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Abstract. We consider nonlinear filters for diffusion processes when the observation and signal
noises are small and of the same order. As the noise intensities approach zero, the nonlinear filter can
be approximated by a certain variational problem that is closely related to Mortensen’s optimiza-
tion problem [R. Mortensen, J. Optim. Theory Appl., 2 (1968), pp. 386-394]. This approximation
result can be made precise through a certain Laplace asymptotic formula. In this work we study
probabilities of deviations of true filtering estimates from that obtained by solving the variational
problem. Our main result gives a large deviation principle for Laplace functionals whose typical
asymptotic behavior is described by Mortensen-type variational problems. Proofs rely on stochastic
control representations for positive functionals of Brownian motions and Laplace asymptotics of the
Kallianpur—Striebel formula.
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1. Introduction. In this work we study certain large deviation asymptotics
for nonlinear filtering problems with small signal and observation noise. As the
noise in the signal and observation processes vanishes, the filtering problem can
formally be replaced by a variational problem, and one may approximate the fil-
tering estimates (namely suitable conditional probabilities or expectations) by so-
lutions of certain deterministic optimization problems. However, due to random-
ness there will be occasional large deviations of the true nonlinear filter estimates
from the variational problem solutions. The main goal of this work is to investigate
the probabilities of such deviations by establishing a suitable large deviation princi-
ple. Large deviations and related asymptotic problems in the context of small noise
nonlinear filtering have been investigated, under different settings, in many works
[15, 13, 2, 16, 21, 3, 24, 18, 19, 11, 22, 1]. We summarize the main results of these
works and their relation to the current work at the end of this section.

In order to describe our results precisely, we begin by introducing the filtering
model that we study. We consider a signal process X¢ given as the solution of the
d-dimensional stochastic differential equation (SDE)

(1.1)  dX5(t) = b(XE(t))dt + eo(XE(£))dW (t), X5(0) = zg, 0 <t < T,
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and an m-dimensional observation process Y¢ governed by the equation
t
(1.2) Ye(t) = / h(X®(s))ds+eB(t), 0<t<T,
0

on some probability space (2, F,P). Here ¢ € (0,00) is a small parameter, T €
(0, 00) is some given finite time horizon, W and B are mutually independent standard
Brownian motions in R* and R™, respectively, 2o € R is the known deterministic
initial condition of the signal, and the functions b, o, and h are required to satisfy the
following condition.

Assumption 1. The following hold.
(a) The functions b, 0, h from R? — R? RY — R4k RI — R™ are Lipschitz: For
some ¢, € (0, 00)

16(z) = o)l + llo(z) — o)l + [1h(z) = h(Y)]| < e

(b) The function o is bounded: For some ¢, € (0,00) sup,cpa ||o(z)|| < ¢o.
(¢) The function h is twice continuously differentiable with bounded derivatives.

x —y| for all z,y € RY.

Note that under Assumption 1 there is a unique pathwise solution of (1.1), and
the solution is a stochastic process with sample paths in C4 (the space of continuous
functions from [0, T] to R% equipped with the uniform metric).

The filtering problem is concerned with the computation of the conditional ex-
pectations of the form

(1.3) E[p(X%) | V7],

where V& = o{Y?(s) : 0 < s < T} and ¢ : C; — R is a suitable map. The stochastic
process with values in the space of probability measures on Cy4, given by P[X® € - | V5],
is usually referred to as the nonlinear filter.

In this work we are interested in the study of the asymptotic behavior of the
nonlinear filter as ¢ — 0. Denote by £* € Cy4 the unique solution of

(14) de* (t) = b(E" (1)) dt, €°(0) = .

It can be shown that, under additional conditions (see the discussion in section 2), as
e —0,

(1.5) P[X® € - | V3] — 8¢«, in probability, under P,

weakly. In particular, for Borel subsets A of Cy whose closure does not contain £* one
will have P[X® € A | V5] — 0 in probability as e — 0. We will refer to such sets A
as sets of nontypical state trajectories. It is of interest to study the rate of decay of
conditional probabilities of sets of nontypical state trajectories. As a special case of
the results of the current paper (see Corollary 4.2), it will follow that for every real
continuous and bounded function ¢ on Cy4, denoting

(16) U716 = B [oxp { - 50X} 135
B e
(1) ~2ogU7le] S int ot + g [ IGr(s) — H(E o) s + )|
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where —— denotes convergence in probability under P, and J is the rate function on
Cq associated with the large deviation principle for {X}.50 (see section 2). From this
convergence it follows using standard arguments (see, e.g., [6, Theorem 1.8]) that, for
all Borel subsets A of Cy,
(1.8)
_ B 1 [T
lim? e log P[X* € A | V5] > — inf [ | (e = e )P + 1)

neAe | 2 ’

)

P _ 1 T
lim,_,oc”logP[X° € A | V7] < — inf lz/ [h(n(s)) = h(€"(3))]1*ds + T (n)
neA 0

where for real random variables Z¢ and a constant o € R we say MI: S0Z° < a (resp.,
lim? ,,Z° > a) if (Z5 — o)™ (resp., (a — Z°)*) converges to 0 in P-probability, and
for a set A, A° and A denote its interior and closure, respectively.

Thus the convergence in (1.7) gives information on rates of decay of conditional
probabilities of sets of nontypical state trajectories. Formally, denoting the infimum
in the above display as S(£*, A), we can write approximations for conditional proba-
bilities:

(1.9) ]P’[XE6A|y%]%exp{—5125(§*,A)}.

However, due to stochastic fluctuations, one may find that for some “rogue” obser-
vation trajectories the conditional probabilities on the left side of (1.9) are quite
different from the deterministic approximation on the right side of (1.9). In order to
quantify the probabilities of observing such rogue observation trajectories that cause
deviations from the bounds in (1.8), a natural approach is to study a large deviation
principle for R valued random variables {—?log U¢[¢]} whose typical (law of large
numbers) behavior is described by the right side of (1.7). Establishing such a large
deviation principle is the goal of this work. Such a result gives information on decay
rates of probabilities of the form

o
for suitable sets A € B(C4) and 6 > 0. Our main result is Theorem 2.1, which gives
a large deviation principle for {—e?logU¢[#]}, for every continuous and bounded

function ¢ on C4 with a rate function defined by the variational formula in (2.16)—
(2.17).

T
g PLx € A Y]+t 5 [ (s - e o IPas + )| | > o

Notation. The following notation and definitions will be used. For p € N the
Euclidean norm in R? will be denoted as ||.||, and the corresponding inner product
will be written as (-,-). The space of finite positive measures (resp., probability
measures) on a Polish space S will be denoted by M(S) (resp., P(S)). The space of
bounded measurable (resp., continuous and bounded) functions from S — R will be
denoted by BM(S) and Cy(S), respectively. For ¢ € BM(S), ||¢|loc = sup,eg |¢(x)].
For ¢ € BM(S) and p € M(S), pld] = [ ¢du. Borel o-field on a Polish space S
will be denoted as B(S). For p € N and T € (0,00), C,r will denote the space of
continuous functions from [0,7] to R? which is equipped with the supremum norm,
defined as || fll«,r = supg<i<r [|f(E)|, f € Cpr. Since T € (0,00) will be fixed in
most of this work, frequently the subscript T in Cpr and | f|l.r will be dropped.
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We denote by £2 = L*([0,T] : RP) the Hilbert space of square-integrable functions
from [0,7] to RP. By convention, the infimum over an empty set will be taken to
be co. For random variables X,,, X with values in some Polish space S, convergence
in distribution of X,, to X will be denoted as X,, = X. A function I from a Polish
space S to [0,00] is called a rate function if it has compact sublevel sets, namely the
set {x € S:I(x) < m} is a compact set of S for every m € (0,00). Given a function
a: (0,00) — (0,00) such that a(e) — oo as € — 0, and a rate function I on a Polish
space S, a collection {U¢}.~¢ of S valued random variables is said to satisfy a large
deviation principle (LDP) with rate function I and speed a(e) if for every ¢ € Cy(S)
lim —a(e) ™" log E [exp {—a(e)$(U%)}] = inf[I(x) + ¢(=)].

e—0

Relation with existing body of work. Denote by C the collection of absolutely

continuous functions y € C,, that satisfy fOT lu(s)||*ds < oo. For y € C} define
I,:Cq — [0,00] as

T
(110) L =3 [ ks = o) Pds + o).

where J is the rate function of {X*“} defined in (2.9). The functional I,, was introduced
in Mortensen [20] as the objective function in an optimization problem whose minima
describe the most probable trajectory given the data in a nonlinear filtering problem
in an appropriate asymptotic sense. This functional is also used in implementing
the popular 4DVAR data assimilation algorithm (cf. [7, section 3.2], [12, Chapter
16]). Connection of the optimization problem associated with the objective function
in (1.10) with the asymptotics of the classical small noise filtering problem has been
studied by several authors [15, 14, 16]. We now describe this connection.

In section 2 we will introduce a continuous map A% : C,, — P(C4) such that
As(Y®) = P(X° € - | ¥3) as. In [15], Hijab established, under conditions (that
include boundedness and smoothness of various coefficients functions), an LDP for
the collection of probability measures (on Cyq) {A%(y)}eso (with speed e72), for a
fixed y in C}, with rate function I, : C4 — [0, o0] given by

(1.11) Iy(n) = Iy(n) — inf {I,(7)}.
neCq

In a related direction, Hijab’s Ph.D. dissertation [14] studied asymptotics of the unnor-
malized conditional density and established, under conditions, an asymptotic formula
of the form ¢°(z,t) = exp { —e (W (z,t) + o(1)) }, where ¢°(x,t) denotes the solution
of the Zakai equation associated with the nonlinear filter (cf. [17]). The deterministic
function Wz, t) coincides with Mortensen’s (deterministic) minimum energy estimate
[20] which is given as solution of a certain minimization problem related to the ob-
jective function I, (n). Results of Hijab were extended to random initial conditions
in [16], once again assuming boundedness and smoothness of coefficients. In related
work, the problem of constructing observers for dynamical systems as limits of sto-
chastic nonlinear filters is studied in [2]. Heunis [13] studies a somewhat different
asymptotic problem for small noise nonlinear filters. Specifically, it is shown in [13]
that for every ¢ € Cy(Cq), w € Cpy, and for any n € C4 for which the map defined
in (2.13) has a unigue minimizer (at, say, 7*), A, (fo h(n(s))ds +ew) [¢] = ¢(n*),
as € — 0. This result and its connection to our work are further discussed in section
2. In particular, the statement in (1.5) follows readily upon using ideas similar to
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those in [13]. The work of Pardoux and Zeitouni [21] considers a one dimensional
nonlinear filtering problem where the observation noise is small while the signal noise
is O(1) (specifically, the term eo(X*(t)) in (1.1) is replaced by 1). In this case the
conditional distribution of X (7") given )7 converges a.s. to a Dirac measure dx(r)
as ¢ — 0. The paper [21] proves a quenched LDP for this conditional distribution
(regarded as a collection of probability measures on Cq parametrized by X (7)(w)) in
Cq. In a somewhat different direction, in a sequence of papers [24, 19, 18], the authors
have studied asymptotics of the filtering problem under a small signal-to-noise ratio
limit, under various types of model settings. In this case the nonlinear filter converges
to the unconditional law of the signal and the authors establish large deviation princi-
ples characterizing probabilities of deviation of the filter from the above deterministic
law. An analogous result in a correlated signal-observation noise case was studied in
[3]. Finally, yet another type of large deviation problem in the context of nonlinear
filtering (with correlated signal-observation noise) when the observation noise is O(1)
and the signal noise and drift are suitably small has been considered in a series of
papers [11, 22, 1].

The closest connections of the current work are with [15] and [13]. Specifically, the
asymptotic statements in (1.7) and (1.8) which follow as a special case of our results
(see Corollary 4.2) are analogous to results in [15], except that instead of a fixed obser-
vation path we consider the actual observation process Y (also we make substantially
weaker assumptions on coefficients than [15]). However, our main interest is in an
LDP for the convergence to the deterministic limit in (1.7); thus roughly speaking we
are interested in quantifying the probability of deviations from the convergence state-
ment in [15] (when a fixed observation path is replaced with the observation process
Y¢). This large deviation result, given in Theorem 2.1, is the main contribution of
our work.

Proof idea. The proof of Theorem 2.1 is based on a variational representation for
functionals of Brownian motions obtained in [4] (see also [5]); using this the proof of
the LDP reduces to proving a key weak convergence result given in Lemma 4.1. The
proof of Lemma 4.1 is the technical heart of this work. Important use is made of some
key estimates obtained in [13] (see in particular Proposition 5.3). One of the key steps
is to argue that terms of order £~! can be ignored in the exponent when studying
Laplace asymptotics for the quantity on the left side of (3.6). This relies on several
careful large deviation exponential estimates which are developed in section 5. Once
Lemma 4.1 is available the proof of the LDP in Theorem 2.1 follows readily using
the now well-developed weak convergence approach for the study of large deviation
problems (cf. [6]).

Organization. It will be convenient to formulate the filtering problem on canonical
path spaces and also to represent the nonlinear filter through a map given on the path
space of the observation process. This formulation and our main result (Theorem
2.1) are given in section 2. The key idea in the proof of the LDP is a variational
representation from [4]. A somewhat simplified version of this representation (cf.
[6]) that is used in this work is presented in section 3. Section 4 presents a key
lemma (Lemma 4.1) that is needed for implementing the weak convergence method
for proving the large deviation result in Theorem 2.1. Section 5 is devoted to the
proof of Lemma 4.1. Using this lemma, we complete the proof of Theorem 2.1 in
section 6.

2. Setting and main result. Recall that X has sample paths in C4. Similarly,
the processes Y¢, W, B have sample paths in C,,,Cx,C,,, respectively. It will be con-
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venient to formulate the filtering problem on suitable path spaces. Denote, for p € N,
the standard Wiener measure on (Cp,, B(Cp)) as W, and the Wiener measure with
variance parameter £2 as W, Denote the canonical coordinate process on (Cy, B(Cx))
as {7y(t) : 0 <t < T} and consider the SDE on the probability space (Cx, B(Ck), Wr),

dz®(t) = b(a®(t))dt 4+ eo(z°(t))dy(t), °(0) =z, 0 <t < T.

From Assumption 1, the above SDE has a unique strong solution with sample paths
in Cd.

Consider the map Cp — 2, = Cyq X Ci defined as w — (2°(w),y(w)) and let
us =Wy o (2°,v) ! Next, let £2, = C,, and consider the probability space

(92, F, Q%) = (920 x £2y, B($22) ® B(§2y), p* @ Wy,).

Abusing notation, denote the coordinate maps on the above probability space as
€,7, ¢, namely

(w) =wi, 7(w)=ws ((w)=wsforw=((wi,ws),w3) € 2y X 2.

We will frequently write &(w)(s) as £(s) for (w,s) € 2 x [0,T]. Similar notational
shorthand will be followed for other coordinate maps.

Note that, under Q¢, £(0) = g, v and £~ are independent standard Brownian
motions in R* and R™, respectively, and

(2.1) aw=x0+Ab@@»ﬁ+géa@@»meOStST

Define, for Q¢ a.e. w = ((w1,ws),ws), for t € [0, T,

s [ et acton - o5 [ st iPas).

L (w) = exp {62 ;
Note that, since under Q°, e~ is a standard Brownian martingale with respect to
the filtration 7P = o{v(s),£(s),((s) : 0 < s < t}, the first integral in the exponent
is well defined as an It6 integral. From the independence of £ and ¢ under Q° and
Assumption 1 it follows that Lf is an {F?}-martingale under Q°. Define a probability
measure P° on (£2, F) as dP°/dQ° (w) = L& (w) for Q¢ a.e. w. Note that, by Girsanov’s
theorem, under P*

(2.2) B = 200 - = [ e(e)ds, 0< e <.

is a standard m-dimensional Brownian motion which is independent of (£,~). Rewrit-
ing the above equation as ((t) = fot h(&(s))ds + eB(t), 0 < ¢t < T, we see that
Po(Xe, V)™t =P°o (§¢)~ . Next, for ¢ > 0, define I'. : C,,, = M(Cy) as

(2.3) T%(ws)[A] i/ 1 (w1) LT (w1, wa), ws)du® (wy,ws), ws € Cp, A € B(Cy).
The maps are well defined P¢-a.s., and using results of [8, 9, 10], one can obtain
versions of these maps (denoted as I'%.) which are continuous on C,,. Also, define
A% Cy = P(Cy) as

7 (ws)[A]

(2.4) A7 (ws)[A] = m

, Pf-ae. w3 € Cp, A € B(Cq).
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Once again, for each ¢ > 0, this map is well defined P-a.s., and a continuous version
of the map exists (which we denote as A%.) from [8, 9, 10]. Write, for f € BM(Cy),
(2.5)

L7 (f,ws) i/c F(@)T7 (ws)[do], AZ(f,ws) = . F(@)AT (ws)[de], P -a.e. ws € Cp,.

Then with (X¢,Y*) as in (1.1)—(1.2), for ¢ € BM(Cy)

(26) E[0(X°) | V5] = A5.(6,Y°) as. P.
Also,
(2.7) Epe [0(§) | 0{¢(s) : 0 < s < T} = A%(9,¢) as. P=.

Equation (2.6) (or (2.7)) is known as the Kallianpur—Striebel formula, where Epe
denotes the expectation under the probability measure P¢, and

(2.8) Po (X%, Y5, W, B,A7(6,Y%)) ™ =P 0 (£¢,7,8,A7(4,0) 7"

Let, for & € Cy,

(2.9) Je) = inf

T
5/ ||so<t>||2dt] ,

where U(&p) is the collection of all ¢ in £2 such that

(2.10) &o(t) = o +/O b(§0(s))d3—|—/0 a(&o(s))e(s)ds, t € [0,T].

Note that, by Assumption 1, for every ¢ € L2 there is a unique solution of (2.10). By
classical results of Freidlin and Wentzell (see, e.g., [6, Theorem 10.6]) the collection
{X¢} of C4 valued random variables satisfies an LDP with rate function J and speed
£72; namely, for all F € Cy(Cq)

1) g —eiog [ GXP{—;F(E)}dﬂenglelgd[F(ﬁo)—FJ(ﬁo)],

x

where we denote the first coordinate process on {2, by é, ie., f(w) = w; for w =
(w1,ws) € 2, = Cq X Cx. In [13] it is shown that for every w € C,,, and a given
1 € Cy4, the probability measure

(2.12) As (/ h(n(s))ds + 5w(~)> 5
0
weakly if the map

1 T
(2.13) 7= J () + 5/0 1h(n(s)) = h(i(s)) ]| *ds

attains its infimum over Cy uniquely at n*, where we recall that AET is the continuous

version of A5.. We remark that [13] assumes in addition to Assumption 1 that h and
b are bounded, but an examination of the proof shows (see calculations in section 5)
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that these conditions can be replaced by linear growth conditions that are implied by
Assumption 1.

Recall the function £* € C4 from (1.4). Then using ideas similar to those in [13],
under Assumption 1, and assuming in addition that either oot is positive definite or
h is a one-to-one function, it follows that

(2.14) A% — ¢+, in probability, under P¢,

weakly, as ¢ — 0. This is a consequence of the fact that when n = £* the map in
(2.13) achieves its minimum (which is 0) uniquely at £*.

As a consequence of the results of the current paper (see Corollary 4.2), one
can show the Laplace asymptotic formula in (1.7). Recall from the discussion in
the introduction that the convergence in (1.7) gives information on asymptotics of
conditional probabilities of sets of nontypical state trajectories. In order to quantify
the decay rate of probabilities of observing rare observation trajectories that cause
deviations from the deterministic variational quantity in (1.7), we will establish an
LDP for {—¢?log U¢[¢]} defined in (1.6).

We now present the rate function associated with this LDP.

Define the map H : Cg x Cqg x L2, — R, as

(215) Hn.0) = 5 [ Ihn(s) = i(s) = w(s) s

Also, for ¢ € L3, let £F be given as the unique solution of (2.10).

We now introduce the rate function that will govern the large deviation asymp-
totics of —&2log U*[¢)].

Fix ¢ € Cy(Cy) and define I? : R — [0, 00] as

I 1"
2.16 I°(z)= inf f/ t 2dt+f/ t)[|%dt | ,
(2.16) ()= inf [2 [ lePa+ g [ 1w
where S(z) is the collection of all (p,1)) in £3 x L2, such that
(2.17) Jnf [H(n,&5,%) +¢n) +J ()] = inf [H(n.&50) + T ()] = 2.

The following is the main result of the work.

THEOREM 2.1. Suppose that Assumption 1 is satisfied. Then for every ¢ €
Cy(Cq), the collection {—c?logU®[¢]} satisfies an LDP on R with rate function I?

and speed €2,

3. A variational representation. Fix ¢ € Cy(C4). Recall the functional U¢|[¢]
from (1.6). From (2.6), note that one can write U¢[¢] as

U[¢] = AT (exp{—"2¢(-)}, "),

whose distribution under P is the same as the distribution of A% (exp{—c72¢()},()
under P¢. Let
VE[p] = —€* log A% (exp{—e2¢(-)},() -
Using this equality of laws and the equivalence between LDPs and Laplace prin-
ciples (see, e.g., [6, Theorems 1.5 and 1.8]), in order to prove Theorem 2.1 it suffices
to show that I? has compact sublevel sets, i.e.,

(3.1) for every m € Ry, {z € R: I?(z) < m} is compact,
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and, for every G € C(R),
(3.2) i% —e?log Epe [exp {—e2G(V°[¢])}] = ;Iel{a{G(z) +1%(2)}.

The proof of the identity in (3.2) will use a variational representation for nonneg-
ative functionals of Brownian motions given by Boué and Dupuis [4]. We now use this
representation to give a variational formula for the left side of the above equation.
Let F; denote the P*-completion of F; and denote by A* (resp., .A™) the collection
of all {F;}-progressively measurable R* (resp., R™) valued processes g such that for
some M = M(g) € (0,00), fOT llg(s)||?ds < M a.s.

For (u,v) € A¥ x A™, let £* solve, on (£2, F,{F;},P*),

(33) €'t =xo+ / b (5))ds + ¢ / o (€%(s))dr (s) + / o (€%(5))u(s)ds.

Also define
(3.4) ¢vU(t) = /0 h(&“(s))ds + ep(t) +/O v(s)ds, 0 <t <T.

The reader should note the difference between the trajectory &, which (as stated
below (2.15)) is defined as a solution to (2.10), and the trajectory £" introduced
above. The former is given as the solution of a controlled ordinary differential equation
(with control ), while the latter is the solution of a controlled SDE (with control
u). In particular, on setting v = 0 and v = ¢, the latter reduces to the former.
Occasionally, to emphasize the dependence of above processes on ¢ we will write
(fu’ Cu,'u) as (£E,u7ge,u,v).
Now let

(3.5) Verlg) = % log A (exp{—e20()}.¢5").

When clear from the context we will drop (u, v, $) from the notation in Veur[g] and
simply write V<. Then it follows from [4] (cf. [6, Theorem 8.3]) that

— e?log Epe [exp {—e2G(VE[¢]) }]

GVl + 5 / (u()IP + llo(s)]?)ds|

(3.6) )
= inf Ep-
(u,v)eAk x A™

Indeed, since V¢[¢] is a measurable functional of (v, 8), i.e., VE[¢] = G=(v, 8), for some
measurable functional G¢ : C; x C,, — R, G o G¢ is a bounded measurable functional
on Cy, X Cyyy, and we can apply [6, Theorem 8.3], with R there taken to be A,. We note
that the latter result is stated for a general Hilbert space valued Brownian motion,
while here we apply it for a finite dimensional Brownian motion, and so, in particular,
in the notation of [6, section 8.1], H = Ho = R¥*™ and A is the identity operator.

4. A key lemma. For M € (0,00), let

s et [ el + v < v}

We equip Sy with the weak topology under which (¢, v,) — (¢,?) as n — oo if
and only if for all (f,g) € L3 x L2,

T T
/0 (n(s), F(3)) + (n(s), g(s))ds — / [o(s), £()) + ((s), g(s)))ds
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as n — o0o. This topology can be metrized so that Sj; is a compact metric space.
Recall ¢ € Cy(Cy) in the statement of Theorem 2.1. For (p,1)) € L2 x L2, define

(1) VU= g (68 )+ on) + ()] — inf [H0,€6,0) + TG
Note that with this notation S(z) (introduced below (2.16)) is the collection of all
(p,9) in L2 x L2, such that V¥ [¢] = z. When (g, ) are £ x L2, valued random
variables, we will denote the random variable V> [¢](w) = Vi (@)p(w) [¢], w € 12,
once more as Vi7" [4).

The following lemma will be the key to the proof of Theorem 2.1.

LEMMA 4.1. Fiz M € (0,00). Let {(un,v,)} be a sequence of Sy valued random
variables such that (uy,,v,) € A¥ x A™ for every n. Suppose that (u,,v,) converges
in distribution to (u,v). Suppose €, is a sequence of positive reals converging to 0 as
n — 00. Then VEntnvn[g] — Vi"? (4], in distribution, as n — 0o.

As an immediate corollary of the lemma we have the following.
COROLLARY 4.2. Ase — 0,

—e?1log U%[¢)] Py inf
n€Cq

Lt h h(€* 2d
¢(77)+§/0 [h(n(s)) — h(&"(s)[I7ds + J(n)| -

Proof. Note that V=9[¢] under P has the same distribution as —&?log U¢[¢]
under P. From Lemma 4.1 it follows that V%9[¢], and thus —&? log U¢[¢] converges
in distribution to V"°[¢]. Also note that

Vo'l = inf [H(n,&0,0) + o(n) + J(n)] — nf [H(n,£,0) + J(n)]

n€Cq

= nigcfd [H(n,€",0) + é(n) + J(n)] — niggd [H(n,£",0)+ J(n)],

where we used the fact that £ = £*. Observe that

=0
n€Ca neCy | 2

1 T
inf [H(n,£,0) +J(n)] = inf [/O 1h(n(s)) = (g™ ())]*ds + T ()

since 3 fOT [h(n(s)) —h(£*(s))||Pds+J(n) evaluated at n = £* equals 0. Thus, recalling
the definition of H, we have that —e?log U¢[¢] converges in distribution (under P) to

Vo 'le) = niélcfd

o0+ 5 [ Ihia(s) = h(e ()]s + T

Since the right side above is nonrandom, we in fact have convergence in probability,
which completes the proof. ]

5. Proof of Lemma 4.1. Let (u,v) € A X A,,. Define canonical coordinate

processes on {2, as é(@) =@y and Y(®) = @g, @ = (@1, w2) € Cq X Ci. Note that

7 (exp{—<""¢(-)},¢"")
F%‘(17caﬂhv> ’

exp {fsfzva’“’”[d)]} =
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and for f € Cy(Cy), Pe-a.s., recall from (2.5) that
5 (f,¢7)

- [ ré@en {5 [ pE@ @) - o [ @i i)
Suppressing @ in notation, we have

s e, ac(s / Ih(E(s))|2ds = £ / (R(E(5)), dB(s)) ~ S HE €% )

52
+2§2 [ e+ oo+ 5 [ he o) - oy

Thus, letting

T ~
(5.1) F@,8) = / (h(E@)(s), dB(s)),

we can write

(5.2)

Jo, exp {17 (@,8) = 2 (6((@) + HE@), € v)) | #7(d)
Jo, exp {LF(@,8) - BHE@), 6%, 0) | pe(da)

Let now ey, Uy, Us, u, v be as in the statement of Lemma 4.1. Using Assumption 1 it

is immediate that

(5-3) (tny U, €577, G0 B) = (u, 0, 68,65, B)

in Spr X Cqg X Cppy, X Cypy, Where

exp {75*21’/5’“’”[41)]} =

coo(r) = / B(EY (5))ds + / o(s)ds, t € [0, 7).

By appealing to the Skorohod representation theorem we can obtain, on some prob-
ability space (£2*, F*,P*), random variables (i, Uy, §~"~, 671, Bf) with the same law as
the random vector on the left side of (5.3) and (4, v, &0, (o, 3) with the same law as
the vector on the right side of (5.3), such that

(54) (ﬁna @na én’ 5n’ Bn) — (ﬁ'a ﬁ7 507 503 é% P*-a.s.
Henceforth, to simplify notation we will drop the ~ from the notation in the above

vectors and denote the corresponding process Ven:4nn[¢] as V™ [¢]. Then, from (5.2),
and the distributional equality noted above, it follows that

(5.5)
o F(@.8™)~ 2 (9(E@)HH(E@).£™ )= [ hE@)(s) (v (s)=v(s))ds)
— 21 fQ,e ) " H‘n(dw)
exp {—e; 2V g]} = “ A A :
T F(@.8m) = 5 (HE@),6m )= [ hE@)(9)- (v (s)=v(s))ds)
Jo, e B pen (i)

To prove Lemma 4.1 it now suffices to show that, for all ¢ € C,(Cy), as n — oo,
(5.6)
_ 1 @ -5 @ @),E™ v @ v (s)—w(s))ds
T1[6] = e log {/ eE"F( B™) (<1>(5( NHHE@),6™0)— i R(E@)(s))-(v™ (5)—v(s)) ),uE"(chJ)
Qg

— inf [H(n,&o,v) + é(n) + J(n)] as. P*.
n€Cq
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Define A} : Cq x 2 — R as
(5.7)

AT () = H(n, &,v) — H(n, € 0) + / h(n(s)) - (v (5) — v(s))ds

T
:/0 (h(n(s)) —v(s)) - (h(£"(s)) — h(&o(s))) ds
3 [ UME@EIE = InE I ds+ [ hn(s) - (@"(s) = o5 s
Then from the continuity of h and the a.s. convergence in (5.4), we see that for every
n € Cq
(5.8) asn — oo, AT(n) —0, as. P*.

Furthermore, with A™(0,w*) = AT(§(®), w*),

Tyf6] = —htog [ [ exp{ -P@.07) ~ Jp (€@ + €@ 0.0) - a7) b ).

En €2

In order to prove (5.6) we will show

(5.9) limﬁsup T7[g] < niggd [H(n,&0,v) + o(n) + J(n)] a.s. P*
and
(5.10) lim inf Y7 [¢] > niggd [H(n,&0,v) + é(n) + J(n)] a.s. P*.

The fact that F' can be neglected in the asymptotic formula follows the lines of [13];
however, since, unlike [13], we do not assume h is bounded and our functional of
interest is different from the one considered in [13], we provide the details.

5.1. Brief outline of the proof of Lemma 4.1. The proof of Lemma 4.1
is long, and so, for the reader’s convenience, we provide here an overview of the
approach and an outline of the proof. As observed earlier in the section, in order to
prove Lemma 4.1 it suffices to show (5.6), for which, in turn, it suffices to show (5.9)
and (5.10).

5.1.1. Proving (5.10). This is done in section 5.2. The proof appears towards
the end of that section. The first ingredient in its proof is Proposition 5.6, which says
that one can ignore the éF(&), £™) term (O1) when establishing the bound (5.10). In
particular, the proposition allows us to estimate the negative of the quantity on the
left side of (5.10), namely, limsup,,_, ., —Y7[¢], by the sum of the two terms on the
right side of (5.26). The second of the two terms is treated using Lemmas 5.7 and 5.8,
which allow us to control the contribution from the E%A” term (O2S), whereas the
first term is treated using Lemma 5.2. Using these results the inequality in (5.10) is
obtained readily, as shown at the end of section 5.2. Thus the key steps in the proof of
(5.10) are Proposition 5.6, Lemma 5.7, Lemma 5.8, and Lemma 5.2. Proposition 5.6 is
based on Proposition 5.5, which in turn is based on Lemmas 5.1, 5.2, and Proposition
5.3.

5.1.2. Proving (5.9). This inequality is proved in section 5.3. The proof relies
on Proposition 5.5 (which was also used in the proof of (5.10)) and Lemma 5.9. The
proof of Lemma 5.9 relies on Lemma 5.8 from section 5.2. The role of these results
is to once more control the terms (O1) and (O2S) in a suitable manner. Using these
results, the proof of (5.9) is completed in section 5.3, after the proof of Lemma 5.9.
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5.2. Proof of (5.10). We begin with the following lemmas.
LEMMA 5.1. For C € (0,00), limsup,_,, &2 logf e IE@l- 8(d(I)) < 0.

Proof. Note that for te [0 T, £(t) = o + fo ))ds + sfo (s))dA(s).

Let M(t fo ) Then by an apphcatlon of Gronwall s lemma, it suf-
fices to show that hm sup._,oe2log E,,- € THIMIL < o0 where E, is the expectation
under the probability measure p°. Since o is bounded and under /L , ¥ is a Brownian
motion, there is C; € (0,00) such that E,-e®c HIMI < ceCrE T for every € > 0.

The result follows. O
LEMMA 5.2. Let for ¢ >0, R, A® be measurable maps from Cq to R such that

(5.11) Sulgﬁe(n) < cr(1+Inll), sup |A%(n)| < ca(L+n||+) for alln € Cq.
> >

Then

(5.12) limsupe? log/ exp{e VAT (E(@)) 4+ e 2RE(E(@)) s (d)

e—0

x

< lim sup 2 log / exple2RE (€(@))} uf (d)

e—0

x

and for every co € (0, 00)
(5.13)
lim sup lim sup €2 log/ X e‘flgi(é@))“_zco(lﬂlé(&)“*)/f(dd;) = —o00.
{A=(g(@) =M}

M —o0 e—0

Proof. For M € (0,00), let A5, = A° A M. Then

/ exp{e T A%(€(@)) + e PR (E(@) et (did)

x

< / exple 1A%, (E(@)) + =R (E(@)) b (d)
Q

+/Q eXP{gilgs(é(a’))"'5727@8(é(@))}l{gs(g(@))zM}Hs(da’)-

Thus

lim sup 2 log / exple A% (E(@)) + e 2RE(E@))}u° (d)

e—0

x

< max { im sup e log / exple ™ A5, (€(@) + e R (E(@)) b (),

e—=0 2

limjgp g log/ exp{e 1A (£(@)) + 572735(é(d)))}1{155(5(@))2”[}#5@@)}.

x

Since

limsupe?log | exple A5,(6(@)) + e RE @) ()

e—0

z

= limsup £ log/ exp{e 2R (E(@)) s (d),

e—0

x
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in order to prove the lemma it suffices to show (5.13) for every ¢g € (0,00). Fix ¢ €
(0,1). Using the fact that, on the set {A°(£(@)) > M}, e A% (E(@)) < e72(A5(£(@))—
M) + e 1M, and the bound in (5.11), we see that

timsupe?log [ exp {7 A(E@) + £ 21+ 1@} 1 e ey oy °(0)

e—0

x

< —M + limsup 2 log/ exp {672(014 +co)(1+ ||é(@)\|*)} pf(do).
Q.

e—0

Equation (5.13) now follows on applying Lemma 5.1 and taking M — oo. 0
Note that, by It6’s formula,

T A~
F(&,6") = / (h(E@)(5)), dB™(5))

m T
= (hE@)(T)). B"(T)) = 3 / B (5)(VIu(E(@)(5)), bE@)(s)))ds
=1
2 k m T R 2 R
-5 2 Z/O 1 (5) 00 ) (E(@) () 5o-p(E(@)()ds
i,j=1 1=1 1Yl

where, Pt-a.s., KT(g B) = =7 [ Buls) (Vhi(€(s)), (dé(s) — b(E(s))ds)) and

Ar (&, B) = fo ), dB(s)) — K (&, B).
The followmg result is taken from Heunis [13] (cf. page 940 therein).

PROPOSITION 5.3 (Heunis [13]).  The maps Kt and Arp are measurable and
continuous, respectively, from Cq X Cp, to R, and there are ¢1,co € (0,00) such that
forallz >0, n>1,

R 2
pon (@ |Kr(E@), 7)) > @) < zexp{ <1+x||/3||>} ws. P*

and
(5.14) A7 (€(@), B < ea(1 + €@« + 18" [14) a5, p @ P*,

For (@,w*) € Q, x 2%, define G (&,w*) = —¢(£(@)) — H(E(D), &o(w™), v(w*)) +
A (D, w*).

Remark 5.4. In the rest of this section, w* (chosen from a full P*-measure set) is
fixed. We will therefore suppress the dependence on w* (wherever it does not cause

confusion) to keep the expressions concise. For example, we will write G™ (@, w*) and
L™ (w*) as G™ (@) and 8™, respectively.

PROPOSITION 5.5. For any § € (0,00) and P* a.e. w*

lim sup 6% log/ 68;2G"(&1)+€;1F(&),5”)’u6n (d(,:}) = —o0,
K+UK~—

n—oo
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(5.15) lim sup 2 log /Ki eeizG"(‘:’)“;lAT(f(@)vﬁn)usn (d&) = —o0,

n—r oo

where K~ = {5nKT(£(a))aBn) < *6} and K = {EnKT(é(a))vﬂn) > 6}

Proof. Note that, on the set K, £,2G"(@) + ¢,  F(@, ") < £,2(G"(®) — §) +
e, VAT (E(®), B™). Also note that, using the linear growth of h, one can find a measur-
able map 6 : 2 — R, such that

(5.16) G™(@) < 0w (1 + |E@)].) for all @ € Qy, P* ae. w*.

We will write §(w*) as 6, from now on. Using these observations, we have

/ eSO @ F@I o (4 < 27 0-0) / e O 4o A(E@).6™) e ().
Next, for every M € (0, 00)

/7e€;20\|é<w>H*+e;1AT(é(w>,ﬂ")Msn(d@)
(5.17)

S/ 65529H5(®)H*+E;1Muen(d@>_|_/ e U@ later A (E(@).8™) en (dip),
- KNy

where Iy = {A7(£(@),3") > M}. We now consider the two terms in the above
display separately. For the first term, from the Cauchy—Schwarz inequality,

A ) 1/2 12
[ ewteoli@l e @@ < | [ evtsolé@ )| o),
K- Q

x

and therefore

Jim sup <2 log / exp{e=20€(@) ]| 1 (d)
.

n— oo

2 2
< lim sup %L log/Q exp{2e,, 20|E(@) ||« yuf (d@) + limﬁsup %’ log ™ (K ™)

n—oo
| —62 1 29|1€ per (dw) — —52 = —
< limsup 2 lo exp{2e_ )|« Yt (deo c = —00,

where in the next to last line we have used Proposition 5.3 and in the last line we
have appealed to Lemma 5.1 and the fact that sup,, ||5"||. < co P*-a.s.

For the second term on the right side in (5.17), we have from Lemma 5.2 (see
(5.13)) and (5.14) that

lim sup lim sup €2 log/ 68529“5(@)”*"'ETAT(é(@’ﬁn)uf(dd}) = —00.
M—o0o n—oo 157

Using the last two displays in (5.17) and combining with (4) we have (5.15) and

n—oo

limsup 2 log/ exp{e; 2G™ (@) + ¢, F(@, B™) }u (d&) = —oo.
o—
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Next, from [13, Proposition 4.7], it follows that

timsup 3 log | exp{2e; K (€(@), 5} (d) = —ox.
K

n— oo

Now using the Cauchy—Schwarz inequality and arguing as before, we see that

limsup 2 log/ exp{e 2G™ (@) + €,  F(@, ™)} (di) = —oo. 0
K+

n—oo

Proposition 5.6 below is a useful tool which will be used to see that one can ignore
the term involving F' in the definition of T} [p] when establishing the bound at (5.11).

PROPOSITION 5.6. For P* a.e. w*,

limsup 2 log/ e CM @ er T F(@,8") yen (di) < limsupe? log/ e G @) pyen (d@).

n—oo n—oo

x x

Proof. Fix § € (0,00) and with K+ and K~ defined as earlier, write

/ exp{e2GM(@) + e L F(@, B) b (d)

@

- /K exp{e 6" (@) + £ F(@, 6 i (d)

wf exp{er G (@) + e F (@, B") b (d).
{en KT (§(@),™)<5}

From Proposition 5.5,

(518) lim sup 631 lOg/ eegzcn(@)—ks;1F(<I)75n)u€n (d[[;) — o
K+

n—oo

Next note that

| exp{e,2C" (@) + 5 F(@. ") b (dd)
{en KT (£§(@),p™) <6}

<

/ ) exp{e;, 2G™(@) + 0,2 + e, L Ar(E(@), B™) bt (d).
{en K1 (§(@),8m)<5}

Now recalling (5.14) and (5.16) and applying (5.12), we get

lim sup 2 log exp{e; 2G™ (@) + ¢,  F (@, B™) }u (dd)

oo /{snKT@(w),ﬁ"Ké}
<+ limsupe? 1og/ exp{e; 2G™ (@) }pc (d).

n—oo -

Since § > 0 is arbitrary, the result follows on combining the above with (5.18). d

The proof of the following lemma follows along the lines of Varadhan’s lemma (cf.
[23, Theorem 2.6], [6, Theorem 1.18]). We provide details for the reader’s convenience.

LEMMA 5.7. Let {Z°}.~0 be random wariables with values in a Polish space
(X,d(-,-)) that satisfies an LDP with rate function J and speed e=2. Let ¢ : X — R be
a continuous function bounded from above, namely sup ¢y ¢(x) < 0o, and let {1°}.50
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be a collection of real measurable maps on X such that sup,sosup,cy [¢¥°(2)] < oo.
Further suppose that for every 6 > 0 and x € X, there exist eo(x), d1(x) € (0, 00)
such that |¥°(y)| < d for all d(x,y) < d1(z) and all 0 < e < go(x). Then

lim e*log Elexp (e 7% {¢(2°) + ¢*(2°)})] = sup [9(x) — J ()]

Proof. Define R = sup, ¢y (¢(z) +sup.|¥°(2)]), S = sup,cx(éd(x) — J(x)), and
K ={zxeX:J(x)<|S|+ R}. Since J is a rate function, K is compact in X.

Fix § € (0,00). From the hypothesis of the lemma, for each & € X, there exist
01(x),e0(x) € (0,00) such that |4 (y)| < § for every y € B(x,d1(x)) and € € (0, eo(x)),
where B(z,7) = {z € X : d(z,z) < 7} is an open ball of radius v in X. Also,
from the continuity of ¢, for every x € X there exists da(x) € (0,00) such that
lp(z) — ¢(y)| < 6 Yy € B(z,d2(z)). Next, from the lower semicontinuity of J, for
every © € X, there exists d5(z) € (0, 00) such that

J(x) < inf  J(y) + 4.
yEB(x,03(z))

Let 0(x) = min{d; (), 52(x), d3(z)}. Now define an open cover U,exU(x) of K using
the following open sets: U(z) = B(z,d(x)), = € K.
Note that for any z € K, y € U(x), and € < go(x), we have

(5.19) [V (y)] <6, |o(z) — d(y)| <4, and J(z) < elgf )J(Z) + 0.

Since K is compact, there exist N € N and {z;}}¥;, C K such that {U; = U(z;)}¥,
cover K. For i = 1,...,N, we can find 0 < e(x;) < go(x;) such that with &5 =
min;—1,_ ne(x;), for every e < &,

(5.20) P[Z° € U;] <exp [e7%(=b; +0)], P[Z° € F] <exp |e (- inf J(x)+ )],

where F = (UM, U;)” and b; = inf J(z). Next note that

zeﬁ

-

Efexp (72 {¢(2°) + ¢ (Z°)})] < ) Elexp (e 72 {#(2°) +9°(Z2°)}) 1u,(Z°)]

=1

(5.21) +Elexp (672 {¢(Z°) + v°(2°)}) 17 (Z7)].

Let a; = inf g ¢(x). Then |a; — ¢(z)| < 26 for € U;. Thus, using (5.19) and (5.20)

limsup e* log E[exp (e 7> {¢(Z°) + ¢°(Z°)}) 1u,(Z°)]

e—0
(5.22) < (a; —b; +46) < p(a;) — J(;) + 56 < sup [¢(z) — J(z)] + 5.
reX
Also
limsup ? log E[exp (e 7% {¢(Z°) + ¢°(Z°)}) 1p] < R — 12% J(x)+ 96
e—0 x
(5.23) < —[S[+ 6 < sup [p(z) — J(z)] + 0,
rzeX
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where the second inequality is a consequence of the observation that F' C K. Since
d > 0 is arbitrary, using (5.22) and (5.23) in (5.21) we now see that

(G:24)  limsup®logBfexp (=2 {6(27) +*(29)})] < sup [6(a) ~ J(@)].

For the lower bound, choose xy such that ¢(xo) — J(zg) > S —J. Let §(xo),e(x0) €
(0,00) be such that for all z € U = B(xg,0(xg)), |¢(x) — ¢(x0)|] < 6 and ¢ ()| < §
for € < g(xp). Then

lim inf £* log E [exp (72 {¢(2%) + ¥*(Z7)})]
> 1i£ri>iglf e?logE [exp (672 {o(Z°) + ¢°(Z°)}) 1u(Z°)]
> ¢(wo) — 26 + lim inf e2logP[Z° € U]

2 ¢(x0) — 26 — inf J(z) > d(20) — 20 — J(20) 2 sup [¢(x) — J(z)] - 30.
T reX
Sending 6 — 0, we have the lower bound, and combining with (5.24) the result
follows. d

Recall the definition of A} from (5.7). The term involving A™® on the right side
of the estimate in (5.26) below will be handled via an application of Lemma 5.7 (see
(5.27)) by arguing from Lemma 5.8 that the term A™® has the properties of the map
¢ (with e = 1/n) in Lemma 5.7.

LEMMA 5.8. For P* a.e. w* and every 6 € (0,00) and n € Cq there exist ng € N
and 61 € (0,00) such that |A}(f,w*)] < § whenever 71 € Cq, ||n — 7|« < 01, and
n > ng.

Proof. Consider w* in the set of full measure on which the convergence in (5.4)
(and thus in (5.8)) holds. From (5.8), for any fixed 6 € (0,00) and 1 € C4, we can
find ng € N such that for all n > ng, |A}(n,w*)| < %. Also, from continuity of h, we
can find a §; € (0,00) such that for all 7j € Cq with ||n — 7]l < &

) 1)
S“p/ I1(n(s)) = A IRE D] + G ())ds < 5,
neNJQ

T ] ) S
f’fég/o [(n(s)) = R )] + o(s)lds < 7.

Thus for all n > ng and 7 € Cq with ||n — 7. < 61
AT ()] <AV () — AT ()] + AT ()]

S/O 1B (n(s)) = h((s)I(IIE" () + [1h(€o(s)) ) ds

T 5
+/ 17(n(s)) = RGN ($)II + [[o(s)ds + 5 < 6. O
0

We now complete the proof of (5.10).
Completing the proof of (5.10). Note that, from Proposition 5.6, P*-a.s.,

limsup —Y7[#] = limsup 2 log/ exp{e,, 2G™(Q) + &, ' F(@, B™) }u" (d)

n— oo n—oo z

(5.25) < limsupe? log/ exp{e,, 2G™ (@)}t (d@).

n—oo z
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For Q € (0,00), let A™? = (A" A Q) V (—Q). We will again suppress the
dependence on w*. Then

| e {etan @)@ < [ e {66} 1anpa i (d)

x x

6:20) 4 [ exple(- 06@) ~ HEG) onv) + A"Ow) b ().

T

In order to treat the second term on the right side above, we will use Lemmas 5.7 and
5.8. Lemma 5.7 will be applied with ¢ replaced with £, and random variables Z¢»
replaced by X°» that are distributed as p*" o 5*1. We will use the result in (2.11)
which gives an LDP for {X®"} (equivalently an LDP for the sequence of measures
{p"}) with rate function J. The role of ¢ in Lemma 5.7 will be played by the map
—¢(-) — H(-,&o,v)) for a given w*. Note that this is a continuous map on C4 which is
bounded from above. Also the role of °" in Lemma 5.7 is played by the map n +—
(A7 () AQ) V (—Q) = AT?(n), which clearly satisfies SUP,,>1 SUP,ec, AT9(n) < o0,
and by Lemma 5.8, for every d € (0,00) and n € Cq there exist ng € N and d§; € (0, 00)
such that [(A7(7) A Q) V (—Q)| < § whenever 7 € Cy, |7 — 7|+« < 01, and n > ny.
Combining these observations, we now obtain from Lemma 5.7 that, for P* a.e. w*

timsup e log | exp {e (~0(€(@) ~ HE). €0,0) +A"2(w)) } e (05)

(5.27) noee
< - nigcfd [H(n,&0,v) +¢(n) + J(n)] .

Next, using the linear growth property of h sup,, |[AT(n)| < ea(w*)(1 + ||7]|«), P*-a.s.
for some measurable map ca : £2* — R,. Thus, using the boundedness of ¢ and the
nonnegativity of H, we have

lim sup lim sup €2 log / efn G @) Lijan>Qypu " (do)

Q—oo0 n—oo >

. . 5_2 C é )|« En ~Y —
< limsuplimsup e, log/Q esn (catlioloe) A E@l )1{CA(1+H€(LD)H*)2Q}“ (dw) = —oo,

Q—oo n—oo

where the last equality follows from Lemma 5.2 (see (5.13)). Using the last bound
together with (5.27) in (5.26) and (5.25), we now have the inequality in (5.10).
5.3. Proof of (5.9). Recall (5.4). We begin with the following lemma.
LEMMA 5.9. For P* a.e. w*
liminf &2 log/ oo "G @) ke M ATE@.5) 2 (dp) > — inf [H (n,&o0,v) + ¢(n) + J(1)] .
n—oo

n€Cq

x

Proof. Fix ng € Cqg and § € (0,00). From continuity of ¢ on Cy, of Ap on Cgq X Cyp,
and of n — H(n,&,v) (for P* a.e. w*) on C4, a.s. convergence of 5" to (3, and
Lemma 5.8, we can find, for P* a.e. w*, a neighborhood G of 1y and n; € N such that
supseq [AT(7)] < 0 for all n > ny,

}ggAT(ﬁaﬁn) Z AT(WOan) - 6 fOI' au n 2 niy,
7

%gg[ﬂﬁ(ﬁ) — H(7}, 0, v] > [~¢(n0) — H (1o, §0,v] — 0.
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Observe that
/Q exp {£, 26" (@) + £, Ar(§(@), 8) | e (dd)
> ;XP {e221=0(no) — H(no, o, v — 20)] + €, (Ar(no, ") — 6)} 1°(G)

Noting that sup,, |Ar(no, 8™)] < oo P*-a.s. and applying the large deviation result
from (2.11), we now have

hmmf&: log/Q exp {€;2G”(<D)+5;1AT(£(LD),B”)}ME(d(D)

> [=p(no) — H (1o, o, v — 26)] — ﬁgg J (1)
> —¢(no) — H(no, o, v — J(no)) — 26.

Since ¢ € (0,00) and 1y € C4 are arbitrary, the result follows. O
We now complete the proof of (5.9).

Completing the proof of (5.9). Fix § € (0,00). Then with K~ defined as earlier

/ exp {&,°G"(@) + e, ' F(@, ")} po (d&

x

(@ e G i
{en KT (§(®),8™) >0}

> / A exp {e, 26" (@) + £ (—05; " + Ar(E(@), B7)) e (dd)
{en KT (§(@),™) >4}

=/ exp {2 2(G(@) — 8) + e A(E(@), B") b~ (d)

x

- / exp {&,,*(G"(@) — ) + e Ap(€(@), B7) )}t (dw).
-
From Proposition 5.5 (see (5.15))

lim sup 531 log/ eaﬁzG"(@)ﬂ-E[lAT(é(@),B")Man (d) = —cc.

n—oo

Thus to prove (5.9) it suffices to show that, P*-a.s.,

lim inf £2 log/ exp {6;26‘"(@) + e Ap(E(@), ,8")} e (da)

2 = inf [H(n,&,v)+¢(m) +J ()]

x

However, the above is an immediate consequence of Lemma 5.9. This proves (5.9).

Finally we complete the proof of Lemma 4.1.

Completing the proof of Lemma 4.1. As noted above (5.6), in order to prove
Lemma 4.1 it suffices to show (5.6) for every ¢ € Cy(Cq). Also, for this it is enough
to show (5.10) and (5.9). The inequality in (5.10) was shown in section 5.2, and the
proof of the inequality in (5.9) was provided in section 5.3. Combining these we have
Lemma 4.1.
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6. Proof of Theorem 2.1. In order to prove the theorem it suffices to show
(3.1) and (3.2). Proofs of (3.2) and (3.1) are in sections 6.1 and 6.2, respectively.

6.1. Proof of (3.2). Let {e,}nen be a sequence of positive reals such that
€n — 0 as n — 0o. To show (3.2) it suffices to show that for every G € Cy(R)

(6.1) linrr_l)ioréf —e2 log Epen [exp {—¢,°G(V"[¢]) }] > ;TEID%{G(Z) +1°(2)},
(6.2) ligsotip —e2 log Epen [exp {—£,2G(V="[¢]) }] < ;Ielﬂf%{G(z) +1%(2)}.

We begin with (6.1). Fix § € (0,1) and choose (@i, 7,) € A¥ x A™ such that

— 5% log Epe., [GXP {—5;2G(V6n [d’])}]

6.3 o 1 (7
O s g [ <|an<s>||2+|an<s>2>ds]—6.
Note that
T
64)  supEse. /(an<s>||2+@n<s>|2>ds]s2<2G||oo+1>ﬁca.
neN 0

Using a standard localization argument to modify (&, 0y, ) (cf. [6, Theorem 3.17]) we
can find M € (0,00) and (up,v,) € A* x A™ that take values in Sy a.s. such that

— ey log Epe, [exp { ¢, G(V"[9])}]

T
G5 S R, |G gl + L / <||un<s)||2+||vn<s>||2>ds]—26-

2

Note that {(un,vn)} is a sequence of Sps valued random variables, and since Sy is
weakly compact, every subsequence of {(un,v,)} has a weakly convergent subsub-
sequence. It suffices to show (6.1) along such a subsubsequence which we denote
once more as {n}. Denoting the limit as (u,v), given on some probability space
(29, F° PY), we have from Lemma 4.1 that, as n — oo, VEntntn[g] — Vi""[¢], in
distribution. Using the fact that G € C,(R) and Fatou’s lemma, we now have

lim inf Ep-,,
n— oo

T
G g + 3 [ ()P + ||vn<s>||2>ds]

1

T
G(Vy""[e]) + 5/0 (lu(s)II* + IIU(S)IIQ)dS]

> Beo [GO[6) + TV 10])] 2 inf [G(2) + T(2)],

> Epo

where the second inequality uses that, by definition, (u,v) € S(Vy""[¢]) a.s. Com-
bining the above display with (6.5) and recalling that & > 0 is arbitrary, we have
(6.1).

We now give the proof of (6.2). Fix ¢ € (0,1) and let z* € R be such that

(6.6) G(z") +I°(2") < inf[G(2) + I°(2)] + 6.
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Now choose (p, 1) € S(z*) such that

1

T T
(67) 3 | lelPae+ g [ wlRa< 1) +5

Since (o, %) € A X A, (as they are nonrandom and square-integrable), we have from
(3.6) that, for every n € N,

— &2 log Epen [exp { ¢, 2G(V="[4])}]

6.8 _ T
o Gvee o)) + 5 <||so<s>||2+|w<s>2>ds].

< Epen

Also, from Lemma 4.1, as n — oo, VEne¥[p] — V0¢7w[¢], in distribution. Since
(p,9) € S(z*), (2.17) holds with z replaced with z* and so V{"¥[¢] = z*. Thus
sending n — oo in (6.8), we have

T
limsup — €2 log Epe,. [exp {—e2G(Ver [0])}] < G(z*) + %/0 (le()I1? + l(s)[17)ds

n—oo

<G+ 1%(2") 46 < inf [G(2) + 1°(2)] + 24,

where the second inequality uses (6.7) while the third uses (6.6). Since § > 0 is
arbitrary, we have (6.2), and, together with (6.1), this completes the proof of (3.2).

6.2. Proof of (3.1). Fix ¢ € C,(Cyq) and M € (0, 00). Consider the set {z € R :
I9(2) < M} = Ejy and let {z,}nen be a sequence in this set. Since for each n € N,
I9(z,) < M, we can find (¢n, ¥y) € S(z,) C L3 x L2, such that

1 (T 1
(6.9) 5/0 (len ()1 + lltbn(s)[[*)ds < M + -
Since (Sﬁmwn) € S(Zn)a
(6.10)
Zn = ViEm V(@] = inf [H(n, &5 vn) + 6(n) + J(n)] — inf [H(n, &5 ¥n) + J(n)].
neCq n€Ca
Note that we can write
1 (T
H(n, &5 ¢n) = 5/0 [B(n(5)) = h(£5™ (5)) — Pu(s)|ds
1

T T
—5 | 1) ~ &g elPas = [ htao) = g o] vae)is

e - e
3 [ o)l = g i)+ 5 [ (o) P

where for 1,7 € Cg and v € L2,

~ 1

T T
i) = 5 [ Ir(s) = () Pds = [ i) = b)) - vs)ds
From (6.10) and the relation between H and H it follows that

6.11)  zo = inf [H(.6" ) +00) + J(0)] — inf [H(.&5" )+ I()] -
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Also, from (6.9) it follows that {(¥n,¥n)fnen C So(ar41)- Since Sa(ar41y is com-
pact, we can find a subsequence along which (¢,,1,) converges to some (p,9) €
So(m+1)- In fact, from (6.9) and lower semicontinuity, (¢,v) € Saps. Define
(6.12)

2=Vl = inf [0 €6 )+ 0(n) + J0n)] = inf [H(1.85.0) + (o)

= inf [H.65.0)+ 6(n) + J(n)] = if [H(n.65,0)+ I()]

In order to complete the proof of (3.1) it suffices to show that
(6.13) as nm — 00, 2zn —> 2".

We first argue that in the infimum appearing in (the second line of) (6.12) and
(6.11), {n € Cq} can be replaced by {n € K} for some fixed compact set K. To see
this, note that, with £* as in (1.4),

inf [0, €5, 60) + 6(n) + T ()] < AE 6" n) + [9lloc + T(€°).

n€Ca
Also, note that J(*) =0 and

A5 0) = 5 [ I () = hEE™ (DIPds = [ (e (5) = e ()] - w(5)ds

< [ e @) = me @I+ g [ el

< 2TR(E" (DI +2 / IhE” ()IPds + / [ (5) 1 ds
< 2TYR(E ()1Z + ma (M + 1) = ks,

where k1 € (0,00) depends only on zg, 7T, and the linear growth coefficients of h, b, o.
Thus, taking k3 = 2+ | || +1, we see that the first infimum in (6.11) can be replaced

by the infimum over the set K = {n € Cq: H(n,&§™,¢n) + ¢(n) + J(n) < k3}.
Using the relation a-b > —X|la||? — ||b]?,

&5 0n) 2 5 [ Ih0) = hE )P

T T
- i/o [l1h(n(s)) — h( 6“(5))”2 _/0 ||1/)n(8)||2ds > oM.

Thus, with k4 = k3 + ||¢|lcc + 1 +2M, K is contained in the compact set K = {n €
Cq : J(n) < Kkq}. Thus the first infimum in (6.11) can be replaced by the infimum over
the set K. Similarly, the second infimum in (6.11) and both infima in (the second
line of) (6.12) can be replaced by infima over the same compact set K. Note that
if B,, B are maps from K — R such that B, — B uniformly on compact sets, then
inf ek [Bn(n) + J(n)] = inf,cx[B(n) + J(n)]. Thus, to complete the proof of (6.13)
it suffices to show that

(6.14) as n — 00, H(n,&&" n) — H(n,&8,1), uniformly for € K.

For this note that from Assumption 1 and the convergence of ¢, — ¢ it follows that
¢ — & in Cq as n — oo. Also, since K is compact, sup, ¢ [|7]]« < 0o. Combining
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these observations with the continuity and linear growth of A we have that, as n — oo,

T T
©15) 5 [ Ih) ~ hE DIPds 5 [ Intn(e) g sl

uniformly for n € K. Also, writing

T T T
/ B(ES™ (5)) - b (s)ds = / (€S (5)) — h(EF ()] - ()5 + / B(E(5)) - thn (5)ds
0 0 0

and using the convergence (5", v,,) — (£5,1), the bound in (6.9), and the Lipschitz
property of h, we have that, as n — oo,

T T
(6.16) /0 h(EG™ () - Yn(s)ds — /0 h(&Z(s)) - P(s)ds.

Finally, we claim that, as n — oo,

T T
(6.17) / W(n(s)) - 0" (s)ds — / h(n(s)) - (s)ds,

uniformly for n € K. To show the claim, it suffices to show that if n — 1 in K, then

(6.18) / B (s)) - ¥" (s)ds — / h(n(s)) - (s)ds.

Write the right-hand side as

T T T
/ B (s)) - 7 (s)ds = / (h(1"(s)) — h(n(s))) - " (s)ds + / h(n(s)) - 7 (s)ds.
0 0 0

The convergence in (6.18) is now immediate from the above display on using the
Lipschitz property of h, the bound in (6.9), and the convergence of (™, ™) to (n,v),
which proves the claim. Combining the convergence properties in (6.15), (6.16), and
(6.17), we now have the statement in (6.14), which, as noted previously, proves (3.1).
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