Resiliency of Nonlinear Control Systems to Stealthy Sensor Attacks

Amir Khazraei and Miroslav Pajic

Abstract—In this work, we focus on analyzing vulnerability
of nonlinear dynamical control systems to stealthy sensor
attacks. We define the notion of stealthy attacks in the most gen-
eral form by leveraging Neyman-Pearson lemma. Specifically,
an attack is considered to be stealthy if it is stealthy from (i.e.,
undetected by) any intrusion detector — i.e., the probability of
the detection is not better than a random guess. We then provide
a sufficient condition under which a nonlinear control system
is vulnerable to stealthy attacks, in terms of moving the system
to an unsafe region due to the attacks. In particular, we show
that if the closed-loop system is incrementally exponentially
stable while the open-loop plant is incrementally unstable, then
the system is vulnerable to stealthy yet impactful attacks on
sensors. Finally, we illustrate our results on a case study.

I. INTRODUCTION

Cyber-physical systems (CPS) have been shown vulnera-
ble to various types of cyber and physical attacks. Among ad-
versarial attacks targeting CPSs, stealthy attacks designed by
an intelligent attacker can have disastrous impact (e.g., [1]).
Depending on the information available to the attacker,
different types of stealthy attacks have been proposed. When
only sensor measurements can be compromised, false data
injection attacks are capable of significantly impacting the
system while remaining undetected (i.e., stealthy) by a par-
ticular type of residual-based anomaly detectors (e.g., [2]—
[8]). For example, for linear time invariant (LTI) systems,
if measurements from all sensors can be compromised,
the plant’s (i.e., open-loop) instability is a necessary and
sufficient condition for the existence of impactful stealthy
attacks. Similarly, for LTI systems with strictly proper trans-
fer functions, effective stealthy attacks on control input exist
if the system has unstable zero invariant (e.g., [9], [10]).
However, when the transfer function is not strictly proper, the
attacker needs to compromise both plant’s inputs and outputs.
For such cases, e.g., [11] derives the conditions under which
the system is vulnerable to stealthy attacks.

However, all these results have been shown only for LTI
systems. Further, the notion of stealthiness is only charac-
terized for a specific type of the employed intrusion detector
(e.g., x2-based detectors). In [12], [13], the notion of attack
stealthiness is generalized, defining an attack as stealthy if
it is stealthy from the best existing intrusion detector; yet,
the presented analysis only holds for LTI systems with LQG
controllers. In addition, as we discuss in the paper, the notion
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of stealthiness defined in [12], [13] is time dependent and
the probability of detection increases over time.

To the best of our knowledge, no existing work provides
vulnerability analysis for systems with nonlinear dynamics,
while considering general control and intrusion detector
designs. In [14], covert attacks are introduced as stealthy
attacks that can target a potentially nonlinear system. How-
ever, the attacker needs to have perfect knowledge of the
system’s dynamics and be able to compromise both the
plant’s input and outputs. More importantly, as the attack
design is based on attacks on LTI systems, no guarantees
are provided for effectiveness and stealthiness of attacks on
nonlinear systems. Recently, [15] introduced stealthy attacks
on a specific class of nonlinear systems with residual-based
intrusion detector, but provided effective attacks only when
both plant’s inputs and outputs are compromised. On the
other hand, in this work, we assume the attacker can only
compromise the plant’s sensing data and consider systems
with general nonlinear dynamics. For systems with general
nonlinear dynamics and residual-based intrusion detectors,
machine learning-based attack design methods have been
introduced (e.g., [16]), but without any theoretical analysis
and guarantees regarding the impact of the stealthy attacks.

Consequently, in this work, we provide conditions for ex-
istence of effective yet stealthy attacks on nonlinear systems
without limiting the analysis on a particular type of employed
intrusion detectors. Our notion of attack stealthiness and
system performance degradation is closely related to [17].
However, we extend these notions for systems with general
nonlinear plants and controllers. Specifically, this is the first
work considering the design of stealthy impactful sensor
attacks for systems with general nonlinear dynamics that is
independent of the deployed intrusion detector. Our main
contributions are twofold. First, we introduce the notions of
strict and e-stealthiness. Second, using the well-known re-
sults for incremental stability from [18], we derive conditions
for the existence of effective stealthy attacks that move the
system into an unsafe operating region. We show that if the
closed-loop system is incrementally stable while the open-
loop plant is incrementally unstable, then the closed-loop
system is strictly vulnerable to stealthy sensing attacks.

Notation: R,Z,7Z>( denote the sets of reals, integers
and non-negative integers, respectively, and P denotes the
probability for a random variable. For a square matrix A,
Amaz(A) denotes the maximum eigenvalue. The p-norm of
a vector x is ||x||,; when p is not specified, the 2-norm
is implied. For a vector sequence, x : x; denotes the set
{zo,x1,...,z¢}. A function f : R™ — RP? is Lipschitz with
constant L if for any =,y € R™ it holds that || f(x)— f (y)|| <



L||x — y||. Finally, if P and Q are probability distributions
relative to Lebesgue measure with densities p and q, respec-
tively, then the Kullback—Leibler (KL) divergence between

P and Q is defined as KL(P||Q) = [ p(z)log %dd?.

IT. PRELIMINARIES
Let X C R" and D C R™, with 0 € X,D. Consider
a discrete-time nonlinear system with an exogenous input,
modeled in the state-space form as

Ti41 = f(:l?t, dt), Tt S X, t e ZZO’ (1)

where f : X x D — X is continuous and f(0,0) = 0. By
x(t, &, d), we denote the trajectory (i.e., the solution) of (1)
at time ¢, when the system has the initial condition £ and is
subject to the input sequence {dy : d¢—1}; to simplify our
notation, we denote the sequence {dgy : d;—1} as d.

The following definitions are derived from [18]-[20].

Definition 1. The system (1) is incrementally exponentially
stable (IES) in the set X C R" if exist k > 1 and X\ > 1, that

lo(t, &1, d) — 2(t, &, d)| < ll&1 — &I, @)

holds for all &,,& € X, any dy € D, and t € Z>o. When
X =R", the system is referred to as globally incrementally
exponentially stable (GIES).

Definition 2. The system (1) is incrementally unstable (IU)
in the set X C R" if for all &, € X and any d; € D, there
exists a & such that for any M > 0,

(£, &1, d) — 2(t, &2, d)|| = M, 3)
holds for all t > t/, for some t' € Z>.

III. SYSTEM MODEL

We now introduce the considered system and attack model,
allowing us to formalize the problem addressed in this work.

A. System and Attack Model

We consider the setup from Figure 1 where each of the
components is modeled as follows.

1) Plant: We assume the system evolves following a gen-
eral nonlinear discrete-time dynamics in the state-space form
Tep1 = f(24,ue) + wy,
ye = h(xe) + vg;
here, x € R", v € R™, y € RP are the state, input
and output vectors of the plant, respectively. In addition,
f is a nonlinear mapping from previous time state and
control input to the current state, and h is the mapping
from the states to the sensor measurements; we assume
here that h is Lipschitz with a constant Lj;. The plant
output vector captures measurements from the set of plant
sensors S. Further, w € R™ and v € R? are the process and
measurement noises that are assumed to be Gaussian with
zero mean, and 3, and 3, covariance matrices, respectively.

As we show later, it will be useful to consider the input
to state relation of the dynamics (4); if we define U =
T]T, the first equation in (4) becomes

Tip1 = fulze, Uy). )
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Fig. 1: Control system architecture considered in this work,
in the presence of network-based attacks.

2) Control Unit: The controller, illustrated in Figure 1,
is equipped with a feedback controller in the most general
form, as well as an intrusion detector (ID). In what follows,
we provide more details on the controller design. Intrusion
detector will be discussed after introducing the attack model.

Controller: A large number of dynamical systems are
intrinsically unstable or are designed to be unstable (e.g., if
an aircraft is unstable, it is easier to change its altitude),
and must be stabilized using a proper controller. Due to
their robustness to uncertainties, closed-loop controllers are
mainly used. In the most general form, a feedback controller
design can be captured in the state-space form as

Xi = fc(xt717y§)7
Uy = hc(xhyg)a

where X is the internal state of the controller, and y¢ captures
the sensor measurements received by the controller. Thus,
without malicious activity, it holds that y© = y; we assume
that the communication network is reliable (e.g., wired). Note
that the control model (6) is quite general, capturing for
instance nonlinear filtering followed by a classic nonlinear
controller (e.g., f. can model an extended Kalman filter and
h. any full-state feedback controller).

We define the full state of the closed-loop system as
X & [mT XT]T, and exogenous disturbances as W 2
[wT ’UT}; then, the dynamics of the closed-loop system
can be captured as

(6)

Xit1 = F(Xy, Wy). @)

We assume that X = 0 is the operating point of the
noiseless system (i.e., when w = v = (). Moreover, we
assume f. and h. are designed to keep the system within
a safe region around the equilibrium point. Here, without
loss of generality, we define the safe region as S = {z €
R™ | ||z|l2 < Rs}, for some Rg > 0.

3) Attack Model: We consider a sensor attack model
where, for sensors from the set L C S, the information
delivered to the controller differs from the non-compromised
sensor measurements. The attacker can achieve this via e.g.,
noninvasive attacks such sensor spoofing (e.g., [21]) or by
compromising information-flow from the sensors in K to the
controller (e.g., as in network-based attacks [22]). In either



case, the attacker can launch false-date injection attacks,
inserting a desired value instead of the current measurement
of a compromised sensor.!

Thus, assuming that the attack starts at time ¢ = 0, the
sensor measurements delivered to the controller for ¢ € Z>g
can be modeled as [23]

Yt =yt an ®)

here, a; € RP denotes the attack signal injected by the
attacker at time ¢ via the compromised sensors from KC, y¢ is
the true sensing information (i.e., before the attack is injected
at time t). In the rest of the paper, we assume K = S.
Since the controller uses the received sensing data to
compute the input wu;, the compromised sensor values affect
the evolution of the system and controller states. Hence, we
add the superscript a to denote any signal obtained from a
compromised system — e.g., thus, y¢ is used to denote before-
attack sensor measurements when the system is under attack

in (8), and we denote the closed-loop plant and controller

. . X
state when the system is compromised as X“ 2 xal:

In this work, we consider the commonly adopted threat
model as in majority of existing stealthy attack designs,
e.g., [2], [3], [5], [14], [24], where the attacker has full
knowledge of the system, its dynamics and employed archi-
tecture. In addition, the attacker has the required computa-
tional power to calculate suitable attack signals to be injected,
while planning ahead as needed. Finally, the attacker’s goal
is to design an attack signal a;, t € Z>¢, such that it always
remains stealthy — i.e., undetected by the intrusion detection
system — while maximizing control performance degrada-
tion. The notions of stealthiness and control performance
degradation depend on the employed control architecture,
and thus will be formally defined after the controller and
intrusion detection have been introduced.

4) Intrusion Detector: To detect attacks (and anomalies),
we assume that an ID is employed, analyzing the received
sensor measurements and the internal controller state. Specif-

c c,a
%{ ,as well as Y¢ e yxa when

ically, by defining Y 2
the system is under attack, we assume that the ID has access
to a sequence of values Y_, : Y; until time ¢ and solves the

binary hypothesis checking problem

Hy: normal condition (the ID receives Y_ ., : Y;);
H;: abnormal behaviour (receives Y_, : Y_1, Y : Yta).2

Given a sequence of received data denoted by Y* =
Y o : Y, it is either extracted from the distribution of
the null hypothesis Hy, which we refer to as P, or from
an unknown distribution of the alternative hypothesis Hi,
which we denote as Q. Note that the unknown distribution
Q is controlled by the attacker — i.e., the injected false data.

I'We refer to sensors from K as compromised, even if a sensor itself is
not directly compromised but its measurements may be altered due to e.g.,
network-based attacks.

2Since the attack starts at £ = 0, we do not use superscript a for the
system evolution for ¢t < 0, as the trajectories of the non-compromised and
compromised systems do not differ before the attack starts.

For a given ID mapping D : Y* — {0,1}, let us define
pIP(D) = P(D(Y?!) = 1|Y* ~ Q) as the probability of
true detection, and pf4(D) = P(D(Y?) = 1|Y* ~ P)
as the probability of false alarm for the detector D. We
say that an ID (defined by D) to be better than a random
guess-based ID (defined by Dgrc) if p74(D) < pTP(D);
the reason is that with the random guess ID it holds that
p"*(Drg) = P(Drg(Y") = 1|]Y' ~ P) = P(Dga(Y") =
1) = P(Dpa(Y") =1|Y" ~ Q) = p"P(Dra).

IV. FORMALIZING STEALTHY ATTACKS REQUIREMENTS

In this section, we capture the conditions for which an
attack sequence is stealthy even from an optimal ID. We
define an attack to be stealthy if the best strategy for the
ID is to ignore the measurements and make a random
guess between the hypotheses; i.e., that there is ro ID
D that satisfies p??(D) > pf'4(D). However, reaching
such stealthiness guarantees may not be possible in general.
Therefore, in addition to the notion of strict stealthiness, we
define the notion of e-stealthiness, which as we will show
later, is attainable for a large class of nonlinear systems.

Definition 3. Consider the system (4). An attack sequence is
strictly stealthy if there exists no detector for which pf'4 <
pI'P holds, for any t > 0. An attack is e-stealthy if for a
given € > 0, there exists no detector such that pf 4 < ptTD —€
holds, for any t > 0.

Now, we can capture stealthiness conditions in terms of
KL divergence of the corresponding distributions [25].

Theorem 1 ([25]). An attack sequence is
o strictly stealthy if and only if KL(Q(Yg" : Y*)||P(Yy :
Y})) = 0 for all t € Zxy, where KL represents the

Kullback—Leibler divergence operator.

o is e-stealthy if the corresponding observation sequence
Yy o Y,® satisfies

KL(QUY - YOIIP(Y : Y1) < log(:— ). ©)

Remark 1. The e-stealthiness from [12], [13] requires

L KL(QUY - Y ||IP(Yo : 7))
tggo t L

This allows the KL divergence to linearly increase over time
for any e > 0; thus, after large-enough time period the attack
may be detected. On the other hand, our definition of e-
stealthy only depends on € and is fixed for any time t. Hence,
it introduces a stronger notion of stealthiness for the attack.

A. Formalizing Attack Goal

As discussed, the attacker intends to maximize control
performance degradation. As we consider the origin as the
operating point, we formalize the attack objective as maxi-
mizing (the norm of) the states xy; i.e., moving the system’s
states into an unsafe region. Since there might be a zone
between the safe and unsafe region, we define the unsafe
region as U = {& € R" | ||z||]2 > «a} for some o > Rg,
where Rg is the radius of the safe region S. Moreover, the



attacker wants to remain stealthy (i.e., undetected by the
intrusion detector), as formalized below.

Definition 4. The artack sequence {ag,ay, ...} is referred to
as (€, o)-successful attack if there exists t' € Z>o such that
lz& || > « and the attack is e-stealthy for all t € Z>o. When
such a sequence exists for a system, the system is called
(e, 0)-attackable. When the system is (e, «)-attackable for
arbitrarily large o, it is referred to as perfectly attackable.

Now, the problem considered in this work can be formal-
ized as capturing the potential impact of stealthy attacks on
a considered system; specifically, in the next section, we
derive conditions for existence of a stealthy yet effective
attack sequence ag, aq, ... resulting in ||z¢|] > « for some
t € Z>o — ie., we find conditions for the system to be
(e, av)-attackable. Here, for an attack to be stealthy, we focus
on the e—stealthy notion; i.e., that even the best ID could
only improve the detection probability by € compared to the
random-guess baseline detector.

V. VULNERABILITY ANALYSIS OF NONLINEAR SYSTEMS
TO STEALTHY ATTACKS

In this section, we derive the conditions such that the non-
linear system (4) with closed-loop dynamics (7) is vulnerable
to effective stealthy attacks formally defined in Section IV.
The following theorem captures such condition.

Theorem 2. The system (4) is (e, a)-attackable for arbi-
trarily large o and arbitrarily small €, if the closed-loop
dynamics (7) is incrementally exponentially stable (IES) in
the set S and the system (5) is incrementally unstable (IU)
in the set S.

Proof. Assume that the trajectory of the system and con-
troller states for ¢ € Zo is denoted by X_, : X_j.
Following the attack start at ¢ = 0, let us consider the evolu-
tions of the system with and without attacks for ¢ € Zx. For
the system under attack, starting at time zero, the trajectory
X§ : X¢ of the system and controller states is governed by

vy =f(xf, uf) +wy, yo" = h(z}) + ve + ay,

X' =X u0"), = he(Xy07).

On the other hand, if the system were not under attack
during ¢t € Zx>q, we denote the plant and controller state
evolution by Xy : X;. Hence, it is a continuation of the
system trajectories X _,, : X_; if hypothetically no data-
injection attack occurs during ¢ € Z>o. Since the system
and measurement noises are independent of the state, we
can assume that w§ = w; and v{ = v;. In this case, the
dynamics of the plant and controller state evolution satisfies

(10)

yg = h’(xt) + v,
Uy = hc(xtvyf)v

T =f (T, wp) + wy,
Xi :fC(-Xt—h ytc)a
which can be captured in the compact form (7), with Xy =
23 xI]7.N ider th f
o Xo | - Now, consider the sequence of attack vectors
injected in the system from (10), which are constructed using

(1)

the following dynamical model

ser1 = f(of,uf) — f(of — se,uf)
ar = h(zf — s¢) — h(x}),

for t € Z>0, and with some arbitrarily chosen nonzero initial
value of sg. By injecting the above attack sequence into the
sensor measurements, we can verify that y;°* = h(z¢) +
ve + ap = h(xf — s¢) + v. After defining e; = ¥ — s
and combining (12) with (10), the dynamics of e; and the
controller, and the corresponding input and output satisfy

Y, = h(et) + v,

(12)

err1 =f (e, uf) + wy,

a a c,a a a c,a (13)
X0 =fe(X1,90%), uf = he(X,y"),
with the initial condition ey = z§ — s0.
Now, if we define X¢ = ;t;} it holds that
§+1 = F(X§>Wt)7 (14)

with X§ = [;21} . Since we have that z§ = z¢ and X§ = Xo,

it holds that Xo — X& = S(f

both (14) and (7) share the same function and argument W,
the closed-loop system (14) is IES, and it also follows that

IX(t, Xo, W) — X°(t, X5, W) < #]Xo — XG[IA~"
< [sollA7;

. On the other hand, since

15)

therefore, the trajectories of X (i.e., the system without

attack) and X° converge to each other exponentially fast.
We now use these results to show that the generated attack

sequence satisfies the e-stealthiness condition. By defining

7, = [ﬂ and Z¢ = [yi’fa}, it holds that

t t

KL(Q(Y5 : Y|P (Yo : V7))
< KL(Q(XG : X7)[[P(Xo : X))

(g) KL(Q(Z_Oo 221,25 Z))||P(Zeoo : L1, Zy : Z,g))7

(16)
where we applied the data-processing inequality property of
KL-divergence for t € Z>( to obtain (7), and the monotonic-
ity property of KL-divergence to obtain the inequality (ii).>
Then, we apply the chain-rule property of KL-divergence on
the right-hand side of (16) to obtain the following

KL(Q(Z,00 221,25 ZH|P(Z—o : Z1,Zy : Zt))
= KL(Q(Z—OO : Z—1)||P(Z—oo : Z—l))+
KL(Q(Z§ : Z5|Z oo - Z1)||P(Zo : Z4|Z_ : Z_1))
=KL(Q(Z§ : Z|Z— o : Z1)||P(Zo : Z4|Z o : Z_1));
a7

here, we used the fact that the KL-divergence of two identical
distributions (i.e., Q(Z_s : Z_1) and P(Z_, : Z_;) since
the system is not under attack for ¢ < 0) is zero.

3Due to the space limitation, we do not introduce data-processing, chain-

rule, and monotonicity properties of KL-divergence. More information about
these terms can be found in [26].



Applying the chain-rule property of KL-divergence to (17)
results in
KL(Q(Z§ : Z§|Z oo - Z1)||P(Zo : Z4|Z_ : Z—1))
< KL(Q(eO|Z,oo 2 Z_1)||P(20|Z- o : Z,l))
+ KL(Q(yg’a|eo, Z_:Z_1)||P(yolro, Z-oo : Z_1))
o+ KL(Q(et|Z oo : Z5_)||P (04| Z- o : Zp—1))

+ KL(Q(y; “let, Lo : Z§_))|IP(yele, Z- o = Zy—y)).
(18)

Given Z_, : Z;_1, the distribution of z; is a Gaussian
with mean f(x;_1,u;—1) and covariance X,,. Similarly given
Z7_ :7_1,7Z§: ZF_,, the distribution of e; is a Gaussian
with mean f(e;—1,u¢_;) and covariance ¥,,. Since we have
that x; = f(x¢—1,us—1) +wy and e, = f(es—1,ud_ 1) + wy
according to (11) and (13), it holds that f(z;—1,us—1) —
flet—1,uf_y) = z; — e;. On the other hand, in (15) we
showed that ||z — e;|| < k| sol|A~" holds for ¢ € Zxy.
Therefore, for all ¢t € Z>, it holds that

KL(Q(er|Zooo  Z81)|[P(24]Zno  Zyy)) =
=(zr — ) T8 (@ — er) <R [ls0]PATH Anaa (251),

w

19)

where A0 (3,1) is the maximum eigenvalue of 1.

Now, using the Markov property it holds that
Q(uilet,Z—oc = Zi,) = Q(y%le:) and
P(yi|zt, Z— oo Zi—1) = P(ygz:); also, from (11)

and (13) it holds that given x; and e;, P(y:|z:) and
Q(y;“|e;) are both Gaussian with mean h(z;) and h(e;),
respectively, and covariance Y.,. Thus, it follows that

KL(Q(y; " led) [P (yr 1))

= (h(ze) = hle) =5 (h(xe) — hier))
< Li(wr—e) TS, (w4 — )

(20)
Combining (16)-(20) results in
KL(QYS : Y)IP(Y: 7)) <

t
S R2l1solP A A (551) + L2250 lPA 2 A (51)
i=0
&2 sol|? B -
< %(Amum(zwl) =+ L%Amax(z,v 1)) A be-
21

Finally, with b. defined as in (21) and applying Theorem 1,
the attack sequence from (12) satisfies the e-stealthiness con-
dition with € = v/1 — e~b<. We now show that the proposed
attack sequence is effective; i.e., that there exists ¢’ € Z>g
such that ||| > « for arbitrarily large «.

To achieve this, consider the two dynamics from (10)
and (13) for any ¢ € Zx

riyq =[x, uf) +we = fulof, Uf)

err1 =fer,uy) +wy = fule, U,

with U = [ug” th]T, for t € Z>o. Since we assumed
that the open-loop system (5) is IU on the set S, it holds

(22)

< LiQL/iQH50||2)‘_2t)‘mar(2171)'

that for all z§ = x¢ € S, there exits a nonzero sy such that
for any M >0

|z (t, x5, U®) — e(t,zf — so, UY)|| > M (23)

holds in ¢ > #/, for some ¢’ € Zx>(. On the other hand,
we showed in (15) that ||z (t, 2o, U) — e(t, 2& — s, U%)|| <
k||so[|A~t. Combining this with (23) and using the fact that
|z(t, 2o, U)|| < Rg results in

|z (t, x5, U®) — x(t,xo — s0,U)|| =
|z (t, 25, U®) — e(t,z§ — s0, U) + e(t, x§ — s0, U?)
—x(t,xo — S0, U)|| > ||z (¢, 25, U?) — e(t, x5 — s0, U?)||
— |le(t, 28 — s0,U%) — z(t, 20 — 50, U)|| > M — kl[so|| A"
= [la®(t, 25, U")| = M — kllso[A™" — Rs

> M — k| sol — Rs.

Since M is arbitrarily, we can choose it to satisfy M >
a+ Rg + k||so||, for arbitrarily large . Thus, the system is
(e, )-attackable. O

From (13), we can see that the false sensor measurements
are generated by the evolution of e;. Therefore, intuitively,
the attacker wants to fool the system into believing that e;
is the actual state of the system instead of z{. Since e; and
x4 (i.e., the system state if no attack occurs during ¢ € Z>¢)
converge to each other exponentially fast, the idea is that
the system almost believes that x; is the system state (under
attack), while the actual state x{ becomes arbitrarily large.

Further, all parameters k, A, Ly, X, and ¥, in (21) are
some constants that depend either on system properties (Ly,
Y, and 3,) or are determined by the controller design (k,
A). However, s is set by the attacker, and it can be chosen
arbitrarily small to make € arbitrarily close to zero. Yet, sg
can not be equal to zero; in that case (23) would not hold —
i.e., the attack would not be impactful. Thus, unlike the attack
methods targeting the prediction covariance in [12] where the
attack impact linearly changes with ¢, here arbitrarily large o
(high impact attacks) can be achieved even with an arbitrarily
small e — it may only take more time to get to ||| > a.

Remark 2. Even though we assumed that the closed-loop
dynamics is IES, slightly weaker results can still be obtained
for closed-loop dynamics with incrementally asymptotic sta-
bility. We will consider this case as avenue of future work.

VI. SIMULATION RESULTS

We illustrate our results on a case-study. Specifically, we
consider a fixed-base inverted pendulum equipped with an
EKF used to estimate the states of the system followed by
a feedback full state controller to keep the pendulum rod in
the inverted position. Using 1 = 6 and x5 = 0, the inverted
pendulum dynamics can be modeled as

&1 = T2
. g . b L (24)
Tg = =SINT1 — ——5Ty+ —;
r mr mr
here, 6 is the angle of pendulum rod from the vertical axis
measured clockwise, b is the Viscous friction coefficient, r
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Fig. 2: (a) Angle’s (0) absolute value over time for the system
under-attack, when the attack starts at time zero; (b) The
residue norm over time for the system under-attack, when
the attack starts at time zero.

is the radius of inertia of the pendulum about the fixed point,
m is the mass of the pendulum, g is the acceleration due to
gravity, and L is the external torque that is applied at the
fixed base. We assumed that both the states are measured by
sensors. Finally, we assumed g = 9.8, m = .2Kg, b = .1,

.01 0
r=.3m, X, = X, = 0 ol

with Ty = 10 ms. We assume the safe region for angle
around the equilibrium point § = 0 is S = (=%, %). To
detect the presence of attack, we designed a standard y2-
based anomaly detector that receives the sensor values and
outputs the residue/anomaly alarm.

We used the attack model introduced in (12) to gener-
ate the sequence of false-data injection attacks over time.
Fig. 2(a) presents the angle of the pendulum rod over time.
Before the attack starts at time zero, the pendulum rod is
around the angle zero; however, after initiating the attack it
can be observed that the absolute value of the angle increases
over time until it leaves the safe set and even becomes
more than 7. Note that having values more than 7 does not
make a difference because we have a periodic system, and 7
corresponds to the pendulum falling down. Meanwhile, the
distribution of the norm of the residue signal (see Fig. 2(b))
does not change before and after attack initiation — i.e., the
attack remains stealthy.

and discretized the model

VII. CONCLUSION AND FUTURE WORK

In this paper, we have considered the problem of vulner-
ability analysis for nonlinear control systems with Gaussian
noise, when attacker can compromise sensor measurements
from any subset of sensors. Notions of strict stealthiness
and e-stealthiness have been defined, and we have shown
that these notions are independent of the deployed intru-
sion detector. Using the KL-divergence, we have presented
conditions for the existence of stealthy yet effective attacks.
Specifically, we have defined the (e, «)-successful attacks
where the goal of the attacker is to be e-stealthy while
moving the system states into an unsafe region, determined
by the parameter . We have then derived a condition for
which there exists a sequence of such (e, a)-successful false-
data injection attacks. In particular, we showed that if the
closed-loop system is incrementally exponentially stable and
the open-loop system is incrementally unstable, then there
exists a sequence of (e, «v)-successful attacks.
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