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Abstract— This study addresses the cancellation of fetal
movement in abdominal electrocardiogram (AECG) recordings
through deep neural networks. For this purpose, a generative
signal-to-signal translation model consisting of two coupled
generators is employed to discover the relations between fetal
movement-contaminated and clean AECG recordings. The
model is trained on the fetal ECG synthetic database
(FECGSYNDB) which provides AECG recordings from 10
pregnancies along with their ground-truth maternal and fetal
ECG signals. The signals are initially segmented into 4-second
segments and then fed into the network for denoising. It is
demonstrated that the signal-to-signal translation method can
reconstruct clean AECG signals with average mean-absolute-
error (MAE), root-mean-square deviation (RMSD), and Pearson
correlation coefficient (PCC) of 0.099, 0.124, and 99.12%
respectively, between clean and denoised AECG signals.
Furthermore, the robustness of the method to low signal-to-noise
ratio (SNR) input values is shown by an RMSD range of (0.047,
0.352) for SNR values within the range of (-3, 3) dB.

Clinical Relevance— The proposed framework allows for the
denoising of abdominal ECG signals for non-invasive fetal heart
rate monitoring. The approach is accurate due to the use of
advanced neural network techniques.

[. INTRODUCTION

As reported by the World Health Organization (WHO), 2.6
million stillbirths occur globally every year which could be
avoided by timely access to emergency obstetric care [1].
Proactive monitoring of fetal health conditions allows
expectant mothers to be aware of the wellbeing of their
babies. Fetal heart rate (FHR) represents an important vital
sign to be monitored during intermittent clinical visits in the
third trimester. Abnormal FHR patterns tend to precede
adverse prenatal outcomes such as premature birth, hypoxia,
or intrauterine growth retardation which may arise in between
clinical visits [2]. Continuous monitoring of FHR allows for
delivering timely medical interventions to reduce the rate of
fetal mortality [2].

In recent years, a variety of technologies have been
proposed for FHR  monitoring. These include
electrocardiogram (ECG) [3], phonocardiogram (PCG) [4],
seismo-cardiogram (SCQG) [5], and gyro-cardiogram (GCG)
[6]. ECG and PCG measure FHR through electrical activity of
cardiac muscle and heartbeat sounds respectively, whereas
SCG and GCG respectively collect linear and rotational
abdominal vibrations. Our observation in [6] has demonstrated
that SCG and GCG modalities provide more accurate
estimations of FHR when fused with ECG recordings. Fetal
ECG (FECG) monitoring could be conducted both invasively
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and non-invasively [7]. The invasive method aims to acquire
FECG data through an electrode attached to the scalp of the
fetus during labor [7]. However, this procedure is limited to
the period of labor and may induce infections and bruising of
the baby’s scalp [8]. As an alternative to fetal scalp
monitoring, non-invasive fetal ECG (NIFECG) has been
investigated recently, showing promise for FHR monitoring
[9]. For this purpose, ECG electrodes are placed on the
mother’s abdomen for data acquisition [10]. However, there
are still unexplored challenges complicating FHR extraction
through NIFECG, an example of which is the impact of fetal
motion on abdominal ECG recordings [11]. This undesired
physiological event poses difficulties for estimating fetal ECG
components which hold the same level of energy as motion
components, as demonstrated in [11]. Hence, the detection and
mitigation of fetal motion artifacts in abdominal recordings
would allow for more robust non-invasive FHR estimation.

Conventional methods of non-invasive fetal ECG
extraction primarily rely on three stages, namely signal pre-
processing, maternal ECG estimation and subtraction, and
fetal ECG extraction. The main focus of these methods is on
the last two stages [9], whereas other physiological events such
as fetal movement could account for inaccurate FHR
estimation [11]. Furthermore, these methods are primarily
based on deterministic approaches such as independent
component analysis (ICA) and adaptive filters, which are less
able to extract fetal movement patterns compared to deep
neural networks [12].

In this work, a signal-to-signal translation framework for
fetal movement cancellation is developed where the noisy
abdominal ECG and its corresponding clean counterpart are
employed as inputs to a one-to-one mapping neural network.
This network is employed to discover cross-domain relations
between fetal movement-contaminated and clean abdominal
recordings, reinforcing the appearance of clean abdominal
ECG signals. The proposed framework leverages generative
adversarial networks (GANs) which are widely applicable in
computer vision, and adapts them to 1-dimensional signal
processing. To the best of our knowledge, this is the first study
addressing the cancellation of fetal movement in abdominal
ECG recordings through deep neural networks. The
organization of the paper is as follows: In Section II, the pre-
processing, the methodology for fetal movement cancellation,
and the training procedure of the signal-to-signal translation
network are explained. The evaluation metrics and
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Fig. 1. The generative model for discovering cross-domain relations,
including two generators (Gag and G4 for noisy AECG-to-denoised AECG
and clean AECG-to-noisy AECG translations respectively) and two
discriminators (D4 and Dg for scoring synthetic signals generated by G4 and
G4 respectively).

experimental results are discussed in Section III, and the
paper is concluded in Section I'V.

II. METHODOLOGY

In the following sub-sections, the dataset, signal-to-signal
translation network, and the training procedure are described
in detail.

A. Dataset

In this work, we use the fetal ECG synthetic database
(FECGGSYNDB) which is publicly available on PhysioNet
[13]. This dataset includes 32-channel artificial non-invasive
abdominal ECG (AECG) recordings of 10 pregnancies,
amounting to 145.8 hours of data. A distinctive characteristic
of FECGSYNDRB is the inclusion of the ground-truth signals
corresponding to fetal ECG (FECG), maternal ECG (MECG),
and non-stationary physiological events such as fetal
movement and uterine contractions. Motion components
provided by FECGSYNDB allow for simulating the non-
stationary dynamics of fetal movement in realistic
pregnancies. Each recording consists of 5 minutes of data
sampled at 250 Hz. In this study, we used the data of 4
channels (27, 28, 29, and 30) which are located below the
umbilicus according to [11]. In order to train our model, we
need a clean AECG dataset and its corresponding fetal
movement-contaminated version. To generate the clean
AECG dataset, we combine only maternal ECG and fetal
ECG signals. For the noisy version however, maternal ECG,
fetal ECG, and fetal movement components are incorporated.

B. Data Pre-processing

As we employ a deep neural network for motion
cancellation in an end-to-end manner, signal preparation
merely consists of signal segmentation. As such, each channel
of abdominal ECG recordings is segmented into 4-second
overlapping windows with 90% overlap between consecutive
segments. Hence, each segment represents 1,000 samples (4
seconds at 250 Hz) of data for fetal motion cancellation.
These segments are then normalized into a standard
distribution (zero-mean and unit variance) to ensure stable
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Fig. 2. The architecture of the generators adopted for one-to-one mapping
in signal-to-signal translation network. This architecture is a 1-D U-Net
with three levels of max-pooling and upsampling.

convergence when training the network. It is to be noted that
signal preparation is applied to both fetal contaminated-
AECG and the corresponding clean ground-truth components
for supervised training.

C. Signal-to-Signal Translation Network

Fig. 1 depicts our developed 1-dimensional (1-D)
generative model for fetal movement cancellation. The idea
of this network was adopted from DiscoGAN proposed for
image cross-domain translations [14], where a synthetic
image is generated in one domain given attributes of an image
in the other domain. We implemented a modified version of
DiscoGAN for 1-D signals to translate noisy abdominal ECG
(x4) to its clean counterpart (xz4) through generator Gg, and
similarly a clean AECG (xp) to its motion-contaminated
counterpart (x,43) using generator G4. The architecture of the
generator networks is illustrated in Fig. 2. This network is a
three-level maxpooling/upsampling U-Net with rectified
linear unit (ReLU) as the activation function, consisting of an
encoder to transform the input signals to an embedding space
and a decoder to reconstruct the desired output from the
embedded features.

In order to have a one-to-one correspondence between the
two domains, we constrain the relation by assuming Gas
as the inverse mapping of Gr4. As such, we expect Gpa to be
able to reconstruct x4 from x5, which is called x4z4. The same
assumption stands true for xz. As such,
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Fig. 3. (a) The residual discriminator network for scoring synthetic samples.
(b) the residual block including three convolutional layers and a
convolutional layer on the skip connection. ReLU and batch normalization
(BN) are used to add non-linearity and stable convergence.
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XapA = GBA(GAB(xA))’ (1)
Xgag = Gap(Gpa(xp)),

which implies the two generative networks, G4p and G4, are
coupled to ensure our generative functions can map each
domain to its counterpart. These two constraints can be
related to the objective function using the L; distance between
the ground-truth signal and its reconstructed version.
Therefore, our generative objective function to be minimized
during the training is:

LG,const = Lconst,A + Lconst,B = (2)
lxapa — xall + llxgap — x5l

where Lg conses Leonst,as and Leonsep Tepresent the total
reconstruction loss of the generator, reconstruction loss of x,,
and reconstruction loss of xp respectively. To guarantee inter-
domain mapping, each reconstruction channel shown in Fig.
1 is scored with a discriminator, the structure of which is
depicted in Fig. 3 (a). The discriminator consists of 5 residual
layers (shown in Fig. 3 (b)) followed by a linear layer using
the sigmoid function to generate the score within the range of
(0,1). As such, the generated signals x45 and xg, are input to
the discriminators of the clean AECG domain (Dg) and the
noisy ECG domain (D) respectively, on an adversarial basis.
This creates an adversarial loss for the generator networks as
below:

LG,adv = Ladv,A + Ladv,B =
—Ex ~p, 108 Dp (Gap(xa))] (3)
—Exp-pp [log Dy (Gpa(xp))],

where L 4., denotes the adversarial loss which encourages
the generators to learn the distribution of data. As a result, the
total loss for the generator is the weighted sum of the
reconstruction loss and adversarial loss:

Lg = ALG,const + (1 - A)LG,adw “)

where 1 was set to 0.35 based on our observation.

The adversarial training requires discriminators to
distinguish between real and fake distributions. As such, D4
and Dg attempt to learn the distribution of real data more
accurately to avoid classifying synthetic data as real, or real
data as fake. Hence, discrimination loss for D4 and Dg are
defined as

LDB = _]EXB~P3 [log DB (xB)] (5)
—Ex,~p, [log(l — Dg (GAB (xA)))],
and
LDA = _IEJCA~PA [lOgDA (xA)] (6)
~Exppy[log(1 = Da (Gpali)))].
respectively. The sum of the terms in (4) and (5) builds the
total adversarial loss of discriminators (Lj) as follows:

Lp =Lp, + Lpy. @)

The training procedure continues until Gap learns the
mapping function from domain 4 to domain B.

D. Training Procedure

The signal-to-signal translation network represents a
supervised learning procedure. It thus requires access to raw
abdominal ECG recordings and the corresponding clean
signals. The training procedure is conducted based on subject-
held-out cross-validation. As such, the data of 9 subjects are
used for training and the performance is evaluated on the held-
out subject. We train our model for 80 epochs on abdominal
ECG segments. The Adam optimization algorithm [15] is
used with an initial learning rate of 0.001, which is reduced
by a factor of 0.98 for every five epochs without performance
improvement. The model is implemented on an NVIDIA
GeForce RTX 2070 with a batch size of 8.

III. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, the evaluation metrics are introduced, based
on which the experimental results are presented.

A. Evaluation Metrics

In this part, we report the performance of the proposed
signal-to-signal translation framework using root-mean-
square-deviation (RMSD), mean-absolute-error (MAE), and
Pearson correlation coefficient (PCC) between the denoised
AECG and the input raw AECG signals. Furthermore, RMSD
is used to evaluate the robustness to input signal-to-noise ratio
(SNR) values. In this work, SNR is defined as the ratio of the
power of fetal ECG components to that of fetal movement
artifacts. For this, we re-scaled the constituent parts of the
abdominal ECG signals to simulate AECG signals at SNR
values within the range of (-3, 3) dB.

B. Performance Evaluation & Discussion

To evaluate the performance of the proposed method,
signal segments of the held-out subject were initially
normalized and then fed into the network. Fig. 4 shows an
example of a denoised signal with the input SNR of 0 dB. As
can be seen in Fig. 4 (b), fetal QRS complexes are visible after
the cancellation of fetal movement in the noisy AECG shown
in Fig. 4 (a). Comparing Fig. 4 (b) and (c), it is visually
demonstrated that the network could mitigate the impact of
noise on the AECG signal. Table I summarizes the
performance of our signal-to-signal translation framework in
terms of MAE, RMSD, and PCC (pg 45(%)) at an input SNR
of 0 dB. According to the table, MAE values vary within the
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Fig. 4. (a) Input noisy abdominal ECG. (b) Denoised abdominal ECG. (c)
Clean abdominal ECG.
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TABLE I. PERFORMANCE OF THE DENOISING METHOD FOR SUBJECT-HELD-
OUT CROSS-VALIDATION FOR SNR=0 dB

Subject MAE RMSD P ap(%)
1 0.083 0.104 99.47
2 0.122 0.152 98.86
3 0.079 0.100 99.51
4 0.104 0.129 99.17
5 0.040 0.053 99.87
6 0.181 0.226 97.56
7 0.142 0.179 98.42
8 0.063 0.080 99.67
9 0.102 0.129 99.18
10 0.077 0.097 99.52
Meantstd. | 0.099+0.038  0.124+0.047  99.12+0.655

range of 0.040-0.181 with an average (%standard deviation)
value of 0.099 (+0.038). The MAE linearly scores the
denoised abdominal ECG signal, whereas RMSD aims at
considering larger weights for larger error values. As
mentioned in Table I, RMSD values vary within the range of
0.053-0.226. The RMSD value for subject 6 suggests a
relatively higher estimation error compared to other subjects.
However, the average RMSD (£standard deviation) value was
reported by 0.124 (+0.047), implying high morphological
similarity between the ground-truth clean abdominal ECG
signal (xp) and its denoised counterpart (x4g). As described in
Table I, PCC values are reported in percentage. Subject 5 with
99.87% and subject 6 with 97.56% suggest the highest and
lowest PCC values. The average PCC (+standard deviation)
suggests 99.12% (0.655%) morphological consistency
between ground-truth and estimated abdominal ECG
segments.

To evaluate the robustness of the method against various
input SNR values, the signal-to-signal translation network
was trained for input SNR values within the range of (-3, 3)
dB (-3 dB SNR implies the energy level of fetal movement
components is double that of fetal ECG components). Fig. 5
illustrates average RMSD values over all ten subjects in terms
of input SNR. The lowest RMSD was = 0.047 for SNR=3 dB,
whereas the largest error (0.352) was suggested by SNR= -3
dB. Small variations of RMSD in terms of SNR demonstrate
the robustness of the signal-to-signal translation approach.

IV. CONCLUSION

This paper reports on the development of a signal-to-signal
translation technique for the cancellation of fetal movement
in abdominal ECG recordings. The proposed method
performs based on a one-to-one mapping between two
domains corresponding to noisy abdominal ECG signals and
their clean counterparts. For this purpose, a generative
adversarial network (GAN) is leveraged to ensure discovering
cross-domain relations between the two domains. Two
generators are trained, one for mapping raw abdominal ECG
signals to their clean counterparts, and the other for
translating clean abdominal ECG signals to their noisy
versions. The model achieved average MAE, RMSD, and
PCC values of 0.099, 0.124, and 99.12% respectively on the
PhysioNet fetal ECG synthetic database. Furthermore, the
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Fig. 5. Root-mean-square deviation (RMSD) of the estimated signal in terms
of input signal-to-noise ratio (SNR).

robustness of the method is evaluated in terms of input SNR
values, where the RMSD value varies within the range of
(0.047, 0.352). This indicates high correlations between
ground-truth clean signals and their denoised counterparts.

Future work will investigate cross-domain relations
between two different modalities for fetal heart rate
estimation. The information about inter-modality relations
would allow the effective fusion of ECG with PCG and SCG
data for fetal heart rate and movement monitoring
respectively.
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