2022 ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS)

Learning-Based Vulnerability Analysis of
Cyber-Physical Systems

Amir Khazraei Spencer Hallyburton Qitong Gao
Duke University Duke University Duke University
Durham, NC Durham, NC Durham, NC
amir.khazraei@duke.edu spencer.hallyburton@duke.edu qitong.gao@duke.edu

Yu Wang

University of Florida
Gainesville, FL
yuwangl@ufl.edu

ABSTRACT

This work focuses on the use of deep learning for vulnerability
analysis of cyber-physical systems (CPS). Specifically, we consider
a control architecture widely used in CPS, where the low-level
control is based on a feedback controller and an observer (e.g., the
extended Kalman filter (EKF)), while also employing an anomaly
detector. To facilitate analyzing the impact potential sensing attacks
could have on systems with general nonlinear dynamics, we develop
learning-enabled attack generators capable of designing stealthy at-
tacks that maximally degrade system operation. We show how such
problem can be cast within a learning-based grey-box framework
where only parts of the runtime information are known to the
attacker. We then introduce two methods for generating effective
stealthy attacks, based on feed-forward neural networks (FNN) and
recurrent neural networks (RNN). Both types of attack-generator
models are trained offline, using a cost function that combines the
attack impact on the estimation error (and thus control) and the
residual signal used for anomaly detection; this enables the trained
models to recursively generate effective yet stealthy sensor attacks
in real-time while requiring different levels of system information
at runtime. The effectiveness of the proposed methods is demon-
strated on several case studies with varying levels of complexity
and nonlinearity: inverted pendulum, autonomous driving vehicles
(ADV), and unmanned areal vehicles (UAVs).

KEYWORDS

Security of Cyber-Physical Systems, Deep Learning, Stealthy At-
tacks, Vulnerability Analysis, Secure Autonomy

1 INTRODUCTION

Although many cyber-physical systems (CPS) operate in safety-
critical scenarios and the heterogeneous component connectivity
provides numerous possible points of attack, most of existing sys-
tems are only weakly protected by legacy components, such as
anomaly detectors. The challenge of securing CPS is even more
formidable as the long system lifetime and resource constraints
prevent the full use of new and existing security mechanisms. On
the other hand, security-aware resource allocation can significantly

This work is sponsored in part by the ONR under agreements N00014-17-1-2504 and
N00014-20-1-2745, AFOSR under award number FA9550-19-1-0169, NSF under CNS-
1652544 award as well as the National Al Institute for Edge Computing Leveraging
Next Generation Wireless Networks, Grant CNS-2112562, and a grant from Intel.

978-1-6654-0967-4/22/$31.00 ©2022 IEEE
DOI 10.1109/ICCPS54341.2022.00030

259

Miroslav Pajic
Duke University
Durham, NC
miroslav.pajic@duke.edu

reduce the security-related overhead and thus system cost [26-28];
the idea is to focus on protecting the critical system components and
communication links, which if compromised could significantly de-
grade system performance. Yet, to achieve this, we need methods to
analyze system vulnerability, in terms of performance degradation
under attack, for different types of attacks.

In this work, we investigate the use of deep learning for the
vulnerability analysis of control mechanisms in CPS, focusing on
attacks on system sensing. CPS controllers are commonly equipped
with a state estimator used for low-level control and anomaly de-
tection. Therefore, attacks on sensing may have tremendous impact
on the system performance (i.e., quality of control - QoC), by in-
troducing errors in state estimation. In such setting, to maximize
the damage by exploiting the compromised components, the goal
of the attacker is to modify sensor measurements delivered to the
controller such that the system is forced into an unsafe region,
while the attack remains undetected (i.e., stealthy).

Consequently, a critical part of the vulnerability analysis are
methods/models for design of effective and stealthy attack vectors.
Such attack generators should capture how both attack stealthiness
and effectiveness are affected by system dynamics, which in general
is nonlinear; this prevents the use of existing model-based methods
derived for linear time-invariant (LTI) systems (e.g., [24, 43, 44, 47,
50]). To address this challenge, we employ deep learning to develop
generators of such effective yet stealthy attack signals (i.e., time
series). Specifically, we provide grey-box yet model-free methods
that only use the estimator model (and not the plant model) to
train stealthy attack generators. We show that to remain stealthy,
the attack generator should exhibit a suitable unstable dynamics,
resulting in large (potentially unbounded) attack vectors over time;
this also prevents the use of standard robustness-based analysis
techniques that consider performance degradation in the presence
of bounded input disturbances.

We propose two attack-generator models for design of such
stealthy attack vectors. Each model requires different levels of run-
time information from the state estimator - i.e., the current sensor
measurements and the previous state estimation, or only the cur-
rent sensor measurements. The two models, based on feed-forward
neural networks (FNN) and recurrent neural networks (RNN), are
trained offline using a cost function that captures the impact the
attack would have on the estimation error (and thus QoC) as well



as stealthiness requirements. To capture the expectation operation
in the cost function, we employ Monte Carlo (MC) simulation.
Finally, we illustrate the use and evaluate effectiveness of our
approach on three case studies, from inverted pendulum to au-
tonomous driving vehicles (ADVs) and unmanned aerial vehicles
(UAVs). We show that when a suitably large time-duration is used
for offline training, on average the learned FNN-based attacks
slightly outperform the RNN-based attacks. However, this comes at
a price; they require additional system information at the runtime
- i.e., local state estimation. Furthermore, we demonstrate attack
generalizability on a complex case study based on CARLA urban
autonomous driving simulator [6]; by training the attack genera-
tor models on a simple path and then showing their effectiveness
on more complex scenarios. We also show the robustness of the
proposed attack design to changes in sensing frequencies.

Related Work. This work is related in spirit to adversarial machine
learning focused on methods to generate adversarial examples that
degrade performance of deep neural network (DNN) models. The
initial work [46] showed that even small perturbations of a DNN’s
input could drastically change the output, starting a line of research
on vulnerability (in terms of robustness) of DNNs. For instance,
[12, 40, 46, 51] study vulnerability of classifiers by adding a small
perturbation z to the input x, and design an adversarial example
x* = x + z that results in miss-classification error C(x*) # C(x),
for some classifier C. In [2, 13, 45], the same idea is applied to
self-driving vehicles, where the attacker’s goal is to fool a DNN
perception model into ‘detecting’ fake objects in front of the vehicle
or removing an existing object, in order to maliciously alter its
driving decisions. Some recent works also consider adversarial
machine learning beyond the image domain [9, 29, 52]. For example,
[29] studies vulnerability of machine learning models applied in
CPS by proposing methods for generating adversarial examples
that satisfy some physical constraints.

However, the common assumption among such approaches (e.g.,
[3, 4, 9, 12, 22, 29, 36, 45, 52]) is that the predicted target only
depends on its input and not internal dynamics - i.e., previous
states; thus, considering bounded perturbation and a single time-
instance (i.e., without longitudinal effects) was sufficient in those
cases. On the other hand, to address requirements of attacking a
system with internal dynamics, in this work, we show that we
have to consider attack models whose output should also depend on
the previous outputs (i.e., previous state). In addition, unlike in the
aforementioned works, due to the CPS control perspective, both
input and outputs belong to a continuous space.

From the control perspective, it was shown that deep reinforce-
ment learning models are susceptible to adversarial examples [14,
30, 49]. Since the mapping between the observation to actions is
achieved by a DNN, the idea has been to add small (i.e., bounded)
perturbations on observations to alter the actions in a way that
minimizes the expected cumulative reward function, even driving
the system to unsafe states [49]. On the other hand, in this work,
we show that due to the stealthiness constraint, the time series for
an effective additive attacks (on sensor measurements) cannot be
bounded; rather, the injected attack signal over time should comply
with a certain underlying unstable dynamics that depends on the
dynamics of the controlled physical process.

260

Finally, significant efforts focused on model-based (i.e., using
more traditional control techniques) design of effective stealthy
attacks on CPS controllers [17, 18, 24, 31, 43, 44, 47, 50], including
replay [34], covert [43], zero dynamic [47] and false data injection
attacks [50]. However, these methods can be used only for LTI dy-
namical systems, and thus have limited applicability in practice. For
example, [42] designs stealthy sensing attacks on autonomous vehi-
cles. However, the work effectively employs a standard LTI-based
attack design where the attack vector is obtained using evolution of
the system’s linearized model around the equilibrium point. In this
work, we show that, as expected, such LTI-based attack designs
are only effective in a small neighborhood around the equilibrium
point where the linear approximation is valid. As the states move
further away from the equilibrium point, the error of the linear
approximation significantly increases, resulting in attack detection.

Some recent works have also studied learning-based attack de-
sign for control systems [20, 41]. However, they assume the system
has an LTI dynamical model as opposed to this work where we
design stealthy impactful attacks for general nonlinear systems.
To the best of our knowledge, this is the first study focused on
design of stealthy attack signals — potentially unbounded (in size)
vector time-series — that degrade QoC performance of control sys-
tems with general nonlinear dynamics, and for which only limited
knowledge of the physical model is available.

Notation. We use R to denote the set of real numbers, and P and
E denote the probability and expectation for a random variable.
For a matrix A, AT denotes its transpose and for a square matrix,
trace(A) denotes its trace. In addition, I is the identity matrix in
general, while I, is the identity matrix with dimension p X p. Matrix
A € R™" js positive semidefinite (denoted by A = 0) if xT Ax > 0
holds for all x € R™. For a vector x € R", ||x|| is the p-norm of x;
when p is not specified, the 2-norm is implied. Also, supp(x) denotes
the indices of the nonzero elements of x € R"” - i.e., supp(x) =
{i|ie€ {1,..,n},x; # 0}. Finally, a function h : R" — R? is L-
Lipschitz if for any x, y € R™ it holds that ||h(x) —h(y)|| < L||x—yl|.

2 SYSTEM AND ATTACK MODELS

In this section, we formalize the problem considered in this work.
We start from the security-aware system model (i.e., including the
attack impact) illustrated in Fig. 1, with each component described
in detail as follows.

2.1 System Model

We consider general nonlinear dynamics of a physical system (i.e.,
plant) compromised by attacks on system sensing, modeled as

xee1 = f(xp,ug) +we, M
Y = Yyr +ar = h(x) +or +ar.

Here, x; € R" and u; € R™ denote the plant’s state and input
vectors at time ¢, whereas the output vector received by the con-
troller y§ € R? contains the measurements from p sensors from the
set S = {s1, ..., Sp}, including compromised measurements provided
by sensors from the set K; C S; a;r € R denotes the attack signal
injected at time ¢, and thus the vector is sparse with support in K,



Stealthy Attack
Generator

Sensing/Network'
Feedback
Controller =
State Estimator
Intrusion
Detector

Controller Unit

Alarm!

Figure 1: CPS architecture under attacks on system sensing;
the considered general attack model captures the impact of
both network-based attacks (e.g., man-in-the-middle attacks)
and direct sensor attacks (e.g., sensor spoofing).

- ie., supp(a;) = Ky and az; = 0 fori € 7(5.1 The observation
function h : R" — RP is assumed to be L-Lipschitz. Finally, w; and
vy are the state and measurement noise, respectfully.

In a special case, if the plant (1) is linear time-invariant (LTI), we
use f(xs,ur) = Axt + Buy and h(x;) = Cx;, where A, B and C are
matrices of suitable dimensions.

Control Architecture. We consider a common control architec-
ture, with three main components (as illustrated in Fig. 1): a state
estimator, a feedback controller, and an anomaly detector.

The State Estimator (observer) employs the system model to
predict its (state) evolution, and thus provide an estimate x; of its
state at time t; in general, this can be captured as

O¢ = h(%y). )

The mapping O; is commonly designed so that (2) minimizes a
norm of the estimation error defined as

X = Op(X¢-1, Ur-1, Y1),

®)

Depending on the system model and statistical characteristics of
the noise, different estimation methods may be employed. Kalman
filters are widely used for LTI systems, whereas Extended Kalman
filters (EKFs) are mainly utilized for nonlinear systems with Gauss-
ian noise, e.g., the autonomous driving and UAV applications con-
sidered in this work. Thus, we particularly focus on EKFs. The EKF
functionality for a system (1) is described by

Axt =Xt — Jz't.

Rp1p-1 = fRe-r,ue-1)s X = Ko + Le(Ye = h(Ry)p-1)), Gt = h(%);

here, £;|;_1, X and §j; denote the predicted state estimate, (updated)
state estimate, and predicted output, respectively. The EKF gain L;
is also updated as

L, = AP.Cl(C,P,CT +R) 7Y,

4)
Pry1 = ArPeAT + Q — L (CrPCT + R)L],
where A; = af(ax—x‘;’ut)utihut and C; = a}é(x)i’) %y, ATE the Taylor

expansion of f and h around (%¢-1, u;) and %;|;_1, respectively. Also,
Q and R are the covariance matrices of the Gaussian noises w; and

!We refer to sensors from K, as compromised, even if a sensor itself is not directly
compromised but its measurements may be altered due to e.g., network-based attacks.

261

vy, respectively. Finally, the residue signal (or innovation noise) is
defined as

®)

2t =Yt — h(fct\tfl)‘
For systems with Gaussian noise, its covariance matrix is Sy
E{Ztlz} = CtPtCZ +R; [16]

The Feedback Controller employs the control law u; = 7(%;);
without loss of generality, we assume the control goal is to regulate
the states to 0 € R™. Hence, the estimator (2) can be modeled as

(6)

The Anomaly Detector (AD) is used to detect the presence of
system anomalies, including intrusions (i.e., attacks). The standard
approach is to use the system model to predict the future system
behavior and compare it with the actual observation (e.g., see [11]
and the references within); capturing the discrepancy between the
system and its predicted behavior with a detection function g;.

In feedback-control based CPS, the residue (5) is widely used
for anomaly detection — )(2 detector in [35, 50], cumulative sum
in [48], sequential probability ratio test (SPRT) detector in [25], and
a general window-type detector in [15]. For instance, for y>-based
detectors, the detection function g; is a weighted norm of z; (with
the )(2 distribution) - i.e.,

. N . A A o
Xt = Op(RXp—1, m(Zr-1), yt) = Or (X1, yz).

™)

the other detectors (e.g., from [15, 23-25, 32, 33, 35, 48, 50]) use
some forms of a windowed extension of (7). Therefore, to simplify
our presentation, we focus on the detection function g; from (7),
and our results can be directly extended to other cases.

Finally, the system triggers alarm if the detection function satis-
fies that g; > 7, for some predefined threshold value 7. Usually the
value 7 is assigned such that under normal conditions (i.e., when
the system is not compromised) it holds that P(g; > 1) < € —ie,
the system has a low false alarm rate.

Tc-1
9t =2 S; 713

2.2 Attack Model

We assume that the attacker has access to the system (or an instance
or the model of the system) offline, allowing offline design of a suit-
able attack generator, which is then employed at runtime to degrade
system operation by compromising the sensing measurements.

Attacker capabilities during offline training. Let T be the duration
of the training phase; we define Xt|t_1 = {Xo)=15 %1105 =+ Xe |11
Y: = {yo,...yr} and Ly = {Ly, ..., L+ } as the sequences of the pre-
dicted states, plant outputs, and EKF gains for t > 0, with t = 0
denoting the time starting the training phase. We assume that the
attacker has access to the EKF values over time (either directly, or
knowing the EKF design and running a copy of the EKF in parallel)
— i.e, has access to XT|T—15 L, Y7 and the function h; specifically,
the attacker does not need to know the actual function h, but rather
its potential approximation used in (2) to implement the state esti-
mator. Meanwhile, for 0 < ¢t < T, the attacker can compromise the
sensor measurements according to the model from (1).2

’In general, the training (i.e., offline) time is different than the run-time ¢, as offline
training and runtime-deployment are performed on different instances of the system (1).
However, to simplify our notation we do not differentiate between these time axes,
unless the use of specific time (offline vs. runtime) is not clear from the context.



Attacker capabilities at runtime — i.e., during attack. Let to denote
the start time of the attack, modeled as in (1), and T’ its duration.
Again, we assume that the attacker has access to the sensor mea-
surements y;. In addition, we will consider two attack scenarios:
when the attacker (i) does (i.e., grey-box), or (ii) does not (i.e.,
black-box) have access to the state estimation X;—; in the previous
time step; the latter threat model is especially impactful, as it as-
sumes that the attacker does not have access to the internal controller
variables at runtime, but only measurements from the (compromised)
system sensors.

Attacker’s goal. is to maximize degradation of control performance
—i.e., QoC. Specifically, as only sensor data may be compromised,
the attack objective is to maximize the state estimation error Ax;.
In addition, the attacker wants to remain stealthy — i.e., undetected
by the anomaly detector. These notions are formalized as follows.

DEFINITION 1. The sequence of attack vectors az,, gy+1, ... is re-
ferred to as (e, a)-successful if there exists tg < t' < T’ +ty such that
|Axy|| > a andP(g; > n) < € foralltg <t < T' +1p.3

Therefore, the attacker’s goal is to insert a sequence of false
data measurements ay, ..., a4+ resulting in an (€, ar)-successful
attack. Note that while Definition 1 focuses on attacks that result
in a desired norm of the estimation error (i.e., greater than «), for
some systems, attacks may cause arbitrarily large estimation er-
rors [15, 24, 50]. For LTI systems with (standard) Kalman filters, the
notion of (e, @)-successful attacks was first introduced in [50]. Also,
for LTI systems necessary and sufficient conditions such that (e, @)-
successful attacks exist for any a > 0 are introduced in [15, 24, 50],
along with methods to derive such attacks. However, to the best of
our knowledge, there is no method for vulnerability analysis of non-
linear systems from (1) under sensor-based attacks; i.e., the impact
that such attacks would have on the estimation error, and thus QoC.

3 ADVERSARIAL LEARNING FOR
NONLINEAR DYNAMICAL SYSTEMS

In this section, we present methods to design attack-generators for
stealthy and effective sensing attacks. Before considering general
nonlinear dynamics, we motivate the considered approaches by
considering attacks on LTI systems; we start with design of (e, @)-
successful attacks against LTI systems with standard Kalman filters.

LEMMA 1 ([15, 24, 50]). For an LTI system with a Kalman filter-
based estimator, there exist (€, a)-successful attacks for any desired
a > 0 if and only if the matrix A is unstable and at least one
eigenvector v corresponding to an unstable eigenvalue satisfies that

supp(Co) € K.

Note that A being unstable is a necessary condition for existence
of (e, ar)-successful attack for arbitrarily large a, in LTI systems
with Kalman filters. However, if all sensors are under attack (i.e.,
Ka = S), this is also a sufficient condition. A similar necessary and
sufficient condition only for LTI systems with bounded noise that
employ novel attack-resilient estimators (e.g., from [8, 38, 39]) is
derived in [19]. Now, we show how to use only the current state

3Note that any p-norm can be used. In this work, when p is not specified, the use of
the standard 2-norm is implied.

262

estimation Xy, the plant output y; and input u;_; to compute such
attack sequence on LTI systems for arbitrarily large a.

THEOREM 1. Consider an LTI system with unstable matrix A, and
let ¢; denote a Gaussian noise vector satisfying E{¢;} = 0 and
E{(ﬁttﬁtT} < S. The attack sequence generated by a; = —y; +CBuy_1+
CARt_1 + ¢y, fort > 0, is an (€, a)-successful attack for any o > 0.

Proof of the theorem is available in Appendix 6.1.

Unlike in design of adversarial examples for images (e.g., [12,
40, 46, 51]), Theorem 1 shows that for LTI dynamical systems, an
effective and stealthy attack sequence has to evolve over time (i.e.,
following suitable dynamics). This is well aligned with stealthy
attack design methods from [24, 50] that do not directly analyze the
attack impact on the LTI system but rather consider a dynamical
system capturing the difference between the evolutions of the non-
attacked and compromised systems.

The fact that effective stealthy attacks should follow certain dy-
namics (i.e., evolve over time) inspires us to use a similar structure
for generating effective stealthy attacks against system with non-
linear dynamics. Specifically, we consider attacks with dynamics
ar = F(Xt-1,y:) (note that y; and x;—1 are both functions of a;—1),
with the idea to use a DNN to learn F. However, the attacker might
not always have access to x;—; during the attack; for example, if
(s)he used an instance of the system to train the generator, and then
uses the derived attack signals to insert attacks over the network
without access to the internal execution context of the new system
(instance) under attack.

Thus, we will consider both cases where information x;—1 is
(i) available to the attacker at runtime, and (ii) when it is not. For
the latter, the idea is to replace x; with another signal r; that is
directly constructed by the attacker. We now summarize our models
to design (e, ar)-successful attack generators for nonlinear systems.

FNN-based attack design. When X;_1 is available to the at-
tacker, we design an FNN that uses the current output measure-
ments and the last state estimation to generate the next attack vector
(for current time) - i.e.,

®)

where Hy is a deep FNN with parameters 6, input dimension of
n + p and output dimension p.

ar = Hyp(yr, Xt-1),

RNN-based attack design. When x;_ is not available to the at-
tacker, we consider an RNN architecture, that uses only the current
sensor measurements for attack design as follows

re = Go(yr, rt-1),
ar = Wrt;

©)

here, Gy is the state update function implemented as an RNN pa-
rameterized by 6, while W € R'*® is a linear mapping from the
state r; to the attack vector a;. Intuitively, r; € R! and Gg should
allow for capturing of the evolution of X;, to create a dynamical
pattern for the sequence of attack vectors in the RNN design (9).

Model training. To capture the attack impact on the estima-
tion error Ax; from (3), the first challenge is that the actual true
system state x; is not available to the attacker; instead, only sen-
sor measurements y; are known. We show that under some mild
assumptions, the sensor measurements can be directly used.



Learning-Based Vulnerability Analysis of
Cyber-Physical Systems

TueoreM 2. Consider the system (1). If the function h : R" — RP
is Lipschitz with constant L, then ||y; —h(%;)|| > a implies ||x;—%¢|| >

2 ‘Fk with probability 1- 7 P foranyk such thatk < & o andR < ol;
here, R is the covariance matrices of the Gaussian measurement noise
vy, I is the identity matrix, and o is a positive scalar.

Proof of Theorem 2 is provided in Appendix 6.2.

We use a; = Fg(y:, si—1) to capture the attack vectors generated
by either (8) or (9); here, s; indicates either r; or x;. Our goal is
to train the parameters in (8) and (9) so that the networks act as
generators of (e, a)-successful attacks. To achieve this, we use the
following approach.

Starting offline training at time ¢ = 0, we seek for ag that maxi-
mizes E||x — %o||? with £y = O(%_1, yg) and yg = yo + ao; here, the
expected value operation E{-} is over random variables w and v. As
the true state x is not available, from Theorem 2, we can maximize
Ellyo — h(%0)||? instead. Also, the generated attack should satisfy
the stealthiness condition P(gy > 1) < €, with go defined in (7) for
20 = y§ — fo; for x?-based ADs, it holds that g = h(%o|-1)- Thus,
the following optimization problem should be solved at time ¢ = 0

max Ellyo — h(%o)
st.P(go >n) <e
ap = F@(yo,sfl).

As this constrained optimization problem is challenging to solve, we
penalize the norm of the residue signal and incorporate a new term
in our objective function, resulting in the optimization problem:

mén]E{go = d|lyo — h(%0)]1%}

ao = Fo(yo,5-1);

(10)

here, § > 0 is a standard regularization term balancing the stealthi-
ness condition and performance degradation caused by the estima-
tion error.

Let us denote the parameters obtained from (10) as 09 Now, the
attack vector ap = Fg(o) (Yo, So) applied to the sensor measurements
at time ¢t = 0, would results in state estimate £y = O(%_1, yg). In
the next (offline) time step (¢ = 1), we search for parameters such
that E{g; — d||ly1 — h(%1)||?} is minimized. However, in this case
the parameters will only be trained to minimize the cost function
at time t = 1 and thus will disregard minimization of the cost
function in the previous time step. Hence, the cost function from
the previous time step should be also included - i.e., the objective
function to be minimized at time ¢ = 1 should be be

B{go + grgr1 = 8 (Ilyo = h(Eo)II> + llys = hE0)I1)).

This approach should continue for the following (offline) time
steps. Generally, if we consider that the training starts at ¢ = 0, for
any ¢t > 0 there should be an instantaneous cost function defined by
Jr = g: — O|lyr — h(%;)||. Therefore, the offline optimization problem
that is solved at time step t is

. t-1
minE{J + 4 )~ Jj}

ar = Fe(yt, St—1)-

(11)

Again, A; > 0 are regularization terms to control the incorporation
of previous cost functions. If A; = 1, we effectively penalize all

263

ICCPS’22, May 2022, Milan, Italy

Algorithm 1 Learning Stealthy and Effective FNN-based Attack-
Generator Models, using MC Simulation

1: Set the learning rate f, training period T, sample number N
2 fort=0:Tdo

3 N f(xt 1 u,” 1)+wt 1 ytN h(xlN)+v N

4 ”}ﬁvl = FGEAN )

5: repeat

6 J; = ﬁzi{ (A 2420 TE+ J)) with 5t = yEN
H@( 1yj )

7: 0 — 0 — gy,

8 until Convergence

9: N H@([)( l’yjN) yclN y1N+a1N

10: *}N— *tl‘ftVl+L1N(y51N h@EEN D) upN = m(&EN)

previous and current instantaneous costs equally. For smaller values
of A, the cost function at time ¢ will be approximately J;; i.e., we can
do more exploration by only minimizing the cost at time t. However,
increasing A; helps exploit more by giving more importance to the
previous cost functions.

Training Algorithm. In our proposed algorithms, we use Monte
Carlo (MC) averaging to approximate the expectation in the cost
function (11) by the sample mean over N number of simulated
trajectories starting at time ¢ = 0. Specifically, the i-th,i = 1,..., N,
trajectory at time ¢ is obtained by

=fEpuyy).

The cost that the trajectory i at time ¢ imposes is ]ti = gi -
5||y§ - h()%t')||. However, at time step ¢ the DNN is trained such
that J/ = % Zﬁl (e Z;;(l) ]} + J}) is minimized, where J/ is the
approximated expectation of cost function in (11). Finally, once
the model parameters are obtained at time ¢, the attack vector
ai = Fg (yﬁ,si_l) is applied to the system output yi, and the
process is repeated until the training completes.

When the EKF is used, Algorithm 1 captures pseudocode for
learning the FNN-based stealthy attack generator, and Algorithm 2
summarizes pseudocode to learn the RNN-based attack generators.

xp = f_pu_)+wi_y, Y = h(xp)+og, fc;\t—l

4 CASE STUDIES

We illustrate and thoroughly evaluate our attack-design framework
on three case studies, inverted pendulum, autonomous driving
vehicles (ADVs) and unmanned aerial vehicles (UAVs), with varying
level of complexity due to system dynamics. For all case studies, the
workstation used for training is powered by Nvidia RTX 6000 GPUs
with 24 GB of memory each, two Intel Xeon Silver 4208 CPUs with
16 cores each, and a total of 192 GB RAM. The code was developed
using Python and Pytorch deep learning libraries.

4.1 Inverted Pendulum

To illustrate the effectiveness of our algorithm compared to the
LTI-based methods from [15, 50], we first considered a fixed-base in-
verted pendulum. We used the nonlinear dynamical model from [10].
Two sensors were used to measure the states of the system, 6 and
6, where 0 was the angle of pendulum rod from the vertical axis



Algorithm 2 Learning Stealthy and Effective RNN-based Attack
Generator Models, using MC Simulation

1: Set the learning rate f, training period T, sample number N
2 fort=0:T do
3 xfN = N ulN) +w
le h(xlN)+UlN
1 N _
Xt]e-1 =f& - 1’ )
repeat
= w2
WG@(V] 1° yjl N)

1N
t—1

().th (1)]1 +Jt) with yCIN = y]l.‘N +

8 0() — o) — v,/
9 w® — w® — vy, !
10: until Convergence
11: —Ge(,)(rt 1’ yt )
12: lN W(l‘) 1N
13: yle —y;’ +a}N
LN Z p1N 1:N (, c1:N
14: X =R 1+L (y h(xt|t 1))
15: u}:N = ﬁ(x[ N)

Table 1: Attack success rate (SR) for different training du-
ration T with N = 200, A = .5 and varying « and 0 over 100
inverted pendulum experiments; FNN/RNN denote FNN vs.
RNN success rates.

FNE;;IN =5la=1|a=2|a=4|a=80]=Z||o| = Zl6] = Z|16] = Z||8| = =
T =50 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
T =80 [100/99| 26/67 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
T =100 |100/100{100/100/100/78| 0/3 0/0 100/81 0/9 0/0 0/0 0/0
T = 120 |100/100{100/100/100/100{100/100, 0/0 {100/100|100/100| 100/99 | 0/52 0/0
T = 150 |100/100{100/100/100/100{100/100| 89/97 {100/100|100/100|100/100{100/100| 50/58
T =170 |100/100{100/100{100/100{100/100{100/100| 100/100|100/100|100/100{100/100{100/100

SR %
LTI Model 100 100 100 10 0 100 14 0 0 0

Table 2: Attack success rate (SR) for different values of N
with T = 150, A = .5 and different values of « and 6 over
100 experiments for the inverted pendulum. The FNN/RNN
numbers denote FNN vs. RNN success rate values.

FN?\I%I‘:;INa:.S a=1|a=2|a=4|a=80]=Z|0|= Z|6| = Z||6| = Z|l] = =
N=1 35/4 35/2 35/1 35/1 10/0 35/1 35/1 35/1 35/0 0/0
N =10 [100/19|100/10| 100/4 | 100/2 | 45/1 100/4 | 100/2 100/1 100/1 0/0
N =50 [100/74|100/66 |100/56 | 100/38| 100/4 | 100/56 | 100/39 | 100/32 | 100/9 0/0
N =100{100/96|100/96|100/96 | 100/95| 90/64 | 100/96 | 100/96 | 100/95 | 100/90 | 15/1
N =250 [100/100{100/100{100/100/100/100 95/97 |100/100{100/100|100/100{100/100| 94/95
N =500 [100/100{100/100{100/100{100/100{100/100/100/100|100/100|100/100|100/100| 100/99

measured counterclockwise. The threshold  was set to have € = .01
(i.e., on average, every one hundred time steps a false alarm occurs).
A feedback controller was used to keep the pendulum inverted
around 6 = 0 equilibrium point.

264

Table 3: Attack success rate (SR) for different values of A
with T = 100, N = 200 and different values of « and 6 over
100 experiments for the inverted pendulum. The FNN/RNN
numbers denote FNN vs RNN success rate values.

FN;%;;INOI:.S a=1|a=2|u=da=8)0| = Z0| = Z|j0| = Z|jg| = =
A=.01 [100/12| 100/2 | 100/1 |[50/1| 0/0 | 100/1 50/1 0/0 0/0
A =.05 [100/98|100/97|100/90|58/0| 0/0 | 100/92| 53/0 0/0 0/0
A=.1 |100/98|100/97|100/91(73/38| 0/0 | 100/93 | 55/45 0/8 0/0
A=1 [100/100[100/100{ 100/70(97/59| 0/0 | 100/75 | 100/60 | 54/3 0/0
A =5 [100/100[100/100{100/100/70/67| 0/0 |100/100| 90/78 | 10/27 0/0
A =100 [100/100|100/64|100/42|0/12| 0/0 | 100/43| 1/16 0/0 0/0

Table 4: Attack success rate (SR) for different values of train-
ing duration T with N = 200, A = .5 and different values of «
and y over 100 experiments for the ADV.

SR %
FNN/RNN lyl=-2|lyl=1|lyl =2|lyl =4|lyl=6|lyl =8|yl = 10||y| = 14
T =100 |100/100| 0/0 0/0 0/0 0/0 0/0 0/0 0/0
T =200 |100/100 | 98/100 | 16/0 | 0/0 0/0 0/0 0/0 0/0
T =300 |100/100 |100/100|100/100 | 32/100 | 0/0 0/0 0/0 0/0
T =500 |100/100 |100/100{100/100 | 100/99 | 100/99 | 50/96 | 23/96 0/0
T =700 |100/100 [100/100|100/100|100/100|100/100|100/100| 100/100 99/82

First, we trained both FNN and RNN models with N = 200 MC
samples, A = .5 and different values of training period T when
both sensors are compromises. Table 1 shows the success rate (in
percentage) of both attack generator models, which were obtained
for each training period T, and for different values of @ and 6. For
example, consider the entry associated with row T = 150 and & = 8.
It shows that 89 percent of times the FNN and 97 percent of times
the RNN model was successful in driving the system to & = 8, with
a being the norm of the state estimation error. This also applies to
the columns shown by |6[; for example, the entry in row T = 150
and column |0| = 7 means that 100 percent of times both FNN and
RNN models were successful in driving the pendulum rod angle to
more than 7 degrees.

As summarized in Table 1, when trained with T = 50, neither
of the learned models were successful for any values of a and 6.
However, by increasing the training duration T, the performance of
both designed attack generator models improved. Specifically, for
T = 170 both learned models were able to drive the pendulum rod
to fall without being detected. Also, only for shorter training dura-
tions T, RNN slightly outperformed FNN, since the RNN was better
than FNN in capturing the optimal non-linear attack dynamics in
parts of the state-space not explored during the training.

We also generated stealthy attacks on both sensors using the
model-based LTI method from [15, 24, 50] that employs the lin-
earized model of the system dynamics around the zero equilibrium
point. Attacks generated using the LTI model were only successful
for smaller errors — i.e., « < 4 and 0 < % This shows that the
LTI-based attacks are only effective around the equilibrium
point, where the linearization error is small.



Table 5: Attack success rate (SR) for different values of N with
T =300, A = .5 and different values of y over 100 experiments
for the ADV; FNN/RNN denote FNN vs. RNN SRs.

| 191= {191 = 6 191 = 8191 = 1.2 191 = 15| 1yl = 2] 151 = 3| Iyl = ¢
N=1 100/53 75/3 75/1 75/0 73/0 0/0 0/0 0/0
N =10 | 100/50 | 100/41 | 100/32 | 100/18 100/12 0/6 0/1 0/0
N =50 | 100/99 | 100/99 | 100/99 | 100/99 100/99 | 100/99 | 0/57 0/0
N =100 |100/100 | 100/100 | 100/100 | 100/100 | 100/100 |[100/100| 21/100 | 0/0
N =500 |100/100 | 100/100 | 100/100 | 100/100 | 100/100 |100/100| 50/100 | 0/100

Table 2 shows the effect of the MC sample number on the per-
formance of the learned attack-generators for a fixed T = 150. For
smaller values of N, FNN performed better; however, when both
models had enough data (e.g., N > 250), both worked equally well.
Similarly, Table 3 shows how different values of A in training phase
affect the attack model performance. For smaller values of A, the
obtained RNN worked poorly because the data in previous time
steps were important to train the model, and accurately capture
the desired attack dynamics. On the other hand, the learned FNN
generator performed worse for very large values of A.

4.2 Autonomous Driving Vehicles

4.2.1
ear dynamical model of ADV from [21], with four states [x y ¢ 0] T
here, x and y represent the position of the center of mass in x and y
axis, respectively, ¢ is the inertial heading, and v is the velocity of
the vehicle. The states x, y, ¥ were measured using noisy sensors,
with zero-mean noise with covariance matrix R = .01I. The system
noise was zero-mean, with covariance Q = .001/ and we set the
threshold 7 to achieve € = .01.

We considered scenario where the car had a constant speed of
25m/s, with a feedback controller keeping the car between the lanes.
We trained offline the FNN and RNN models for generating effective
stealthy attacks. The network Hy was fully connected with 20
neurons and the ReLU activation function, whereas Gy was an RNN
with one layer and 20 neurons, and the ReLU activation function.

First, we trained both models with N = 200 MC samples, A = .5
and different duration of training period T'; we attacked only sensors
that measure y and ¢ (i.e., not all of the sensors were compromised).
Table 4 shows the success rate (in %) for both learned attack models
for each training period T and different values of & and |y|, the car’s
distance from the center of the lane. As summarized, increasing the
attack training duration helps learn attack generators that can drive
the system towards the unsafe region (i.e., increasing |y|).

We also analyzed the impact of N, the MC sampling number
during training, on attack performance (Table 5); we showed that
using N > 100 in training is sufficient. Specifically, for smaller val-
ues of N, the learned FNN-based generator outperformed the RNN
model. However, as N increased both models performed equally
good, and even RNN performed slightly better.

Figure 2(a) shows the trajectory of the car. Before starting the
attack at the location X = 75m, the car (blue line) was kept between
the lanes and the estimated trajectory (green line) had a very small
estimation error. However, using either attacks derived by the FNN

Generic Vehicle Model. We first considered a simple nonlin-

265

or RNN-based attack generators, the car was being pushed off the
road while the estimated position showed that the car was still in
the road between the lanes. Furthermore, the attacks were stealthy
— the AD could not detect the presence of either of the attacks.
Figure 2(b),(c) show the estimation error along the X and Y axis for
these scenarios.

4.2.2  Autonomous Driving Simulator: Evaluating on CARLA. To
evaluate our methodology on complex, realistic systems, for which
we do not know the model of the non-linear vehicle dynamics, we
used ADV scenarios in vehicle simulator CARLA [6]. CARLA is an
urban driving simulator built on Unreal Engine 4, and providing
realistic physics and sensor models in complex urban environments
with static and dynamic actors. We defined a planning-navigation-
control loop that drove the autonomous vehicle, leveraging the EKF
structure for y? anomaly detector; CARLA setup details are pre-
sented in Appendix 6.3 and the videos of our CARLA experiments
are available at [5].

We evaluated our FNN and RNN attack-generators for perfor-
mance and generalizability, and compared to the nominal case with-
out attacks. We demonstrated how both FNN and RNN-based attack
generators were able to drive the vehicle into unsafe situations (e.g.,
crashes into other cars or static objects) over short times, while
remaining undetected. We highlight here the results when not all of
the sensors were compromised (i.e., Kz # S) — i.e., when the FNN and
RNN-based attack generators were only able to attack GNSS position
measurements and to only have knowledge of positions states (i.e.,
no knowledge of velocity or heading). Despite these restrictions,
both attack generators produced stealthy attacks that significantly
moved the vehicle off-course (e.g., resulting in collisions - see
videos at [5]).

Additionally, we demonstrated the attack generalizability twofold.
First, we trained the FNN and RNN-based models offline on a simple
path (i.e., not the testing path). We then tested those same models on
the full CARLA environment and paths. Second, we demonstrated
the proof-of-concept that the learned attack generator models were
robust to changes in rates of sensor data by training at 100 Hz
measurements and testing at 120 Hz measurements, and retaining
attack stealthiness and effectiveness.

Figure 3 presents some of the results. Specifically, Figure 3(d)
shows the path and residue values when the sensors were not
under attack. Figure 3(e) and Figure 3(f) show the path and the
residue signal values of the compromised car when the FNN and
RNN-based generators were used to create inserted attack signals.
The endpoint of the path is when the car hits an object and stops
moving — the residue signal has a spike only when the car hits the
object (due to the collision); by this point it was too late for any
recovery/avoidance action.

4.3 Unmanned Aerial Vehicles

Finally, we considered a quadrotor with complex highly nonlinear
model from [1] that has 12 states [x, Y,z ¥, 0, %17, 2, tﬁ 6, gﬁ]T;
x,y and z represent the quadrotor position along the X, Y and Z axis,
respectively, while x,  and z are their velocity. ¢, 6 and ¢ are yaw,
pitch and roll angles respectively, and i/, § and ¢ represent their
corresponding angular velocity. The system was discretized using



104 — The actual position (FNN) 10 = The distance of the car with line center (FNN) 104 = The distance of the car with line center (RNN)
—— The estimated position (FNN) _ _
T 2 5
e —— e —_ — — o ¢ 2 5
_ 10 | Direction of the Cor — \C\
10 P P
0 T T T T T 0 T T T T ™ T T T
o 25 50 75 100 125 150 175 200 225 0 2 4 6 8 0 2 4 6 8 10 12 14
0.100 0.100
104 — The actual position (RNN) —— The norm of Residue signal (FNN) —— The norm of Residue signal (RNN)
—— The estimated position (RNN) / 0.075 4 0.075 4
E / 0.050 4 0.050 4
PR — — —_— — —
0.025 A 0.025 4
Direction of the Car s—p
-10 ™ ™ T ™ T T T 0.000 0.000 ™ T
[ 50 100 150 200 250 300 350 o 2 4 6 8 0 2 4 6 8 10 12 14
X(m) Time (s) Time (s)

Figure 2: (a) The trajectory of the compromised car (green - the estimated, and the red - the actual vehicle position; the red dot
shows the place where the attack started, the black dots show the actual and estimated position of the car at the same time).
(b,c) The above sub-figures show the distance of the car with the center of the lane; the bellow sub-figures illustrate the norm
of residue signal before and after the start time of attack ¢ = 3s (the blue dots) for each of the FNN and RNN-based generators.

Residue Residue

pos_2d_xy Sensor vel_2d_xy Sensor Resi . Residue Residue
0.30 esidue Residue 2d %y S | 2d xy S,
pos_2d_xy Sensor vel_2d_xy Sensor POS_£C. Xy Sensar Vel € Xy ~ensor
0.25 8 4
7 Spike due to crash
020 5 3 Spike due to cragh
3 : 3 g
i E & &
& &

w
-

0.05 5
L - .
0.00 1 0
[) 20 40 [ 20 40 0 . 0 20 40 o 20 40
Time (s) Time (s) 0 10 20 30 4o 6 10 20 30 40 Time (s} Time (s)
Vehicle Path Time (s) Time (s) Vehicle Path
o - o] *  — mun
0 0 J \ Estimated Path
w Z°i | ® San
20 il ® End
E® |
20 > & | Attack Start E
L > wl Attack Start
= & "
£ T —_— 100 ==,
= 0
80 T50 R T0 130 120 STI0 IO B0 B 120 | TSA .
100 Crash — 7m error 101 1'4u77- - r— - -
120
4—/ Crash—6merror_,
140

-150 -140 -130 -120 -110 -100 =-90 ~-80
X (m)

Figure 3: Example results from evaluations on CARLA scenarios: (a) CARLA simulation when the car is free of attack;
(b,c) The vehicle collisions with off-road objects due to the injecting sensor attacks using the FNN and RNN-based attack
generators, respectively; (d) The vehicle trajectory without attack and the residue signals for both velocity and position sensors;
(e,f) The trajectory when the position sensors are compromised using the FNN and RNN-based methods, respectively, and the
corresponding residue signals (note different y—axes scaling on subfigures (d)-(f).

. . . . T
Euler method with Ty = .01s. The states [x, . z, ¥, 0, ¢, 0. ] obtained € = .01. We considered the position control task [1], where

were measured and were affected by zero-mean Gaussian noise with the drone should reach a predefined height (10m) and stay there —
the covariance matrix R = .011. We assumed standard disturbance i.e. stay at coordinates X = 0, Y = 0 and Z = 10 if the initial point
on the input modeled by system noise with zero mean Gaussian was denoted as (0, 0,0). UAV control for this task was based on a
with the covariance matrix Q = .0011. We also set 7 such that we standard feedback-based controller.

266



Table 6: Attack success rate (SR) for different values of T with
N =300, A = .5 and different values of a over 100 experiments
for the UAV.

SR %
FNN/RNN =2|la=5|a=7|a=1|a=3|la=5|la=7|la=9
T =100 |100/100| 100/87 | 89/49 0/6 0/0 | 0/0 | 0/0 | 0/0
T =200 |100/100| 95/58 | 65/53 32/7 0/0 | 0/0 | 0/0 | 0/0
T =400 |100/100|100/100|100/100| 67/100 | 0/21 | 0/0 | 0/0 | 0/0
T =600 |100/100|100/100|100/100|100/100|80/63| 4/9 | 0/0 | 0/0
T =800 |100/100| 100/93 | 100/91 | 100/91 | 99/83 | 86/68 | 69/57 | 53/43
SR %
LTI Model 100 62 0 0 0 0 0 0

Table 7: Attack success rate (SR) for different values of T with
N =300, A = .5 and different values of x along X axis over 100
experiments for the UAV.

SR % |x] =.2]|x| = 4||x| =.6||x| = .8||x| =1||x| = 1.5||x]| =3||x| =4
FNN/RNN
T =100 | 93/50 1/2 0/0 0/0 0/0 0/0 0/0 0/0
T =200 47/5 17/0 5/0 1/0 0/0 0/0 0/0 0/0
T =400 | 100/57 | 44/14 0/5 0/0 0/0 0/0 0/0 0/0
T =600 | 83/78 66/24 50/4 37/2 30/1 13/0 0/0 0/0
T =800 | 97/77 90/36 85/22 75/13 | 68/10 51/1 0/0 0/0

Gy used for synthesizing the stealthy attack was a 2-layer RNN
with ReLU activation function and 55 neurons per layer. Hg was
also a 2-layer FNN with ReLU activation function and 55 neuron for
each layer. First, we trained both models with N = 300 MC samples,
6 = .2, A = .5 and different values of training period T. We also
considered the case where all sensor are under attack.

Tables 6-9 (due to space constraints, Tables 8 and 9 are in Ap-
pendix 6.4) show the success rate (in %) for both learned attack
generators obtained for each training period T and different values
of a, |x|, |y| and |z| (i.e., the drone’s distance from the desired posi-
tion along each axis). As summarized, increasing the attack training
duration helps learn effective stealthy attack generators capable
of driving the system towards the unsafe region (i.e., increasing
|x|, |y| and |z|). Furthermore, for suitably large training periods T,
on average the learned FNN-based attack generators outperforms
the RNN-based attack generators. Moreover, we evaluated the ef-
fectiveness of the LTI-based attacks (i.e., which linearize the UAV
model) [15, 24, 50]; our results, summarized in the last line in Table 6,
show that the LTI-based attacks are only 62% successful in reaching
a = .2, and unsuccessful for higher values of «, for the same reasons
as in the pendulum study - linearization error becomes too large
for large state deviations, limiting their applicability.

Figure 4(a) illustrates the deviation of the drone from the desired
hovering point over time for a successful attack sequence obtained
from a generator trained with T = 800 and N = 300. The attack
started at t = 0; over time, the drone’s deviation from the desired
position will increase. Figure 4(b) shows the norm of the attack
vector of both FNN and RNN models for three different attack-
generator models trained with T = 200,400 and 600. Note that
unlike adversarial machine learning in other domains (e.g., image

267

classification) where the norm of the attack is limited to be bounded,
the stealthiness condition in CPS requires the norm of the attack
vector to gradually increase over time.

5 CONCLUSION

In this work, we have utilized deep learning to generate stealthy
attacks on control components in cyber-physical systems, focusing
on a widely used architecture where the low-level control employs
the extended Kalman filter and an anomaly detector. We have con-
sidered a grey box setup, with unknown nonlinear plant dynamics
and known observation functions and Kalman filter gains. We have
shown that feedforward and recurrent neural networks (FNN and
RNN, respectively) can be used to generate stealthy adversarial
attacks on sensing information delivered to the system, resulting
in large errors to the estimates of the state of the system without
being detected. Both FNN and RNN are trained offline from a cost
function combining the attack effects on the estimation error and
the residual signal of the EKF; thus, the trained model is capable
of recursively generating such effective sensor attacks in real-time
using only current sensor measurements. The effectiveness of the
proposed methods has been illustrated and evaluated on several
case studies with varying complexity.

REFERENCES

[1] Samir Bouabdallah and Roland Siegwart. 2007. Full control of a quadrotor. In 2007
IEEE/RS] International Conference on Intelligent Robots and Systems. 153-158.
Yulong Cao, Chaowei Xiao, Benjamin Cyr, Yimeng Zhou, Won Park, Sara Ram-
pazzi, Qi Alfred Chen, Kevin Fu, and Z Morley Mao. 2019. Adversarial sensor
attack on lidar-based perception in autonomous driving. In Proceedings of the 2019
ACM SIGSAC conference on computer and communications security. 2267-2281.
Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness of
neural networks. In 2017 IEEE Symposium on Security and Privacy (SP). 39-57.
Francesco Croce and Matthias Hein. 2020. Minimally distorted adversarial exam-
ples with a fast adaptive boundary attack. In International Conference on Machine
Learning. PMLR, 2196-2205.

CSPL@Duke. 2021. Attacks on Autonomous Driving in CARLA. https://cpsl.
pratt.duke.edu/research/security-aware-cps.

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. 2017. CARLA: An open urban driving simulator. In Conference on robot
learning. PMLR, 1-16.

Miimin Tolga Emirler, Ismail Meri¢ Can Uygan, Bilin Aksun Giivenc, and Lev-
ent Giiveng. 2014. Robust PID steering control in Parameter Space for highly
automated driving. International Journal of Vehicular Technology 2014 (2014).
Hamza Fawzi, Paulo Tabuada, and Suhas Diggavi. 2014. Secure estimation and
control for cyber-physical systems under adversarial attacks. IEEE Transactions
on Automatic control 59, 6 (2014), 1454-1467.

Cheng Feng, Tingting Li, Zhanxing Zhu, and Deeph Chana. 2017. A Deep
Learning-Based Framework for Conducting Stealthy Attacks in Industrial Control
Systems. arXiv:1709.06397 [cs] (2017).

AM Formal’skii. 2006. An inverted pendulum on a fixed and a moving base.
Journal of applied mathematics and mechanics 70, 1 (2006), 56—64.

Jairo Giraldo, David Urbina, Alvaro Cardenas, Junia Valente, Mustafa Faisal,
Justin Ruths, Nils Ole Tippenhauer, Henrik Sandberg, and Richard Candell. 2018.
A survey of physics-based attack detection in cyber-physical systems. ACM
Computing Surveys (CSUR) 51, 4 (2018), 1-36.

ITan J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).

R. Spencer Hallyburton, Yupei Liu, Yulong Cao, Z. Morley Mao, and Miroslav Pajic.
2022. Security Analysis of Camera-LiDAR Fusion Against Black-Box Attacks
on Autonomous Vehicles. In 31th {USENIX} Security Symposium ({USENIX}
Security 22).

S. Huang, N. Papernot, I. Goodfellow, Y. Duan, and P. Abbeel. 2017. Adversarial
attacks on neural network policies. arXiv preprint arXiv:1702.02284 (2017).

1. Jovanov and M. Pajic. 2019. Relaxing Integrity Requirements for Attack-
Resilient Cyber-Physical Systems. IEEE Trans. Automat. Control 64, 12 (Dec 2019),
4843-4858.

Simon J Julier and Jeffrey K Uhlmann. 2004. Unscented filtering and nonlinear
estimation. Proc. IEEE 92, 3 (2004), 401-422.

(1]

(12

[13

[14

[15]

[16



15
10 1 —— Deviation in Z axis (FNN) —— T=400 (FNN)
- —— Deviation in Y axis (FNN) 104 —— T=600 (FNN)
8 5| — Deviation in X axis (FNN) - — T=800 (FNN)
é 2 54
0 —— o
T T T T T T T T T T T T
0 2 4 6 8 10 12 0 2 4 6 8 10 12
15
10 { —— Deviation in Z axis (RNN) —— T=400 (RNN)
e —— Deviation in Y axis (RNN) 10| —— T=600 (RNN)
& 5. — Deviation in X axis (RNN) = —— T=800 (RNN)
[9) o
= =]
0 0
0 2 4 6 8 0 1 2 3 4 5 6 7 8
Time (s) Time (s)

Figure 4: UAV altitude control: (a) The deviation of the drone along each axis from the desired coordinates X =0, Y = 0 and
Z =10, for RNN and FNN-based attack (the attack starts at time zero); (b) The norm of the attack vector over time for both FNN
and RNN attack generators with T = 400, 600, 800.

[17] Ami]:Khazraei, I-}Ila?md beriaei’ 1“: Farzlad Rajlaei Salmasi. 12017' ﬁgggAwateri [36] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. 2016.
lgar fmg g)pr_o_ac 0:; rgp ?y lat(tcag ) estiit;o?ll:g qg systems. In 56t nnua Deepfool: a simple and accurate method to fool deep neural networks. In Proceed-
onf. on Decision and Contro . - . : . e
. . o , , ings of the IEEE conference on computer vision and pattern recognition. 2574-2582.
(18] Azglhgzrae:lagcll\lM: Pajllc.ZZ(;)ZZO().APerfgct Agacl:abllléty ;,f Lmea(r A]?gar;l;;zissistems [37] Jorge Navarro. 2016. A very simple proof of the multivariate Chebyshev’s inequal-
With bounded Holse. fmerican t.ontro: L.onjerence ' ) ity. Communications in Statistics-Theory and Methods 45, 12 (2016), 3458-3463.

[19] :\ If};)aztmi ""tI}lld l\f p ?jiﬁ 2221' Ati§Ck;§§;ill;ent State Estimation with Intermit- [38] M. Pajic, I. Lee, and G. J. Pappas. 2017. Attack-Resilient State Estimation for
ent Data Authentication. Automatica . . . ;
N D 1 Syst . IEEE Ty t Control of Network Syst 4,1
[20] Mohammad Javad Khojasteh, Anatoly Khina, Massimo Franceschetti, and Tara (]\/([);lisr{h 2}3112171)111;;7955 ems ransactions on Control of Network Systems
Javidi. 2020. Learning-based attacks in cyber-physical systems. IEEE Transactions [39] M. Pajic, J. Weimer, N. Bezzo, O. Sokolsky, G. J. Pappas, and L. Lee. 2017. Design

on Control of N etkwo;k.éy stems 8, 1 (1?101?1(2 4}? 7_4:9' " . and Implementation of Attack-Resilient Cyberphysical Systems: With a Focus
(21] ]asop Kong, Mar .P €ller, Georg Schildbach, an France'scfo Borrelli. 2015,’ Kine- on Attack-Resilient State Estimators. IEEE Control Systems Magazine 37, 2 (April

matic and dynamic vehicle models for autonomous driving control design. In 2017), 66-81

2015 IEEE Intelligent Vehicles Symposium (IV). IEEE, 1094-1099. ; )

. . . [40] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay
(22] Alexey Kurfikm, Tan Goodfgllow, ?nd San?y Bengio. 2016. Adversarial examples Celik, and Ananthram Swami. 2017. Practical black-box attacks against machine
in the physical world. arXiv preprint arXiv:1607.02533 (%0}6)' . learning. In Proceedings of the 2017 ACM on Asia conference on computer and
[23] Cheolhyeon Kwon and Inseok Hwang. 2017. Reachability analysis for safety communications security. 506-519
assurance of cyber-physical systems against cyber attacks. IEEE Trans. Automat. [41] Anshuka Rangi, Mohammad Javad Khojasteh, and Massimo Franceschetti. 2021.
Control 63,7 (2017), 227,2f2279' . . Learning based attacks in Cyber Physical Systems: Exploration, Detection, and
(24] Cheolhyeon Kwon, Weiyi Liu, and Inseok Hwang. 2014. Analysis and design Control Cost trade-offs. In Learning for Dynamics and Control. PMLR, 879-892.
of stealthy cyber attacks on unmanned aerial systems. Journal of Aerospace [42] Junjic Shen, Jun Yeon Won, Zeyuan Chen, and Qi Alfred Chen. 2020. Drift with
In}{orrlrrtwn Systems 11,8 (2014)’](5257(1539' X -t P devil: Security of multi-sensor fusion based localization in high-level autonomous
[25] Cheolhyeon Kwon, Scott ‘Yante > an InseoA Hwang. 2016. Real-time safety driving under {GPS} spoofing. In 29th { USENIX} Security Symposium ({ USENIX }
assessment of unmanned aircraft systems against stealthy cyber attacks. Journal Security 20). 931-948
ofAerf)space Informattctl)n Systefns 13, 1 (2016), 21745}'1 duline f b [43] Roy S Smith. 2015. Covert misappropriation of networked control systems:
(26] V. Lesl, L Jovanov, and M. Pajic. 2017,‘ Network Schedul 1.ng or Secure Cyber- Presenting a feedback structure. IEEE Control Systems Magazine 35, 1 (2015),
Physical Systems. In 2017 IEEE Real-Time Systems Symposium (RTSS). 45-55. 82-92
[27] ]\Efu];Lgsl,;lga Jivalngv, EndAl\g\r/;) ;}av PaJJ;C' b20dl7C" Securtltg-Atw;aéesSc}:iglingl z(;)sf [44] Tianju Sui, Yilin Mo, Damian Marelli, Xi-Ming Sun, and Minyue Fu. 2020. The
mbedded Lontrol 1asks. rans. Embed. Comput. 5yst. 16, 5, Article Vulnerability of Cyber-Physical System under Stealthy Attacks. IEEE Trans.
seﬁt]; 20_1171)_,. 21 pages. A Miroslay P : oS it inR Automat. Control (2020).
(28] Clolnsner;’ne?ia(g 0;:?_%\;’13;%1 érosst:;qs aJAl Cé;;??anztegrzzl:}% Y esCl;ms)tl 1:: SCZ‘:;CC; i [45] Jiachen Sun, Yulong Cao, Qi Alfred Chen, and Z Morley Mao. 2020. Towards
th Y Y ’ - OV VS oyst &, 3, robust lidar-based perception in autonomous driving: General black-box adver-
2,8 (May 20,20) » 27 pages. . : i sarial sensor attack and countermeasures. In 29th {USENIX} Security Symposium
[29] Jiangnan Li, Jin Young Lee, Yingyuan Yang, Jinyuan Stella Sun, and Kevin Tomso- ({USENIX} Security 20). 877-894
V‘}f‘ ?02;) - ConAML: c?nstramed Adversarial Machine Learning for Cyber- [46] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Physica Systems. aerZgOi 05631 [cs] (2020). . o . . Tan Goodfellow, and Rob Fergus. 2013. Intriguing properties of neural networks.
[30] Yen-Chen Lin, Zhang-Wei Hong, Yuan-Hong Liao, Meng-Li Shih, Ming-Yu Liu, arXiv preprint arXiv:1312.6199 (2013)
and Min Sun. 2017. Tactics of adversarial attack on deep reinforcement learning [47] André Teixeira, Iman Sh'ames Henr.ik Sandberg, and Karl H Johansson. 2012
agentlsA In Proceedings of the 26th International Joint Conference on Artificial Revealing stealthy attacks in control systems. In 2012 50th Annual Allerton Con-
Intellzgenc& 3756T3762' X . L ference on Communication, Control, and Computing (Allerton). IEEE, 1806-1813.
(31] Yao' Liu, Peng ngf anfl MICha,EI K Relte?’ 2011. False datg injection attac{ks [48] Rohit Tunga, Carlos Murguia, and Justin Ruths. 2018. Tuning windowed chi-
against state estimation in electric power grids. ACM Transactions on Information squared detectors for sensor attacks. In 2018 Annual American Control Conference
and System Security (TISSEC) 14, 1 (2011), 1-33. (ACC). IEEE, 1752-1757
[32] Fei Miao, M. Pajic, and G.J. Pappas. 2013. Stochastic game approach for replay [49] Tsui-Wei Weng, Krishnamurthy (Dj) Dvijotham®, Jonathan Uesato*, Kai Xiao*,
attack detection. In IEEE 52nd Annual Conference on Decision and Control (CDC). Sven Gowal*. Robert Stanforth®, and Pushmeet Kohli. 2020. Toward Evaluat.
1854__1859' https://do.l_.org/lo.l109/CDC,2013.676015_2 . ing Robustness of Deep Reinforcement Learning with Continuous Control. In
[33] E. Miao, Q. Zhu, M. Pajic, an;l G. J. Pappas. 2017. Codlng Schemes for Securing International Conference on Learning Representations.
beer—Phy51cal Systems Against Stealthy Data Injection Attacks. IEEE Transac- [50] Y. Mo and B. Sinopoli. 2010. False data injection attacks in control systems. In
tions on Control of Network Systems 4, 1 (March 2017), 106-117. First workshop on Secure Control Systems. 1-6
[34] Yilin Mo and Bruno Sinopoli. 2009. Secure control against replay attacks. In 47th [51] Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. 2019. Adversarial examples:
ArlfzualAllerton Confer'ence on Communication, Control, and Computl'ng 911-918. Attacks and defenses for deep learning. IEEE transactions on neural networks and
[35] Yilin Mo and Bruno Sinopoli. 2015. On the performance degradation of cyber- learning systems 30, 9 (2019), 2805-2824
physical systems under stealthy integrity attacks. IEEE Trans. Automat. Control [52] G.Zizzo, C. Hankin, S. Maffeis, and K. Jones. 2019. Adversarial Machine Learning

61,9 (2015), 2618-2624. Beyond the Image Domain. In 56th Annual Design Automation Conference. 1-4.

268



6 APPENDIX
6.1 Proof of Theorem 1

First, we will show that applying such attack sequence results in
an unbounded estimation error. For LTI systems, the dynamic of
the state estimation error follows
Axt =Xt — Jet

= AAXi—1 + Wy — L(y? - CAJZ'tfl - CBut,l)

= AAXi—1 + Wy — L¢t
As the matrix A is unstable, it follows that || Ax;|| will be unbounded
ast — oo.

We now show that the attack is stealthy from the perspective of

the IDS. In this case, the residue signal z; satisfies

zt =y — C(A%;—1 +Buy_1) =

R 12
:yt+at—C(Ax;,1 +But,1) :¢t- ( )

Therefore, it follows that
E{gf) =Ble Sz} =B{$/S'¢r)

= trace(E{¢/ S $1}) = E{trace($:¢{ S™)}

= trace(E{gﬁtngtT}S_l) < trace(SS7Y) = p,
where we used the linearity of expectation and trace operation.
Note that for LTI systems, the expectation of g; (also known as
the degrees of freedom of the distribution) satisfies that E{g;} =
p. Based on the properties of the y? distribution, since E{g%} <

E{g:} = p, it follows that P(gf > 1) < P(g: > 1) = €, and thus the
attack sequence is stealthy.

6.2 Proof of Theorem 2

From the multivariate Chebyshev’s inequality [37], it holds that
P(vtTR_lvt <k?) > 1—%. On the other hand, using our assumption
R < ol,itholds that G_IUtTvt < vtTR_lvt for any v; € RP. Therefore,
IP(U,TUt <ok?) >1- % or equivalently P(||o;|| < Vok) > 1 - ]%

Now, with the probability of at least 1 — &, we have that

K>
a < |lyr = h(Ze)|| = |h(xe) +0r = (R <
< Lllxp = %l + lloell < Lllxe — || + Vok,

a—/ok
7 —-

which results in ||x; — x| >

6.3 Details of Employed CARLA Setup

For planning, CARLA provides with a state-machine waypoint fol-
lowing algorithm. A vehicle’s (estimated) pose and velocity were
used along with map-based waypoints to coordinate (i) road-following,
(ii) left-turn, (iii) right-turn, (iv) intersection, and (v) hazard-stop
conditions [6]. We estimated the pose and velocity using an EKF
with high-rate sensor data.

We also leverage the EKF structure to design an industry-standard
x? anomaly detector (AD). We set threshold 7 to result in € = .05
in normal condition. Then, the integrity value shown in the left
bar of Figure 3(a),(b),(c) represents the number of measurements
that pass the y? AD requirement out of the last 20 measurements.
We assume that the attack is detected if more than two sensor mea-
surements cannot pass the requirement in this window of time. As
sensor inputs, a Global Navigation Satellite Sensor (GNSS) sensor

269

provides loosely coupled position solutions in global coordinates,
a commercial GNSS standard. We similarly define a generalized
velocimeter model, derived from Doppler (or, more frequently in
safety-critical applications, GNSS delta-range).

State estimates and planning objectives were feed into a stan-
dard feedback controller [7] that targeted a cruising speed of 25
km/hr (~ 7m/s). The control algorithm drove the following ac-
tuators with associated input ranges: (i) Steering wheel angle on
[-1.0,1.0], (ii) Throttle on [0.0,1.0], and (iii) Brake on [0.0, 1.0].
Finally, we visualize the vehicle trajectory and system integrity
with a heads-up-display presented in Figure 3; the videos for our
CARLA experiments are available at [5].

6.4 Analysis of Attack Success Rate on
Unmanned Aerial Vehicles

Tables 8 and 9 summarize the attack success rate (ASR) for both

learned attack generators for UAVs; the generators were obtained

for each training period T and different values of |y| and |z| (i.e., the

drone’s distance from the desired position along these two axis).

Table 8: Attack success rate (SR) for different values of T with
N =300, A = .5 and different values of y along Y axis over 100
experiments for the UAV.

FNiﬁljﬂNN lyl =-2|lyl = 5|1yl =8|yl =1|lyl =2|ly| = 4|yl =6||y| =8
T=100 | 0/44 0/0 0/0 0/0 | 0/0 0/0 0/0 | 0/0
T =200 | 92/91 | 24/20 | 0/0 0/0 | 0/0 0/0 0/0 | 0/0
T =400 | 2/100 | 0/100 | 0/96 | 0/93 | 0/25 | 0/0 0/0 | 0/0
T =600 | 99/100 | 94/97 | 92/95 | 91/94 | 73/66 | 0/0 0/0 | 0/0
T =800 | 100/91 | 98/91 | 96/91 | 95/90 | 88/81 | 73/65 | 62/51 | 45/41

Table 9: Attack success rate (SR) for different values of T with
N =300, A = .5 and different values of z along Z axis over 100
experiments for the UAV.

SR %

R 121 2|12 = 4 12l = 61zl = 81yl = 11zl = 21 1z] = 3 |z] = 4
T=100| 0/9 | 00 | 0/0 | 00 | 0/0 | 0/0 | 0/0 | 0/0
T=200| 670 | 24/0 | 4/0 | 0/0 | o/0 | 0/0 | 0/0 | 0/0
T=400 | 44/42 | 017 | 0/10 | 0/7 | 0/4 | 0/2 | 0/0 | 0/0
T =600 | 86/81 | 59/74 | 45/60 | 26/48 | 11/36 | 3/28 | 0/3 | 0/0
T =800 | 95/88 | 88/85 | 78/83 | 69/80 | 64/75 | 40/66 | 0/41 | 0/6




