1)e−c2
√
c3m log(n+1),

where we used the strong Markov property to obtain the third inequality. Choosing m
sufficiently large, we see from the Borel-Cantelli Lemma that, for any (v, z) ∈ C∗,

P∗
(v,z)

(
lim sup
t→∞

<(t)
(log t)2

< ∞
)
= 1.

Finally for an arbitrary (v, z) ∈ R×RN
+ , andwith' as in (7.18) and A = {lim supt→∞

<(t)
(log t)2

< ∞}, applying Lemma 8.1,

P∗
(v,z)(A) = P∗

(v,z)(A,' < ∞) = E∗
(v,z)

(
P∗
(v,z)

(
A | F∗

'

)
1{'<∞}

)
= P∗

(v,z)(' < ∞) = 1.

The result follows. ,-
Proof of Theorem 2.6. All limits in the proof hold P∗

(v,z)-almost surely for arbitrary
(v, z) ∈ R × RN

+ . From (1.2),

lim
t→∞

∑N
j=1 X( j)(t)

Nt
= lim

t→∞
V (t) +

∑N
j=1 X( j)(t)

Nt
= g

N
. (9.2)

where we used Lemma 9.1 in the first equality. Moreover, again using Lemma 9.1, for
any i ∈ {0, 1, . . . , N },

1
t

∣∣∣∣∣∣
X(i)(t) − 1

N

N∑

j=1

X( j)(t)

∣∣∣∣∣∣
≤ 1

t

∣∣X(N )(t) − X(0)(t)
∣∣ ≤ 1

t

N∑

i=1

Zi (t) → 0 (9.3)
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as t → ∞. The statement in (2.4) now follows from (9.2) and (9.3). Also, (2.5) follows
from Lemma 9.1 on noting

0 = lim
t→∞

V (t)
t

= g − lim
t→∞

L1(t)
t

.

To prove (2.6), note that from (1.2), (1.3) and Lemma 9.1,

0 = lim
t→∞

Z1(t)
t

= − lim
t→∞

X(0)(t)
t

− 1
2

lim
t→∞

L2(t)
t

+ lim
t→∞

L1(t)
t

,

which gives limt→∞ L2(t)
t = 2(N−1)g

N . Again using (1.3) and Lemma 9.1,

0 = lim
t→∞

Z2(t)
t

= −1
2

lim
t→∞

L3(t)
t

+ lim
t→∞

L2(t)
t

− lim
t→∞

L1(t)
t

,

from which, we obtain limt→∞ L3(t)
t = 2(N−2)g

N . Suppose N ≥ 4 and, for some i ∈
{3, . . . , N − 1}, the limit limt→∞

L j (t)
t exists and equals 2(N− j+1)g

N for all 3 ≤ j ≤ i .
Then, using (1.3), limt→∞ Li+1(t)

t exists and

0 = lim
t→∞

Zi (t)
t

= −1
2

lim
t→∞

Li+1(t)
t

+ lim
t→∞

Li (t)
t

− 1
2

lim
t→∞

Li−1(t)
t

which implies limt→∞ Li+1(t)
t = 2(N−i)g

N . The statement in (2.6) now follows by induc-
tion. ,-
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