
  

  

Abstract— This study addresses the cancellation of fetal 

movement in abdominal electrocardiogram (AECG) recordings 

through deep neural networks.  For this purpose, a generative 

signal-to-signal translation model consisting of two coupled 

generators is employed to discover the relations between fetal 

movement-contaminated and clean AECG recordings. The 

model is trained on the fetal ECG synthetic database 

(FECGSYNDB) which provides AECG recordings from 10 

pregnancies along with their ground-truth maternal and fetal 

ECG signals. The signals are initially segmented into 4-second 

segments and then fed into the network for denoising. It is 

demonstrated that the signal-to-signal translation method can 

reconstruct clean AECG signals with average mean-absolute-

error (MAE), root-mean-square deviation (RMSD), and Pearson 

correlation coefficient (PCC) of 0.099, 0.124, and 99.12% 

respectively, between clean and denoised AECG signals. 

Furthermore, the robustness of the method to low signal-to-noise 

ratio (SNR) input values is shown by an RMSD range of (0.047, 

0.352) for SNR values within the range of (-3, 3) dB.    

Clinical Relevance— The proposed framework allows for the 

denoising of abdominal ECG signals for non-invasive fetal heart 

rate monitoring. The approach is accurate due to the use of 

advanced neural network techniques. 

I. INTRODUCTION 

As reported by the World Health Organization (WHO), 2.6 

million stillbirths occur globally every year which could be 

avoided by timely access to emergency obstetric care [1]. 

Proactive monitoring of fetal health conditions allows 

expectant mothers to be aware of the wellbeing of their 

babies. Fetal heart rate (FHR) represents an important vital 

sign to be monitored during intermittent clinical visits in the 

third trimester. Abnormal FHR patterns tend to precede 

adverse prenatal outcomes such as premature birth, hypoxia, 

or intrauterine growth retardation which may arise in between 

clinical visits [2]. Continuous monitoring of FHR allows for 

delivering timely medical interventions to reduce the rate of 

fetal mortality [2].  

In recent years, a variety of technologies have been 

proposed for FHR monitoring. These include 

electrocardiogram (ECG) [3], phonocardiogram (PCG) [4], 

seismo-cardiogram (SCG) [5], and gyro-cardiogram (GCG) 

[6]. ECG and PCG measure FHR through electrical activity of 

cardiac muscle and heartbeat sounds respectively, whereas 

SCG and GCG respectively collect linear and rotational 

abdominal vibrations. Our observation in [6] has demonstrated 

that SCG and GCG modalities provide more accurate 

estimations of FHR when fused with ECG recordings. Fetal 

ECG (FECG) monitoring could be conducted both invasively 
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and non-invasively [7]. The invasive method aims to acquire 

FECG data through an electrode attached to the scalp of the 

fetus during labor [7]. However, this procedure is limited to 

the period of labor and may induce infections and bruising of 

the baby’s scalp [8]. As an alternative to fetal scalp 

monitoring, non-invasive fetal ECG (NIFECG) has been 

investigated recently, showing promise for FHR monitoring 

[9]. For this purpose, ECG electrodes are placed on the 

mother’s abdomen for data acquisition [10]. However, there 

are still unexplored challenges complicating FHR extraction 

through NIFECG, an example of which is the impact of fetal 

motion on abdominal ECG recordings [11]. This undesired 

physiological event poses difficulties for estimating fetal ECG 

components which hold the same level of energy as motion 

components, as demonstrated in [11]. Hence, the detection and 

mitigation of fetal motion artifacts in abdominal recordings 

would allow for more robust non-invasive FHR estimation.  

Conventional methods of non-invasive fetal ECG 

extraction primarily rely on three stages, namely signal pre-

processing, maternal ECG estimation and subtraction, and 

fetal ECG extraction. The main focus of these methods is on 

the last two stages [9], whereas other physiological events such 

as fetal movement could account for inaccurate FHR 

estimation [11]. Furthermore, these methods are primarily 

based on deterministic approaches such as independent 

component analysis (ICA) and adaptive filters, which are less 

able to extract fetal movement patterns compared to deep 

neural networks [12]. 

In this work, a signal-to-signal translation framework for 

fetal movement cancellation is developed where the noisy 

abdominal ECG and its corresponding clean counterpart are 

employed as inputs to a one-to-one mapping neural network. 

This network is employed to discover cross-domain relations 

between fetal movement-contaminated and clean abdominal 

recordings, reinforcing the appearance of clean abdominal 

ECG signals. The proposed framework leverages generative 

adversarial networks (GANs) which are widely applicable in 

computer vision, and adapts them to 1-dimensional signal 

processing. To the best of our knowledge, this is the first study 

addressing the cancellation of fetal movement in abdominal 

ECG recordings through deep neural networks. The 

organization of the paper is as follows: In Section II, the pre-

processing, the methodology for fetal movement cancellation, 

and the training procedure of the signal-to-signal translation 

network are explained. The evaluation metrics and 
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experimental results are discussed in Section III, and the 

paper is concluded in Section IV. 

II. METHODOLOGY 

In the following sub-sections, the dataset, signal-to-signal 

translation network, and the training procedure are described 

in detail. 

A. Dataset 

In this work, we use the fetal ECG synthetic database 

(FECGGSYNDB) which is publicly available on PhysioNet 

[13]. This dataset includes 32-channel artificial non-invasive 

abdominal ECG (AECG) recordings of 10 pregnancies, 

amounting to 145.8 hours of data. A distinctive characteristic 

of FECGSYNDB is the inclusion of the ground-truth signals 

corresponding to fetal ECG (FECG), maternal ECG (MECG), 

and non-stationary physiological events such as fetal 

movement and uterine contractions. Motion components 

provided by FECGSYNDB allow for simulating the non-

stationary dynamics of fetal movement in realistic 

pregnancies. Each recording consists of 5 minutes of data 

sampled at 250 Hz. In this study, we used the data of 4 

channels (27, 28, 29, and 30) which are located below the 

umbilicus according to [11]. In order to train our model, we 

need a clean AECG dataset and its corresponding fetal 

movement-contaminated version. To generate the clean 

AECG dataset, we combine only maternal ECG and fetal 

ECG signals. For the noisy version however, maternal ECG, 

fetal ECG, and fetal movement components are incorporated. 

B. Data Pre-processing 

As we employ a deep neural network for motion 

cancellation in an end-to-end manner, signal preparation 

merely consists of signal segmentation. As such, each channel 

of abdominal ECG recordings is segmented into 4-second 

overlapping windows with 90% overlap between consecutive 

segments. Hence, each segment represents 1,000 samples (4 

seconds at 250 Hz) of data for fetal motion cancellation. 

These segments are then normalized into a standard 

distribution (zero-mean and unit variance) to ensure stable 

convergence when training the network. It is to be noted that 

signal preparation is applied to both fetal contaminated-

AECG and the corresponding clean ground-truth components 

for supervised training. 

C. Signal-to-Signal Translation Network 

Fig. 1 depicts our developed 1-dimensional (1-D) 

generative model for fetal movement cancellation. The idea 

of this network was adopted from DiscoGAN proposed for 

image cross-domain translations [14], where a synthetic 

image is generated in one domain given attributes of an image 

in the other domain. We implemented a modified version of 

DiscoGAN for 1-D signals to translate noisy abdominal ECG 

(xA) to its clean counterpart (xBA) through generator GAB, and 

similarly a clean AECG (xB) to its motion-contaminated 

counterpart (xAB) using generator GBA. The architecture of the 

generator networks is illustrated in Fig. 2. This network is a 

three-level maxpooling/upsampling U-Net with rectified 

linear unit (ReLU) as the activation function, consisting of an 

encoder to transform the input signals to an embedding space 

and a decoder to reconstruct the desired output from the 

embedded features.  

In order to have a one-to-one correspondence between the 

two domains, we constrain the relation by assuming GAB 

as the inverse mapping of GBA. As such, we expect GBA to be 

able to reconstruct xA from xAB, which is called xABA. The same 

assumption stands true for xB. As such, 

 

Fig. 1. The generative model for discovering cross-domain relations, 

including two generators (GAB and GBA for noisy AECG-to-denoised AECG 
and clean AECG-to-noisy AECG translations respectively) and two 

discriminators (DA and DB for scoring synthetic signals generated by GBA and 

GAB respectively).   

 

 

Fig. 2. The architecture of the generators adopted for one-to-one mapping 
in signal-to-signal translation network. This architecture is a 1-D U-Net 

with three levels of max-pooling and upsampling.  

 

 

Fig. 3. (a) The residual discriminator network for scoring synthetic samples. 
(b) the residual block including three convolutional layers and a 

convolutional layer on the skip connection. ReLU and batch normalization 

(BN) are used to add non-linearity and stable convergence.  
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𝑥𝐴𝐵𝐴 = 𝑮𝑩𝑨(𝑮𝑨𝑩(𝑥𝐴)), 

𝑥𝐵𝐴𝐵 = 𝑮𝑨𝑩(𝑮𝑩𝑨(𝑥𝐵)), 
(1) 

which implies the two generative networks, GAB and GBA, are 

coupled to ensure our generative functions can map each 

domain to its counterpart. These two constraints can be 

related to the objective function using the L1 distance between 

the ground-truth signal and its reconstructed version. 

Therefore, our generative objective function to be minimized 

during the training is: 

𝐿𝐺,𝑐𝑜𝑛𝑠𝑡 = 𝐿𝑐𝑜𝑛𝑠𝑡,𝐴 + 𝐿𝑐𝑜𝑛𝑠𝑡,𝐵 = 

‖𝑥𝐴𝐵𝐴 − 𝑥𝐴‖ + ‖𝑥𝐵𝐴𝐵 − 𝑥𝐵‖, 
(2) 

where 𝐿𝐺,𝑐𝑜𝑛𝑠𝑡 , 𝐿𝑐𝑜𝑛𝑠𝑡,𝐴, and 𝐿𝑐𝑜𝑛𝑠𝑡,𝐵 represent the total 

reconstruction loss of the generator, reconstruction loss of 𝑥𝐴, 

and reconstruction loss of 𝑥𝐵 respectively. To guarantee inter-

domain mapping, each reconstruction channel shown in Fig. 

1 is scored with a discriminator, the structure of which is 

depicted in Fig. 3 (a). The discriminator consists of 5 residual 

layers (shown in Fig. 3 (b)) followed by a linear layer using 

the sigmoid function to generate the score within the range of 

(0,1). As such, the generated signals 𝑥𝐴𝐵  and 𝑥𝐵𝐴 are input to 

the discriminators of the clean AECG domain (DB) and the 

noisy ECG domain (DA) respectively, on an adversarial basis. 

This creates an adversarial loss for the generator networks as 

below: 

𝐿𝐺,𝑎𝑑𝑣 = 𝐿𝑎𝑑𝑣,𝐴 + 𝐿𝑎𝑑𝑣,𝐵 = 

−𝔼𝑥𝐴~𝑃𝐴
[log 𝑫𝑩 (𝑮𝑨𝑩(𝑥𝐴))] 

−𝔼𝑥𝐵~𝑃𝐵
[log 𝑫𝑨 (𝑮𝑩𝑨(𝑥𝐵))], 

(3) 

where 𝐿𝐺,𝑎𝑑𝑣 denotes the adversarial loss which encourages 

the generators to learn the distribution of data. As a result, the 

total loss for the generator is the weighted sum of the 

reconstruction loss and adversarial loss: 

𝐿𝐺 = 𝜆𝐿𝐺,𝑐𝑜𝑛𝑠𝑡 + (1 − 𝜆)𝐿𝐺,𝑎𝑑𝑣. (4) 

where 𝜆 was set to 0.35 based on our observation.    

The adversarial training requires discriminators to 

distinguish between real and fake distributions. As such, DA 

and DB attempt to learn the distribution of real data more 

accurately to avoid classifying synthetic data as real, or real 

data as fake. Hence, discrimination loss for DA and DB are 

defined as 

𝐿𝐷𝐵
= −𝔼𝑥𝐵~𝑃𝐵

[log 𝑫𝑩 (𝑥𝐵)] 

−𝔼𝑥𝐴~𝑃𝐴
[log(1 − 𝑫𝑩 (𝑮𝑨𝑩(𝑥𝐴)))], 

(5) 

and 

𝐿𝐷𝐴
= −𝔼𝑥𝐴~𝑃𝐴

[log 𝑫𝑨 (𝑥𝐴)] 

−𝔼𝑥𝐵~𝑃𝐵
[log(1 − 𝑫𝑨 (𝑮𝑩𝑨(𝑥𝐵)))], 

(6) 

respectively. The sum of the terms in (4) and (5) builds the 

total adversarial loss of discriminators (𝐿𝐷) as follows: 

𝐿𝐷 = 𝐿𝐷𝐴
+ 𝐿𝐷𝐵

. (7) 

The training procedure continues until GAB learns the 

mapping function from domain A to domain B. 

D. Training Procedure 

The signal-to-signal translation network represents a 

supervised learning procedure. It thus requires access to raw 

abdominal ECG recordings and the corresponding clean 

signals. The training procedure is conducted based on subject-

held-out cross-validation. As such, the data of 9 subjects are 

used for training and the performance is evaluated on the held-

out subject. We train our model for 80 epochs on abdominal 

ECG segments. The Adam optimization algorithm [15] is 

used with an initial learning rate of 0.001, which is reduced 

by a factor of 0.98 for every five epochs without performance 

improvement. The model is implemented on an NVIDIA 

GeForce RTX 2070 with a batch size of 8. 

III. EXPERIMENTAL RESULTS AND DISCUSSION 

In this section, the evaluation metrics are introduced, based 

on which the experimental results are presented. 

A. Evaluation Metrics  

In this part, we report the performance of the proposed 

signal-to-signal translation framework using root-mean-

square-deviation (RMSD), mean-absolute-error (MAE), and 

Pearson correlation coefficient (PCC) between the denoised 

AECG and the input raw AECG signals. Furthermore, RMSD 

is used to evaluate the robustness to input signal-to-noise ratio 

(SNR) values. In this work, SNR is defined as the ratio of the 

power of fetal ECG components to that of fetal movement 

artifacts. For this, we re-scaled the constituent parts of the 

abdominal ECG signals to simulate AECG signals at SNR 

values within the range of (-3, 3) dB. 

B. Performance Evaluation & Discussion 

  To evaluate the performance of the proposed method, 

signal segments of the held-out subject were initially 

normalized and then fed into the network. Fig. 4 shows an 

example of a denoised signal with the input SNR of 0 dB. As 

can be seen in Fig. 4 (b), fetal QRS complexes are visible after 

the cancellation of fetal movement in the noisy AECG shown 

in Fig. 4 (a). Comparing Fig. 4 (b) and (c), it is visually 

demonstrated that the network could mitigate the impact of 

noise on the AECG signal. Table I summarizes the 

performance of our signal-to-signal translation framework in 

terms of MAE, RMSD, and PCC (𝝆𝑩,𝑨𝑩(%)) at an input SNR 

of 0 dB. According to the table, MAE values vary within the 

 

Fig. 4. (a) Input noisy abdominal ECG. (b) Denoised abdominal ECG. (c) 

Clean abdominal ECG. 
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range of 0.040-0.181 with an average (±standard deviation) 

value of 0.099 (±0.038). The MAE linearly scores the 

denoised abdominal ECG signal, whereas RMSD aims at 

considering larger weights for larger error values. As 

mentioned in Table I, RMSD values vary within the range of 

0.053-0.226. The RMSD value for subject 6 suggests a 

relatively higher estimation error compared to other subjects. 

However, the average RMSD (±standard deviation) value was 

reported by 0.124 (±0.047), implying high morphological 

similarity between the ground-truth clean abdominal ECG 

signal (xB) and its denoised counterpart (xAB). As described in 

Table I, PCC values are reported in percentage. Subject 5 with 

99.87% and subject 6 with 97.56% suggest the highest and 

lowest PCC values. The average PCC (±standard deviation) 

suggests 99.12% (0.655%) morphological consistency 

between ground-truth and estimated abdominal ECG 

segments.  

To evaluate the robustness of the method against various 

input SNR values, the signal-to-signal translation network 

was trained for input SNR values within the range of (-3, 3) 

dB (-3 dB SNR implies the energy level of fetal movement 

components is double that of fetal ECG components). Fig. 5 

illustrates average RMSD values over all ten subjects in terms 

of input SNR. The lowest RMSD was = 0.047 for SNR= 3 dB, 

whereas the largest error (0.352) was suggested by SNR= -3 

dB. Small variations of RMSD in terms of SNR demonstrate 

the robustness of the signal-to-signal translation approach. 

IV. CONCLUSION 

This paper reports on the development of a signal-to-signal 

translation technique for the cancellation of fetal movement 

in abdominal ECG recordings. The proposed method 

performs based on a one-to-one mapping between two 

domains corresponding to noisy abdominal ECG signals and 

their clean counterparts. For this purpose, a generative 

adversarial network (GAN) is leveraged to ensure discovering 

cross-domain relations between the two domains. Two 

generators are trained, one for mapping raw abdominal ECG 

signals to their clean counterparts, and the other for 

translating clean abdominal ECG signals to their noisy 

versions. The model achieved average MAE, RMSD, and 

PCC values of 0.099, 0.124, and 99.12% respectively on the 

PhysioNet fetal ECG synthetic database. Furthermore, the 

robustness of the method is evaluated in terms of input SNR 

values, where the RMSD value varies within the range of 

(0.047, 0.352). This indicates high correlations between 

ground-truth clean signals and their denoised counterparts.   

Future work will investigate cross-domain relations 

between two different modalities for fetal heart rate 

estimation. The information about inter-modality relations 

would allow the effective fusion of ECG with PCG and SCG 

data for fetal heart rate and movement monitoring 

respectively.      
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TABLE I. PERFORMANCE OF THE DENOISING METHOD FOR SUBJECT-HELD-
OUT CROSS-VALIDATION FOR SNR= 0 𝑑𝐵 

Subject MAE RMSD 𝝆𝑩,𝑨𝑩(%) 

1 0.083 0.104 99.47 

2 0.122 0.152 98.86 

3 0.079 0.100 99.51 

4 0.104 0.129 99.17 

5 0.040 0.053 99.87 

6 0.181 0.226 97.56 

7 0.142 0.179 98.42 

8 0.063 0.080 99.67 

9 0.102 0.129 99.18 

10 0.077 0.097 99.52 

Mean±std.  0.099±0.038 0.124±0.047 99.12±0.655 

 

 
Fig. 5. Root-mean-square deviation (RMSD) of the estimated signal in terms 

of input signal-to-noise ratio (SNR).  
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