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ABSTRACT

This work focuses on the use of deep learning for vulnerability

analysis of cyber-physical systems (CPS). Specifically, we consider

a control architecture widely used in CPS, where the low-level

control is based on a feedback controller and an observer (e.g., the

extended Kalman filter (EKF)), while also employing an anomaly

detector. To facilitate analyzing the impact potential sensing attacks

could have on systems with general nonlinear dynamics, we develop

learning-enabled attack generators capable of designing stealthy at-

tacks that maximally degrade system operation. We show how such

problem can be cast within a learning-based grey-box framework

where only parts of the runtime information are known to the

attacker. We then introduce two methods for generating effective

stealthy attacks, based on feed-forward neural networks (FNN) and

recurrent neural networks (RNN). Both types of attack-generator

models are trained offline, using a cost function that combines the

attack impact on the estimation error (and thus control) and the

residual signal used for anomaly detection; this enables the trained

models to recursively generate effective yet stealthy sensor attacks

in real-time while requiring different levels of system information

at runtime. The effectiveness of the proposed methods is demon-

strated on several case studies with varying levels of complexity

and nonlinearity: inverted pendulum, autonomous driving vehicles

(ADV), and unmanned areal vehicles (UAVs).
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1 INTRODUCTION

Although many cyber-physical systems (CPS) operate in safety-

critical scenarios and the heterogeneous component connectivity

provides numerous possible points of attack, most of existing sys-

tems are only weakly protected by legacy components, such as

anomaly detectors. The challenge of securing CPS is even more

formidable as the long system lifetime and resource constraints

prevent the full use of new and existing security mechanisms. On

the other hand, security-aware resource allocation can significantly
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N00014-20-1-2745, AFOSR under award number FA9550-19-1-0169, NSF under CNS-
1652544 award as well as the National AI Institute for Edge Computing Leveraging
Next Generation Wireless Networks, Grant CNS-2112562, and a grant from Intel.

reduce the security-related overhead and thus system cost [26–28];

the idea is to focus on protecting the critical system components and

communication links, which if compromised could significantly de-

grade system performance. Yet, to achieve this, we need methods to

analyze system vulnerability, in terms of performance degradation

under attack, for different types of attacks.

In this work, we investigate the use of deep learning for the

vulnerability analysis of control mechanisms in CPS, focusing on

attacks on system sensing. CPS controllers are commonly equipped

with a state estimator used for low-level control and anomaly de-

tection. Therefore, attacks on sensing may have tremendous impact

on the system performance (i.e., quality of control – QoC), by in-

troducing errors in state estimation. In such setting, to maximize

the damage by exploiting the compromised components, the goal

of the attacker is to modify sensor measurements delivered to the

controller such that the system is forced into an unsafe region,

while the attack remains undetected (i.e., stealthy).

Consequently, a critical part of the vulnerability analysis are

methods/models for design of effective and stealthy attack vectors.

Such attack generators should capture how both attack stealthiness

and effectiveness are affected by system dynamics, which in general

is nonlinear; this prevents the use of existing model-based methods

derived for linear time-invariant (LTI) systems (e.g., [24, 43, 44, 47,

50]). To address this challenge, we employ deep learning to develop

generators of such effective yet stealthy attack signals (i.e., time

series). Specifically, we provide grey-box yet model-free methods

that only use the estimator model (and not the plant model) to

train stealthy attack generators. We show that to remain stealthy,

the attack generator should exhibit a suitable unstable dynamics,

resulting in large (potentially unbounded) attack vectors over time;

this also prevents the use of standard robustness-based analysis

techniques that consider performance degradation in the presence

of bounded input disturbances.

We propose two attack-generator models for design of such

stealthy attack vectors. Each model requires different levels of run-

time information from the state estimator – i.e., the current sensor

measurements and the previous state estimation, or only the cur-

rent sensor measurements. The two models, based on feed-forward

neural networks (FNN) and recurrent neural networks (RNN), are

trained offline using a cost function that captures the impact the

attack would have on the estimation error (and thus QoC) as well
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as stealthiness requirements. To capture the expectation operation

in the cost function, we employ Monte Carlo (MC) simulation.

Finally, we illustrate the use and evaluate effectiveness of our

approach on three case studies, from inverted pendulum to au-

tonomous driving vehicles (ADVs) and unmanned aerial vehicles

(UAVs). We show that when a suitably large time-duration is used

for offline training, on average the learned FNN-based attacks

slightly outperform the RNN-based attacks. However, this comes at

a price; they require additional system information at the runtime

– i.e., local state estimation. Furthermore, we demonstrate attack

generalizability on a complex case study based on CARLA urban

autonomous driving simulator [6]; by training the attack genera-

tor models on a simple path and then showing their effectiveness

on more complex scenarios. We also show the robustness of the

proposed attack design to changes in sensing frequencies.

Related Work. This work is related in spirit to adversarial machine

learning focused on methods to generate adversarial examples that

degrade performance of deep neural network (DNN) models. The

initial work [46] showed that even small perturbations of a DNN’s

input could drastically change the output, starting a line of research

on vulnerability (in terms of robustness) of DNNs. For instance,

[12, 40, 46, 51] study vulnerability of classifiers by adding a small

perturbation 𝑧 to the input 𝑥 , and design an adversarial example

𝑥∗ = 𝑥 + 𝑧 that results in miss-classification error 𝐶 (𝑥∗) ≠ 𝐶 (𝑥),
for some classifier 𝐶 . In [2, 13, 45], the same idea is applied to

self-driving vehicles, where the attacker’s goal is to fool a DNN

perception model into ‘detecting’ fake objects in front of the vehicle

or removing an existing object, in order to maliciously alter its

driving decisions. Some recent works also consider adversarial

machine learning beyond the image domain [9, 29, 52]. For example,

[29] studies vulnerability of machine learning models applied in

CPS by proposing methods for generating adversarial examples

that satisfy some physical constraints.

However, the common assumption among such approaches (e.g.,

[3, 4, 9, 12, 22, 29, 36, 45, 52]) is that the predicted target only

depends on its input and not internal dynamics – i.e., previous

states; thus, considering bounded perturbation and a single time-

instance (i.e., without longitudinal effects) was sufficient in those

cases. On the other hand, to address requirements of attacking a

system with internal dynamics, in this work, we show that we

have to consider attack models whose output should also depend on

the previous outputs (i.e., previous state). In addition, unlike in the

aforementioned works, due to the CPS control perspective, both

input and outputs belong to a continuous space.

From the control perspective, it was shown that deep reinforce-

ment learning models are susceptible to adversarial examples [14,

30, 49]. Since the mapping between the observation to actions is

achieved by a DNN, the idea has been to add small (i.e., bounded)

perturbations on observations to alter the actions in a way that

minimizes the expected cumulative reward function, even driving

the system to unsafe states [49]. On the other hand, in this work,

we show that due to the stealthiness constraint, the time series for

an effective additive attacks (on sensor measurements) cannot be

bounded; rather, the injected attack signal over time should comply

with a certain underlying unstable dynamics that depends on the

dynamics of the controlled physical process.

Finally, significant efforts focused on model-based (i.e., using

more traditional control techniques) design of effective stealthy

attacks on CPS controllers [17, 18, 24, 31, 43, 44, 47, 50], including

replay [34], covert [43], zero dynamic [47] and false data injection

attacks [50]. However, these methods can be used only for LTI dy-

namical systems, and thus have limited applicability in practice. For

example, [42] designs stealthy sensing attacks on autonomous vehi-

cles. However, the work effectively employs a standard LTI-based

attack design where the attack vector is obtained using evolution of

the system’s linearized model around the equilibrium point. In this

work, we show that, as expected, such LTI-based attack designs

are only effective in a small neighborhood around the equilibrium

point where the linear approximation is valid. As the states move

further away from the equilibrium point, the error of the linear

approximation significantly increases, resulting in attack detection.

Some recent works have also studied learning-based attack de-

sign for control systems [20, 41]. However, they assume the system

has an LTI dynamical model as opposed to this work where we

design stealthy impactful attacks for general nonlinear systems.

To the best of our knowledge, this is the first study focused on

design of stealthy attack signals – potentially unbounded (in size)

vector time-series – that degrade QoC performance of control sys-

tems with general nonlinear dynamics, and for which only limited

knowledge of the physical model is available.

Notation. We use R to denote the set of real numbers, and P and

E denote the probability and expectation for a random variable.

For a matrix 𝐴, 𝐴𝑇 denotes its transpose and for a square matrix,

𝑡𝑟𝑎𝑐𝑒 (𝐴) denotes its trace. In addition, 𝐼 is the identity matrix in

general, while 𝐼𝑝 is the identity matrix with dimension 𝑝×𝑝 . Matrix

𝐴 ∈ R𝑛×𝑛 is positive semidefinite (denoted by 𝐴 � 0) if 𝑥𝑇𝐴𝑥 ≥ 0

holds for all 𝑥 ∈ R𝑛 . For a vector 𝑥 ∈ R𝑛 , | |𝑥 | |𝑝 is the 𝑝-norm of 𝑥 ;
when 𝑝 is not specified, the 2-norm is implied. Also, supp(𝑥) denotes
the indices of the nonzero elements of 𝑥 ∈ R𝑛 – i.e., supp(𝑥) =
{𝑖 | 𝑖 ∈ {1, ..., 𝑛}, 𝑥𝑖 ≠ 0}. Finally, a function ℎ : R𝑛 → R

𝑝 is L-

Lipschitz if for any 𝑥,𝑦 ∈ R𝑛 it holds that | |ℎ(𝑥)−ℎ(𝑦) | | ≤ 𝐿 | |𝑥−𝑦 | |.

2 SYSTEM AND ATTACK MODELS

In this section, we formalize the problem considered in this work.

We start from the security-aware system model (i.e., including the

attack impact) illustrated in Fig. 1, with each component described

in detail as follows.

2.1 System Model

We consider general nonlinear dynamics of a physical system (i.e.,

plant) compromised by attacks on system sensing, modeled as

𝑥𝑡+1 = 𝑓 (𝑥𝑡 , 𝑢𝑡 ) +𝑤𝑡 ,

𝑦𝑐𝑡 = 𝑦𝑡 + 𝑎𝑡 = ℎ(𝑥𝑡 ) + 𝑣𝑡 + 𝑎𝑡 .
(1)

Here, 𝑥𝑡 ∈ R𝑛 and 𝑢𝑡 ∈ R𝑚 denote the plant’s state and input

vectors at time 𝑡 , whereas the output vector received by the con-

troller 𝑦𝑐𝑡 ∈ R𝑝 contains the measurements from 𝑝 sensors from the

setS = {𝑠1, ..., 𝑠𝑝 }, including compromised measurements provided

by sensors from the set K𝑎 ⊆ S; 𝑎𝑡 ∈ R𝑝 denotes the attack signal

injected at time 𝑡 , and thus the vector is sparse with support in K𝑎
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Figure 1: CPS architecture under attacks on system sensing;

the considered general attack model captures the impact of

both network-based attacks (e.g., man-in-the-middle attacks)

and direct sensor attacks (e.g., sensor spoofing).

– i.e., supp(𝑎𝑡 ) = K𝑎 and 𝑎𝑡,𝑖 = 0 for 𝑖 ∈ K�𝑎 .1 The observation

function ℎ : R𝑛 → R𝑝 is assumed to be 𝐿-Lipschitz. Finally,𝑤𝑡 and

𝑣𝑡 are the state and measurement noise, respectfully.

In a special case, if the plant (1) is linear time-invariant (LTI), we

use 𝑓 (𝑥𝑡 , 𝑢𝑡 ) = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 and ℎ(𝑥𝑡 ) = 𝐶𝑥𝑡 , where 𝐴, 𝐵 and 𝐶 are

matrices of suitable dimensions.

Control Architecture.We consider a common control architec-

ture, with three main components (as illustrated in Fig. 1): a state

estimator, a feedback controller, and an anomaly detector.

The State Estimator (observer) employs the system model to

predict its (state) evolution, and thus provide an estimate 𝑥𝑡 of its
state at time 𝑡 ; in general, this can be captured as

𝑥𝑡 = 𝑂𝑡 (𝑥𝑡−1, 𝑢𝑡−1, 𝑦𝑡 ), 𝑦𝑡 = ℎ(𝑥𝑡 ). (2)

The mapping 𝑂𝑡 is commonly designed so that (2) minimizes a

norm of the estimation error defined as

Δ𝑥𝑡 = 𝑥𝑡 − 𝑥𝑡 . (3)

Depending on the system model and statistical characteristics of

the noise, different estimation methods may be employed. Kalman

filters are widely used for LTI systems, whereas Extended Kalman

filters (EKFs) are mainly utilized for nonlinear systems with Gauss-

ian noise, e.g., the autonomous driving and UAV applications con-

sidered in this work. Thus, we particularly focus on EKFs. The EKF

functionality for a system (1) is described by

𝑥𝑡 |𝑡−1 = 𝑓 (𝑥𝑡−1, 𝑢𝑡−1), 𝑥𝑡 = 𝑥𝑡 |𝑡−1 + 𝐿𝑡 (𝑦𝑡 − ℎ(𝑥𝑡 |𝑡−1)), 𝑦𝑡 = ℎ(𝑥𝑡 );
here, 𝑥𝑡 |𝑡−1, 𝑥𝑡 and𝑦𝑡 denote the predicted state estimate, (updated)

state estimate, and predicted output, respectively. The EKF gain 𝐿𝑡
is also updated as

𝐿𝑡 = 𝐴𝑡𝑃𝑡𝐶
𝑇
𝑡
(
𝐶𝑡𝑃𝑡𝐶

𝑇
𝑡 + 𝑅

)−1,
𝑃𝑡+1 = 𝐴𝑡𝑃𝑡𝐴

𝑇
𝑡 +𝑄 − 𝐿𝑡

(
𝐶𝑡𝑃𝑡𝐶

𝑇
𝑡 + 𝑅

)
𝐿𝑇𝑡 ,

(4)

where 𝐴𝑡 = 𝜕𝑓 (𝑥𝑡 ,𝑢𝑡 )
𝜕𝑥𝑡

|𝑥𝑡−1,𝑢𝑡 and 𝐶𝑡 = 𝜕ℎ (𝑥𝑡 )
𝜕𝑥𝑡

|𝑥𝑡 |𝑡−1 are the Taylor
expansion of 𝑓 andℎ around (𝑥𝑡−1, 𝑢𝑡 ) and𝑥𝑡 |𝑡−1, respectively. Also,
𝑄 and 𝑅 are the covariance matrices of the Gaussian noises𝑤𝑡 and

1We refer to sensors from K𝑎 as compromised, even if a sensor itself is not directly
compromised but its measurements may be altered due to e.g., network-based attacks.

𝑣𝑡 , respectively. Finally, the residue signal (or innovation noise) is

defined as

𝑧𝑡 = 𝑦𝑡 − ℎ(𝑥𝑡 |𝑡−1). (5)

For systems with Gaussian noise, its covariance matrix is 𝑆𝑡 =
E{𝑧𝑡𝑧𝑇𝑡 } = 𝐶𝑡𝑃𝑡𝐶

𝑇
𝑡 + 𝑅𝑡 [16].

The Feedback Controller employs the control law 𝑢𝑡 = 𝜋 (𝑥𝑡 );
without loss of generality, we assume the control goal is to regulate

the states to 0 ∈ R𝑛 . Hence, the estimator (2) can be modeled as

𝑥𝑡 = 𝑂𝑡 (𝑥𝑡−1, 𝜋 (𝑥𝑡−1), 𝑦𝑡 ) =Δ O𝑡 (𝑥𝑡−1, 𝑦𝑡 ). (6)

The Anomaly Detector (AD) is used to detect the presence of

system anomalies, including intrusions (i.e., attacks). The standard

approach is to use the system model to predict the future system

behavior and compare it with the actual observation (e.g., see [11]

and the references within); capturing the discrepancy between the

system and its predicted behavior with a detection function 𝑔𝑡 .
In feedback-control based CPS, the residue (5) is widely used

for anomaly detection – 𝜒2 detector in [35, 50], cumulative sum

in [48], sequential probability ratio test (SPRT) detector in [25], and

a general window-type detector in [15]. For instance, for 𝜒2-based
detectors, the detection function 𝑔𝑡 is a weighted norm of 𝑧𝑡 (with
the 𝜒2 distribution) – i.e.,

𝑔𝑡 = 𝑧𝑇𝑡 𝑆
−1
𝑡 𝑧𝑡 ; (7)

the other detectors (e.g., from [15, 23–25, 32, 33, 35, 48, 50]) use

some forms of a windowed extension of (7). Therefore, to simplify

our presentation, we focus on the detection function 𝑔𝑡 from (7),

and our results can be directly extended to other cases.

Finally, the system triggers alarm if the detection function satis-

fies that 𝑔𝑡 > 𝜂, for some predefined threshold value 𝜂. Usually the

value 𝜂 is assigned such that under normal conditions (i.e., when

the system is not compromised) it holds that P(𝑔𝑡 > 𝜂) ≤ 𝜖 – i.e.,

the system has a low false alarm rate.

2.2 Attack Model

We assume that the attacker has access to the system (or an instance

or the model of the system) offline, allowing offline design of a suit-

able attack generator, which is then employed at runtime to degrade

system operation by compromising the sensing measurements.

Attacker capabilities during offline training. Let𝑇 be the duration

of the training phase; we define X̂𝑡 |𝑡−1 = {𝑥0 |−1, 𝑥1 |0, ..., 𝑥𝑡 |𝑡−1},
Y𝑡 = {𝑦0, ..., 𝑦𝑡 } and L𝑡 = {𝐿0, ..., 𝐿𝑡 } as the sequences of the pre-
dicted states, plant outputs, and EKF gains for 𝑡 ≥ 0, with 𝑡 = 0

denoting the time starting the training phase. We assume that the

attacker has access to the EKF values over time (either directly, or

knowing the EKF design and running a copy of the EKF in parallel)

– i.e., has access to X̂𝑇 |𝑇−1, L𝑇 , Y𝑇 and the function ℎ; specifically,
the attacker does not need to know the actual function ℎ, but rather
its potential approximation used in (2) to implement the state esti-

mator. Meanwhile, for 0 ≤ 𝑡 < 𝑇 , the attacker can compromise the

sensor measurements according to the model from (1).2

2In general, the training (i.e., offline) time is different than the run-time 𝑡 , as offline
training and runtime-deployment are performed on different instances of the system (1).
However, to simplify our notation we do not differentiate between these time axes,
unless the use of specific time (offline vs. runtime) is not clear from the context.
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Attacker capabilities at runtime – i.e., during attack. Let 𝑡0 denote
the start time of the attack, modeled as in (1), and 𝑇 ′ its duration.
Again, we assume that the attacker has access to the sensor mea-

surements 𝑦𝑡 . In addition, we will consider two attack scenarios:

when the attacker (i) does (i.e., grey-box), or (ii) does not (i.e.,

black-box) have access to the state estimation 𝑥𝑡−1 in the previous

time step; the latter threat model is especially impactful, as it as-

sumes that the attacker does not have access to the internal controller

variables at runtime, but only measurements from the (compromised)

system sensors.

Attacker’s goal. is tomaximize degradation of control performance

– i.e., QoC. Specifically, as only sensor data may be compromised,

the attack objective is to maximize the state estimation error Δ𝑥𝑡 .
In addition, the attacker wants to remain stealthy – i.e., undetected

by the anomaly detector. These notions are formalized as follows.

Definition 1. The sequence of attack vectors 𝑎𝑡0 , 𝑎𝑡0+1, ... is re-
ferred to as (𝜖, 𝛼)-successful if there exists 𝑡0 ≤ 𝑡 ′ ≤ 𝑇 ′ + 𝑡0 such that

‖Δ𝑥𝑡 ′ ‖ ≥ 𝛼 and P(𝑔𝑡 > 𝜂) ≤ 𝜖 for all 𝑡0 ≤ 𝑡 ≤ 𝑇 ′ + 𝑡0.
3

Therefore, the attacker’s goal is to insert a sequence of false

data measurements 𝑎𝑡0 , ..., 𝑎𝑡0+𝑇 ′ resulting in an (𝜖, 𝛼)-successful
attack. Note that while Definition 1 focuses on attacks that result

in a desired norm of the estimation error (i.e., greater than 𝛼), for
some systems, attacks may cause arbitrarily large estimation er-

rors [15, 24, 50]. For LTI systems with (standard) Kalman filters, the

notion of (𝜖, 𝛼)-successful attacks was first introduced in [50]. Also,

for LTI systems necessary and sufficient conditions such that (𝜖, 𝛼)-
successful attacks exist for any 𝛼 > 0 are introduced in [15, 24, 50],

along with methods to derive such attacks. However, to the best of

our knowledge, there is no method for vulnerability analysis of non-

linear systems from (1) under sensor-based attacks; i.e., the impact

that such attacks would have on the estimation error, and thus QoC.

3 ADVERSARIAL LEARNING FOR
NONLINEAR DYNAMICAL SYSTEMS

In this section, we present methods to design attack-generators for

stealthy and effective sensing attacks. Before considering general

nonlinear dynamics, we motivate the considered approaches by

considering attacks on LTI systems; we start with design of (𝜖, 𝛼)-
successful attacks against LTI systems with standard Kalman filters.

Lemma 1 ([15, 24, 50]). For an LTI system with a Kalman filter-

based estimator, there exist (𝜖, 𝛼)-successful attacks for any desired

𝛼 > 0 if and only if the matrix 𝐴 is unstable and at least one

eigenvector 𝑣 corresponding to an unstable eigenvalue satisfies that

supp(𝐶𝑣) ⊆ K𝑎 .

Note that𝐴 being unstable is a necessary condition for existence

of (𝜖, 𝛼)-successful attack for arbitrarily large 𝛼 , in LTI systems

with Kalman filters. However, if all sensors are under attack (i.e.,

K𝑎 = S), this is also a sufficient condition. A similar necessary and

sufficient condition only for LTI systems with bounded noise that

employ novel attack-resilient estimators (e.g., from [8, 38, 39]) is

derived in [19]. Now, we show how to use only the current state

3Note that any 𝑝-norm can be used. In this work, when 𝑝 is not specified, the use of
the standard 2-norm is implied.

estimation 𝑥𝑡 , the plant output 𝑦𝑡 and input 𝑢𝑡−1 to compute such

attack sequence on LTI systems for arbitrarily large 𝛼 .

Theorem 1. Consider an LTI system with unstable matrix 𝐴, and
let 𝜙𝑡 denote a Gaussian noise vector satisfying E{𝜙𝑡 } = 0 and

E{𝜙𝑡𝜙𝑇𝑡 } � 𝑆 . The attack sequence generated by 𝑎𝑡 = −𝑦𝑡 +𝐶𝐵𝑢𝑡−1+
𝐶𝐴𝑥𝑡−1 + 𝜙𝑡 , for 𝑡 ≥ 0, is an (𝜖, 𝛼)-successful attack for any 𝛼 > 0.

Proof of the theorem is available in Appendix 6.1.

Unlike in design of adversarial examples for images (e.g., [12,

40, 46, 51]), Theorem 1 shows that for LTI dynamical systems, an

effective and stealthy attack sequence has to evolve over time (i.e.,

following suitable dynamics). This is well aligned with stealthy

attack design methods from [24, 50] that do not directly analyze the

attack impact on the LTI system but rather consider a dynamical

system capturing the difference between the evolutions of the non-

attacked and compromised systems.

The fact that effective stealthy attacks should follow certain dy-

namics (i.e., evolve over time) inspires us to use a similar structure

for generating effective stealthy attacks against system with non-

linear dynamics. Specifically, we consider attacks with dynamics

𝑎𝑡 = 𝐹 (𝑥𝑡−1, 𝑦𝑡 ) (note that 𝑦𝑡 and 𝑥𝑡−1 are both functions of 𝑎𝑡−1),
with the idea to use a DNN to learn 𝐹 . However, the attacker might

not always have access to 𝑥𝑡−1 during the attack; for example, if

(s)he used an instance of the system to train the generator, and then

uses the derived attack signals to insert attacks over the network

without access to the internal execution context of the new system

(instance) under attack.

Thus, we will consider both cases where information 𝑥𝑡−1 is

(i) available to the attacker at runtime, and (ii) when it is not. For

the latter, the idea is to replace 𝑥𝑡 with another signal 𝑟𝑡 that is

directly constructed by the attacker. We now summarize our models

to design (𝜖, 𝛼)-successful attack generators for nonlinear systems.

FNN-based attack design. When 𝑥𝑡−1 is available to the at-

tacker, we design an FNN that uses the current output measure-

ments and the last state estimation to generate the next attack vector

(for current time) – i.e.,

𝑎𝑡 = 𝐻𝜃 (𝑦𝑡 , 𝑥𝑡−1), (8)

where 𝐻𝜃 is a deep FNN with parameters 𝜃 , input dimension of

𝑛 + 𝑝 and output dimension 𝑝 .

RNN-based attack design. When 𝑥𝑡−1 is not available to the at-
tacker, we consider an RNN architecture, that uses only the current

sensor measurements for attack design as follows

𝑟𝑡 = 𝐺𝜃 (𝑦𝑡 , 𝑟𝑡−1),
𝑎𝑡 =𝑊𝑟𝑡 ;

(9)

here, 𝐺𝜃 is the state update function implemented as an RNN pa-

rameterized by 𝜃 , while𝑊 ∈ R𝑙×𝑝 is a linear mapping from the

state 𝑟𝑡 to the attack vector 𝑎𝑡 . Intuitively, 𝑟𝑡 ∈ R𝑙 and 𝐺𝜃 should

allow for capturing of the evolution of 𝑥𝑡 , to create a dynamical

pattern for the sequence of attack vectors in the RNN design (9).

Model training. To capture the attack impact on the estima-

tion error Δ𝑥𝑡 from (3), the first challenge is that the actual true

system state 𝑥𝑡 is not available to the attacker; instead, only sen-

sor measurements 𝑦𝑡 are known. We show that under some mild

assumptions, the sensor measurements can be directly used.
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Theorem 2. Consider the system (1). If the function ℎ : R𝑛 → R𝑝
is Lipschitz with constant 𝐿, then ‖𝑦𝑡−ℎ(𝑥𝑡 )‖ ≥ 𝛼 implies ‖𝑥𝑡−𝑥𝑡 ‖ ≥
𝛼−√𝜎𝑘

𝐿 with probability 1− 𝑝
𝑘2 , for any 𝑘 such that 𝑘 < 𝛼

𝜎 and 𝑅 � 𝜎𝐼 ;
here, 𝑅 is the covariance matrices of the Gaussian measurement noise

𝑣𝑡 , 𝐼 is the identity matrix, and 𝜎 is a positive scalar.

Proof of Theorem 2 is provided in Appendix 6.2.

We use 𝑎𝑡 = 𝐹Θ (𝑦𝑡 , 𝑠𝑡−1) to capture the attack vectors generated
by either (8) or (9); here, 𝑠𝑡 indicates either 𝑟𝑡 or 𝑥𝑡 . Our goal is
to train the parameters in (8) and (9) so that the networks act as

generators of (𝜖, 𝛼)-successful attacks. To achieve this, we use the

following approach.

Starting offline training at time 𝑡 = 0, we seek for 𝑎0 that maxi-

mizes E‖𝑥0 − 𝑥0‖2 with 𝑥0 = O(𝑥−1, 𝑦𝑐0) and 𝑦𝑐0 = 𝑦0 + 𝑎0; here, the
expected value operation E{·} is over random variables𝑤 and 𝑣 . As
the true state 𝑥0 is not available, from Theorem 2, we can maximize

E‖𝑦0 − ℎ(𝑥0)‖2 instead. Also, the generated attack should satisfy

the stealthiness condition P(𝑔0 > 𝜂) ≤ 𝜖 , with 𝑔0 defined in (7) for

𝑧0 = 𝑦𝑐0 − 𝑦0; for 𝜒
2-based ADs, it holds that 𝑦0 = ℎ(𝑥0 |−1). Thus,

the following optimization problem should be solved at time 𝑡 = 0

max
Θ
E‖𝑦0 − ℎ(𝑥0)‖2

𝑠 .𝑡 . P(𝑔0 > 𝜂) ≤ 𝜖

𝑎0 = 𝐹Θ (𝑦0, 𝑠−1).
As this constrained optimization problem is challenging to solve, we

penalize the norm of the residue signal and incorporate a new term

in our objective function, resulting in the optimization problem:

min
Θ
E{𝑔0 − 𝛿 ‖𝑦0 − ℎ(𝑥0)‖2}

𝑎0 = 𝐹Θ (𝑦0, 𝑠−1);
(10)

here, 𝛿 > 0 is a standard regularization term balancing the stealthi-

ness condition and performance degradation caused by the estima-

tion error.

Let us denote the parameters obtained from (10) asΘ(0) . Now, the
attack vector 𝑎0 = 𝐹Θ(0) (𝑦0, 𝑠0) applied to the sensor measurements

at time 𝑡 = 0, would results in state estimate 𝑥0 = O(𝑥−1, 𝑦𝑐0). In
the next (offline) time step (𝑡 = 1), we search for parameters such

that E{𝑔1 − 𝛿 ‖𝑦1 − ℎ(𝑥1)‖2} is minimized. However, in this case

the parameters will only be trained to minimize the cost function

at time 𝑡 = 1 and thus will disregard minimization of the cost

function in the previous time step. Hence, the cost function from

the previous time step should be also included – i.e., the objective

function to be minimized at time 𝑡 = 1 should be be

E{𝑔0 + 𝑔𝑡0+1 − 𝛿
(
‖𝑦0 − ℎ(𝑥0)‖2 + ‖𝑦1 − ℎ(𝑥1)‖2

)
}.

This approach should continue for the following (offline) time

steps. Generally, if we consider that the training starts at 𝑡 = 0, for

any 𝑡 ≥ 0 there should be an instantaneous cost function defined by

𝐽𝑡 = 𝑔𝑡 −𝛿 ‖𝑦𝑡 −ℎ(𝑥𝑡 )‖. Therefore, the offline optimization problem

that is solved at time step 𝑡 is

min
Θ
E{𝐽𝑡 + 𝜆𝑡

∑𝑡−1
𝑗=0

𝐽 𝑗 }
𝑎𝑡 = 𝐹Θ (𝑦𝑡 , 𝑠𝑡−1).

(11)

Again, 𝜆𝑡 ≥ 0 are regularization terms to control the incorporation

of previous cost functions. If 𝜆𝑡 = 1, we effectively penalize all

Algorithm 1 Learning Stealthy and Effective FNN-based Attack-

Generator Models, using MC Simulation

1: Set the learning rate 𝛽 , training period 𝑇 , sample number 𝑁
2: for 𝑡 = 0 : 𝑇 do

3: 𝑥1:𝑁𝑡 = 𝑓 (𝑥1:𝑁𝑡−1 , 𝑢
1:𝑁
𝑡−1 ) +𝑤1:𝑁

𝑡−1 , 𝑦
1:𝑁
𝑡 = ℎ(𝑥1:𝑁𝑡 ) + 𝑣1:𝑁𝑡

4: 𝑥1:𝑁
𝑡 |𝑡−1 = 𝑓 (𝑥1:𝑁𝑡−1 , 𝑢

1:𝑁
𝑡−1 )

5: repeat

6: 𝐽 ′𝑡 = 1
𝑁

∑𝑁
𝑖=1

(
𝜆𝑡

∑𝑡−1
𝑗=0 𝐽

𝑖
𝑗 + 𝐽 𝑖𝑡

)
with 𝑦𝑐𝑗

1:𝑁 = 𝑦1:𝑁𝑗 +
𝐻𝜃 (𝑥1:𝑁𝑗−1 , 𝑦1:𝑁𝑗 )

7: 𝜃 (𝑡 ) ← 𝜃 (𝑡 ) − 𝛽∇𝜃 𝐽
′
𝑡

8: until Convergence

9: 𝑎1:𝑁𝑡 = 𝐻𝜃 (𝑡 ) (𝑥1:𝑁𝑗−1 , 𝑦1:𝑁𝑗 ), 𝑦𝑐𝑡 1:𝑁 = 𝑦1:𝑁𝑡 + 𝑎1:𝑁𝑡
10: 𝑥1:𝑁𝑡 = 𝑥1:𝑁

𝑡 |𝑡−1 + 𝐿1:𝑁𝑡 (𝑦𝑐𝑗 1:𝑁 − ℎ(𝑥1:𝑁
𝑡 |𝑡−1)), 𝑢1:𝑁𝑡 = 𝜋 (𝑥1:𝑁𝑡 )

previous and current instantaneous costs equally. For smaller values

of 𝜆𝑡 , the cost function at time 𝑡 will be approximately 𝐽𝑡 ; i.e., we can
do more exploration by only minimizing the cost at time 𝑡 . However,
increasing 𝜆𝑡 helps exploit more by giving more importance to the

previous cost functions.

TrainingAlgorithm. In our proposed algorithms, we useMonte

Carlo (MC) averaging to approximate the expectation in the cost

function (11) by the sample mean over 𝑁 number of simulated

trajectories starting at time 𝑡 = 0. Specifically, the 𝑖-th, 𝑖 = 1, ..., 𝑁 ,

trajectory at time 𝑡 is obtained by

𝑥𝑖𝑡 = 𝑓 (𝑥𝑖𝑡−1, 𝑢𝑖𝑡−1)+𝑤𝑖
𝑡−1, 𝑦𝑖𝑡 = ℎ(𝑥𝑖𝑡 )+𝑣𝑖𝑡 , 𝑥𝑖𝑡 |𝑡−1 = 𝑓 (𝑥𝑖𝑡−1, 𝑢𝑖𝑡−1).

The cost that the trajectory 𝑖 at time 𝑡 imposes is 𝐽 𝑖𝑡 = 𝑔𝑖𝑡 −
𝛿 ‖𝑦𝑖𝑡 − ℎ(𝑥𝑖𝑡 )‖. However, at time step 𝑡 the DNN is trained such

that 𝐽 ′𝑡 = 1
𝑁

∑𝑁
𝑖=1

(
𝜆𝑡

∑𝑡−1
𝑗=0 𝐽

𝑖
𝑗 + 𝐽 𝑖𝑡

)
is minimized, where 𝐽 ′𝑡 is the

approximated expectation of cost function in (11). Finally, once

the model parameters are obtained at time 𝑡 , the attack vector

𝑎𝑖𝑡 = 𝐹Θ(𝑡 ) (𝑦𝑖𝑡 , 𝑠𝑖𝑡−1) is applied to the system output 𝑦𝑖𝑡 , and the

process is repeated until the training completes.

When the EKF is used, Algorithm 1 captures pseudocode for

learning the FNN-based stealthy attack generator, and Algorithm 2

summarizes pseudocode to learn the RNN-based attack generators.

4 CASE STUDIES

We illustrate and thoroughly evaluate our attack-design framework

on three case studies, inverted pendulum, autonomous driving

vehicles (ADVs) and unmanned aerial vehicles (UAVs), with varying

level of complexity due to system dynamics. For all case studies, the

workstation used for training is powered by Nvidia RTX 6000 GPUs

with 24 GB of memory each, two Intel Xeon Silver 4208 CPUs with

16 cores each, and a total of 192 GB RAM. The code was developed

using Python and Pytorch deep learning libraries.

4.1 Inverted Pendulum

To illustrate the effectiveness of our algorithm compared to the

LTI-based methods from [15, 50], we first considered a fixed-base in-

verted pendulum.We used the nonlinear dynamical model from [10].

Two sensors were used to measure the states of the system, 𝜃 and
�𝜃 , where 𝜃 was the angle of pendulum rod from the vertical axis
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Algorithm 2 Learning Stealthy and Effective RNN-based Attack

Generator Models, using MC Simulation

1: Set the learning rate 𝛽 , training period 𝑇 , sample number 𝑁
2: for 𝑡 = 0 : 𝑇 do

3: 𝑥1:𝑁𝑡 = 𝑓 (𝑥1:𝑁𝑡−1 , 𝑢
1:𝑁
𝑡−1 ) +𝑤1:𝑁

𝑡−1
4: 𝑦1:𝑁𝑡 = ℎ(𝑥1:𝑁𝑡 ) + 𝑣1:𝑁𝑡
5: 𝑥1:𝑁

𝑡 |𝑡−1 = 𝑓 (𝑥1:𝑁𝑡−1 , 𝑢
1:𝑁
𝑡−1 )

6: repeat

7: 𝐽 ′𝑡 = 1
𝑁

∑𝑁
𝑖=1

(
𝜆𝑡

∑𝑡−1
𝑗=0 𝐽

𝑖
𝑗 + 𝐽 𝑖𝑡

)
with 𝑦𝑐𝑡

1:𝑁 = 𝑦1:𝑁𝑗 +
𝑊𝐺𝜃 (𝑟1:𝑁𝑗−1 , 𝑦 𝑗 1:𝑁 )

8: 𝜃 (𝑡 ) ← 𝜃 (𝑡 ) − 𝛽∇𝜃 𝐽
′
𝑡

9: 𝑊 (𝑡 ) ←𝑊 (𝑡 ) − 𝛽∇𝑊 𝐽 ′𝑡
10: until Convergence

11: 𝑟1:𝑁𝑡 = 𝐺𝜃 (𝑡 ) (𝑟1:𝑁𝑡−1 , 𝑦
1:𝑁
𝑡 )

12: 𝑎1:𝑁𝑡 =𝑊 (𝑡 )𝑟1:𝑁𝑡

13: 𝑦𝑐𝑡
1:𝑁 = 𝑦1:𝑁𝑡 + 𝑎1:𝑁𝑡

14: 𝑥1:𝑁𝑡 = 𝑥1:𝑁
𝑡 |𝑡−1 + 𝐿1:𝑁𝑡 (𝑦𝑐𝑡 1:𝑁 − ℎ(𝑥1:𝑁

𝑡 |𝑡−1))
15: 𝑢1:𝑁𝑡 = 𝜋 (𝑥1:𝑁𝑡 )

Table 1: Attack success rate (SR) for different training du-

ration 𝑇 with 𝑁 = 200, 𝜆 = .5 and varying 𝛼 and 𝜃 over 100

inverted pendulum experiments; FNN/RNN denote FNN vs.

RNN success rates.

SR %

FNN/RNN
𝛼 = .5 𝛼 = 1 𝛼 = 2 𝛼 = 4 𝛼 = 8 |𝜃 | = 𝜋

8 |𝜃 | = 𝜋
4 |𝜃 | = 𝜋

3 |𝜃 | = 𝜋
2 |𝜃 | = 𝜋

𝑇 = 50 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

𝑇 = 80 100/99 26/67 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

𝑇 = 100 100/100100/100 100/78 0/3 0/0 100/81 0/9 0/0 0/0 0/0

𝑇 = 120 100/100100/100100/100100/100 0/0 100/100 100/100 100/99 0/52 0/0

𝑇 = 150 100/100100/100100/100100/100 89/97 100/100 100/100 100/100 100/100 50/58

𝑇 = 170 100/100100/100100/100100/100100/100 100/100 100/100 100/100 100/100 100/100

SR %

LTI Model
100 100 100 10 0 100 14 0 0 0

Table 2: Attack success rate (SR) for different values of 𝑁
with 𝑇 = 150, 𝜆 = .5 and different values of 𝛼 and 𝜃 over

100 experiments for the inverted pendulum. The FNN/RNN

numbers denote FNN vs. RNN success rate values.

SR %

FNN/RNN
𝛼 = .5 𝛼 = 1 𝛼 = 2 𝛼 = 4 𝛼 = 8 |𝜃 | = 𝜋

8 |𝜃 | = 𝜋
4 |𝜃 | = 𝜋

3 |𝜃 | = 𝜋
2 |𝜃 | = 𝜋

𝑁 = 1 35/4 35/2 35/1 35/1 10/0 35/1 35/1 35/1 35/0 0/0

𝑁 = 10 100/19 100/10 100/4 100/2 45/1 100/4 100/2 100/1 100/1 0/0

𝑁 = 50 100/74 100/66 100/56 100/38 100/4 100/56 100/39 100/32 100/9 0/0

𝑁 = 100 100/96 100/96 100/96 100/95 90/64 100/96 100/96 100/95 100/90 15/1

𝑁 = 250 100/100100/100100/100100/100 95/97 100/100 100/100 100/100 100/100 94/95

𝑁 = 500 100/100100/100100/100100/100100/100 100/100 100/100 100/100 100/100 100/99

measured counterclockwise. The threshold 𝜂 was set to have 𝜖 = .01
(i.e., on average, every one hundred time steps a false alarm occurs).

A feedback controller was used to keep the pendulum inverted

around 𝜃 = 0 equilibrium point.

Table 3: Attack success rate (SR) for different values of 𝜆
with 𝑇 = 100, 𝑁 = 200 and different values of 𝛼 and 𝜃 over

100 experiments for the inverted pendulum. The FNN/RNN

numbers denote FNN vs RNN success rate values.

SR %

FNN/RNN
𝛼 = .5 𝛼 = 1 𝛼 = 2 𝛼 = 4𝛼 = 8 |𝜃 | = 𝜋

8 |𝜃 | = 𝜋
4 |𝜃 | = 𝜋

3 |𝜃 | = 𝜋
2

𝜆 = .01 100/12 100/2 100/1 50/1 0/0 100/1 50/1 0/0 0/0

𝜆 = .05 100/98 100/97 100/90 58/0 0/0 100/92 53/0 0/0 0/0

𝜆 = .1 100/98 100/97 100/91 73/38 0/0 100/93 55/45 0/8 0/0

𝜆 = 1 100/100100/100 100/70 97/59 0/0 100/75 100/60 54/3 0/0

𝜆 = 5 100/100100/100100/10070/67 0/0 100/100 90/78 10/27 0/0

𝜆 = 100 100/100 100/64 100/42 0/12 0/0 100/43 1/16 0/0 0/0

Table 4: Attack success rate (SR) for different values of train-

ing duration 𝑇 with 𝑁 = 200, 𝜆 = .5 and different values of 𝛼
and 𝑦 over 100 experiments for the ADV.

SR %

FNN/RNN
|𝑦 | = .2 |𝑦 | = 1 |𝑦 | = 2 |𝑦 | = 4 |𝑦 | = 6 |𝑦 | = 8 |𝑦 | = 10 |𝑦 | = 14

𝑇 = 100 100/100 0/0 0/0 0/0 0/0 0/0 0/0 0/0

𝑇 = 200 100/100 98/100 16/0 0/0 0/0 0/0 0/0 0/0

𝑇 = 300 100/100 100/100 100/100 32/100 0/0 0/0 0/0 0/0

𝑇 = 500 100/100 100/100 100/100 100/99 100/99 50/96 23/96 0/0

𝑇 = 700 100/100 100/100 100/100 100/100 100/100 100/100 100/100 99/82

First, we trained both FNN and RNN models with 𝑁 = 200 MC

samples, 𝜆 = .5 and different values of training period 𝑇 when

both sensors are compromises. Table 1 shows the success rate (in

percentage) of both attack generator models, which were obtained

for each training period 𝑇 , and for different values of 𝛼 and 𝜃 . For
example, consider the entry associated with row𝑇 = 150 and 𝛼 = 8.

It shows that 89 percent of times the FNN and 97 percent of times

the RNN model was successful in driving the system to 𝛼 = 8, with

𝛼 being the norm of the state estimation error. This also applies to

the columns shown by |𝜃 |; for example, the entry in row 𝑇 = 150

and column |𝜃 | = 𝜋
2 means that 100 percent of times both FNN and

RNN models were successful in driving the pendulum rod angle to

more than 𝜋
2 degrees.

As summarized in Table 1, when trained with 𝑇 = 50, neither

of the learned models were successful for any values of 𝛼 and 𝜃 .
However, by increasing the training duration𝑇 , the performance of

both designed attack generator models improved. Specifically, for

𝑇 = 170 both learned models were able to drive the pendulum rod

to fall without being detected. Also, only for shorter training dura-

tions𝑇 , RNN slightly outperformed FNN, since the RNN was better

than FNN in capturing the optimal non-linear attack dynamics in

parts of the state-space not explored during the training.

We also generated stealthy attacks on both sensors using the

model-based LTI method from [15, 24, 50] that employs the lin-

earized model of the system dynamics around the zero equilibrium

point. Attacks generated using the LTI model were only successful

for smaller errors – i.e., 𝛼 < 4 and 𝜃 < 𝜋
3 . This shows that the

LTI-based attacks are only effective around the equilibrium

point, where the linearization error is small.
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Table 5: Attack success rate (SR) for different values of𝑁 with

𝑇 = 300, 𝜆 = .5 and different values of 𝑦 over 100 experiments

for the ADV; FNN/RNN denote FNN vs. RNN SRs.

SR %

FNN/RNN
|𝑦 | = .2 |𝑦 | = .6 |𝑦 | = .8 |𝑦 | = 1.2 |𝑦 | = 1.5 |𝑦 | = 2 |𝑦 | = 3 |𝑦 | = 4

𝑁 = 1 100/53 75/3 75/1 75/0 73/0 0/0 0/0 0/0

𝑁 = 10 100/50 100/41 100/32 100/18 100/12 0/6 0/1 0/0

𝑁 = 50 100/99 100/99 100/99 100/99 100/99 100/99 0/57 0/0

𝑁 = 100 100/100 100/100 100/100 100/100 100/100 100/100 21/100 0/0

𝑁 = 500 100/100 100/100 100/100 100/100 100/100 100/100 50/100 0/100

Table 2 shows the effect of the MC sample number on the per-

formance of the learned attack-generators for a fixed 𝑇 = 150. For

smaller values of 𝑁 , FNN performed better; however, when both

models had enough data (e.g., 𝑁 ≥ 250), both worked equally well.

Similarly, Table 3 shows how different values of 𝜆 in training phase

affect the attack model performance. For smaller values of 𝜆, the
obtained RNN worked poorly because the data in previous time

steps were important to train the model, and accurately capture

the desired attack dynamics. On the other hand, the learned FNN

generator performed worse for very large values of 𝜆.

4.2 Autonomous Driving Vehicles

4.2.1 Generic Vehicle Model. We first considered a simple nonlin-

ear dynamical model of ADV from [21], with four states [𝑥 𝑦 𝜓 𝑣]𝑇 ;
here, 𝑥 and 𝑦 represent the position of the center of mass in 𝑥 and 𝑦
axis, respectively,𝜓 is the inertial heading, and 𝑣 is the velocity of

the vehicle. The states 𝑥,𝑦,𝜓 were measured using noisy sensors,

with zero-mean noise with covariance matrix 𝑅 = .01𝐼 . The system
noise was zero-mean, with covariance 𝑄 = .001𝐼 and we set the

threshold 𝜂 to achieve 𝜖 = .01.
We considered scenario where the car had a constant speed of

25𝑚/𝑠 , with a feedback controller keeping the car between the lanes.
We trained offline the FNN and RNNmodels for generating effective

stealthy attacks. The network 𝐻𝜃 was fully connected with 20

neurons and the ReLU activation function, whereas𝐺𝜃 was an RNN

with one layer and 20 neurons, and the ReLU activation function.

First, we trained both models with 𝑁 = 200 MC samples, 𝜆 = .5
and different duration of training period𝑇 ; we attacked only sensors
that measure𝑦 and𝜓 (i.e., not all of the sensors were compromised).

Table 4 shows the success rate (in %) for both learned attack models

for each training period𝑇 and different values of 𝛼 and |𝑦 |, the car’s
distance from the center of the lane. As summarized, increasing the

attack training duration helps learn attack generators that can drive

the system towards the unsafe region (i.e., increasing |𝑦 |).
We also analyzed the impact of 𝑁 , the MC sampling number

during training, on attack performance (Table 5); we showed that

using 𝑁 ≥ 100 in training is sufficient. Specifically, for smaller val-

ues of 𝑁 , the learned FNN-based generator outperformed the RNN

model. However, as 𝑁 increased both models performed equally

good, and even RNN performed slightly better.

Figure 2(a) shows the trajectory of the car. Before starting the

attack at the location𝑋 = 75𝑚, the car (blue line) was kept between

the lanes and the estimated trajectory (green line) had a very small

estimation error. However, using either attacks derived by the FNN

or RNN-based attack generators, the car was being pushed off the

road while the estimated position showed that the car was still in

the road between the lanes. Furthermore, the attacks were stealthy

– the AD could not detect the presence of either of the attacks.

Figure 2(b),(c) show the estimation error along the 𝑋 and 𝑌 axis for

these scenarios.

4.2.2 Autonomous Driving Simulator: Evaluating on CARLA. To

evaluate our methodology on complex, realistic systems, for which

we do not know the model of the non-linear vehicle dynamics, we

used ADV scenarios in vehicle simulator CARLA [6]. CARLA is an

urban driving simulator built on Unreal Engine 4, and providing

realistic physics and sensor models in complex urban environments

with static and dynamic actors. We defined a planning-navigation-

control loop that drove the autonomous vehicle, leveraging the EKF

structure for 𝜒2 anomaly detector; CARLA setup details are pre-

sented in Appendix 6.3 and the videos of our CARLA experiments

are available at [5].

We evaluated our FNN and RNN attack-generators for perfor-

mance and generalizability, and compared to the nominal case with-

out attacks. We demonstrated how both FNN and RNN-based attack

generators were able to drive the vehicle into unsafe situations (e.g.,

crashes into other cars or static objects) over short times, while

remaining undetected. We highlight here the results when not all of

the sensors were compromised (i.e.,K𝑎 ≠ S) – i.e., when the FNN and

RNN-based attack generators were only able to attack GNSS position

measurements and to only have knowledge of positions states (i.e.,

no knowledge of velocity or heading). Despite these restrictions,

both attack generators produced stealthy attacks that significantly

moved the vehicle off-course (e.g., resulting in collisions – see

videos at [5]).

Additionally, we demonstrated the attack generalizability twofold.

First, we trained the FNN and RNN-based models offline on a simple

path (i.e., not the testing path).We then tested those samemodels on

the full CARLA environment and paths. Second, we demonstrated

the proof-of-concept that the learned attack generator models were

robust to changes in rates of sensor data by training at 100 Hz

measurements and testing at 120 Hz measurements, and retaining

attack stealthiness and effectiveness.

Figure 3 presents some of the results. Specifically, Figure 3(d)

shows the path and residue values when the sensors were not

under attack. Figure 3(e) and Figure 3(f) show the path and the

residue signal values of the compromised car when the FNN and

RNN-based generators were used to create inserted attack signals.

The endpoint of the path is when the car hits an object and stops

moving – the residue signal has a spike only when the car hits the

object (due to the collision); by this point it was too late for any

recovery/avoidance action.

4.3 Unmanned Aerial Vehicles

Finally, we considered a quadrotor with complex highly nonlinear

model from [1] that has 12 states
[
𝑥, 𝑦, 𝑧, 𝜓, 𝜃, 𝜙, �𝑥, �𝑦, �𝑧, �𝜓, �𝜃, �𝜙 ]𝑇 ;

𝑥 ,𝑦 and 𝑧 represent the quadrotor position along the𝑋 ,𝑌 and𝑍 axis,

respectively, while �𝑥 , �𝑦 and �𝑧 are their velocity.𝜓 , 𝜃 and 𝜙 are yaw,

pitch and roll angles respectively, and �𝜓 , �𝜃 and �𝜙 represent their

corresponding angular velocity. The system was discretized using
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Figure 2: (a) The trajectory of the compromised car (green - the estimated, and the red - the actual vehicle position; the red dot

shows the place where the attack started, the black dots show the actual and estimated position of the car at the same time).

(b,c) The above sub-figures show the distance of the car with the center of the lane; the bellow sub-figures illustrate the norm

of residue signal before and after the start time of attack 𝑡 = 3𝑠 (the blue dots) for each of the FNN and RNN-based generators.

Figure 3: Example results from evaluations on CARLA scenarios: (a) CARLA simulation when the car is free of attack;

(b,c) The vehicle collisions with off-road objects due to the injecting sensor attacks using the FNN and RNN-based attack

generators, respectively; (d) The vehicle trajectory without attack and the residue signals for both velocity and position sensors;

(e,f) The trajectory when the position sensors are compromised using the FNN and RNN-based methods, respectively, and the

corresponding residue signals (note different 𝑦−axes scaling on subfigures (d)-(f).

Euler method with 𝑇𝑠 = .01𝑠 . The states
[
𝑥, 𝑦, 𝑧, 𝜓, 𝜃, 𝜙, �𝜓, �𝜃, �𝜙 ]𝑇

weremeasured andwere affected by zero-mean Gaussian noise with

the covariance matrix 𝑅 = .01𝐼 . We assumed standard disturbance

on the input modeled by system noise with zero mean Gaussian

with the covariance matrix 𝑄 = .001𝐼 . We also set 𝜂 such that we

obtained 𝜖 = .01. We considered the position control task [1], where

the drone should reach a predefined height (10𝑚) and stay there –

i.e., stay at coordinates 𝑋 = 0, 𝑌 = 0 and 𝑍 = 10 if the initial point

was denoted as (0, 0, 0). UAV control for this task was based on a

standard feedback-based controller.
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Table 6: Attack success rate (SR) for different values of𝑇 with

𝑁 = 300, 𝜆 = .5 and different values of 𝛼 over 100 experiments

for the UAV.

SR %

FNN/RNN
𝛼 = .2 𝛼 = .5 𝛼 = .7 𝛼 = 1 𝛼 = 3 𝛼 = 5 𝛼 = 7 𝛼 = 9

𝑇 = 100 100/100 100/87 89/49 0/6 0/0 0/0 0/0 0/0

𝑇 = 200 100/100 95/58 65/53 32/7 0/0 0/0 0/0 0/0

𝑇 = 400 100/100 100/100 100/100 67/100 0/21 0/0 0/0 0/0

𝑇 = 600 100/100 100/100 100/100 100/100 80/63 4/9 0/0 0/0

𝑇 = 800 100/100 100/93 100/91 100/91 99/83 86/68 69/57 53/43

SR %

LTI Model
100 62 0 0 0 0 0 0

Table 7: Attack success rate (SR) for different values of𝑇 with

𝑁 = 300, 𝜆 = .5 and different values of 𝑥 along 𝑋 axis over 100

experiments for the UAV.

SR %

FNN/RNN
|𝑥 | = .2 |𝑥 | = .4 |𝑥 | = .6 |𝑥 | = .8 |𝑥 | = 1 |𝑥 | = 1.5 |𝑥 | = 3 |𝑥 | = 4

𝑇 = 100 93/50 1/2 0/0 0/0 0/0 0/0 0/0 0/0

𝑇 = 200 47/5 17/0 5/0 1/0 0/0 0/0 0/0 0/0

𝑇 = 400 100/57 44/14 0/5 0/0 0/0 0/0 0/0 0/0

𝑇 = 600 83/78 66/24 50/4 37/2 30/1 13/0 0/0 0/0

𝑇 = 800 97/77 90/36 85/22 75/13 68/10 51/1 0/0 0/0

𝐺𝜃 used for synthesizing the stealthy attack was a 2-layer RNN

with ReLU activation function and 55 neurons per layer. 𝐻𝜃 was

also a 2-layer FNN with ReLU activation function and 55 neuron for

each layer. First, we trained both models with 𝑁 = 300 MC samples,

𝛿 = .2, 𝜆 = .5 and different values of training period 𝑇 . We also

considered the case where all sensor are under attack.

Tables 6-9 (due to space constraints, Tables 8 and 9 are in Ap-

pendix 6.4) show the success rate (in %) for both learned attack

generators obtained for each training period 𝑇 and different values

of 𝛼 , |𝑥 |, |𝑦 | and |𝑧 | (i.e., the drone’s distance from the desired posi-

tion along each axis). As summarized, increasing the attack training

duration helps learn effective stealthy attack generators capable

of driving the system towards the unsafe region (i.e., increasing

|𝑥 |, |𝑦 | and |𝑧 |). Furthermore, for suitably large training periods 𝑇 ,
on average the learned FNN-based attack generators outperforms

the RNN-based attack generators. Moreover, we evaluated the ef-

fectiveness of the LTI-based attacks (i.e., which linearize the UAV

model) [15, 24, 50]; our results, summarized in the last line in Table 6,

show that the LTI-based attacks are only 62% successful in reaching

𝛼 = .2, and unsuccessful for higher values of 𝛼 , for the same reasons

as in the pendulum study – linearization error becomes too large

for large state deviations, limiting their applicability.

Figure 4(a) illustrates the deviation of the drone from the desired

hovering point over time for a successful attack sequence obtained

from a generator trained with 𝑇 = 800 and 𝑁 = 300. The attack

started at 𝑡 = 0; over time, the drone’s deviation from the desired

position will increase. Figure 4(b) shows the norm of the attack

vector of both FNN and RNN models for three different attack-

generator models trained with 𝑇 = 200, 400 and 600. Note that

unlike adversarial machine learning in other domains (e.g., image

classification) where the norm of the attack is limited to be bounded,

the stealthiness condition in CPS requires the norm of the attack

vector to gradually increase over time.

5 CONCLUSION

In this work, we have utilized deep learning to generate stealthy

attacks on control components in cyber-physical systems, focusing

on a widely used architecture where the low-level control employs

the extended Kalman filter and an anomaly detector. We have con-

sidered a grey box setup, with unknown nonlinear plant dynamics

and known observation functions and Kalman filter gains. We have

shown that feedforward and recurrent neural networks (FNN and

RNN, respectively) can be used to generate stealthy adversarial

attacks on sensing information delivered to the system, resulting

in large errors to the estimates of the state of the system without

being detected. Both FNN and RNN are trained offline from a cost

function combining the attack effects on the estimation error and

the residual signal of the EKF; thus, the trained model is capable

of recursively generating such effective sensor attacks in real-time

using only current sensor measurements. The effectiveness of the

proposed methods has been illustrated and evaluated on several

case studies with varying complexity.
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6 APPENDIX

6.1 Proof of Theorem 1

First, we will show that applying such attack sequence results in

an unbounded estimation error. For LTI systems, the dynamic of

the state estimation error follows

Δ𝑥𝑡 = 𝑥𝑡 − 𝑥𝑡

= 𝐴Δ𝑥𝑡−1 +𝑤𝑡 − 𝐿(𝑦𝑐𝑡 −𝐶𝐴𝑥𝑡−1 −𝐶𝐵𝑢𝑡−1)
= 𝐴Δ𝑥𝑡−1 +𝑤𝑡 − 𝐿𝜙𝑡

As the matrix𝐴 is unstable, it follows that ‖Δ𝑥𝑡 ‖ will be unbounded
as 𝑡 → ∞.

We now show that the attack is stealthy from the perspective of

the IDS. In this case, the residue signal 𝑧𝑡 satisfies

𝑧𝑡 = 𝑦𝑐𝑡 −𝐶 (𝐴𝑥𝑡−1 + 𝐵𝑢𝑡−1) =
= 𝑦𝑡 + 𝑎𝑡 −𝐶 (𝐴𝑥𝑡−1 + 𝐵𝑢𝑡−1) = 𝜙𝑡 .

(12)

Therefore, it follows that

E{𝑔𝑎𝑡 } = E{𝑧𝑇𝑡 𝑆−1𝑧𝑡 } = E{𝜙𝑇𝑡 𝑆−1𝜙𝑡 }
= 𝑡𝑟𝑎𝑐𝑒 (E{𝜙𝑇𝑡 𝑆−1𝜙𝑡 }) = E{𝑡𝑟𝑎𝑐𝑒 (𝜙𝑡𝜙𝑇𝑡 𝑆−1)}
= 𝑡𝑟𝑎𝑐𝑒 (E{𝜙𝑡𝜙𝑇𝑡 }𝑆−1) ≤ 𝑡𝑟𝑎𝑐𝑒 (𝑆𝑆−1) = 𝑝,

where we used the linearity of expectation and trace operation.

Note that for LTI systems, the expectation of 𝑔𝑡 (also known as

the degrees of freedom of the distribution) satisfies that E{𝑔𝑡 } =
𝑝 . Based on the properties of the 𝜒2 distribution, since E{𝑔𝑎𝑡 } ≤
E{𝑔𝑡 } = 𝑝 , it follows that P(𝑔𝑎𝑡 > 𝜂) ≤ P(𝑔𝑡 > 𝜂) = 𝜖 , and thus the

attack sequence is stealthy.

6.2 Proof of Theorem 2

From the multivariate Chebyshev’s inequality [37], it holds that

P(𝑣𝑇𝑡 𝑅−1𝑣𝑡 ≤ 𝑘2) ≥ 1− 𝑝
𝑘2 . On the other hand, using our assumption

𝑅 � 𝜎𝐼 , it holds that𝜎−1𝑣𝑇𝑡 𝑣𝑡 ≤ 𝑣𝑇𝑡 𝑅
−1𝑣𝑡 for any 𝑣𝑡 ∈ R𝑝 . Therefore,

P(𝑣𝑇𝑡 𝑣𝑡 ≤ 𝜎𝑘2) ≥ 1 − 𝑝
𝑘2 or equivalently P(‖𝑣𝑡 ‖ ≤ √

𝜎𝑘) ≥ 1 − 𝑝
𝑘2 .

Now, with the probability of at least 1 − 𝑝
𝑘2 , we have that

𝛼 ≤ ‖𝑦𝑡 − ℎ(𝑥𝑡 )‖ = ‖ℎ(𝑥𝑡 ) + 𝑣𝑡 − ℎ(𝑥𝑡 )‖ ≤
≤ 𝐿‖𝑥𝑡 − 𝑥𝑡 ‖ + ‖𝑣𝑡 ‖ ≤ 𝐿‖𝑥𝑡 − 𝑥𝑡 ‖ +

√
𝜎𝑘,

which results in ‖𝑥𝑡 − 𝑥𝑡 ‖ ≥ 𝛼−√𝜎𝑘
𝐿 .

6.3 Details of Employed CARLA Setup

For planning, CARLA provides with a state-machine waypoint fol-

lowing algorithm. A vehicle’s (estimated) pose and velocity were
used alongwithmap-basedwaypoints to coordinate (i) road-following,

(ii) left-turn, (iii) right-turn, (iv) intersection, and (v) hazard-stop

conditions [6]. We estimated the pose and velocity using an EKF

with high-rate sensor data.

We also leverage the EKF structure to design an industry-standard

𝜒2 anomaly detector (AD). We set threshold 𝜂 to result in 𝜖 = .05
in normal condition. Then, the integrity value shown in the left

bar of Figure 3(a),(b),(c) represents the number of measurements

that pass the 𝜒2 AD requirement out of the last 20 measurements.

We assume that the attack is detected if more than two sensor mea-

surements cannot pass the requirement in this window of time. As

sensor inputs, a Global Navigation Satellite Sensor (GNSS) sensor

provides loosely coupled position solutions in global coordinates,

a commercial GNSS standard. We similarly define a generalized

velocimeter model, derived from Doppler (or, more frequently in

safety-critical applications, GNSS delta-range).

State estimates and planning objectives were feed into a stan-

dard feedback controller [7] that targeted a cruising speed of 25

km/hr (∼ 7𝑚/𝑠). The control algorithm drove the following ac-

tuators with associated input ranges: (i) Steering wheel angle on

[−1.0, 1.0], (ii) Throttle on [0.0, 1.0], and (iii) Brake on [0.0, 1.0].
Finally, we visualize the vehicle trajectory and system integrity

with a heads-up-display presented in Figure 3; the videos for our

CARLA experiments are available at [5].

6.4 Analysis of Attack Success Rate on
Unmanned Aerial Vehicles

Tables 8 and 9 summarize the attack success rate (ASR) for both

learned attack generators for UAVs; the generators were obtained

for each training period𝑇 and different values of |𝑦 | and |𝑧 | (i.e., the
drone’s distance from the desired position along these two axis).

Table 8: Attack success rate (SR) for different values of𝑇 with

𝑁 = 300, 𝜆 = .5 and different values of 𝑦 along 𝑌 axis over 100

experiments for the UAV.

SR %

FNN/RNN
|𝑦 | = .2 |𝑦 | = .5 |𝑦 | = .8 |𝑦 | = 1 |𝑦 | = 2 |𝑦 | = 4 |𝑦 | = 6 |𝑦 | = 8

𝑇 = 100 0/44 0/0 0/0 0/0 0/0 0/0 0/0 0/0

𝑇 = 200 92/91 24/20 0/0 0/0 0/0 0/0 0/0 0/0

𝑇 = 400 2/100 0/100 0/96 0/93 0/25 0/0 0/0 0/0

𝑇 = 600 99/100 94/97 92/95 91/94 73/66 0/0 0/0 0/0

𝑇 = 800 100/91 98/91 96/91 95/90 88/81 73/65 62/51 45/41

Table 9: Attack success rate (SR) for different values of𝑇 with

𝑁 = 300, 𝜆 = .5 and different values of 𝑧 along 𝑍 axis over 100

experiments for the UAV.

SR %

FNN/RNN
|𝑧 | = .2 |𝑧 | = .4 |𝑧 | = .6 |𝑧 | = .8 |𝑦 | = 1 |𝑧 | = 2 |𝑧 | = 3 |𝑧 | = 4

𝑇 = 100 0/9 0/0 0/0 0/0 0/0 0/0 0/0 0/0

𝑇 = 200 67/0 24/0 4/0 0/0 0/0 0/0 0/0 0/0

𝑇 = 400 44/42 0/17 0/10 0/7 0/4 0/2 0/0 0/0

𝑇 = 600 86/81 59/74 45/60 26/48 11/36 3/28 0/3 0/0

𝑇 = 800 95/88 88/85 78/83 69/80 64/75 40/66 0/41 0/6
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