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Abstract. We consider nonlinear filters for diffusion processes when the observation and signal
noises are small and of the same order. As the noise intensities approach zero, the nonlinear filter can
be approximated by a certain variational problem that is closely related to Mortensen's optimiza-
tion problem [R. Mortensen, J. Optim. Theory Appl., 2 (1968), pp. 386--394]. This approximation
result can be made precise through a certain Laplace asymptotic formula. In this work we study
probabilities of deviations of true filtering estimates from that obtained by solving the variational
problem. Our main result gives a large deviation principle for Laplace functionals whose typical
asymptotic behavior is described by Mortensen-type variational problems. Proofs rely on stochastic
control representations for positive functionals of Brownian motions and Laplace asymptotics of the
Kallianpur--Striebel formula.
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1. Introduction. In this work we study certain large deviation asymptotics
for nonlinear filtering problems with small signal and observation noise. As the
noise in the signal and observation processes vanishes, the filtering problem can
formally be replaced by a variational problem, and one may approximate the fil-
tering estimates (namely suitable conditional probabilities or expectations) by so-
lutions of certain deterministic optimization problems. However, due to random-
ness there will be occasional large deviations of the true nonlinear filter estimates
from the variational problem solutions. The main goal of this work is to investigate
the probabilities of such deviations by establishing a suitable large deviation princi-
ple. Large deviations and related asymptotic problems in the context of small noise
nonlinear filtering have been investigated, under different settings, in many works
[15, 13, 2, 16, 21, 3, 24, 18, 19, 11, 22, 1]. We summarize the main results of these
works and their relation to the current work at the end of this section.

In order to describe our results precisely, we begin by introducing the filtering
model that we study. We consider a signal process X\varepsilon given as the solution of the
d-dimensional stochastic differential equation (SDE)

(1.1) dX\varepsilon (t) = b(X\varepsilon (t))dt+ \varepsilon \sigma (X\varepsilon (t))dW (t), X\varepsilon (0) = x0, 0 \leq t \leq T,
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and an m-dimensional observation process Y \varepsilon governed by the equation

(1.2) Y \varepsilon (t) =

\int t

0

h(X\varepsilon (s))ds+ \varepsilon B(t), 0 \leq t \leq T,

on some probability space ( \=\Omega , \=\scrF , \=P). Here \varepsilon \in (0,\infty ) is a small parameter, T \in 
(0,\infty ) is some given finite time horizon, W and B are mutually independent standard
Brownian motions in Rk and Rm, respectively, x0 \in Rd is the known deterministic
initial condition of the signal, and the functions b, \sigma , and h are required to satisfy the
following condition.

Assumption 1. The following hold.
(a) The functions b, \sigma , h from Rd \rightarrow Rd, Rd \rightarrow Rd\times k, Rd \rightarrow Rm are Lipschitz: For

some clip \in (0,\infty )

\| b(x) - b(y)\| + \| \sigma (x) - \sigma (y)\| + \| h(x) - h(y)\| \leq clip\| x - y\| for all x, y \in Rd.

(b) The function \sigma is bounded: For some c\sigma \in (0,\infty ) supx\in Rd \| \sigma (x)\| \leq c\sigma .
(c) The function h is twice continuously differentiable with bounded derivatives.

Note that under Assumption 1 there is a unique pathwise solution of (1.1), and
the solution is a stochastic process with sample paths in \scrC d (the space of continuous
functions from [0, T ] to Rd equipped with the uniform metric).

The filtering problem is concerned with the computation of the conditional ex-
pectations of the form

(1.3) \=E [\phi (X\varepsilon ) | \scrY \varepsilon T ] ,

where \scrY \varepsilon T
.
= \sigma \{ Y \varepsilon (s) : 0 \leq s \leq T\} and \phi : \scrC d \rightarrow R is a suitable map. The stochastic

process with values in the space of probability measures on \scrC d, given by \=P [X\varepsilon \in \cdot | \scrY \varepsilon T ],
is usually referred to as the nonlinear filter.

In this work we are interested in the study of the asymptotic behavior of the
nonlinear filter as \varepsilon \rightarrow 0. Denote by \xi \ast \in \scrC d the unique solution of

(1.4) d\xi \ast (t) = b(\xi \ast (t))dt, \xi \ast (0) = x0.

It can be shown that, under additional conditions (see the discussion in section 2), as
\varepsilon \rightarrow 0,

(1.5) \=P [X\varepsilon \in \cdot | \scrY \varepsilon T ] \rightarrow \delta \xi \ast , in probability, under \=P,

weakly. In particular, for Borel subsets A of \scrC d whose closure does not contain \xi \ast one
will have \=P [X\varepsilon \in A | \scrY \varepsilon T ] \rightarrow 0 in probability as \varepsilon \rightarrow 0. We will refer to such sets A
as sets of nontypical state trajectories. It is of interest to study the rate of decay of
conditional probabilities of sets of nontypical state trajectories. As a special case of
the results of the current paper (see Corollary 4.2), it will follow that for every real
continuous and bounded function \phi on \scrC d, denoting

(1.6) U\varepsilon [\phi ]
.
= \=E

\biggl[ 
exp

\biggl\{ 
 - 1

\varepsilon 2
\phi (X\varepsilon )

\biggr\} 
| \scrY \varepsilon T

\biggr] 
,

(1.7)  - \varepsilon 2 logU\varepsilon [\phi ]
\=P - \rightarrow inf

\eta \in \scrC d

\Biggl[ 
\phi (\eta ) +

1

2

\int T

0

\| h(\eta (s)) - h(\xi \ast (s))\| 2ds+ J(\eta )

\Biggr] 
,
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SMALL NOISE FILTERING 387

where
\=P - \rightarrow denotes convergence in probability under \=P, and J is the rate function on

\scrC d associated with the large deviation principle for \{ X\varepsilon \} \varepsilon >0 (see section 2). From this
convergence it follows using standard arguments (see, e.g., [6, Theorem 1.8]) that, for
all Borel subsets A of \scrC d,
(1.8)

lim
\=P
\varepsilon \rightarrow 0\varepsilon 

2 log \=P [X\varepsilon \in A | \scrY \varepsilon T ] \geq  - inf
\eta \in Ao

\Biggl[ 
1

2

\int T

0

\| h(\eta (s)) - h(\xi \ast (s))\| 2ds+ J(\eta )

\Biggr] 
,

lim
\=P
\varepsilon \rightarrow 0\varepsilon 

2 log \=P [X\varepsilon \in A | \scrY \varepsilon T ] \leq  - inf
\eta \in \=A

\Biggl[ 
1

2

\int T

0

\| h(\eta (s)) - h(\xi \ast (s))\| 2ds+ J(\eta )

\Biggr] 
,

where for real random variables Z\varepsilon and a constant \alpha \in R we say lim
\=P
\varepsilon \rightarrow 0Z

\varepsilon \leq \alpha (resp.,

lim
\=P
\varepsilon \rightarrow 0Z

\varepsilon \geq \alpha ) if (Z\varepsilon  - \alpha )+ (resp., (\alpha  - Z\varepsilon )+) converges to 0 in \=P-probability, and
for a set A, Ao and \=A denote its interior and closure, respectively.

Thus the convergence in (1.7) gives information on rates of decay of conditional
probabilities of sets of nontypical state trajectories. Formally, denoting the infimum
in the above display as S(\xi \ast , A), we can write approximations for conditional proba-
bilities:

(1.9) \=P [X\varepsilon \in A | \scrY \varepsilon T ] \approx exp

\biggl\{ 
 - 1

\varepsilon 2
S(\xi \ast , A)

\biggr\} 
.

However, due to stochastic fluctuations, one may find that for some ``rogue"" obser-
vation trajectories the conditional probabilities on the left side of (1.9) are quite
different from the deterministic approximation on the right side of (1.9). In order to
quantify the probabilities of observing such rogue observation trajectories that cause
deviations from the bounds in (1.8), a natural approach is to study a large deviation
principle for R valued random variables \{  - \varepsilon 2 logU\varepsilon [\phi ]\} whose typical (law of large
numbers) behavior is described by the right side of (1.7). Establishing such a large
deviation principle is the goal of this work. Such a result gives information on decay
rates of probabilities of the form

\=P
\biggl\{ \bigm| \bigm| \bigm| \bigm| \varepsilon 2 log \=P [X\varepsilon \in A | \scrY \varepsilon T ] + inf

\eta \in A

\biggl[ 
1

2

\int T

0

\| h(\eta (s)) - h(\xi \ast (s))\| 2ds+ J(\eta )

\biggr] \bigm| \bigm| \bigm| \bigm| > \delta 

\biggr\} 
for suitable sets A \in \scrB (\scrC d) and \delta > 0. Our main result is Theorem 2.1, which gives
a large deviation principle for \{  - \varepsilon 2 logU\varepsilon [\phi ]\} , for every continuous and bounded
function \phi on \scrC d with a rate function defined by the variational formula in (2.16)--
(2.17).

Notation. The following notation and definitions will be used. For p \in N the
Euclidean norm in Rp will be denoted as \| .\| , and the corresponding inner product
will be written as \langle \cdot , \cdot \rangle . The space of finite positive measures (resp., probability
measures) on a Polish space S will be denoted by \scrM (S) (resp., \scrP (S)). The space of
bounded measurable (resp., continuous and bounded) functions from S \rightarrow R will be
denoted by BM(S) and Cb(S), respectively. For \phi \in BM(S), \| \phi \| \infty 

.
= supx\in S | \phi (x)| .

For \phi \in BM(S) and \mu \in \scrM (S), \mu [\phi ]
.
=

\int 
\phi d\mu . Borel \sigma -field on a Polish space S

will be denoted as \scrB (S). For p \in N and T \in (0,\infty ), \scrC p,T will denote the space of
continuous functions from [0, T ] to Rp which is equipped with the supremum norm,
defined as \| f\| \ast ,T

.
= sup0\leq t\leq T \| f(t)\| , f \in \scrC p,T . Since T \in (0,\infty ) will be fixed in

most of this work, frequently the subscript T in \scrC p,T and \| f\| \ast ,T will be dropped.
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388 A. S. REDDY, A. BUDHIRAJA, AND A. APTE

We denote by \scrL 2
p
.
= L2([0, T ] : Rp) the Hilbert space of square-integrable functions

from [0, T ] to Rp. By convention, the infimum over an empty set will be taken to
be \infty . For random variables Xn, X with values in some Polish space S, convergence
in distribution of Xn to X will be denoted as Xn \Rightarrow X. A function I from a Polish
space S to [0,\infty ] is called a rate function if it has compact sublevel sets, namely the
set \{ x \in S : I(x) \leq m\} is a compact set of S for every m \in (0,\infty ). Given a function
a : (0,\infty ) \rightarrow (0,\infty ) such that a(\varepsilon ) \rightarrow \infty as \varepsilon \rightarrow 0, and a rate function I on a Polish
space S, a collection \{ U\varepsilon \} \varepsilon >0 of S valued random variables is said to satisfy a large
deviation principle (LDP) with rate function I and speed a(\varepsilon ) if for every \phi \in Cb(S)

lim
\varepsilon \rightarrow 0

 - a(\varepsilon ) - 1 logE [exp \{  - a(\varepsilon )\phi (U \varepsilon )\} ] = inf
x\in S

[I(x) + \phi (x)].

Relation with existing body of work. Denote by \scrC 1
m the collection of absolutely

continuous functions y \in \scrC m that satisfy
\int T
0
\| \.y(s)\| 2ds < \infty . For y \in \scrC 1

m define
Iy : \scrC d \rightarrow [0,\infty ] as

Iy(\eta ) =
1

2

\int T

0

\| h(\eta (s)) - \.y(s)\| 2ds+ J(\eta ),(1.10)

where J is the rate function of \{ X\varepsilon \} defined in (2.9). The functional Iy was introduced
in Mortensen [20] as the objective function in an optimization problem whose minima
describe the most probable trajectory given the data in a nonlinear filtering problem
in an appropriate asymptotic sense. This functional is also used in implementing
the popular 4DVAR data assimilation algorithm (cf. [7, section 3.2], [12, Chapter
16]). Connection of the optimization problem associated with the objective function
in (1.10) with the asymptotics of the classical small noise filtering problem has been
studied by several authors [15, 14, 16]. We now describe this connection.

In section 2 we will introduce a continuous map \^\Lambda \varepsilon T : \scrC m \rightarrow \scrP (\scrC d) such that
\^\Lambda \varepsilon T (Y

\varepsilon ) = \=P(X\varepsilon \in \cdot | \scrY \varepsilon T ) a.s. In [15], Hijab established, under conditions (that
include boundedness and smoothness of various coefficients functions), an LDP for
the collection of probability measures (on \scrC d) \{ \^\Lambda \varepsilon T (y)\} \varepsilon >0 (with speed \varepsilon  - 2), for a

fixed y in \scrC 1
m, with rate function \^Iy : \scrC d \rightarrow [0,\infty ] given by

(1.11) \^Iy(\eta ) = Iy(\eta ) - inf
\^\eta \in \scrC d

\{ Iy(\^\eta )\} .

In a related direction, Hijab's Ph.D. dissertation [14] studied asymptotics of the unnor-
malized conditional density and established, under conditions, an asymptotic formula
of the form q\varepsilon (x, t) = exp

\bigl\{ 
 - \varepsilon  - 2(W (x, t) + o(1))

\bigr\} 
, where q\varepsilon (x, t) denotes the solution

of the Zakai equation associated with the nonlinear filter (cf. [17]). The deterministic
functionW (x, t) coincides with Mortensen's (deterministic) minimum energy estimate
[20] which is given as solution of a certain minimization problem related to the ob-
jective function Iy(\eta ). Results of Hijab were extended to random initial conditions
in [16], once again assuming boundedness and smoothness of coefficients. In related
work, the problem of constructing observers for dynamical systems as limits of sto-
chastic nonlinear filters is studied in [2]. Heunis [13] studies a somewhat different
asymptotic problem for small noise nonlinear filters. Specifically, it is shown in [13]
that for every \phi \in Cb(\scrC d), w \in \scrC m, and for any \eta \in \scrC d for which the map defined
in (2.13) has a unique minimizer (at, say, \eta \ast ), \^\Lambda \varepsilon T

\bigl( \int \cdot 
0
h(\eta (s))ds+ \varepsilon w

\bigr) 
[\phi ] \rightarrow \phi (\eta \ast ),

as \varepsilon \rightarrow 0. This result and its connection to our work are further discussed in section
2. In particular, the statement in (1.5) follows readily upon using ideas similar to
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those in [13]. The work of Pardoux and Zeitouni [21] considers a one dimensional
nonlinear filtering problem where the observation noise is small while the signal noise
is O(1) (specifically, the term \varepsilon \sigma (X\varepsilon (t)) in (1.1) is replaced by 1). In this case the
conditional distribution of X(T ) given \scrY \varepsilon T converges a.s. to a Dirac measure \delta X(T )

as \varepsilon \rightarrow 0. The paper [21] proves a quenched LDP for this conditional distribution
(regarded as a collection of probability measures on \scrC d parametrized by X(T )(\omega )) in
\scrC d. In a somewhat different direction, in a sequence of papers [24, 19, 18], the authors
have studied asymptotics of the filtering problem under a small signal-to-noise ratio
limit, under various types of model settings. In this case the nonlinear filter converges
to the unconditional law of the signal and the authors establish large deviation princi-
ples characterizing probabilities of deviation of the filter from the above deterministic
law. An analogous result in a correlated signal-observation noise case was studied in
[3]. Finally, yet another type of large deviation problem in the context of nonlinear
filtering (with correlated signal-observation noise) when the observation noise is O(1)
and the signal noise and drift are suitably small has been considered in a series of
papers [11, 22, 1].

The closest connections of the current work are with [15] and [13]. Specifically, the
asymptotic statements in (1.7) and (1.8) which follow as a special case of our results
(see Corollary 4.2) are analogous to results in [15], except that instead of a fixed obser-
vation path we consider the actual observation process Y \varepsilon (also we make substantially
weaker assumptions on coefficients than [15]). However, our main interest is in an
LDP for the convergence to the deterministic limit in (1.7); thus roughly speaking we
are interested in quantifying the probability of deviations from the convergence state-
ment in [15] (when a fixed observation path is replaced with the observation process
Y \varepsilon ). This large deviation result, given in Theorem 2.1, is the main contribution of
our work.

Proof idea. The proof of Theorem 2.1 is based on a variational representation for
functionals of Brownian motions obtained in [4] (see also [5]); using this the proof of
the LDP reduces to proving a key weak convergence result given in Lemma 4.1. The
proof of Lemma 4.1 is the technical heart of this work. Important use is made of some
key estimates obtained in [13] (see in particular Proposition 5.3). One of the key steps
is to argue that terms of order \varepsilon  - 1 can be ignored in the exponent when studying
Laplace asymptotics for the quantity on the left side of (3.6). This relies on several
careful large deviation exponential estimates which are developed in section 5. Once
Lemma 4.1 is available the proof of the LDP in Theorem 2.1 follows readily using
the now well-developed weak convergence approach for the study of large deviation
problems (cf. [6]).

Organization. It will be convenient to formulate the filtering problem on canonical
path spaces and also to represent the nonlinear filter through a map given on the path
space of the observation process. This formulation and our main result (Theorem
2.1) are given in section 2. The key idea in the proof of the LDP is a variational
representation from [4]. A somewhat simplified version of this representation (cf.
[6]) that is used in this work is presented in section 3. Section 4 presents a key
lemma (Lemma 4.1) that is needed for implementing the weak convergence method
for proving the large deviation result in Theorem 2.1. Section 5 is devoted to the
proof of Lemma 4.1. Using this lemma, we complete the proof of Theorem 2.1 in
section 6.

2. Setting and main result. Recall that X\varepsilon has sample paths in \scrC d. Similarly,
the processes Y \varepsilon ,W,B have sample paths in \scrC m, \scrC k, \scrC m, respectively. It will be con-
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venient to formulate the filtering problem on suitable path spaces. Denote, for p \in N,
the standard Wiener measure on (\scrC p,\scrB (\scrC p)) as \scrW p and the Wiener measure with
variance parameter \varepsilon 2 as \scrW \varepsilon 

p . Denote the canonical coordinate process on (\scrC k,\scrB (\scrC k))
as \{ \gamma (t) : 0 \leq t \leq T\} and consider the SDE on the probability space (\scrC k,\scrB (\scrC k),\scrW k),

dx\varepsilon (t) = b(x\varepsilon (t))dt+ \varepsilon \sigma (x\varepsilon (t))d\gamma (t), x\varepsilon (0) = x0, 0 \leq t \leq T.

From Assumption 1, the above SDE has a unique strong solution with sample paths
in \scrC d.

Consider the map \scrC k \rightarrow \Omega x
.
= \scrC d \times \scrC k defined as \omega \mapsto \rightarrow (x\varepsilon (\omega ), \gamma (\omega )) and let

\mu \varepsilon 
.
= \scrW k \circ (x\varepsilon , \gamma ) - 1. Next, let \Omega y

.
= \scrC m and consider the probability space

(\Omega ,\scrF ,Q\varepsilon ) .= (\Omega x \times \Omega y,\scrB (\Omega x)\otimes \scrB (\Omega y), \mu \varepsilon \otimes \scrW \varepsilon 
m).

Abusing notation, denote the coordinate maps on the above probability space as
\xi , \gamma , \zeta , namely

\xi (\omega ) = \omega 1, \gamma (\omega ) = \omega 2, \zeta (\omega ) = \omega 3 for \omega = ((\omega 1, \omega 2), \omega 3) \in \Omega x \times \Omega y.

We will frequently write \xi (\omega )(s) as \xi (s) for (\omega , s) \in \Omega \times [0, T ]. Similar notational
shorthand will be followed for other coordinate maps.

Note that, under Q\varepsilon , \xi (0) = x0, \gamma and \varepsilon  - 1\zeta are independent standard Brownian
motions in Rk and Rm, respectively, and

(2.1) \xi (t) = x0 +

\int t

0

b(\xi (s))ds+ \varepsilon 

\int t

0

\sigma (\xi (s))d\gamma (s), 0 \leq t \leq T.

Define, for Q\varepsilon a.e. \omega = ((\omega 1, \omega 2), \omega 3), for t \in [0, T ],

L\varepsilon t (\omega )
.
= exp

\biggl\{ 
1

\varepsilon 2

\int t

0

\langle h(\xi (s)), d\zeta (s)\rangle  - 1

2\varepsilon 2

\int t

0

\| h(\xi (s))\| 2ds
\biggr\} 
.

Note that, since under Q\varepsilon , \varepsilon  - 1\zeta is a standard Brownian martingale with respect to
the filtration \scrF 0

t
.
= \sigma \{ \gamma (s), \xi (s), \zeta (s) : 0 \leq s \leq t\} , the first integral in the exponent

is well defined as an It\^o integral. From the independence of \xi and \zeta under Q\varepsilon and
Assumption 1 it follows that L\varepsilon t is an \{ \scrF 0

t \} -martingale under Q\varepsilon . Define a probability
measure P\varepsilon on (\Omega ,\scrF ) as dP\varepsilon /dQ\varepsilon (\omega ) .= L\varepsilon T (\omega ) for Q\varepsilon a.e. \omega . Note that, by Girsanov's
theorem, under P\varepsilon 

(2.2) \beta (t)
.
=

1

\varepsilon 
\zeta (t) - 1

\varepsilon 

\int t

0

h(\xi (s))ds, 0 \leq t \leq T,

is a standard m-dimensional Brownian motion which is independent of (\xi , \gamma ). Rewrit-

ing the above equation as \zeta (t) =
\int t
0
h(\xi (s))ds + \varepsilon \beta (t), 0 \leq t \leq T , we see that

\=P \circ (X\varepsilon , Y \varepsilon ) - 1 = P\varepsilon \circ (\xi , \zeta ) - 1. Next, for \varepsilon > 0, define \Gamma \varepsilon T : \scrC m \rightarrow \scrM (\scrC d) as

(2.3) \Gamma \varepsilon T (\omega 3)[A]
.
=

\int 
\Omega x

1A(\omega 1)L
\varepsilon 
T ((\omega 1, \omega 2), \omega 3)d\mu 

\varepsilon (\omega 1, \omega 2), \omega 3 \in \scrC m, A \in \scrB (\scrC d).

The maps are well defined P\varepsilon -a.s., and using results of [8, 9, 10], one can obtain
versions of these maps (denoted as \^\Gamma \varepsilon T ) which are continuous on \scrC m. Also, define
\Lambda \varepsilon T : \scrC m \rightarrow \scrP (\scrC d) as

(2.4) \Lambda \varepsilon T (\omega 3)[A]
.
=

\Gamma \varepsilon T (\omega 3)[A]

\Gamma \varepsilon T (\omega 3)[\scrC d]
, P\varepsilon -a.e. \omega 3 \in \scrC m, A \in \scrB (\scrC d).
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Once again, for each \varepsilon > 0, this map is well defined P\varepsilon -a.s., and a continuous version
of the map exists (which we denote as \^\Lambda \varepsilon T ) from [8, 9, 10]. Write, for f \in BM(\scrC d),
(2.5)

\Gamma \varepsilon T (f, \omega 3)
.
=

\int 
\scrC d

f(\~\omega )\Gamma \varepsilon T (\omega 3)[d\~\omega ], \Lambda 
\varepsilon 
T (f, \omega 3)

.
=

\int 
\scrC d

f(\~\omega )\Lambda \varepsilon T (\omega 3)[d\~\omega ], P\varepsilon -a.e. \omega 3 \in \scrC m.

Then with (X\varepsilon , Y \varepsilon ) as in (1.1)--(1.2), for \phi \in BM(\scrC d)

(2.6) \=E [\phi (X\varepsilon ) | \scrY \varepsilon T ] = \Lambda \varepsilon T (\phi , Y
\varepsilon ) a.s. \=P.

Also,

(2.7) EP\varepsilon [\phi (\xi ) | \sigma \{ \zeta (s) : 0 \leq s \leq T\} ] = \Lambda \varepsilon T (\phi , \zeta ) a.s. P\varepsilon .

Equation (2.6) (or (2.7)) is known as the Kallianpur--Striebel formula, where EP\varepsilon 

denotes the expectation under the probability measure P\varepsilon , and

(2.8) \=P \circ (X\varepsilon , Y \varepsilon ,W,B,\Lambda \varepsilon T (\phi , Y
\varepsilon )) - 1 = P\varepsilon \circ (\xi , \zeta , \gamma , \beta ,\Lambda \varepsilon T (\phi , \zeta )) - 1.

Let, for \xi 0 \in \scrC d,

(2.9) J(\xi 0)
.
= inf
\varphi \in \scrU (\xi 0)

\Biggl[ 
1

2

\int T

0

\| \varphi (t)\| 2dt

\Biggr] 
,

where \scrU (\xi 0) is the collection of all \varphi in \scrL 2
k such that

(2.10) \xi 0(t) = x0 +

\int t

0

b(\xi 0(s))ds+

\int t

0

\sigma (\xi 0(s))\varphi (s)ds, t \in [0, T ].

Note that, by Assumption 1, for every \varphi \in \scrL 2
k there is a unique solution of (2.10). By

classical results of Freidlin and Wentzell (see, e.g., [6, Theorem 10.6]) the collection
\{ X\varepsilon \} of \scrC d valued random variables satisfies an LDP with rate function J and speed
\varepsilon  - 2; namely, for all F \in Cb(\scrC d)

(2.11) lim
\varepsilon \rightarrow 0

 - \varepsilon 2 log
\int 
\Omega x

exp

\biggl\{ 
 - 1

\varepsilon 2
F (\^\xi )

\biggr\} 
d\mu \varepsilon = inf

\xi 0\in \scrC d

[F (\xi 0) + J(\xi 0)] ,

where we denote the first coordinate process on \Omega x by \^\xi , i.e., \^\xi (\omega ) = \omega 1 for \omega =
(\omega 1, \omega 2) \in \Omega x = \scrC d \times \scrC k. In [13] it is shown that for every w \in \scrC m, and a given
\eta \in \scrC d, the probability measure

(2.12) \^\Lambda \varepsilon T

\biggl( \int \cdot 

0

h(\eta (s))ds+ \varepsilon w(\cdot )
\biggr) 

\rightarrow \delta \eta \ast 

weakly if the map

(2.13) \~\eta \mapsto \rightarrow J(\~\eta ) +
1

2

\int T

0

\| h(\eta (s)) - h(\~\eta (s))\| 2ds

attains its infimum over \scrC d uniquely at \eta \ast , where we recall that \^\Lambda \varepsilon T is the continuous
version of \Lambda \varepsilon T . We remark that [13] assumes in addition to Assumption 1 that h and
b are bounded, but an examination of the proof shows (see calculations in section 5)
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that these conditions can be replaced by linear growth conditions that are implied by
Assumption 1.

Recall the function \xi \ast \in \scrC d from (1.4). Then using ideas similar to those in [13],
under Assumption 1, and assuming in addition that either \sigma \sigma \dagger is positive definite or
h is a one-to-one function, it follows that

(2.14) \Lambda \varepsilon T \rightarrow \delta \xi \ast , in probability, under P\varepsilon ,

weakly, as \varepsilon \rightarrow 0. This is a consequence of the fact that when \eta = \xi \ast the map in
(2.13) achieves its minimum (which is 0) uniquely at \xi \ast .

As a consequence of the results of the current paper (see Corollary 4.2), one
can show the Laplace asymptotic formula in (1.7). Recall from the discussion in
the introduction that the convergence in (1.7) gives information on asymptotics of
conditional probabilities of sets of nontypical state trajectories. In order to quantify
the decay rate of probabilities of observing rare observation trajectories that cause
deviations from the deterministic variational quantity in (1.7), we will establish an
LDP for \{  - \varepsilon 2 logU\varepsilon [\phi ]\} defined in (1.6).

We now present the rate function associated with this LDP.
Define the map H : \scrC d \times \scrC d \times \scrL 2

m \rightarrow R+ as

(2.15) H(\eta , \~\eta , \psi )
.
=

1

2

\int T

0

\| h(\eta (s)) - h(\~\eta (s)) - \psi (s)\| 2ds.

Also, for \varphi \in \scrL 2
k, let \xi 

\varphi 
0 be given as the unique solution of (2.10).

We now introduce the rate function that will govern the large deviation asymp-
totics of  - \varepsilon 2 logU\varepsilon [\phi ].

Fix \phi \in Cb(\scrC d) and define I\phi : R \rightarrow [0,\infty ] as

(2.16) I\phi (z) = inf
(\varphi ,\psi )\in \scrS (z)

\Biggl[ 
1

2

\int T

0

\| \varphi (t)\| 2dt+ 1

2

\int T

0

\| \psi (t)\| 2dt

\Biggr] 
,

where \scrS (z) is the collection of all (\varphi ,\psi ) in \scrL 2
k \times \scrL 2

m such that

(2.17) inf
\eta \in \scrC d

[H(\eta , \xi \varphi 0 , \psi ) + \phi (\eta ) + J(\eta )] - inf
\eta \in \scrC d

[H(\eta , \xi \varphi 0 , \psi ) + J(\eta )] = z.

The following is the main result of the work.

Theorem 2.1. Suppose that Assumption 1 is satisfied. Then for every \phi \in 
Cb(\scrC d), the collection \{  - \varepsilon 2 logU\varepsilon [\phi ]\} satisfies an LDP on R with rate function I\phi 

and speed \varepsilon  - 2.

3. A variational representation. Fix \phi \in Cb(\scrC d). Recall the functional U\varepsilon [\phi ]
from (1.6). From (2.6), note that one can write U\varepsilon [\phi ] as

U\varepsilon [\phi ] = \Lambda \varepsilon T
\bigl( 
exp\{  - \varepsilon  - 2\phi (\cdot )\} , Y \varepsilon 

\bigr) 
,

whose distribution under \=P is the same as the distribution of \Lambda \varepsilon T
\bigl( 
exp\{  - \varepsilon  - 2\phi (\cdot )\} , \zeta 

\bigr) 
under P\varepsilon . Let

V \varepsilon [\phi ] =  - \varepsilon 2 log \Lambda \varepsilon T
\bigl( 
exp\{  - \varepsilon  - 2\phi (\cdot )\} , \zeta 

\bigr) 
.

Using this equality of laws and the equivalence between LDPs and Laplace prin-
ciples (see, e.g., [6, Theorems 1.5 and 1.8]), in order to prove Theorem 2.1 it suffices
to show that I\phi has compact sublevel sets, i.e.,

(3.1) for every m \in R+, \{ z \in R : I\phi (z) \leq m\} is compact,
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and, for every G \in Cb(R),

(3.2) lim
\varepsilon \rightarrow 0

 - \varepsilon 2 logEP\varepsilon 

\bigl[ 
exp

\bigl\{ 
 - \varepsilon  - 2G(V \varepsilon [\phi ])

\bigr\} \bigr] 
= inf
z\in R

\{ G(z) + I\phi (z)\} .

The proof of the identity in (3.2) will use a variational representation for nonneg-
ative functionals of Brownian motions given by Bou\'e and Dupuis [4]. We now use this
representation to give a variational formula for the left side of the above equation.
Let \scrF t denote the P\varepsilon -completion of \scrF 0

t and denote by \scrA k (resp., \scrA m) the collection
of all \{ \scrF t\} -progressively measurable Rk (resp., Rm) valued processes g such that for

some M =M(g) \in (0,\infty ),
\int T
0
\| g(s)\| 2ds \leq M a.s.

For (u, v) \in \scrA k \times \scrA m, let \xi u solve, on (\Omega ,\scrF , \{ \scrF t\} ,P\varepsilon ),

(3.3) \xi u(t) = x0 +

\int t

0

b(\xi u(s))ds+ \varepsilon 

\int t

0

\sigma (\xi u(s))d\gamma (s) +

\int t

0

\sigma (\xi u(s))u(s)ds.

Also define

(3.4) \zeta u,v(t) =

\int t

0

h(\xi u(s))ds+ \varepsilon \beta (t) +

\int t

0

v(s)ds, 0 \leq t \leq T.

The reader should note the difference between the trajectory \xi \varphi 0 , which (as stated
below (2.15)) is defined as a solution to (2.10), and the trajectory \xi u introduced
above. The former is given as the solution of a controlled ordinary differential equation
(with control \varphi ), while the latter is the solution of a controlled SDE (with control
u). In particular, on setting \gamma \equiv 0 and u = \varphi , the latter reduces to the former.
Occasionally, to emphasize the dependence of above processes on \varepsilon we will write
(\xi u, \zeta u,v) as (\xi \varepsilon ,u, \zeta \varepsilon ,u,v).

Now let

(3.5) \=V \varepsilon ,u,v[\phi ]
.
=  - \varepsilon 2 log \Lambda \varepsilon T

\bigl( 
exp\{  - \varepsilon  - 2\phi (\cdot )\} , \zeta \varepsilon ,u,v

\bigr) 
.

When clear from the context we will drop (u, v, \phi ) from the notation in \=V \varepsilon ,u,v[\phi ] and
simply write \=V \varepsilon . Then it follows from [4] (cf. [6, Theorem 8.3]) that

(3.6)

 - \varepsilon 2 logEP\varepsilon 

\bigl[ 
exp

\bigl\{ 
 - \varepsilon  - 2G(V \varepsilon [\phi ])

\bigr\} \bigr] 
= inf

(u,v)\in \scrA k\times \scrA m
EP\varepsilon 

\Biggl[ 
G( \=V \varepsilon ,u,v[\phi ]) +

1

2

\int T

0

(\| u(s)\| 2 + \| v(s)\| 2)ds

\Biggr] 
.

Indeed, since V \varepsilon [\phi ] is a measurable functional of (\gamma , \beta ), i.e., V \varepsilon [\phi ] = \scrG \varepsilon (\gamma , \beta ), for some
measurable functional \scrG \varepsilon : \scrC k \times \scrC m \rightarrow R, G \circ \scrG \varepsilon is a bounded measurable functional
on \scrC k\times \scrC m, and we can apply [6, Theorem 8.3], with \scrR there taken to be \scrA b. We note
that the latter result is stated for a general Hilbert space valued Brownian motion,
while here we apply it for a finite dimensional Brownian motion, and so, in particular,
in the notation of [6, section 8.1], \scrH = \scrH 0 = Rk+m and \Lambda is the identity operator.

4. A key lemma. For M \in (0,\infty ), let

SM
.
=

\biggl\{ 
(\varphi ,\psi ) \in \scrL 2

k \times \scrL 2
m :

\int T

0

(\| \varphi (s)\| 2 + \| \psi (s)\| 2)ds \leq M

\biggr\} 
.

We equip SM with the weak topology under which (\varphi n, \psi n) \rightarrow (\varphi ,\psi ) as n \rightarrow \infty if
and only if for all (f, g) \in \scrL 2

k \times \scrL 2
m\int T

0

[\langle \varphi n(s), f(s)\rangle + \langle \psi n(s), g(s)\rangle ]ds\rightarrow 
\int T

0

[\langle \varphi (s), f(s)\rangle + \langle \psi (s), g(s)\rangle ]ds
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as n\rightarrow \infty . This topology can be metrized so that SM is a compact metric space.
Recall \phi \in Cb(\scrC d) in the statement of Theorem 2.1. For (\varphi ,\psi ) \in \scrL 2

k \times \scrL 2
m define

(4.1) V \varphi ,\psi 0 [\phi ]
.
= inf
\eta \in \scrC d

[H(\eta , \xi \varphi 0 , \psi ) + \phi (\eta ) + J(\eta )] - inf
\eta \in \scrC d

[H(\eta , \xi \varphi 0 , \psi ) + J(\eta )] .

Note that with this notation \scrS (z) (introduced below (2.16)) is the collection of all

(\varphi ,\psi ) in \scrL 2
k \times \scrL 2

m such that V \varphi ,\psi 0 [\phi ] = z. When (\varphi ,\psi ) are \scrL 2
k \times \scrL 2

m valued random

variables, we will denote the random variable V \varphi ,\psi 0 [\phi ](\omega )
.
= V

\varphi (\omega ),\psi (\omega )
0 [\phi ], \omega \in \Omega ,

once more as V \varphi ,\psi 0 [\phi ].
The following lemma will be the key to the proof of Theorem 2.1.

Lemma 4.1. Fix M \in (0,\infty ). Let \{ (un, vn)\} be a sequence of SM valued random
variables such that (un, vn) \in \scrA k \times \scrA m for every n. Suppose that (un, vn) converges
in distribution to (u, v). Suppose \varepsilon n is a sequence of positive reals converging to 0 as
n\rightarrow \infty . Then \=V \varepsilon n,un,vn [\phi ] \rightarrow V u,v0 [\phi ], in distribution, as n\rightarrow \infty .

As an immediate corollary of the lemma we have the following.

Corollary 4.2. As \varepsilon \rightarrow 0,

 - \varepsilon 2 logU\varepsilon [\phi ]
\=P - \rightarrow inf

\eta \in \scrC d

\Biggl[ 
\phi (\eta ) +

1

2

\int T

0

\| h(\eta (s)) - h(\xi \ast (s))\| 2ds+ J(\eta )

\Biggr] 
.

Proof. Note that \=V \varepsilon ,0,0[\phi ] under P\varepsilon has the same distribution as  - \varepsilon 2 logU\varepsilon [\phi ]
under \=P. From Lemma 4.1 it follows that \=V \varepsilon ,0,0[\phi ], and thus  - \varepsilon 2 logU\varepsilon [\phi ] converges
in distribution to V 0,0

0 [\phi ]. Also note that

V 0,0
0 [\phi ] = inf

\eta \in \scrC d

\bigl[ 
H(\eta , \xi 00 , 0) + \phi (\eta ) + J(\eta )

\bigr] 
 - inf
\eta \in \scrC d

\bigl[ 
H(\eta , \xi 00 , 0) + J(\eta )

\bigr] 
= inf
\eta \in \scrC d

[H(\eta , \xi \ast , 0) + \phi (\eta ) + J(\eta )] - inf
\eta \in \scrC d

[H(\eta , \xi \ast , 0) + J(\eta )] ,

where we used the fact that \xi 00 = \xi \ast . Observe that

inf
\eta \in \scrC d

\bigl[ 
H(\eta , \xi 00 , 0) + J(\eta )

\bigr] 
= inf
\eta \in \scrC d

\Biggl[ 
1

2

\int T

0

\| h(\eta (s)) - h(\xi \ast (s))\| 2ds+ J(\eta )

\Biggr] 
= 0

since 1
2

\int T
0
\| h(\eta (s)) - h(\xi \ast (s))\| 2ds+J(\eta ) evaluated at \eta = \xi \ast equals 0. Thus, recalling

the definition of H, we have that  - \varepsilon 2 logU\varepsilon [\phi ] converges in distribution (under \=P) to

V 0,0
0 [\phi ] = inf

\eta \in \scrC d

\Biggl[ 
\phi (\eta ) +

1

2

\int T

0

\| h(\eta (s)) - h(\xi \ast (s))\| 2ds+ J(\eta )

\Biggr] 
.

Since the right side above is nonrandom, we in fact have convergence in probability,
which completes the proof.

5. Proof of Lemma 4.1. Let (u, v) \in \scrA k \times \scrA m. Define canonical coordinate

processes on \Omega x as \^\xi (\~\omega ) = \~\omega 1 and \^\gamma (\~\omega ) = \~\omega 2, \~\omega = (\~\omega 1, \~\omega 2) \in \scrC d \times \scrC k. Note that

exp
\bigl\{ 
 - \varepsilon  - 2 \=V \varepsilon ,u,v[\phi ]

\bigr\} 
=

\Gamma \varepsilon T
\bigl( 
exp\{  - \varepsilon  - 2\phi (\cdot )\} , \zeta u,v

\bigr) 
\Gamma \varepsilon T (1, \zeta \varepsilon ,u,v)

,
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and for f \in Cb(\scrC d), P\varepsilon -a.s., recall from (2.5) that

\Gamma \varepsilon T (f, \zeta \varepsilon ,u,v)

=

\int 
\Omega x

f(\^\xi (\~\omega )) exp

\biggl\{ 
1

\varepsilon 2

\int t

0

\langle h(\^\xi (\~\omega )(s)), d\zeta u,v(s)\rangle  - 1

2\varepsilon 2

\int t

0

\| h(\^\xi (\~\omega (s)))\| 2ds
\biggr\} 
\mu \varepsilon (d\~\omega ).

Suppressing \~\omega in notation, we have

1

\varepsilon 2

\int t

0

\langle h(\^\xi (s)), d\zeta u,v(s)\rangle  - 1

2\varepsilon 2

\int t

0

\| h(\^\xi (s))\| 2ds = 1

\varepsilon 

\int T

0

\langle h(\^\xi (s)), d\beta (s)\rangle  - 1

\varepsilon 2
H(\^\xi , \xi u, v)

+
1

2\varepsilon 2

\int T

0

(\| h(\xi u(s))\| 2 + \| v(s)\| 2)ds+ 1

\varepsilon 2

\int T

0

h(\xi u(s)) \cdot v(s)ds.

Thus, letting

(5.1) F (\~\omega , \beta )
.
=

\int T

0

\langle h(\^\xi (\~\omega )(s)), d\beta (s)\rangle ,

we can write
(5.2)

exp
\bigl\{ 
 - \varepsilon  - 2 \=V \varepsilon ,u,v[\phi ]

\bigr\} 
=

\int 
\Omega x

exp
\Bigl\{ 

1
\varepsilon F (\~\omega , \beta ) - 

1
\varepsilon 2 (\phi (

\^\xi (\~\omega )) +H(\^\xi (\~\omega ), \xi u, v))
\Bigr\} 
\mu \varepsilon (d\~\omega )\int 

\Omega x
exp

\Bigl\{ 
1
\varepsilon F (\~\omega , \beta ) - 

1
\varepsilon 2H(\^\xi (\~\omega ), \xi u, v)

\Bigr\} 
\mu \varepsilon (d\~\omega )

.

Let now \varepsilon n, un, vn, u, v be as in the statement of Lemma 4.1. Using Assumption 1 it
is immediate that

(5.3) (un, vn, \xi 
\varepsilon n,un , \zeta \varepsilon n,un,vn , \beta ) \Rightarrow (u, v, \xi u0 , \zeta 

u,v
0 , \beta )

in SM \times \scrC d \times \scrC m \times \scrC m, where

\zeta u,v0 (t) =

\int t

0

h(\xi u0 (s))ds+

\int t

0

v(s)ds, t \in [0, T ].

By appealing to the Skorohod representation theorem we can obtain, on some prob-
ability space (\Omega \ast ,\scrF \ast ,P\ast ), random variables (\~un, \~vn, \~\xi 

n, \~\zeta n, \~\beta n) with the same law as
the random vector on the left side of (5.3) and (\~u, \~v, \~\xi 0, \~\zeta 0, \~\beta ) with the same law as
the vector on the right side of (5.3), such that

(5.4) (\~un, \~vn, \~\xi 
n, \~\zeta n, \~\beta n) \rightarrow (\~u, \~v, \~\xi 0, \~\zeta 0, \~\beta ), P\ast -a.s.

Henceforth, to simplify notation we will drop the \~\cdot from the notation in the above
vectors and denote the corresponding process \=V \varepsilon n,un,vn [\phi ] as \=V n[\phi ]. Then, from (5.2),
and the distributional equality noted above, it follows that

exp
\bigl\{ 
 - \varepsilon  - 2

n
\=V n[\phi ]

\bigr\} 
=

\int 
\Omega x

e
1
\varepsilon n

F (\~\omega ,\beta n) - 1
\varepsilon 2n

(\phi (\^\xi (\~\omega ))+H(\^\xi (\~\omega ),\xi n,v) - 
\int T
0 h(\^\xi (\~\omega )(s))\cdot (vn(s) - v(s))ds)

\mu \varepsilon n (d\~\omega )\int 
\Omega x

e
1
\varepsilon n

F (\~\omega ,\beta n) - 1
\varepsilon 2n

(H(\^\xi (\~\omega ),\xi n,v) - 
\int T
0 h(\^\xi (\~\omega )(s))\cdot (vn(s) - v(s))ds)

\mu \varepsilon n (d\~\omega )

.

(5.5)

To prove Lemma 4.1 it now suffices to show that, for all \phi \in Cb(\scrC d), as n\rightarrow \infty ,

(5.6)

\=\Upsilon n
1 [\phi ]

.
=  - \varepsilon  - 2

n log

\biggl[ \int 
\Omega x

e
1
\varepsilon n

F (\~\omega ,\beta n) - 1
\varepsilon 2n

(\phi (\^\xi (\~\omega ))+H(\^\xi (\~\omega ),\xi n,v) - 
\int T
0 h(\^\xi (\~\omega )(s))\cdot (vn(s) - v(s))ds)

\mu \varepsilon n (d\~\omega )

\biggr] 
\rightarrow inf

\eta \in \scrC d

[H(\eta , \xi 0, v) + \phi (\eta ) + J(\eta )] a.s. P\ast .D
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Define \Delta n
1 : \scrC d \times \Omega \ast \rightarrow R as

(5.7)

\Delta n
1 (\eta ) = H(\eta , \xi 0, v) - H(\eta , \xi n, v) +

\int T

0

h(\eta (s)) \cdot (vn(s) - v(s))ds

=

\int T

0

(h(\eta (s)) - v(s)) \cdot (h(\xi n(s)) - h(\xi 0(s))) ds

+
1

2

\int T

0

\bigl( 
\| h(\xi 0(s))\| 2  - \| h(\xi n(s))\| 2

\bigr) 
ds+

\int T

0

h(\eta (s)) \cdot (vn(s) - v(s)) ds.

Then from the continuity of h and the a.s. convergence in (5.4), we see that for every
\eta \in \scrC d
(5.8) as n\rightarrow \infty , \Delta n

1 (\eta ) \rightarrow 0, a.s. P\ast .

Furthermore, with \Delta n(\~\omega , \omega \ast )
.
= \Delta n

1 (
\^\xi (\~\omega ), \omega \ast ),

\=\Upsilon n
1 [\phi ] =  - \varepsilon 2n log

\biggl[ \int 
\Omega x

exp

\biggl\{ 
1

\varepsilon n
F (\~\omega , \beta n) - 1

\varepsilon 2n

\Bigl( 
\phi (\^\xi (\~\omega )) +H(\^\xi (\~\omega ), \xi 0, v) - \Delta n

\Bigr) \biggr\} 
\mu \varepsilon n(d\~\omega )

\biggr] 
.

In order to prove (5.6) we will show

(5.9) lim sup
n\rightarrow \infty 

\=\Upsilon n1 [\phi ] \leq inf
\eta \in \scrC d

[H(\eta , \xi 0, v) + \phi (\eta ) + J(\eta )] a.s. P\ast 

and

(5.10) lim inf
n\rightarrow \infty 

\=\Upsilon n1 [\phi ] \geq inf
\eta \in \scrC d

[H(\eta , \xi 0, v) + \phi (\eta ) + J(\eta )] a.s. P\ast .

The fact that F can be neglected in the asymptotic formula follows the lines of [13];
however, since, unlike [13], we do not assume h is bounded and our functional of
interest is different from the one considered in [13], we provide the details.

5.1. Brief outline of the proof of Lemma 4.1. The proof of Lemma 4.1
is long, and so, for the reader's convenience, we provide here an overview of the
approach and an outline of the proof. As observed earlier in the section, in order to
prove Lemma 4.1 it suffices to show (5.6), for which, in turn, it suffices to show (5.9)
and (5.10).

5.1.1. Proving (5.10). This is done in section 5.2. The proof appears towards
the end of that section. The first ingredient in its proof is Proposition 5.6, which says
that one can ignore the 1

\varepsilon n
F (\~\omega , \beta n) term (O1) when establishing the bound (5.10). In

particular, the proposition allows us to estimate the negative of the quantity on the
left side of (5.10), namely, lim supn\rightarrow \infty  - \=\Upsilon n1 [\phi ], by the sum of the two terms on the
right side of (5.26). The second of the two terms is treated using Lemmas 5.7 and 5.8,
which allow us to control the contribution from the 1

\varepsilon 2n
\Delta n term (O2S), whereas the

first term is treated using Lemma 5.2. Using these results the inequality in (5.10) is
obtained readily, as shown at the end of section 5.2. Thus the key steps in the proof of
(5.10) are Proposition 5.6, Lemma 5.7, Lemma 5.8, and Lemma 5.2. Proposition 5.6 is
based on Proposition 5.5, which in turn is based on Lemmas 5.1, 5.2, and Proposition
5.3.

5.1.2. Proving (5.9). This inequality is proved in section 5.3. The proof relies
on Proposition 5.5 (which was also used in the proof of (5.10)) and Lemma 5.9. The
proof of Lemma 5.9 relies on Lemma 5.8 from section 5.2. The role of these results
is to once more control the terms (O1) and (O2S) in a suitable manner. Using these
results, the proof of (5.9) is completed in section 5.3, after the proof of Lemma 5.9.
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5.2. Proof of (5.10). We begin with the following lemmas.

Lemma 5.1. For C \in (0,\infty ), lim sup\varepsilon \rightarrow 0 \varepsilon 
2 log

\int 
\scrC x
eC\varepsilon 

 - 2\| \^\xi (\~\omega )\| \ast \mu \varepsilon (d\~\omega ) <\infty .

Proof. Note that for t \in [0, T ], \^\xi (t) = x0 +
\int t
0
b(\^\xi (s))ds+ \varepsilon 

\int t
0
\sigma (\^\xi (s))d\^\gamma (s).

Let M(t)
.
=

\int t
0
\sigma (\^\xi (s))d\^\gamma (s). Then by an application of Gronwall's lemma, it suf-

fices to show that lim sup\varepsilon \rightarrow 0 \varepsilon 
2 logE\mu \varepsilon eC\varepsilon 

 - 1\| M\| \ast < \infty where E\mu \varepsilon is the expectation
under the probability measure \mu \varepsilon . Since \sigma is bounded and under \mu \varepsilon , \^\gamma is a Brownian
motion, there is C1 \in (0,\infty ) such that E\mu \varepsilon eC\varepsilon 

 - 1\| M\| \ast \leq C1e
C1\varepsilon 

 - 2

for every \varepsilon > 0.
The result follows.

Lemma 5.2. Let for \varepsilon > 0, \=\scrR \varepsilon , \=A\varepsilon be measurable maps from \scrC d to R such that

(5.11) sup
\varepsilon >0

\=\scrR \varepsilon (\eta ) \leq cR(1 + \| \eta \| \ast ), sup
\varepsilon >0

| \=A\varepsilon (\eta )| \leq cA(1 + \| \eta \| \ast ) for all \eta \in \scrC d.

Then

(5.12) lim sup
\varepsilon \rightarrow 0

\varepsilon 2 log

\int 
\Omega x

exp\{ \varepsilon  - 1 \=A\varepsilon (\^\xi (\~\omega )) + \varepsilon  - 2 \=\scrR \varepsilon (\^\xi (\~\omega ))\} \mu \varepsilon (d\~\omega )

\leq lim sup
\varepsilon \rightarrow 0

\varepsilon 2 log

\int 
\Omega x

exp\{ \varepsilon  - 2 \=\scrR \varepsilon (\^\xi (\~\omega ))\} \mu \varepsilon (d\~\omega )

and for every c0 \in (0,\infty )

lim sup
M\rightarrow \infty 

lim sup
\varepsilon \rightarrow 0

\varepsilon 2 log

\int 
\{ \=A\varepsilon (\^\xi (\~\omega ))\geq M\} 

e\varepsilon 
 - 1 \=A\varepsilon (\^\xi (\~\omega ))+\varepsilon  - 2c0(1+\| \^\xi (\~\omega )\| \ast )\mu \varepsilon (d\~\omega ) =  - \infty .

(5.13)

Proof. For M \in (0,\infty ), let A\varepsilon M
.
= \=A\varepsilon \wedge M . Then\int 

\Omega x

exp\{ \varepsilon  - 1 \=A\varepsilon (\^\xi (\~\omega )) + \varepsilon  - 2 \=\scrR \varepsilon (\^\xi (\~\omega ))\} \mu \varepsilon (d\~\omega )

\leq 
\int 
\Omega x

exp\{ \varepsilon  - 1A\varepsilon M (\^\xi (\~\omega )) + \varepsilon  - 2 \=\scrR \varepsilon (\^\xi (\~\omega ))\} \mu \varepsilon (d\~\omega )

+

\int 
\Omega x

exp\{ \varepsilon  - 1 \=A\varepsilon (\^\xi (\~\omega )) + \varepsilon  - 2 \=\scrR \varepsilon (\^\xi (\~\omega ))\} 1\{ \=A\varepsilon (\^\xi (\~\omega ))\geq M\} \mu 
\varepsilon (d\~\omega ).

Thus

lim sup
\varepsilon \rightarrow 0

\varepsilon 2 log

\int 
\Omega x

exp\{ \varepsilon  - 1 \=A\varepsilon (\^\xi (\~\omega )) + \varepsilon  - 2 \=\scrR \varepsilon (\^\xi (\~\omega ))\} \mu \varepsilon (d\~\omega )

\leq max
\Bigl\{ 
lim sup
\varepsilon \rightarrow 0

\varepsilon 2 log

\int 
\Omega x

exp\{ \varepsilon  - 1A\varepsilon M (\^\xi (\~\omega )) + \varepsilon  - 2 \=\scrR \varepsilon (\^\xi (\~\omega ))\} \mu \varepsilon (d\~\omega ),

lim sup
\varepsilon \rightarrow 0

\varepsilon 2 log

\int 
\Omega x

exp\{ \varepsilon  - 1 \=A\varepsilon (\^\xi (\~\omega )) + \varepsilon  - 2 \=\scrR \varepsilon (\^\xi (\~\omega ))\} 1\{ \=A\varepsilon (\^\xi (\~\omega ))\geq M\} \mu 
\varepsilon (d\~\omega )

\Bigr\} 
.

Since

lim sup
\varepsilon \rightarrow 0

\varepsilon 2 log

\int 
\Omega x

exp\{ \varepsilon  - 1A\varepsilon M (\^\xi (\~\omega )) + \varepsilon  - 2 \=\scrR \varepsilon (\^\xi (\~\omega ))\} \mu \varepsilon (d\~\omega )

= lim sup
\varepsilon \rightarrow 0

\varepsilon 2 log

\int 
\Omega x

exp\{ \varepsilon  - 2 \=\scrR \varepsilon (\^\xi (\~\omega ))\} \mu \varepsilon (d\~\omega ),
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in order to prove the lemma it suffices to show (5.13) for every c0 \in (0,\infty ). Fix \varepsilon \in 
(0, 1). Using the fact that, on the set \{ \=A\varepsilon (\^\xi (\~\omega )) \geq M\} , \varepsilon  - 1 \=A\varepsilon (\^\xi (\~\omega )) \leq \varepsilon  - 2( \=A\varepsilon (\^\xi (\~\omega )) - 
M) + \varepsilon  - 1M, and the bound in (5.11), we see that

lim sup
\varepsilon \rightarrow 0

\varepsilon 2 log

\int 
\Omega x

exp
\Bigl\{ 
\varepsilon  - 1 \=A\varepsilon (\^\xi (\~\omega )) + \varepsilon  - 2c0(1 + \| \^\xi (\~\omega )\| \ast )

\Bigr\} 
1\{ \=A\varepsilon (\^\xi (\~\omega ))\geq M\} \mu 

\varepsilon (d\~\omega )

\leq  - M + lim sup
\varepsilon \rightarrow 0

\varepsilon 2 log

\int 
\Omega x

exp
\Bigl\{ 
\varepsilon  - 2(cA + c0)(1 + \| \^\xi (\~\omega )\| \ast )

\Bigr\} 
\mu \varepsilon (d\~\omega ).

Equation (5.13) now follows on applying Lemma 5.1 and taking M \rightarrow \infty .

Note that, by It\^o's formula,

F (\~\omega , \beta n) =

\int T

0

\langle h(\^\xi (\~\omega )(s)), d\beta n(s)\rangle 

= \langle h(\^\xi (\~\omega )(T )), \beta n(T )\rangle  - 
m\sum 
l=1

\int T

0

\beta nl (s)\langle \nabla hl(\^\xi (\~\omega )(s)), b(\^\xi (\~\omega )(s))\rangle ds

 - \varepsilon 2

2

k\sum 
i,j=1

m\sum 
l=1

\int T

0

\beta nl (s)(\sigma \sigma 
\dagger )ij(\^\xi (\~\omega )(s))

\partial 2hl
\partial xi\partial xj

(\^\xi (\~\omega )(s))ds

 - 
m\sum 
l=1

\int T

0

\beta nl (s)
\Bigl\langle 
\nabla hl(\^\xi (\~\omega )(s)),

\Bigl( 
d\^\xi (\~\omega )(s) - b(\^\xi (\~\omega )(s))ds

\Bigr) \Bigr\rangle 
= AT (\^\xi (\~\omega ), \beta 

n) +KT (\^\xi (\~\omega ), \beta 
n),

where, P\varepsilon -a.s., KT (\xi , \beta )
.
=  - 

\sum m
l=1

\int T
0
\beta l(s) \langle \nabla hl(\xi (s)), (d\xi (s) - b(\xi (s))ds)\rangle and

AT (\xi , \beta )
.
=

\int T
0
\langle h(\xi (s)), d\beta (s)\rangle  - KT (\xi , \beta ).

The following result is taken from Heunis [13] (cf. page 940 therein).

Proposition 5.3 (Heunis [13]). The maps KT and AT are measurable and
continuous, respectively, from \scrC d \times \scrC m to R, and there are c1, c2 \in (0,\infty ) such that
for all x > 0, n \geq 1,

\mu \varepsilon n(\~\omega : | KT (\^\xi (\~\omega ), \beta 
n)| > x) \leq 2 exp

\biggl\{ 
 - c1

x2

\varepsilon 2n(1 + \| \beta n\| 2\ast )

\biggr\} 
, a.s. P\ast 

and

(5.14) | AT (\^\xi (\~\omega ), \beta n)| \leq c2(1 + \| \^\xi (\~\omega )\| \ast + \| \beta n\| \ast ) a.s. \mu \varepsilon n \otimes P\ast .

For (\~\omega , \omega \ast ) \in \Omega x \times \Omega \ast , define Gn(\~\omega , \omega \ast )
.
=  - \phi (\^\xi (\~\omega ))  - H(\^\xi (\~\omega ), \xi 0(\omega 

\ast ), v(\omega \ast )) +
\Delta n(\~\omega , \omega \ast ).

Remark 5.4. In the rest of this section, \omega \ast (chosen from a full P\ast -measure set) is
fixed. We will therefore suppress the dependence on \omega \ast (wherever it does not cause
confusion) to keep the expressions concise. For example, we will write Gn(\~\omega , \omega \ast ) and
\beta n(\omega \ast ) as Gn(\~\omega ) and \beta n, respectively.

Proposition 5.5. For any \delta \in (0,\infty ) and P\ast a.e. \omega \ast 

lim sup
n\rightarrow \infty 

\varepsilon 2n log

\int 
K+\cup K - 

e\varepsilon 
 - 2
n Gn(\~\omega )+\varepsilon  - 1

n F (\~\omega ,\beta n)\mu \varepsilon n(d\~\omega ) =  - \infty ,
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lim sup
n\rightarrow \infty 

\varepsilon 2n log

\int 
K - 

e\varepsilon 
 - 2
n Gn(\~\omega )+\varepsilon  - 1

n AT (\^\xi (\~\omega ),\beta n)\mu \varepsilon n(d\~\omega ) =  - \infty ,(5.15)

where K - .
= \{ \varepsilon nKT (\^\xi (\~\omega ), \beta 

n) <  - \delta \} and K+ .
= \{ \varepsilon nKT (\^\xi (\~\omega ), \beta 

n) > \delta \} .
Proof. Note that, on the set K - , \varepsilon  - 2

n Gn(\~\omega ) + \varepsilon  - 1
n F (\~\omega , \beta n) \leq \varepsilon  - 2

n (Gn(\~\omega )  - \delta ) +

\varepsilon  - 1
n AT (\^\xi (\~\omega ), \beta 

n). Also note that, using the linear growth of h, one can find a measur-
able map \theta : \Omega \ast \rightarrow R+ such that

(5.16) Gn(\~\omega ) \leq \theta (\omega \ast )(1 + \| \^\xi (\~\omega )\| \ast ) for all \~\omega \in \Omega x, P\ast a.e. \omega \ast .

We will write \theta (\omega \ast ) as \theta , from now on. Using these observations, we have\int 
K - 

e\varepsilon 
 - 2
n Gn(\~\omega )+\varepsilon  - 1

n F (\~\omega ,\beta n)\mu \varepsilon n(d\~\omega ) \leq e\varepsilon 
 - 2
n (\theta  - \delta )

\int 
K - 

e\varepsilon 
 - 2
n \theta \| \^\xi (\~\omega )\| \ast +\varepsilon 

 - 1
n AT (\^\xi (\~\omega ),\beta n)\mu \varepsilon n(d\~\omega ).

Next, for every M \in (0,\infty )\int 
K - 

e\varepsilon 
 - 2
n \theta \| \^\xi (\~\omega )\| \ast +\varepsilon 

 - 1
n AT (\^\xi (\~\omega ),\beta n)\mu \varepsilon n(d\~\omega )

\leq 
\int 
K - 

e\varepsilon 
 - 2
n \theta \| \^\xi (\~\omega )\| \ast +\varepsilon 

 - 1
n M\mu \varepsilon n(d\~\omega ) +

\int 
K - \cap lM

e\varepsilon 
 - 2
n \theta \| \^\xi (\~\omega )\| \ast +\varepsilon 

 - 1
n AT (\^\xi (\~\omega ),\beta n)\mu \varepsilon n(d\~\omega ),

(5.17)

where lM
.
= \{ AT (\^\xi (\~\omega ), \beta n) \geq M\} . We now consider the two terms in the above

display separately. For the first term, from the Cauchy--Schwarz inequality,\int 
K - 

exp\{ \varepsilon  - 2
n \theta \| \^\xi (\~\omega )\| \ast \} \mu \varepsilon n(d\~\omega ) \leq 

\biggl[ \int 
\Omega x

exp\{ 2\varepsilon  - 2
n \theta \| \^\xi (\~\omega )\| \ast \} \mu \varepsilon n(d\~\omega )

\biggr] 1/2 \bigl[ 
\mu \varepsilon n(K - )

\bigr] 1/2
,

and therefore

lim sup
n\rightarrow \infty 

\varepsilon 2n log

\int 
K - 

exp\{ \varepsilon  - 2
n \theta \| \^\xi (\~\omega )\| \ast \} \mu \varepsilon n(d\~\omega )

\leq lim sup
n\rightarrow \infty 

\varepsilon 2n
2

log

\int 
\Omega x

exp\{ 2\varepsilon  - 2
n \theta \| \^\xi (\~\omega )\| \ast \} \mu \varepsilon n(d\~\omega ) + lim sup

n\rightarrow \infty 

\varepsilon 2n
2

log \mu \varepsilon n(K - )

\leq lim sup
n\rightarrow \infty 

\varepsilon 2n
2

log

\int 
\Omega x

exp\{ 2\varepsilon  - 2
n \theta \| \^\xi (\~\omega )\| \ast \} \mu \varepsilon n(d\~\omega ) - c1

\delta 2

2\varepsilon 2n(1 + \| \beta n\| 2\ast )
=  - \infty ,

where in the next to last line we have used Proposition 5.3 and in the last line we
have appealed to Lemma 5.1 and the fact that supn \| \beta n\| \ast <\infty P\ast -a.s.

For the second term on the right side in (5.17), we have from Lemma 5.2 (see
(5.13)) and (5.14) that

lim sup
M\rightarrow \infty 

lim sup
n\rightarrow \infty 

\varepsilon 2n log

\int 
lM

e\varepsilon 
 - 2
n \theta \| \^\xi (\~\omega )\| \ast +\varepsilon 

 - 1
n AT (\^\xi (\~\omega ),\beta n)\mu \varepsilon (d\~\omega ) =  - \infty .

Using the last two displays in (5.17) and combining with (4) we have (5.15) and

lim sup
n\rightarrow \infty 

\varepsilon 2n log

\int 
K - 

exp\{ \varepsilon  - 2
n Gn(\~\omega ) + \varepsilon  - 1

n F (\~\omega , \beta n)\} \mu \varepsilon n(d\~\omega ) =  - \infty .
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Next, from [13, Proposition 4.7], it follows that

lim sup
n\rightarrow \infty 

\varepsilon 2n log

\int 
K+

exp\{ 2\varepsilon  - 1
n KT (\^\xi (\~\omega ), \beta 

n)\} \mu \varepsilon n(d\~\omega ) =  - \infty .

Now using the Cauchy--Schwarz inequality and arguing as before, we see that

lim sup
n\rightarrow \infty 

\varepsilon 2n log

\int 
K+

exp\{ \varepsilon  - 2
n Gn(\~\omega ) + \varepsilon  - 1

n F (\~\omega , \beta n)\} \mu \varepsilon n(d\~\omega ) =  - \infty .

Proposition 5.6 below is a useful tool which will be used to see that one can ignore
the term involving F in the definition of \Upsilon 1

n[\varphi ] when establishing the bound at (5.11).

Proposition 5.6. For P\ast a.e. \omega \ast ,

lim sup
n\rightarrow \infty 

\varepsilon 2n log

\int 
\Omega x

e\varepsilon 
 - 2
n Gn(\~\omega )+\varepsilon  - 1

n F (\~\omega ,\beta n)\mu \varepsilon n(d\~\omega ) \leq lim sup
n\rightarrow \infty 

\varepsilon 2n log

\int 
\Omega x

e\varepsilon 
 - 2
n Gn(\~\omega )\mu \varepsilon n(d\~\omega ).

Proof. Fix \delta \in (0,\infty ) and with K+ and K - defined as earlier, write\int 
\Omega x

exp\{ \varepsilon  - 2
n Gn(\~\omega ) + \varepsilon  - 1

n F (\~\omega , \beta n)\} \mu \varepsilon n(d\~\omega )

=

\int 
K+

exp\{ \varepsilon  - 2
n Gn(\~\omega ) + \varepsilon  - 1

n F (\~\omega , \beta n)\} \mu \varepsilon n(d\~\omega )

+

\int 
\{ \varepsilon nKT (\^\xi (\~\omega ),\beta n)\leq \delta \} 

exp\{ \varepsilon  - 2
n Gn(\~\omega ) + \varepsilon  - 1

n F (\~\omega , \beta n)\} \mu \varepsilon n(d\~\omega ).

From Proposition 5.5,

(5.18) lim sup
n\rightarrow \infty 

\varepsilon 2n log

\int 
K+

e\varepsilon 
 - 2
n Gn(\~\omega )+\varepsilon  - 1

n F (\~\omega ,\beta n)\mu \varepsilon n(d\~\omega ) =  - \infty .

Next note that\int 
\{ \varepsilon nKT (\^\xi (\~\omega ),\beta n)\leq \delta \} 

exp\{ \varepsilon  - 2
n Gn(\~\omega ) + \varepsilon  - 1

n F (\~\omega , \beta n)\} \mu \varepsilon n(d\~\omega )

\leq 
\int 
\{ \varepsilon nKT (\^\xi (\~\omega ),\beta n)\leq \delta \} 

exp\{ \varepsilon  - 2
n Gn(\~\omega ) + \delta \varepsilon  - 2

n + \varepsilon  - 1
n AT (\^\xi (\~\omega ), \beta 

n)\} \mu \varepsilon n(d\~\omega ).

Now recalling (5.14) and (5.16) and applying (5.12), we get

lim sup
n\rightarrow \infty 

\varepsilon 2n log

\int 
\{ \varepsilon nKT (\^\xi (\~\omega ),\beta n)\leq \delta \} 

exp\{ \varepsilon  - 2
n Gn(\~\omega ) + \varepsilon  - 1

n F (\~\omega , \beta n)\} \mu \varepsilon n(d\~\omega )

\leq \delta + lim sup
n\rightarrow \infty 

\varepsilon 2n log

\int 
\Omega x

exp\{ \varepsilon  - 2
n Gn(\~\omega )\} \mu \varepsilon n(d\~\omega ).

Since \delta > 0 is arbitrary, the result follows on combining the above with (5.18).

The proof of the following lemma follows along the lines of Varadhan's lemma (cf.
[23, Theorem 2.6], [6, Theorem 1.18]). We provide details for the reader's convenience.

Lemma 5.7. Let \{ Z\varepsilon \} \varepsilon >0 be random variables with values in a Polish space
(\scrX , d(\cdot , \cdot )) that satisfies an LDP with rate function J and speed \varepsilon  - 2. Let \phi : \scrX \rightarrow R be
a continuous function bounded from above, namely supx\in \scrX \phi (x) <\infty , and let \{ \psi \varepsilon \} \varepsilon >0
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be a collection of real measurable maps on \scrX such that sup\varepsilon >0 supx\in \scrX | \psi \varepsilon (x)| < \infty .
Further suppose that for every \delta > 0 and x \in \scrX , there exist \varepsilon 0(x), \delta 1(x) \in (0,\infty )
such that | \psi \varepsilon (y)| < \delta for all d(x, y) < \delta 1(x) and all 0 < \varepsilon < \varepsilon 0(x). Then

lim
\varepsilon \rightarrow 0

\varepsilon 2 logE[exp
\bigl( 
\varepsilon  - 2 \{ \phi (Z\varepsilon ) + \psi \varepsilon (Z\varepsilon )\} 

\bigr) 
] = sup

x\in \scrX 
[\phi (x) - J(x)] .

Proof. Define R
.
= supx\in \scrX (\phi (x)+sup\varepsilon >0 | \psi \varepsilon (x)| ), S

.
= supx\in \scrX (\phi (x) - J(x)), and

K
.
= \{ x \in \scrX : J(x) \leq | S| +R\} . Since J is a rate function, K is compact in \scrX .
Fix \delta \in (0,\infty ). From the hypothesis of the lemma, for each x \in \scrX , there exist

\delta 1(x), \varepsilon 0(x) \in (0,\infty ) such that | \psi \varepsilon (y)| < \delta for every y \in B(x, \delta 1(x)) and \varepsilon \in (0, \varepsilon 0(x)),
where B(z, \gamma )

.
= \{ x \in \scrX : d(x, z) < \gamma \} is an open ball of radius \gamma in \scrX . Also,

from the continuity of \phi , for every x \in \scrX there exists \delta 2(x) \in (0,\infty ) such that
| \phi (x)  - \phi (y)| < \delta \forall y \in B(x, \delta 2(x)). Next, from the lower semicontinuity of J , for
every x \in \scrX , there exists \delta 3(x) \in (0,\infty ) such that

J(x) \leq inf
y\in B(x,\delta 3(x))

J(y) + \delta .

Let \=\delta (x)
.
= min\{ \delta 1(x), \delta 2(x), \delta 3(x)\} . Now define an open cover \cup x\in KU(x) of K using

the following open sets: U(x)
.
= B(x, \=\delta (x)), x \in K.

Note that for any x \in K, y \in U(x), and \varepsilon < \varepsilon 0(x), we have

| \psi \varepsilon (y)| < \delta , | \phi (x) - \phi (y)| < \delta , and J(x) \leq inf
z\in U(x)

J(z) + \delta .(5.19)

Since K is compact, there exist N \in N and \{ xi\} Ni=1 \subset K such that \{ Ui
.
= U(xi)\} Ni=1

cover K. For i = 1, . . . , N , we can find 0 < \varepsilon (xi) \leq \varepsilon 0(xi) such that with \=\varepsilon 0
.
=

mini=1,...,N \varepsilon (xi), for every \varepsilon < \=\varepsilon 0,

P[Z\varepsilon \in Ui] \leq exp
\bigl[ 
\varepsilon  - 2( - bi + \delta )

\bigr] 
, P[Z\varepsilon \in F ] \leq exp

\biggl[ 
\varepsilon  - 2( - inf

x\in F
J(x) + \delta )

\biggr] 
,(5.20)

where F
.
=

\bigl( 
\cup Ni=1Ui

\bigr) c
and bi

.
= infx\in Ui

J(x). Next note that

E[exp
\bigl( 
\varepsilon  - 2 \{ \phi (Z\varepsilon ) + \psi \varepsilon (Z\varepsilon )\} 

\bigr) 
] \leq 

N\sum 
i=1

E[exp
\bigl( 
\varepsilon  - 2 \{ \phi (Z\varepsilon ) + \psi \varepsilon (Z\varepsilon )\} 

\bigr) 
1Ui(Z

\varepsilon )]

+ E[exp
\bigl( 
\varepsilon  - 2 \{ \phi (Z\varepsilon ) + \psi \varepsilon (Z\varepsilon )\} 

\bigr) 
1F (Z

\varepsilon )].(5.21)

Let ai
.
= infx\in Ui

\phi (x). Then | ai - \phi (x)| < 2\delta for x \in Ui. Thus, using (5.19) and (5.20)

lim sup
\varepsilon \rightarrow 0

\varepsilon 2 logE[exp
\bigl( 
\varepsilon  - 2 \{ \phi (Z\varepsilon ) + \psi \varepsilon (Z\varepsilon )\} 

\bigr) 
1Ui

(Z\varepsilon )]

\leq (ai  - bi + 4\delta ) \leq \phi (xi) - J(xi) + 5\delta \leq sup
x\in \scrX 

[\phi (x) - J(x)] + 5\delta .(5.22)

Also

lim sup
\varepsilon \rightarrow 0

\varepsilon 2 logE[exp
\bigl( 
\varepsilon  - 2 \{ \phi (Z\varepsilon ) + \psi \varepsilon (Z\varepsilon )\} 

\bigr) 
1F ] \leq R - inf

x\in F
J(x) + \delta 

\leq  - | S| + \delta \leq sup
x\in \scrX 

[\phi (x) - J(x)] + \delta ,(5.23)
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where the second inequality is a consequence of the observation that F \subset Kc. Since
\delta > 0 is arbitrary, using (5.22) and (5.23) in (5.21) we now see that

(5.24) lim sup
\varepsilon \rightarrow 0

\varepsilon 2 logE[exp
\bigl( 
\varepsilon  - 2 \{ \phi (Z\varepsilon ) + \psi \varepsilon (Z\varepsilon )\} 

\bigr) 
] \leq sup

x\in \scrX 
[\phi (x) - J(x)] .

For the lower bound, choose x0 such that \phi (x0)  - J(x0) \geq S  - \delta . Let \delta (x0), \varepsilon (x0) \in 
(0,\infty ) be such that for all x \in U

.
= B(x0, \delta (x0)), | \phi (x)  - \phi (x0)| < \delta and | \psi \varepsilon (x)| < \delta 

for \varepsilon < \varepsilon (x0). Then

lim inf
\varepsilon \rightarrow 0

\varepsilon 2 logE
\bigl[ 
exp

\bigl( 
\varepsilon  - 2 \{ \phi (Z\varepsilon ) + \psi \varepsilon (Z\varepsilon )\} 

\bigr) \bigr] 
\geq lim inf

\varepsilon \rightarrow 0
\varepsilon 2 logE

\bigl[ 
exp

\bigl( 
\varepsilon  - 2 \{ \phi (Z\varepsilon ) + \psi \varepsilon (Z\varepsilon )\} 

\bigr) 
1U (Z

\varepsilon )
\bigr] 

\geq \phi (x0) - 2\delta + lim inf
\varepsilon \rightarrow 0

\varepsilon 2 logP [Z\varepsilon \in U ]

\geq \phi (x0) - 2\delta  - inf
x\in U

J(x) \geq \phi (x0) - 2\delta  - J(x0) \geq sup
x\in \scrX 

[\phi (x) - J(x)] - 3\delta .

Sending \delta \rightarrow 0, we have the lower bound, and combining with (5.24) the result
follows.

Recall the definition of \Delta n
1 from (5.7). The term involving \Delta n,Q on the right side

of the estimate in (5.26) below will be handled via an application of Lemma 5.7 (see
(5.27)) by arguing from Lemma 5.8 that the term \Delta n,Q has the properties of the map
\psi \varepsilon (with \varepsilon = 1/n) in Lemma 5.7.

Lemma 5.8. For P\ast a.e. \omega \ast and every \delta \in (0,\infty ) and \eta \in \scrC d there exist n0 \in N
and \delta 1 \in (0,\infty ) such that | \Delta n

1 (\~\eta , \omega 
\ast )| < \delta whenever \~\eta \in \scrC d, \| \eta  - \~\eta \| \ast \leq \delta 1, and

n \geq n0.

Proof. Consider \omega \ast in the set of full measure on which the convergence in (5.4)
(and thus in (5.8)) holds. From (5.8), for any fixed \delta \in (0,\infty ) and \eta \in \scrC d, we can
find n0 \in N such that for all n \geq n0, | \Delta n

1 (\eta , \omega 
\ast )| \leq \delta 

2 . Also, from continuity of h, we
can find a \delta 1 \in (0,\infty ) such that for all \~\eta \in \scrC d with \| \eta  - \~\eta \| \ast \leq \delta 1

sup
n\in N

\int T

0

\| h(\eta (s)) - h(\~\eta (s))\| (\| h(\xi n(s))\| + \| h(\xi 0(s))\| )ds \leq 
\delta 

4
,

sup
n\in N

\int T

0

\| h(\eta (s)) - h(\~\eta (s))\| (\| vn(s)\| + \| v(s)\| )ds \leq \delta 

4
.

Thus for all n \geq n0 and \~\eta \in \scrC d with \| \eta  - \~\eta \| \ast \leq \delta 1

| \Delta n
1 (\~\eta )| \leq | \Delta n

1 (\~\eta ) - \Delta n
1 (\eta )| + | \Delta n

1 (\eta )| 

\leq 
\int T

0

\| h(\eta (s)) - h(\~\eta (s))\| (\| h(\xi n(s))\| + \| h(\xi 0(s))\| )ds

+

\int T

0

\| h(\eta (s)) - h(\~\eta (s))\| (\| vn(s)\| + \| v(s)\| )ds+ \delta 

2
\leq \delta .

We now complete the proof of (5.10).

Completing the proof of (5.10). Note that, from Proposition 5.6, P\ast -a.s.,

lim sup
n\rightarrow \infty 

 - \=\Upsilon n1 [\phi ] = lim sup
n\rightarrow \infty 

\varepsilon 2n log

\int 
\Omega x

exp\{ \varepsilon  - 2
n Gn(\~\omega ) + \varepsilon  - 1

n F (\~\omega , \beta n)\} \mu \varepsilon n(d\~\omega )

\leq lim sup
n\rightarrow \infty 

\varepsilon 2n log

\int 
\Omega x

exp\{ \varepsilon  - 2
n Gn(\~\omega )\} \mu \varepsilon n(d\~\omega ).(5.25)
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For Q \in (0,\infty ), let \Delta n,Q .
= (\Delta n \wedge Q) \vee ( - Q). We will again suppress the

dependence on \omega \ast . Then\int 
\Omega x

exp
\bigl\{ 
\varepsilon  - 2
n Gn(\~\omega )

\bigr\} 
\mu \varepsilon n(d\~\omega ) \leq 

\int 
\Omega x

exp
\bigl\{ 
\varepsilon  - 2
n Gn(\~\omega )

\bigr\} 
1\{ | \Delta n| \geq Q\} \mu 

\varepsilon n(d\~\omega )

+

\int 
\Omega x

exp\{ \varepsilon  - 2
n

\bigl( 
 - \phi (\^\xi (\~\omega )) - H(\^\xi (\~\omega ), \xi 0, v) + \Delta n,Q(\omega )

\bigr) 
\} \mu \varepsilon n(d\~\omega ).(5.26)

In order to treat the second term on the right side above, we will use Lemmas 5.7 and
5.8. Lemma 5.7 will be applied with \varepsilon replaced with \varepsilon n and random variables Z\varepsilon n

replaced by X\varepsilon n that are distributed as \mu \varepsilon n \circ \^\xi  - 1. We will use the result in (2.11)
which gives an LDP for \{ X\varepsilon n\} (equivalently an LDP for the sequence of measures
\{ \mu \varepsilon n\} ) with rate function J . The role of \phi in Lemma 5.7 will be played by the map
 - \phi (\cdot ) - H(\cdot , \xi 0, v)) for a given \omega \ast . Note that this is a continuous map on \scrC d which is
bounded from above. Also the role of \psi \varepsilon n in Lemma 5.7 is played by the map \eta \mapsto \rightarrow 
(\Delta n

1 (\eta ) \wedge Q) \vee ( - Q)
.
= \Delta n,Q

1 (\eta ), which clearly satisfies supn\geq 1 sup\eta \in \scrC d
\Delta n,Q

1 (\eta ) <\infty ,
and by Lemma 5.8, for every \delta \in (0,\infty ) and \eta \in \scrC d there exist n0 \in N and \delta 1 \in (0,\infty )
such that | (\Delta n

1 (\~\eta ) \wedge Q) \vee ( - Q)| < \delta whenever \~\eta \in \scrC d, \| \eta  - \~\eta \| \ast \leq \delta 1, and n \geq n0.
Combining these observations, we now obtain from Lemma 5.7 that, for P\ast a.e. \omega \ast 

(5.27)
lim sup
n\rightarrow \infty 

\varepsilon 2n log

\int 
\Omega x

exp
\Bigl\{ 
\varepsilon  - 2
n

\Bigl( 
 - \phi (\^\xi (\~\omega )) - H(\^\xi (\~\omega ), \xi 0, v) + \Delta n,Q(\omega )

\Bigr) \Bigr\} 
\mu \varepsilon n(d\~\omega )

\leq  - inf
\eta \in \scrC d

[H(\eta , \xi 0, v) + \phi (\eta ) + J(\eta )] .

Next, using the linear growth property of h supn | \Delta n
1 (\eta )| \leq c\Delta (\omega 

\ast )(1 + \| \eta \| \ast ), P\ast -a.s.
for some measurable map c\Delta : \Omega \ast \rightarrow R+. Thus, using the boundedness of \phi and the
nonnegativity of H, we have

lim sup
Q\rightarrow \infty 

lim sup
n\rightarrow \infty 

\varepsilon 2n log

\int 
\Omega x

e\varepsilon 
 - 2
n Gn(\~\omega )1\{ | \Delta n| \geq Q\} \mu 

\varepsilon n(d\~\omega )

\leq lim sup
Q\rightarrow \infty 

lim sup
n\rightarrow \infty 

\varepsilon 2n log

\int 
\Omega x

e\varepsilon 
 - 2
n (c\Delta +\| \phi \| \infty )(1+\| \^\xi (\~\omega )\| \ast )1\{ c\Delta (1+\| \^\xi (\~\omega )\| \ast )\geq Q\} \mu 

\varepsilon n(d\~\omega ) =  - \infty ,

where the last equality follows from Lemma 5.2 (see (5.13)). Using the last bound
together with (5.27) in (5.26) and (5.25), we now have the inequality in (5.10).

5.3. Proof of (5.9). Recall (5.4). We begin with the following lemma.

Lemma 5.9. For P\ast a.e. \omega \ast 

lim inf
n\rightarrow \infty 

\varepsilon 2n log

\int 
\Omega x

e\varepsilon 
 - 2
n Gn(\~\omega )+\varepsilon  - 1

n AT (\^\xi (\~\omega ),\beta n)\mu \varepsilon (d\~\omega ) \geq  - inf
\eta \in \scrC d

[H(\eta , \xi 0, v) + \phi (\eta ) + J(\eta )] .

Proof. Fix \eta 0 \in \scrC d and \delta \in (0,\infty ). From continuity of \phi on \scrC d, of AT on \scrC d\times \scrC m,
and of \eta \mapsto \rightarrow H(\eta , \xi 0, v) (for P\ast a.e. \omega \ast ) on \scrC d, a.s. convergence of \beta n to \beta , and
Lemma 5.8, we can find, for P\ast a.e. \omega \ast , a neighborhood G of \eta 0 and n1 \in N such that
sup\~\eta \in G | \Delta n

1 (\~\eta )| < \delta for all n \geq n1,

inf
\~\eta \in G

AT (\~\eta , \beta 
n) \geq AT (\eta 0, \beta 

n) - \delta for all n \geq n1,

inf
\~\eta \in G

[ - \phi (\~\eta ) - H(\~\eta , \xi 0, v] \geq [ - \phi (\eta 0) - H(\eta 0, \xi 0, v] - \delta .
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Observe that\int 
\Omega x

exp
\Bigl\{ 
\varepsilon  - 2
n Gn(\~\omega ) + \varepsilon  - 1

n AT (\^\xi (\~\omega ), \beta 
n)
\Bigr\} 
\mu \varepsilon (d\~\omega )

\geq exp
\bigl\{ 
\varepsilon  - 2
n [ - \phi (\eta 0) - H(\eta 0, \xi 0, v  - 2\delta )] + \varepsilon  - 1

n (AT (\eta 0, \beta 
n) - \delta )

\bigr\} 
\mu \varepsilon (G),

Noting that supn | AT (\eta 0, \beta n)| < \infty P\ast -a.s. and applying the large deviation result
from (2.11), we now have

lim inf
n\rightarrow \infty 

\varepsilon 2n log

\int 
\Omega x

exp
\Bigl\{ 
\varepsilon  - 2
n Gn(\~\omega ) + \varepsilon  - 1

n AT (\^\xi (\~\omega ), \beta 
n)
\Bigr\} 
\mu \varepsilon (d\~\omega )

\geq [ - \phi (\eta 0) - H(\eta 0, \xi 0, v  - 2\delta )] - inf
\~\eta \in G

J(\~\eta )

\geq  - \phi (\eta 0) - H(\eta 0, \xi 0, v  - J(\eta 0)) - 2\delta .

Since \delta \in (0,\infty ) and \eta 0 \in \scrC d are arbitrary, the result follows.

We now complete the proof of (5.9).

Completing the proof of (5.9). Fix \delta \in (0,\infty ). Then with K - defined as earlier\int 
\Omega x

exp
\bigl\{ 
\varepsilon  - 2
n Gn(\~\omega ) + \varepsilon  - 1

n F (\~\omega , \beta n)
\bigr\} 
\mu \varepsilon n(d\~\omega )

\geq 
\int 
\{ \varepsilon nKT (\^\xi (\~\omega ),\beta n)\geq  - \delta \} 

exp
\bigl\{ 
\varepsilon  - 2
n Gn(\~\omega ) + \varepsilon  - 1

n F (\~\omega , \beta n)
\bigr\} 
\mu \varepsilon n(d\~\omega )

\geq 
\int 
\{ \varepsilon nKT (\^\xi (\~\omega ),\beta n)\geq  - \delta \} 

exp
\bigl\{ 
\varepsilon  - 2
n Gn(\~\omega ) + \varepsilon  - 1

n ( - \delta \varepsilon  - 1
n +AT (\^\xi (\~\omega ), \beta 

n))
\bigr\} 
\mu \varepsilon n(d\~\omega )

=

\int 
\Omega x

exp
\bigl\{ 
\varepsilon  - 2
n (Gn(\~\omega ) - \delta ) + \varepsilon  - 1

n AT (\^\xi (\~\omega ), \beta 
n)
\bigr\} 
\mu \varepsilon n(d\~\omega )

 - 
\int 
K - 

exp
\bigl\{ 
\varepsilon  - 2
n (Gn(\~\omega ) - \delta ) + \varepsilon  - 1

n AT (\^\xi (\~\omega ), \beta 
n)
\bigr\} 
\mu \varepsilon n(d\~\omega ).

From Proposition 5.5 (see (5.15))

lim sup
n\rightarrow \infty 

\varepsilon 2n log

\int 
K - 

e\varepsilon 
 - 2
n Gn(\~\omega )+\varepsilon  - 1

n AT (\^\xi (\~\omega ),\beta n)\mu \varepsilon n(d\~\omega ) =  - \infty .

Thus to prove (5.9) it suffices to show that, P\ast -a.s.,

lim inf
n\rightarrow \infty 

\varepsilon 2n log

\int 
\Omega x

exp
\Bigl\{ 
\varepsilon  - 2
n Gn(\~\omega ) + \varepsilon  - 1

n AT (\^\xi (\~\omega ), \beta 
n)
\Bigr\} 
\mu \varepsilon n(d\~\omega )

\geq  - inf
\eta \in \scrC d

[H(\eta , \xi 0, v) + \phi (\eta ) + J(\eta )] .

However, the above is an immediate consequence of Lemma 5.9. This proves (5.9).
Finally we complete the proof of Lemma 4.1.
Completing the proof of Lemma 4.1. As noted above (5.6), in order to prove

Lemma 4.1 it suffices to show (5.6) for every \phi \in Cb(\scrC d). Also, for this it is enough
to show (5.10) and (5.9). The inequality in (5.10) was shown in section 5.2, and the
proof of the inequality in (5.9) was provided in section 5.3. Combining these we have
Lemma 4.1.
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6. Proof of Theorem 2.1. In order to prove the theorem it suffices to show
(3.1) and (3.2). Proofs of (3.2) and (3.1) are in sections 6.1 and 6.2, respectively.

6.1. Proof of (3.2). Let \{ \varepsilon n\} n\in N be a sequence of positive reals such that
\varepsilon n \rightarrow 0 as n\rightarrow \infty . To show (3.2) it suffices to show that for every G \in Cb(R)

lim inf
n\rightarrow \infty 

 - \varepsilon 2n logEP\varepsilon n

\bigl[ 
exp

\bigl\{ 
 - \varepsilon  - 2

n G(V \varepsilon n [\phi ])
\bigr\} \bigr] 

\geq inf
z\in R

\{ G(z) + I\phi (z)\} ,(6.1)

lim sup
n\rightarrow \infty 

 - \varepsilon 2n logEP\varepsilon n

\bigl[ 
exp

\bigl\{ 
 - \varepsilon  - 2

n G(V \varepsilon n [\phi ])
\bigr\} \bigr] 

\leq inf
z\in R

\{ G(z) + I\phi (z)\} .(6.2)

We begin with (6.1). Fix \delta \in (0, 1) and choose (\~un, \~vn) \in \scrA k \times \scrA m such that

(6.3)

 - \varepsilon 2n logEP\varepsilon n

\bigl[ 
exp

\bigl\{ 
 - \varepsilon  - 2

n G(V \varepsilon n [\phi ])
\bigr\} \bigr] 

\geq EP\varepsilon n

\Biggl[ 
G( \=V \varepsilon n,\~un,\~vn [\phi ]) +

1

2

\int T

0

(\| \~un(s)\| 2 + \| \~vn(s)\| 2)ds

\Biggr] 
 - \delta .

Note that

(6.4) sup
n\in N

EP\varepsilon n

\Biggl[ \int T

0

(\| \~un(s)\| 2 + \| \~vn(s)\| 2)ds

\Biggr] 
\leq 2(2\| G\| \infty + 1)

.
= cG.

Using a standard localization argument to modify (\~un, \~vn) (cf. [6, Theorem 3.17]) we
can find M \in (0,\infty ) and (un, vn) \in \scrA k \times \scrA m that take values in SM a.s. such that

(6.5)

 - \varepsilon 2n logEP\varepsilon n

\bigl[ 
exp

\bigl\{ 
 - \varepsilon  - 2

n G(V \varepsilon n [\phi ])
\bigr\} \bigr] 

\geq EP\varepsilon n

\Biggl[ 
G( \=V \varepsilon n,un,vn [\phi ]) +

1

2

\int T

0

(\| un(s)\| 2 + \| vn(s)\| 2)ds

\Biggr] 
 - 2\delta .

Note that \{ (un, vn)\} is a sequence of SM valued random variables, and since SM is
weakly compact, every subsequence of \{ (un, vn)\} has a weakly convergent subsub-
sequence. It suffices to show (6.1) along such a subsubsequence which we denote
once more as \{ n\} . Denoting the limit as (u, v), given on some probability space
(\Omega 0,\scrF 0,P0), we have from Lemma 4.1 that, as n \rightarrow \infty , \=V \varepsilon n,un,vn [\phi ] \rightarrow V u,v0 [\phi ], in
distribution. Using the fact that G \in Cb(R) and Fatou's lemma, we now have

lim inf
n\rightarrow \infty 

EP\varepsilon n

\Biggl[ 
G( \=V \varepsilon n,un,vn [\phi ]) +

1

2

\int T

0

(\| un(s)\| 2 + \| vn(s)\| 2)ds

\Biggr] 

\geq EP0

\Biggl[ 
G(V u,v0 [\phi ]) +

1

2

\int T

0

(\| u(s)\| 2 + \| v(s)\| 2)ds

\Biggr] 
\geq EP0

\bigl[ 
G(V u,v0 [\phi ]) + I\phi (V u,v0 [\phi ])

\bigr] 
\geq inf
z\in R

[G(z) + I\phi (z)],

where the second inequality uses that, by definition, (u, v) \in \scrS (V u,v0 [\phi ]) a.s. Com-
bining the above display with (6.5) and recalling that \delta > 0 is arbitrary, we have
(6.1).

We now give the proof of (6.2). Fix \delta \in (0, 1) and let z\ast \in R be such that

(6.6) G(z\ast ) + I\phi (z\ast ) \leq inf
z\in R

[G(z) + I\phi (z)] + \delta .
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Now choose (\varphi ,\psi ) \in \scrS (z\ast ) such that

(6.7)
1

2

\int T

0

\| \varphi (t)\| 2dt+ 1

2

\int T

0

\| \psi (t)\| 2dt \leq I\phi (z\ast ) + \delta .

Since (\varphi ,\psi ) \in \scrA k\times \scrA m (as they are nonrandom and square-integrable), we have from
(3.6) that, for every n \in N,

(6.8)

 - \varepsilon 2n logEP\varepsilon n

\bigl[ 
exp

\bigl\{ 
 - \varepsilon  - 2

n G(V \varepsilon n [\phi ])
\bigr\} \bigr] 

\leq EP\varepsilon n

\Biggl[ 
G( \=V \varepsilon n,\varphi ,\psi [\phi ]) +

1

2

\int T

0

(\| \varphi (s)\| 2 + \| \psi (s)\| 2)ds

\Biggr] 
.

Also, from Lemma 4.1, as n \rightarrow \infty , \=V \varepsilon n,\varphi ,\psi [\phi ] \rightarrow V \phi ,\psi 0 [\phi ], in distribution. Since

(\varphi ,\psi ) \in \scrS (z\ast ), (2.17) holds with z replaced with z\ast and so V \phi ,\psi 0 [\phi ] = z\ast . Thus
sending n\rightarrow \infty in (6.8), we have

lim sup
n\rightarrow \infty 

 - \varepsilon 2n logEP\varepsilon n

\bigl[ 
exp

\bigl\{ 
 - \varepsilon  - 2

n G(V \varepsilon n [\phi ])
\bigr\} \bigr] 

\leq G(z\ast ) +
1

2

\int T

0

(\| \varphi (s)\| 2 + \| \psi (s)\| 2)ds

\leq G(z\ast ) + I\phi (z\ast ) + \delta \leq inf
z\in R

[G(z) + I\phi (z)] + 2\delta ,

where the second inequality uses (6.7) while the third uses (6.6). Since \delta > 0 is
arbitrary, we have (6.2), and, together with (6.1), this completes the proof of (3.2).

6.2. Proof of (3.1). Fix \phi \in Cb(\scrC d) and M \in (0,\infty ). Consider the set \{ z \in R :
I\phi (z) \leq M\} .

= EM and let \{ zn\} n\in N be a sequence in this set. Since for each n \in N,
I\phi (zn) \leq M , we can find (\varphi n, \psi n) \in \scrS (zn) \subset \scrL 2

k \times \scrL 2
m such that

(6.9)
1

2

\int T

0

(\| \varphi n(s)\| 2 + \| \psi n(s)\| 2)ds \leq M +
1

n
.

Since (\varphi n, \psi n) \in \scrS (zn),
(6.10)

zn
.
= V \varphi n,\psi n

0 [\phi ] = inf
\eta \in \scrC d

[H(\eta , \xi \varphi n

0 , \psi n) + \phi (\eta ) + J(\eta )] - inf
\eta \in \scrC d

[H(\eta , \xi \varphi n

0 , \psi n) + J(\eta )] .

Note that we can write

H(\eta , \xi \varphi n

0 , \psi n) =
1

2

\int T

0

\| h(\eta (s)) - h(\xi \varphi n

0 (s)) - \psi n(s)\| 2ds

=
1

2

\int T

0

\| h(\eta (s)) - h(\xi \varphi n

0 (s))\| 2ds - 
\int T

0

[h(\eta (s)) - h(\xi \varphi n

0 (s))] \cdot \psi n(s)ds

+
1

2

\int T

0

\| \psi n(s)\| 2ds = \~H(\eta , \xi \varphi n

0 , \psi n) +
1

2

\int T

0

\| \psi n(s)\| 2ds,

where for \eta , \~\eta \in \scrC d and \psi \in \scrL 2
m

\~H(\eta , \~\eta , \psi )
.
=

1

2

\int T

0

\| h(\eta (s)) - h(\~\eta (s))\| 2ds - 
\int T

0

[h(\eta (s)) - h(\~\eta (s))] \cdot \psi (s)ds.

From (6.10) and the relation between H and \~H it follows that

(6.11) zn = inf
\eta \in \scrC d

\Bigl[ 
\~H(\eta , \xi \varphi n

0 , \psi n) + \phi (\eta ) + J(\eta )
\Bigr] 
 - inf
\eta \in \scrC d

\Bigl[ 
\~H(\eta , \xi \varphi n

0 , \psi n) + J(\eta )
\Bigr] 
.
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Also, from (6.9) it follows that \{ (\varphi n, \psi n)\} n\in N \subset S2(M+1). Since S2(M+1) is com-
pact, we can find a subsequence along which (\varphi n, \psi n) converges to some (\varphi ,\psi ) \in 
S2(M+1). In fact, from (6.9) and lower semicontinuity, (\varphi ,\psi ) \in S2M . Define
(6.12)

z\ast 
.
= V \varphi ,\psi 0 [\phi ] = inf

\eta \in \scrC d

[H(\eta , \xi \varphi 0 , \psi ) + \phi (\eta ) + J(\eta )] - inf
\eta \in \scrC d

[H(\eta , \xi \varphi 0 , \psi ) + J(\eta )]

= inf
\eta \in \scrC d

\Bigl[ 
\~H(\eta , \xi \varphi 0 , \psi ) + \phi (\eta ) + J(\eta )

\Bigr] 
 - inf
\eta \in \scrC d

\Bigl[ 
\~H(\eta , \xi \varphi 0 , \psi ) + J(\eta )

\Bigr] 
.

In order to complete the proof of (3.1) it suffices to show that

(6.13) as n\rightarrow \infty , zn \rightarrow z\ast .

We first argue that in the infimum appearing in (the second line of) (6.12) and
(6.11), \{ \eta \in \scrC d\} can be replaced by \{ \eta \in K\} for some fixed compact set K. To see
this, note that, with \xi \ast as in (1.4),

inf
\eta \in \scrC d

\Bigl[ 
\~H(\eta , \xi \varphi n

0 , \psi n) + \phi (\eta ) + J(\eta )
\Bigr] 
\leq \~H(\xi \ast , \xi \varphi n

0 , \psi n) + \| \phi \| \infty + J(\xi \ast ).

Also, note that J(\xi \ast ) = 0 and

\~H(\xi \ast , \xi \varphi n
0 , \psi n) =

1

2

\int T

0

\| h(\xi \ast (s)) - h(\xi \varphi n
0 (s))\| 2ds - 

\int T

0

[h(\xi \ast (s)) - h(\xi \varphi n
0 (s))] \cdot \psi n(s)ds

\leq 
\int T

0

\| h(\xi \ast (s)) - h(\xi \varphi n
0 (s))\| 2 + 1

2

\int T

0

\| \psi n(s)\| 2ds

\leq 2T\| h(\xi \ast (\cdot ))\| 2\ast + 2

\int T

0

\| h(\xi \varphi n
0 (s))\| 2ds+ 1

2

\int T

0

\| \psi n(s)\| 2ds

\leq 2T\| h(\xi \ast (\cdot ))\| 2\ast + \kappa 1(M + 1)
.
= \kappa 2,

where \kappa 1 \in (0,\infty ) depends only on x0, T , and the linear growth coefficients of h, b, \sigma .
Thus, taking \kappa 3

.
= \kappa 2+\| \phi \| \infty +1, we see that the first infimum in (6.11) can be replaced

by the infimum over the set Kn
0
.
= \{ \eta \in \scrC d : \~H(\eta , \xi \varphi n

0 , \psi n) + \phi (\eta ) + J(\eta ) \leq \kappa 3\} .
Using the relation a \cdot b \geq  - 1

4\| a\| 
2  - \| b\| 2,

\~H(\eta , \xi \varphi n

0 , \psi n) \geq 
1

2

\int T

0

\| h(\eta (s)) - h(\xi \varphi n

0 (s))\| 2

 - 1

4

\int T

0

\| h(\eta (s)) - h(\xi \varphi n

0 (s))\| 2  - 
\int T

0

\| \psi n(s)\| 2ds \geq  - 2M.

Thus, with \kappa 4
.
= \kappa 3 + \| \phi \| \infty + 1+ 2M , Kn

0 is contained in the compact set K
.
= \{ \eta \in 

\scrC d : J(\eta ) \leq \kappa 4\} . Thus the first infimum in (6.11) can be replaced by the infimum over
the set K. Similarly, the second infimum in (6.11) and both infima in (the second
line of) (6.12) can be replaced by infima over the same compact set K. Note that
if Bn, B are maps from K \rightarrow R such that Bn \rightarrow B uniformly on compact sets, then
inf\eta \in K [Bn(\eta ) + J(\eta )] \rightarrow inf\eta \in K [B(\eta ) + J(\eta )]. Thus, to complete the proof of (6.13)
it suffices to show that

(6.14) as n\rightarrow \infty , \~H(\eta , \xi \varphi n

0 , \psi n) \rightarrow \~H(\eta , \xi \varphi 0 , \psi ), uniformly for \eta \in K.

For this note that from Assumption 1 and the convergence of \varphi n \rightarrow \varphi it follows that
\xi \varphi n

0 \rightarrow \xi \varphi 0 in \scrC d as n \rightarrow \infty . Also, since K is compact, sup\eta \in K \| \eta \| \ast < \infty . Combining
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these observations with the continuity and linear growth of h we have that, as n\rightarrow \infty ,

(6.15)
1

2

\int T

0

\| h(\eta (s)) - h(\xi \varphi n

0 (s))\| 2ds\rightarrow 1

2

\int T

0

\| h(\eta (s)) - h(\xi \varphi 0 (s))\| 2ds

uniformly for \eta \in K. Also, writing\int T

0

h(\xi \varphi n

0 (s)) \cdot \psi n(s)ds =
\int T

0

[h(\xi \varphi n

0 (s)) - h(\xi \varphi 0 (s))] \cdot \psi n(s)ds+
\int T

0

h(\xi \varphi 0 (s)) \cdot \psi n(s)ds

and using the convergence (\xi \varphi n

0 , \psi n) \rightarrow (\xi \varphi 0 , \psi ), the bound in (6.9), and the Lipschitz
property of h, we have that, as n\rightarrow \infty ,

(6.16)

\int T

0

h(\xi \varphi n

0 (s)) \cdot \psi n(s)ds\rightarrow 
\int T

0

h(\xi \varphi 0 (s)) \cdot \psi (s)ds.

Finally, we claim that, as n\rightarrow \infty ,

(6.17)

\int T

0

h(\eta (s)) \cdot \psi n(s)ds\rightarrow 
\int T

0

h(\eta (s)) \cdot \psi (s)ds,

uniformly for \eta \in K. To show the claim, it suffices to show that if \eta n \rightarrow \eta in K, then

(6.18)

\int T

0

h(\eta n(s)) \cdot \psi n(s)ds\rightarrow 
\int T

0

h(\eta (s)) \cdot \psi (s)ds.

Write the right-hand side as\int T

0

h(\eta n(s)) \cdot \psi n(s)ds =
\int T

0

(h(\eta n(s)) - h(\eta (s))) \cdot \psi n(s)ds+
\int T

0

h(\eta (s)) \cdot \psi n(s)ds.

The convergence in (6.18) is now immediate from the above display on using the
Lipschitz property of h, the bound in (6.9), and the convergence of (\eta n, \psi n) to (\eta , \psi ),
which proves the claim. Combining the convergence properties in (6.15), (6.16), and
(6.17), we now have the statement in (6.14), which, as noted previously, proves (3.1).
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