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Abstract—Internet of Things (IoT) technologies enable de-
velopment of Reconfigurable Manufacturing Systems—a new
generation of modularized industrial equipment suitable for
highly-customized manufacturing. Sequential control in these
systems is largely based on discrete events, whereas their formal
execution semantics is specified as Control Interpreted Petri Nets
(CIPN). Despite industry-wide use of programming languages
based on the CIPN formalism, formal verification of such control
applications in the presence of adversarial activity is not sup-
ported. Consequently, in this paper we introduce security-aware
modeling and verification techniques for CIPN-based sequential
control applications. Specifically, we show how CIPN models of
networked industrial IoT controllers can be transformed into
Time Petri Net (TPN)-based models, and composed with plant
and security-aware channel models in order to enable system-
level verification of safety properties in the presence of network-
based attacks. Additionally, we introduce realistic channel-
specific attack models that capture adversarial behavior using
nondeterminism. Moreover, we show how verification results can
be utilized to introduce security patches and facilitate design
of attack detectors that improve system resiliency, and enable
satisfaction of critical safety properties. Finally, we evaluate our
framework on an industrial case study.

Note to Practitioners—Our main goal is to provide formal secu-
rity guarantees for distributed sequential controllers. Specifically,
we target smart automation controllers geared towards Industrial
IoT applications, that are typically programmed in C/C++, and
are running applications originally designed in e.g., GRAFCET
(IEC 60848)/SFC (IEC 61131-3) automation programming lan-
guages. Since existing tools for design of distributed automation
do not support system-level verification of relevant safety proper-
ties, we show how security-aware transceiver and communication
models can be developed and composed with distributed con-
troller models. Then, we show how existing tools for verification
of Time Petri Nets can be used to verify relevant properties
including safety and liveness of the distributed automation system
in the presence of network-based attacks. To provide an end-to-
end analysis as well as security patching, results of our analysis
can be used to deploy suitable firmware updates during the stage
when executable code for target controllers (e.g., in C/C++) is
generated based on GRAFCET/SFC control models. We also
show that security guarantees can be improved as the relevant
safety/liveness properties can be verified after corresponding
security patches are deployed. Finally, we show applicability of
our framework on a realistic distributed pneumatic manipulator.

Primary and Secondary Keywords—Primary Topics: Sequential
control systems, Secure distributed automation, Industrial Inter-
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I. INTRODUCTION

Advanced capabilities of smart Internet of Things (IoT)
devices have lead to their widespread adoption in industrial
automation system, rapidly advancing reconfigurable manufac-
turing [1]; the rise of the fourth industrial revolution, known as
Industry 4.0 [2], introduces the new era of highly-customized
(rather than highly-serialized) manufacturing [3], [4]. In this
vision, manufacturing resources are highly modularized, pro-
viding the necessary flexibility to adapt to dynamical market
demands [5]. Efficient structural and functional changes are
supported by Reconfigurable Manufacturing Systems (RMS)
that can be configured ad-hoc with little or zero downtime [6].

The foundation of RMS are modules controlled by smart In-
dustrial IoT (IIoT)-enabled controllers. IIoT endpoints (some-
times referred to as industrial assets) are heterogeneous by
definition—they represent multi-vendor components whose
deployment environment dynamically changes depending on
the process needs and current configuration of RMS. Also, a
plethora of communication technologies (wired and wireless)
and protocols are employed [7] for interaction between as-
sets, whereas Radio Frequency Identification (RFID) is the
technology of choice for their linking with process flow
data [8]. Seamless reconfiguration, integration and reliable
functioning of RMS requires that components are highly
autonomous. Specifically, they must be capable of seamlessly
communicating with each other using compatible protocols
(integrability), exchanging both low-level control-related and
high-level process-bound information (interoperability), and to
interact with each other in different ways to support a variety
of configurations (composability) [9].

Reconfigurability is naturally supported by distributed con-
trol architectures [10]. Conventionally centralized controllers
are responsible of all aspects of control—from low-level event
signaling to high-level coordination; yet, their complexity hin-
ders reconfigurability both from the hardware perspective (e.g.,
requiring component re-wiring), and the software aspect (e.g.,
having to ensure the control software is aware of and functions
correctly under the new hardware configuration) [11], [12].
Thus, the new generation of smart manufacturing resources
must exploit not only functionally-required components (such
as sensors and actuators) but also intrinsic computation and
communication capabilities of IIoT-enabled controllers in or-
der to enable a higher level of automation and autonomy [13],
[14]. Control distribution enables decoupling of fine-grained
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details about how control over the specific physical resource is
performed, from the resources coordination problem that only
needs to worry about what the manufacturing resources are
capable of performing.

The networked nature of the new generation of distributed
automation systems makes them susceptible to network-based
attacks [15], similar to security vulnerabilities reported in other
cyber-physical systems domains (e.g., [16]). For example, an
adversary may inject false events [17], delay or deny network
access to legitimate controllers [18], or manipulate control
commands [19] sent over unsecure communication channels.
To illustrate this, consider the distributed automation system
from Fig. 2(a), which we will use as a running example in this
work, consisting of conveyor belts and a pick & place station;
adversarial actions over unprotected communication between
conveyor and pick & place controllers may cause a stall in
forwarding workpieces from belts 1/2 to the belt 3, or even
collision between pick & place actuators and workpieces (e.g.,
when workpiece presence signals are falsified).

Providing security and safety guarantees is critical in dis-
tributed sequential control systems directly impacted by com-
munication unavailability. Yet, despite devastating effects such
attacks may have on operation of distributed industrial automa-
tion systems, existing approaches to securing such systems are
somewhat ad-hoc; e.g., impromptu use of packet encryption
for confidentiality or authentication for integrity, especially
since real-time encryption algorithms efficient enough for
industrial applications are scarce [20]. Commonly, the impact
of the employed security mechanisms on safety and control
performance (i.e., Quality-of-Control—QoC) are unclear and
hard to evaluate if no formal system analysis can be performed.

Consequently, to enable building of secure and correct-by-
design RMS, in this work we introduce efficient techniques for
systematic security analysis of distributed control applications
deployed on IIoT-enabled local controllers (LCs). We show
how results of the security analysis can be used to improve
QoC and safety guarantees in the presence of attacks, by
adding suitable security mechanisms that address the detected
vulnerabilities. This results in the overall framework for formal
safety modeling, analysis and patching of distributed sequen-
tial automation systems under adversarial influences (Fig. 1).

Coordination between components in many IoT systems is
based on discrete events. While a plethora of formal modeling
frameworks is used under the umbrella of IoT (e.g., [21], [22],
[23]), industrial automation systems are commonly based on
GRAFCET (IEC 60848)/SFC (IEC 61131-3) control designs,
and thus on the underlying formal semantics of Control
Interpreted Petri Nets (CIPN). Hence, to enable existing ap-
plications to be deployed over IoT-enabled controllers, and to
maintain compatibility with the domain expertise, we focus on
formal security analysis of IIoT-enabled controllers described
via CIPNs; such controllers may be developed directly or
automatically derived from existing centralized automation
designs (e.g., as in [24]).

While inherent determinism of CIPNs is not a limitation
when specifying controller behaviors, it prevents the use of
CIPNs to model malicious actions [15], which cannot be cap-
tured by deterministic or stochastic modeling formalisms. On
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Fig. 1. Framework for resilient IIoT-based distributed automation; in Phase 1,
existing distributed control models, which are used to generate executable code
for IIoT controllers, are composed with channel and plant models; in Phase 2,
the composition model is used to formally verify properties of interest; finally,
in Phase 3, the results of the security analysis are used to enhance system
resiliency, by adding suitable security mechanisms during code generation.

the other hand, Time Petri Nets (TPN) support nondetermin-
ism, making them a great candidate for security-aware model-
ing. Thus, for Phase 1 of our security analysis framework, we
introduce methods for automatic transformation of domain-
specific CIPN-based controller specifications (i.e., designs)
into TPN-compliant models. These TPN models enable closed-
loop system modeling and analysis when composed with cor-
responding non-deterministic plant and security-aware com-
munication channel models. We show how such security-aware
models can be developed with the desired level of abstraction
capturing attack impacts on automation performance. TPNs
were previously used for modeling and analysis of automation
systems. For example, they were successfully employed in
resources optimization [25] and scheduling [26] of flexible
manufacturing systems, and TPN-based A* search method
was used for scheduling in robotic cellular manufacturing
systems [27]. Nevertheless, this is the first work employing
TPNs to capture the attack impact on control/automation
systems, in a way that supports such analysis. While our
framework supports any communication channel design, we
focus on the IEEE 802.15.4-based implementation from our
evaluation setup.

In Phase 2, on the developed security-aware closed-loop
system model, we employ open verification tools (e.g., [28]) to
perform system-wide verification of safety and QoC-relevant
properties in the presence of attacks; note that we make no
assumptions on the specific attack actions, from all possible
malicious actions, nor the times when they may occur. As we
show later in Sec. VI, our framework fully supports plant-state-
bound safety properties. Essentially, these safety properties
can capture unwanted behavior of the system occurrence of
which leads to hazards, and their negation should always be
satisfied. For instance, in a pick&place control scenario, the
implementation should guarantee that the handled object will
not be dropped in between the pick and place locations, in
spite of possible attacks. This is also compatible with standards
(e.g., IEC 61508) for formal functional safety verification. On
the other hand, enabling security analysis within the same
family of formalisms (i.e., using TPNs, closely related to the
CIPN formalism used to design controllers), directly facilitates
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domain-specific interpretation of the analysis results. This
allows us to exploit verification results and directly address the
discovered security vulnerabilities in Phase 3, by orchestrating
security patches in code generation performed on the original
CIPN models.

Finally, we show the applicability of our framework on a
real-world industrial case study. We perform security analysis
of an IIoT-enabled pneumatic manipulator system with multi-
ple configurations such as 2-Degree-of-Freedom (DOF) pick
& place and 3-DOF pick-immerse-shake-return.

Note that the developed models directly capture attacks
on communication links as well as the fact that smart IIoT-
based devices communicate events between each other as part
of the control loop; thus, directly enabling analysis of QoC
under attacks. Unlike in (e.g., gateway-based) IIoT monitoring
systems, distributed IIoT-based automation is commonly not
employing large multi-hop communication paths. Hence, as
we show for the industrial case study, the presented analysis
scales well, and does not require the use of more network-
based modeling parameters, such as node centrality [29], [30].

Specifically, the contributions of this work are as follows:

• Security-aware framework for verification of system-level
properties for distributed discrete-event controllers (based
on CIPNs) in the presence of network-based attacks;

• TPN-based non-deterministic modeling of network-based
attacks on distributed controller communication, with em-
phasis on capturing impacts on automation performance;

• Extension of the control software development cycle from
security-aware analysis to firmware patching, to ensure
correct operation in the presence of attacks by addressing
the discovered security vulnerabilities that may have sig-
nificant impact on automation performance under attack;

• Full-stack proof-of-concept case study based on industry-
grade components demonstrating applicability of the de-
veloped secure automation framework.

This paper is organized as follows. Section II reviews related
work, before the problem is defined in Section III. We in-
troduce TPN-based security-aware modeling (Section IV) and
derive the security-aware communication model (Section V).
In Section VI, we present verification of relevant formal prop-
erties, as well as how verification results can be used in code
generation to include security patches and improve system
resiliency. Industrial case studies are discussed in Section VII,
before providing concluding remarks (Section VIII).

II. RELATED WORK

In [31], a model-based approach for simulating attacks
on CPS is presented, but no formal analysis/verification is
supported. In [32], additional formal security assessment of
industrial CPS controllers is performed, but analysis remains
constrained to high-level vulnerabilities at the level of func-
tional models. A comprehensive formal security analysis of
wireless IoT communications for a specific attack model is
presented in [33]; however, QoC performance or security are
considered in isolation, and evaluation of security-based im-
plications on the underlying physical process is not supported.

Security analysis techniques for other IoT domains have
recently attracted attention. For example, smart home IoT ap-
plications are formally surveyed for anomalous behavior [34],
without considering formal adversarial models and implica-
tions of security vulnerabilities on system operation. Similarly,
[35] introduces a dynamic policy-based enforcement system
for securing against unauthorized and unwanted control sce-
narios, focusing only on architectures and platforms for con-
sumer IoT applications in smart home automation. In [21], an
SMT1-based framework for IoT security analysis is presented;
yet, only abstract threat models are used, and the software
architecture of IoT nodes is masked by behavioral modeling.
In the domain of distributed automation, [37] presents for-
mal attack modeling and evaluation of attacks using limited
automata-based control models that do not consider realistic
communication models (e.g., timing). Additional shortcoming
is that attacks are not defined in the same formal semantics
used for control design; thus, domain experts require additional
training to utilize results of the security analysis.

Social resilience based on agents’ reputation in software
agents community has found use in e-commerce, e-learning,
e-government, etc. [38]. Yet, it is not advisable to give benefit
of the doubt to the agents and allow them to build reputation
in industrial environment where the effects of attacks on IoT
devices can be very severe (e.g., catastrophic damages of
equipment, workers injuries) and safety issues are paramount.

Petri nets (PNs) have proven to be very useful not only for
studying and modeling [39], but also for fault detection and
recovery in centrally controlled discrete event systems [40].
PNs have also been used for security-aware modeling and
analysis. Penetration analysis using attack trees is formalized
through PNs (e.g., [41], [42]). Coordinated cyber-physical
attack modeling for smart grids is done in [43], but only high-
level attack scenarios are modeled, and the structure of the
system components is coarsely abstracted. Modeling security
risks and vulnerabilities for Unix-like software was performed
(e.g., [44]) but without specifics of the underlying software ar-
chitecture. Stochastic PN-based attack models are adopted for
CPS threats in [45], [46], whereas [47] introduces a framework
for formal reliability analysis of networked IIoT sequential
control applications based on CIPNs. On the other hand, the
work from [48] deals with fault detection in systems modeled
by PNs. However, such fault/failure models are limited to
stochastic behaviors that cannot accurately capture adversarial
actions (as described in [15], [49], [50]). While cooperation
and communication protocols may be modeled with PNs
(e.g., [51], [52]), to the best of our knowledge, nondeterminism
in PNs has not been exploited for adversarial modeling.

Consequently, in this work we address the highlighted
limitations of the existing security-related techniques em-
ployed in the industrial automation domain, as well as the
limiting factors preventing the use of the security-analysis
methods from other IoT domains. Specifically, as described
in the Introduction, we introduce a modeling and analysis
framework for reasoning about performance and safety of

1Satisfiability Modulo Theories (SMTs) enable specification and verifica-
tion of logical formulas over problems defined with predicate logic [36].
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(c) Pick&Place Controller (LC2)
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Fig. 2. Distributed conveyor/pick & place: (a) physical setup; (b) CIPN-based control model of the conveyor monitor (LC1), (c) CIPN model of the pick & place
controller (LC2); (d) model of incoming workpieces, with a lower bound on the workpiece inter-arrival; (e) TPN model of the pick & place station; (f) extended
model of LC2 with TPN-compatible sensing/actuation (not a TPN as it still relies on the communication API (in red) for interaction with other LCs).

sequentially controlled industrial automation systems under
realistic network-based attacks (caused by the use of IIoT-
enabled controllers). To achieve this, our work differentiates
from existing approaches in that our framework allows for:

• Holistically considering QoC performance, safety, and
security of the system;

• Considering realistic communication models (e.g., incor-
porating timing properties of communication links);

• Modeling attacks using the same formal semantics that
is employed for control design;

• Evaluating the impact of attacks on the underlying phys-
ical process and its operation.

III. MOTIVATING EXAMPLE AND PROBLEM DESCRIPTION

A CIPN is a 6-tuple CIPN = (P, T, F, C,A,M0) where
P = {P1, ..., Pm} is a set of places (represented by circles, see
Fig. 2), T = {T1, ..., Tn} is a set of transitions (represented
by bars) such that P ∪T 6= ∅ and P ∩T = ∅, F ⊆ {P ×T}∪
{T × P} is the set of arcs between places and transitions,
C = {C1, ..., Cn} is a set of logical conditions enabling
synchronization of the controller with sensors by guarding the
corresponding transitions in the model, and A = {A1, ..., Am}
is a set of actions on actuator outputs that are allocated to
places.2 The CIPN’s state is defined by its marking, i.e., the
token position (captured by a dot inside the corresponding
place), and transition firing (i.e., token flow) represents a
state change; M0 is the initial marking. CIPN semantics
is deterministic [53] (for formal semantics see [54]). For

2Logical conditions dependent on system sensors are denoted as
sensor==value, while actuation commands associated with places in the
form actuator=command.

distributed automation, functionality of each local controller
(LC) is captured by the corresponding CIPN. For event data
exchange between LCs, places of a CIPN may invoke the
communication API exposed by the LC runtime environment;
this is denoted as Send(signal,value) for broadcast
or Send({dest1,dest2,...},signal,value)3 for
uni/multicast transmissions. Dually, the receiving LC can
condition its transitions with statements similar to conditioning
on locally connected sensors (i.e., as signal==value) [24].

Example 1: Consider a simple control system from Fig. 2(a)
with the conveyor monitor (LC1) and the pick & place station
controller (LC2). Two LC1 sensors for the parallel incoming
conveyor belts sense if a workpiece is ready to be picked
from either of the conveyors and placed on the third, outgoing
conveyor. Fig. 2(b-c) show CIPN-basd controllers for LC1

and LC2. Initially, LC1 is in state Pcm_Init, waiting for
either of its sensors X ∈ 1, 2 to indicate workpiece presence
(i.e., transition Tcm_PresX is conditioned by the sensing
event PresX==1).4 Upon detection of a workpiece, LC1

sends a message to LC2 (via API call Send(Pick,X) in
place Pcm_TxCtrl_PickX) indicating the conveyor with a
workpiece to be picked. LC1 then waits for completion of the
pick & place. The rest of the workcycle similarly follows.

These CIPN control models assume ideal communication
links, without unpredictable channel behaviors. For instance,
consider an adversary with network access who mounts an

3 In this work, we use different font (i.e., as Send) for CIPN and TPN
model primitives (e.g., code API, names of variables, places and transitions).

4For model readability, we employ descriptive notation for places, transi-
tions, conditions, and actions; e.g., transition Tctrl_wfRet in controller
LC2 waits for the return cycle to finish, while place Pcm_TxCtrl_Pick1
on the conveyor monitor sends signal Pick==1 to the pick & place controller.
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impersonation (i.e., spoofing or masquerade [18]) attack while
LC2 is waiting for a message from LC1 that a workpiece
should be picked up. This can be performed by exploiting
the lack of authentication services, enabling the attacker to
transmit messages on behalf of any of the controllers. For
instance, by sending the corresponding message (e.g., by
signaling Send(Pick,1)), the attack will result in the
pick & place station pickup by LC2; hence, it may collide
with upcoming workpieces, potentially incurring mechanical
damage, or a wasted workcycle. Similar holds for message
modification [18] (i.e., signal replacement [55]) attacks, when
the right conveyor belt contains a workpiece ready to be picked
up (i.e., Pres_R==1), but the attacker intercepts the corre-
sponding message and maliciously signals Send(Pick,2).
With a wireless channel between the controllers, this may be
achieved by jamming original transmissions until the legiti-
mate controller’s retries are exhausted, and then transmitting
the malicious signal. Also, if an adversary delays or blocks
some transmissions or acknowledgements (ACKs) between
LCs (i.e., by launching a Denial-of-Service (DoS) attack [18])
the system may experience excessive downtime (e.g., due to
an attack that is maliciously occupying the shared channel).
�

These examples illustrate that distributed control may be
affected by an attacker with network access. Hence, we focus
on security aspects of IIoT-enabled distributed automation
systems; our goal is to provide methods to model and analyze
system behaviors in the presence of network-based attacks,
while enabling the use of analysis results to modify (i.e., up-
date) the system in order to achieve attack-resilient operation.

Overview of our Approach

We start from a functional description of N LCs expressed
as CIPNi, i = 1, ..., N . We consider an attacker with full
access to the network with M communication channels. The
attacker is not able to compromise the LCs, but has full
knowledge of the state of each LC. Our design-time framework
illustrated in Fig. 1 starts from automatic transformation of
CIPN control models to TPN-based models; such models
enable explicit capturing of the (i) communication semantics,
(ii) platform-based effects using timed transitions to model
non-zero execution and message propagation times, and most
importantly (iii) the non-deterministic behaviors necessary to
model adversarial actions.

We show how the remaining closed-loop system com-
ponents (i.e., the plant and communication channel in the
presence of attacks) can be modeled using the TPN formal-
ism. Furthermore, we demonstrate how composition of these
models enables system-wide analysis of control performance
in the presence of attacks. Finally, we show how design-time
formal verification results can be used during code generation
for smart IIoT-based controllers, which facilitates updates of
LCs’ firmware to address exposed security problems.

Remark 1 (Petri nets vs Automata/Finite-State Machines):
We build on Petri Net-based modeling since CIPNs are the
main formalism used to capture existing (including distributed)
automation systems. For example, GRAFCET (IEC 60848)

and SFC (IEC 61131-3) languages for programming industrial
control systems originate from Petri Nets, with their behavioral
equivalence discussed in [54], [56], [57]. However, the pro-
posed framework, including network and attack modeling, can
be directly extended to other discrete-event IoT systems whose
behavior can be captured with automata/finite-state machines,
since formal mappings between semantics of Petri nets and
automata have been defined (e.g., as in [58], [59]). �

IV. TPN-BASED AUTOMATION MODELING

TPNs extend CIPNs by introducing timed transitions. For-
mally, TPN is a 6-tuple TPN = (P, T, F, V,D,M0) where
(P, T, F, V,M0) is the corresponding Petri net and D is the du-
ration function defining the transition firing times in an interval
(tf , tf ), [tf , tf ), (tf , tf ], or [tf , tf ].

5 Here, tf and tf are the
lower/upper bound on the transition firing times, which may
also be zero or infinity, whereas time interval next to immediate
transitions (i.e., with zero firing time) is not specified. Firing
times are defined relative to the moment of transition enabling,
without any assumptions on their distribution. Therefore, non-
determinism (i.e., non-deterministic behaviors) is introduced
in TPNs, enabling modeling of timed properties of real-time
control software [61], [62], [63]. Additionally, modern TPN
analysis tools (e.g., [28]) support definition of guard and
update functions in the same way as in CIPNs (described
in Sec. III) and thus facilitate modelling of attacks through
straightforward addition of CIPNs already developed during
control system design.

Therefore, we transform formal distributed control spec-
ifications expressed by CIPNi, i = 1, ..., N , into TPN-
compatible models TPNctrl

i , i = 1, ..., N . We then compose
these models with plant models TPNplant

i , i = 1, ..., N , and
security-aware communication channel models TPNchannel

j ,
j = 1, ...,M ,6 which enables us to reason about system-level
safety and security properties under the modeled adversarial
influences. Since both CIPNs and TPNs originate from PNs,
the translation from CIPNi, i = 1, ..., N controller models to
TPNctrl

i , i = 1, ..., N is direct for all places and transitions
except where platform-implemented API is called, i.e.,

1) Places handling actuation, and transitions handling sens-
ing by issuing I/O API calls (actuator=value and
sensor==value, respectively),

2) Places handling transmissions and transitions
handling receiving of communication signals via
API calls (Send(destination,signal) and
signal==value, respectively),

3) Places calling other platform-dependent API, such as
request for execution delays.

These CIPN constructs, which directly rely on the underlying
platform used to implement the controller, must be explicitly
modeled as nets that capture: 1) interaction between LCs
TPNctrl

i and the plant TPNplant
i , 2) interaction between LCs

TPNctrl
i and communication channel(s) TPNchannel

j , and

5Formal semantics of TPNs is described in detail in, e.g., [60].
6This captures the general case where time or frequency multiplexing may

be used to provide multiple communication channels over the same medium.
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3) runtime environment changes based on issued commands
(e.g., variable updates, execution delays).

Thus, we first introduce methods for automatic extraction of
TPN-based controller models from existing CIPN models. We
then capture interaction between the automation system and
plant, as well as the LC platforms’ runtime environment (all
in Section IV-A); this is followed by security-aware modeling
of communication channels and their interfaces with LCs
(Section V). These methods produce a full closed-loop system
model that enables reasoning about system resiliency to attack.

A. Modeling Plants and Controller-Plant Interaction

Nominal behavior of the physical plant is typically known at
control design time. Since the CIPN formalism is universally
adopted for automation design, we thus assume that a PN-
based (i.e., CIPN or TPN) plant model is available.7 On the
running example, we describe development of such TPN plant
model, along with a TPN-compliant controller-plant interface
implemented through marking-dependent guard functions.

Plant Modeling: Fig. 2(d) models the incoming workpieces
arrivals with a lower bound on the interarrival times, whereas
Fig. 2(e) shows a TPN model of the pick & place sta-
tion from Fig. 2(a). Place Pp&p_Init represents the sta-
tion’s initial state. Token flow from this place is conditioned
by the corresponding commands of LC2 PP_Act==1 and
PP_Act==2 from the LC2 model in Fig. 2(c). In the
TPN formalism, marking-dependent guard functions can be
used to restrict state changes (i.e., token flow); namely, a
marking-dependent function, denoted by M(·), assesses the
state of the controller model (i.e., token distribution) and
returns the current number of tokens inside the argument
place. Hence, guard function G:M(Pctrl_P&P1)==1 (or
G:M(Pctrl_P&P2)==1 for the 2nd conveyer belt) is associ-
ated with transition Tp&p_wfPick1 (or Tp&p_wfPick2).

For example, once the pick & place process is triggered
by the LC2’s model advancing its token to Pctrl_P&P1
(or Pctrl_P&P2), the station’s token transitions to place
Pp&p_P&P1 (or Pp&p_P&P2) if conveyor belt 1 (or 2)
has a workpiece waiting to be processed. Note that to cap-
ture realistic executions, the actual times to complete the
pick & place and return processes are not deterministic;
transitions Tp&p_P&P1 / Tp&p_P&P2 have firing times from
the interval [tprocp&p , t

proc
p&p ], as shown in Fig. 2(e).

Modeling Control-Plant Interaction: The actuation part of
the plant-controller interface is managed by guard functions
assessing the controller’s marking; thus, explicit actuation
input updates (e.g., PP_Act=1) in CIPN places are omitted in
the transformation to the TPN model, because TPN places do
not feature any attributes. This interface can also be achieved
with update functions that are triggered on the firing of
controller’s transitions to update markings or variables. The
choice of the transformation semantics from CIPN to TPN can
therefore be adjusted to the specific platform implementation.

7On the other hand, if an automata or other discrete-event system represen-
tation of the plant is available, existing tools and methodologies can be used
to translate such models into a PN-based representation (e.g., [58], [59]).

Similarly, sensing is modeled by introducing plant-marking-
dependent guard functions on controller’s transitions. Specif-
ically, transitions conditioned by sensor values in the form
sensor==value in a CIPN model are replaced with imme-
diate transitions guarded by a Boolean function evaluating to
true if the plant model marking corresponds to the plant state
where sensor==value is satisfied, and to false otherwise.

For instance, once LC2 commands return of the
pick & place station, (i.e., LC2 model from Fig. 2(c) has
the token in Pctrl_Ret), it is blocked on the transition
Tctrl_wfRet guarded by condition Ret_Complete==1.
This transition in the CIPN model is transformed into a transi-
tion in the TPN model in Fig. 2(f), guarded by a function de-
pendent on the marking of the pick & place station model from
Fig. 2(e) (i.e., controller waits for the station to reach home po-
sition). Guard function G:M(Pp&p_Init)==1 returns true
once the token in the plant model transitions to Pp&p_Init;
hence, LC2 can transition over Tctrl_wfRet. Therefore,
this guard function is used for the transition Tctrl_wfRet
in the TPN model of LC2. More complex conditions based
on multiple sensors are implemented by forming an arbitrary
plant marking-dependent Boolean guard function.

Finally, Fig. 2(f) shows a controller model of the described
controller-plant interface. The model, obtained from the CIPN-
based model in Fig. 2(c), is intermediary, and not fully TPN-
compliant; the CIPN-based communication semantics (i.e.,
signal transmissions via Send(destination,signal),
and receptions through signal==value denoted in red in
Fig. 2(f)) is still present in the model. However, to allow for
verification of system properties when networking is not a
concern, this communication semantics can be easily adapted
to TPNs by applying the same guard/update functions as
described; this results in a model architecture from Fig. 3(a).

1) Controller Runtime Environment Modeling: Another
challenge for the automatic mapping of CIPN-based control
models into TPN-compliant models is mapping of places
issuing system calls from the runtime environment (e.g.,
execution delays, requests for timer interrupts, setting counter
events) or updating local controller state (e.g., manipulating
global variables). Requested execution delays can easily be
modeled as timed transitions with the exact firing times (i.e.,
where the lower and upper firing time bound are the same);
in general, however, event timings with different semantics
are available depending on the control implementation—i.e.,
GRAFCET or SFC. In [56], [57], authors provide detailed
translational semantics between CIPNs and TPNs in these
cases by introducing event sequencers as certain conditions
exist where transitions can be taken while time to some events
generated internally in places has still not elapsed.

Remark 2 (Modeling more Complex Execution Environ-
ments): While we consider single-threaded automation exam-
ples (as most sequential control implementations are), existing
techniques for modeling parallel systems can be applied given
the expressiveness of TPNs. For example, for multithreaded
applications where task preemption is allowed, the operating
system scheduler can be modeled as a separate component,
even in case of multi-processor platforms [64]. �
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LCA LCB

XCVRA XCVRBCH

PLANTA PLANTB

LCA LCB

PLANTA PLANTB

(a)
(b)

Fig. 3. Model architecture: (a) Model captures local controllers LCi, plants
PLANTi and their interactions, (b) Model also captures the employed com-
munication transceivers XCV Ri, and the underlying communication channel
CHi. Note that local controller models LCi in schemes (a) and (b) are not
the same; i.e., in (b), controller places/transitions invoking communication
APIs are made compatible with the transceiver model.

B. CIPN and TPN Controller Equivalence

An execution path in CIPNs can be defined as a sequence of
markings, where a change in the marking occurs due to firing
of a transition. Recall that places are associated with actions;
hence, each marking is associated with a set of actions, while
transitions are associated with guards—firing of each transition
is thus conditioned by a set of conditions.8 Therefore, an
execution path is a sequence M0, T1,M1, T2, ..., where Ti is
the transition taking the net from marking Mi to Mi+1. In the
TPN model, a path is characterized by a similar sequence with
the addition of transition timing.9 In our case, it is sufficient
to maintain the CIPN controller execution paths in the TPN
model, as our objective is operational equivalence of the source
CIPN, and the target TPN control models.

CIPN controller specifications are fully deterministic by
design, and have only immediate transitions.10 Thus, the
target TPN controller models automatically obtained without
additional constructs (i.e., as described in Sec. IV-A), do not
introduce behaviors not covered by the source CIPN models.
Consequently, execution paths of the composition of the TPN
models match that of the CIPN, from the input-output (i.e.,
sensing-actuation) perspective. In other words, no execution
path is added by transforming the CIPN controller into the
TPN representation [24]. Intuitively, the TPN models ob-
tained by direct mapping from CIPN (i.e., place-by-place, and
transition-by-transition) are still fully deterministic (isolated
from the intrinsically non-deterministic plant and channel);
i.e., their behavior is identical to their CIPN counterparts, and
same behavioral assumptions (e.g., 1-boundedness) hold [54].

V. SECURITY-AWARE MODELING OF THE CHANNEL AND
CONTROLLER-CHANNEL INTERACTION

We now introduce a security-aware channel model, includ-
ing a TPN-compliant controller-channel interface that enables
model composition. Hence, we address modeling challenges

8We employ the standard assumption that all inputs are re-evaluated after
firing of every transition (e.g., as done in [57]).

9Strictly, two types of time intervals characterize each transition: static
intervals (i.e., design-time bounds) when they may fire, and dynamic (i.e.,
runtime) intervals when they can fire at any given instant, conditioned by all
other enabled transitions. However, for purposes of showing marking-based
equivalence with CIPNs, time can be abstracted away.

10Immediate transitions are fireable imediately after enabling, without delay.

to enable the transition from the security-agnostic model struc-
ture from Fig. 3(a), to the security-aware model composition
shown in Fig. 3(b). We start by defining the attack model.

A. Attack Model

We assume a powerful network-based adversary that has:
1) The full knowledge of the system, including the CIPN

models, generated code and analysis framework, as well
as the current state of all LCs (and their transceivers);

2) Network access and full communication protocol com-
pliance, i.e.,the attacker is able to transmit unsigned
messages as any of the LCs, or intercept messages or
ACKs exchanged by LCs;

3) The ablility to precisely time actions and align transmis-
sions with legitimate network traffic, e.g., to interfere
with legitimate messages by transmitting the carrier
signal or a protocol-compliant message.

Therefore, the attacker may mount the following attacks:
1) Interception or delaying of legitimate packets (DoS):

With these attacks, adversarial transmissions occupy
the communication channel, (a) blocking transmissions
from legitimate LCs to prevent or delay their access to
the network, or (b) blocking ACKs on legitimate LC’s
transmissions to cause unnecessary retransmissions and
slow down progression of the targeted transmitter [18];

2) ACK spoofing: The attacker may impersonate an ACK
expected by a legitimate transmitter; e.g., following
by interception of the transmission, the attacker may
spoof the ACK misleading the legitimate transmitter
into believing that the transmitted signal was received
by the intended receiver [17], both for regular and
‘heartbeat’/sync messages [65].

3) Impersonation/Masquerade: The adversary may transmit
false event signals on behalf of a legitimate LC (i.e.,
impersonating another controller), with the goal to inject
false commands [17] or sensor measurements; such
attacks could e.g., allow the targeted receiver to resume
execution while it is blocked waiting for an event signal,
before the event it is sent by the legitimate LC.

4) Signal replacing/Message modification: The adversary
may modify content of a legitimate message to deliver
false event information. While logically the same, the
attack procedure differs from intercepting a legitimate
transmission followed by a masquerading attack [19],
and thus is modeled differently.11

5) Replay attack: The attack characterizes an adversary
that records events signaled by the LCs and replays the
sequence of events on behalf of one or more LCs; thus,
maliciously emulating activity of LCs whose operation
(s)he is interfering with [19].

This attack set covers all reported attacks that, from the
standpoint of low-level signaling of events, could have direct
impact on QoC of the underlying physical process [15], [66].
Other attacks, such as attacks on network routing policies,

11This type of attack is technically more challenging to perform compared
to other attacks, especially over a wireless medium.
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Fig. 4. Transformation between CIPN-based and TPN-compatible communication models; (a) a Tx/Rx place/transition pair in the CIPN formalism; (b) the
same Tx/Rx place/transition pair modeled with as a TPN adjusted to the half-duplex, acknowledge-required unicast CSMA-CA-based channel, whose model
is shown in (c); (d) model of the employed radio transceiver (i.e., the governing RF state machine TPN model). Note that each Tx/Rx net pair in (a) (from
the model in Fig. 3(a)) is extended into a corresponding pair in (b), while only a single model from (c) and (d) are added to obtain the model from Fig. 3(b).

are focused on higher-level information flows and are thus
harder to directly relate to the automation QoC [19]. Ac-
cordingly, our goal is to model attacks by capturing their
influence on the sequential control system and the resulting
QoC, rather than the employed attack vector for any specific
attacks; i.e., the attack model should be agnostic to the actual
attack implementation. By abstracting away attacker’s actions
in the physical sense, we achieve the balance between model
expressiveness and complexity without any loss of information
from the perspective of the control system under attack.

B. TPN-Based Modeling of Attack Impact
Recall that CIPN models rely on platform-provided com-

munication APIs for passing events between LCs; e.g., as
in Fig. 4(a), Send(destination,signal=value) com-
mand within a place sends the updated value of signal to
the destination LC, while condition signal==value
on a transition within the model blocks execution until the
signal corresponding to the desired value is received over
the network. To enable formal analysis of the attack impact
on QoC of distributed automation, it is necessary to develop
a TPN-compliant model of the interface (i.e., transceiver)
between the controller and security-aware channel model; such
model can be then composed with the TPN-based models
described in Section IV-A, resulting in Fig. 3(b) architecture.

Such security-aware formal model has to capture:
(1) application-level (i.e., controller side) communication stack
behavior, directly affected by (2) the channel-side (i.e., com-
munication medium) attack model, and (3) the controller-
channel interface. Specifically, application-level (i.e., control-
related) communication stack behavior, such as delays or
blocking on communication peripheral resources, is of interest

for security analysis, as this presents the main reflection of the
communication-level attacks onto the control functionality.

Therefore, when translating the CIPN communication model
from Fig. 4(a) into a TPN-compliant model, it is necessary to
capture application software states that directly affect progress
of the control functionality, conditioned by data dependencies
resolved via communication. Such models can be obtained
from the actual application firmware running on the embedded
LCs (i.e., source code). For example, when IEEE 802.15.4
protocol is used, as in the case study presented in Section VII,
the state-machine/TPN representation can be directly extracted
from the radio driver (as done in Fig. 4(b)). On the other hand,
if a more complex communication stack is considered (i.e.,
also implementing higher networking layers), exiting state-
machine extraction techniques (e.g., [34]) can be used.

Second, the channel model has to explicitly capture the
channel states essential for supporting the attack models pre-
sented in Section V-A; channel features that are not observable
(or alterable) need not be modeled (e.g., bit-level signaling, or
carrier-level modulation). Finally, a TPN-compliant interface
between the controller and security-aware channel models is
needed to allow for their formal composition, enabling system-
level analysis of adversarial influence on the entire system.
Therein, specific data link layer (OSI model Layer 2) fea-
tures are crucial for understanding retransmissions and ACK
mechanics which, as we will show, affects design of attack
detectors. Therefore, while controller models should capture
application-level communication semantics, it is also necessary
to include protocol-level details within the transceiver (XCVR)
models, which act as the interface between the controllers and
the communication medium (Fig. 3(b)). XCVR specifics are
commonly available for the specific employed radio commu-
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TABLE I
SYMBOLS USED IN FIG. 4 AND FIG. 5; THIRD COLUMN (WHERE

APPLICABLE) INDICATES ACCESSIBILITY TO APPLICATION SOFTWARE (OR
ONLY TO THE TRANSCEIVER’S INTERNAL RF STATE MACHINE).

Symbol Description SW
acc.

ChBusy Indicator whether the channel is currently busy
with a packet or ACK

YES

N_RxBuf Local Rx buffer YES
N_RxAck Local flag indicating successful transmission,

i.e., ACK reception
YES

NXCVR_PTx Transceiver Tx payload buffer YES
NXCVR_PRx Transceiver Rx payload buffer YES
NXCVR_Tx Signal to XCVR initiating transmission YES
NXCVR_Txd Signal to XCVR indicating transmission NO
NXCVR_Rx Signal from XCVR indicating reception YES
NXCVR_TxAck XCVR signal initiating ACK transmission NO
NXCVR_RxAck XCVR signal indicating ACK reception NO
NXCVR_TxCnt XCVR retry counter NO
tMsg
Tx , t

Msg
Tx Message transmission time (bounds) —

tAck
Tx , t

Ack
Tx ACK transmission time (bounds) —

tBoff
Tx , t

Boff
Tx Back-off time (bounds) —

tAckTO
Tx Data link layer ACK timeout —
twfAck Application-level ACK timeout —
tDoS
Ch , t

DoS
Ch Contention time due to DoS (bounds) —

nication chip as RF circuitry control is usually state-machine
based (e.g., referred to as the internal RF state machine [67]
in the case of radios used in our implementation).

Finally, explicit security-aware channel modeling is
medium-, protocol-, and attack-dependent. Fig. 4(c) and Fig. 5
show a security-aware model of a half-duplex, acknowledge-
required unicast CSMA-CA-based communication channel
with respect to the previously defined attack model. While
other medium/protocol variants can be easily modeled due
to the expressiveness of TPNs, we consider this model as
it applies to our physical setup described in Section VII. In
the rest of this section, we describe the transformation from
the CIPN-based LC communication model to a TPN model
assuming the aforementioned channel, while aiming to balance
between the model expressiveness and capturing security-
aware behavior required for analysis of QoC under attack.

Notice that in this model, each and every place modeling
a transmission (as in Fig. 4(a)) translates to three places
and three transitions (one of which is timed) with additional
guard and update functions; furthermore, the receiving place-
transition pair remains the same with the addition of one
update function. Since only one transceiver model (Fig. 4(d)) is
required per controller, and only one channel model (Fig. 4(c))
is required for the entire control model, the model grows only
linearly in complexity during the described transformation.

C. Security-Aware Modeling of the Channel and Controller-
Channel Interaction

Fig. 4(b) shows the TPN transmitter/receiver models that
replace the platform-independent CIPN transmitter/receiver
model in Fig. 4(a). Fig. 4(c) shows the nominal channel
model (i.e., without adversarial influences), while Fig. 4(d)
shows the transceiver (XCVR) model. Notice that both LCA

and LCB have identical transceivers; thus, N ∈ {A,B}

in place/transition names. Table I enumerates symbols (local
flags, variables, and transition timing parameters) used in the
models in Fig. 4, 5. The internal RF state machine can be in the
listening, transmitting a packet, waiting for acknowledgement,
or transmitting an acknowledgement states. The transceiver
employed in our case study (in Sec. VII), performs up to three
retransmissions before signaling a transmission failure to the
application. On the application level, an unbounded number of
retransmissions are performed in case the transceiver returns
failure. The TPN model in Fig. 4(b-d) models this interaction.

In the remaining of this section, we show how the attacks
described in Section V can be modeled as TPNs. Specifically,
we describe additional places, transition, and arcs to be added
to the nominal channel model shown in Fig. 4(c) to capture
the attacks. To enhance model readability, Fig. 5 depicts only
additional places and transitions in red color required to model
a specific attack, while the nominal places and transitions are
depicted in black (all parts of the nominal model not relevant
for the specific attack are omitted therein).

a) DoS attack submodel: Fig. 5(a) shows the DoS attack
submodel. When the channel is idle, the attacker may decide to
occupy the channel to prevent legitimate transmissions. He/she
may do so at any time (non-deterministic choice) when the
channel is not busy, and keep the channel busy arbitrarily
long. In the model, the channel is kept busy for some non-
deterministic time in the range [tDoS

Ch , t
DoS
Ch ], after which it is

released by the attacker.
b) ACK interception/spoofing submodel: Fig. 5(b) shows

the ACK intercept/spoof submodel. To model ACK intercep-
tion, an additional transition is needed allowing the channel
to return to idle state following ACK transmission, without
the transmitter (LCA) receiving the ACK sent by the receiver
(LCB); i.e., transition Tch_TxAckInt is added as shown
in Fig. 5(b), and is not associated with the update function
U:BXCVR_RxAck=1. However, when ACK spoofing is con-
sidered, the attacker may transmit an ACK when the targeted
receiver is not in the process of acknowledging, while the
targeted transmitter is in the process of waiting an ACK.

Additionally, malicious ACK spoofing may be performed
when the signal to which the ACK is intended to correspond is
transmitted already, but the ACK has not yet been received by
the sender (e.g., due to an intercepted ACK from the legitimate
receiver). This is enabled with the additional net branch in
Fig. 5(b) starting with transition Tch_wfAckImp. As a result
of firing of this transition, the channel is declared busy and the
spoofed ACK is assumed to take the same time as transmitting
legitimate ACKs; thus, the transition Tch_TxAckImp has
the same attributes as Tch_TxAck, with the exception of the
signal to the targeted transmitter signalling ACK transmission
is done (i.e., update U:AXCVR_RxAck=1 is omitted).

c) Message intercept/modify submodel: Fig. 5(c) shows
the message intercept/modify submodel, where an additional
transition Tch_TxMsgMod (Tch_TxMsgInt), represented
as one transition for conciseness, is added. In the case of the
modification attack, this transition in the model allows the
attacker to deliver a signal different from the one originally
transmitted (i.e., U:BXCVR_PRx=Pmod where Pmod is the
payload modified by the attacker). In the case of packet
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(d) TPN Spoofing submodel
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Fig. 5. Additional places, transitions, and arcs required to obtain a security-aware channel model for different attack types: (a) DoS, (b) ACK intercept/spoof,
(c) message modification, and (d) masquerade. All attack-related components of the model are depicted in red color, while nominal components are shown
partially for completeness in black (where relevant).

interception, no update to the receiver’s XCVR buffer is made,
and consequently the XCVR is not notified of a received
packet (i.e., update functions are omitted and denoted as (.)
in Fig. 5(c)).

d) Message impersonation submodel: Fig. 5(d) presents
the masquerade submodel. The additional transitions and
places allow the attacker to make a non-deterministic choice to
impersonate transmission of the expected transmitter whenever
the channel is not busy, the targeted receiver is waiting for the
corresponding signal, and the original transmitter is not in the
process of sending this signal. Then, similarly to the nominal
(legitimate) transmission model (Fig. 4(c)), the transmission
takes a non-deterministic time in the same range as legitimate
transmissions. The received payload on LCB is in this case the
value Pinj crafted by the attacker, rather than AXCVR_PTx,
normally transmitted by LCA in the adversary-free case.

Remark 3 (Replay attacks): Due to the introduced non-
determinism, any specific sequence of attack actions are con-
tained within the presented model (as long as the individual
actions correspond to the attack model from Section V). Thus,
replay attacks are covered by the presented model as they
are only specific executions of the presented security-aware
channel model. On the other hand, using a similar approach,
finite memory replay attacks can be captured by a model
that restricts inserted attack signals only to the previously
transmitted messages, as done in [15]. �

Remark 4 (Controller-plant VS controller-channel interface
modeling fidelity): Control interface to the channel is modeled
in far more detail than the interface to the plant, by abstracting
away locally-connected actuator drives, relays, analog ampli-
fiers, etc. The reason is that, in this work, we do not consider
physical plant-level attacks. Hence, modeling the controller-
plant interaction at a lower level of abstraction would unnec-
essarily increase model complexity. However, the presented
techniques can be easily extended and the framework fully
adapted to also cover physical attacks on the plant. �

VI. RESILIENCY ANALYSIS AND SECURITY PATCHING

A security-aware closed-loop system model obtained by
composing the developed security-aware TPN models can

be used to verify system-level safety and QoC properties
in the presence of attacks. TPN analysis tools (e.g., [28],
[68]) allow for verification of formal properties specified
as Linear Temporal Logic (LTL), Computational Tree Logic
(CTL), or Timed CTL (TCTL) formulas [69]. In this work,
we employ the tool Romeo [28] that enables verification of
TCTL-based formal queries, such as traditional safety (e.g.,
1-boundedness [54]) and liveness properties (e.g., absence of
deadlock). In addition, as plant models are included, we can
specify relevant domain-related plant-state-bound properties
that are crucial for functional safety and QoC assessment. For
our running example, the considered properties include:

Property 1: A workpiece on conveyor 1 never trig-
gers a pick-up from conveyor 2; this can be for-
mally captured as: AG(not(M(Pp&p_P&P2)==1 and
activeConveyor==1)),12 where A and G are quantifiers

signifying formula satisfaction along all paths and always (i.e.,
along all subsequent paths), respectively.

Property 2: A workpiece detected on any of the conveyors is
eventually picked-up: (M(Pcm_TxCtrl_Pick1)==1 or
M(Pcm_TxCtrl_Pick2)==1)-->(M(Pp&p_wfRet)==1),
where --> denotes the ”leads to” property; i.e., p-->q
means that for all executions, continuous satisfaction of
property p implies always eventual satisfaction of property
q, or formally AG(p => AF(q)).

Property 3: The pick & place station does not commence
cycle (i.e., it is neither in Pp&p_P&P1 nor Pp&p_P&P2),
while the conveyor monitor is waiting for incoming
workpieces (i.e., in the place Pcm_Init). Formally,
AG(M(Pcm_Init)+M(Pp&p_P&P1)+M(Pp&p_P&P2)<=1).

Using the Romeo tool, we verified that these as well as
other QoC- and safety-critical properties are not satisfied
in the presence of attacks, as the attacker is capable of
significantly altering the intended interaction between LCs,
at arbitrary moments in time. For example, Property 1 is
violated under message modification attacks, Property 2 under
possible infinite DoS, while Property 3 fails under spoofing.

12Variable activeConveyor is set when a workpiece presence is de-
tected (i.e., on transitions Tcm_Pres1 or Tcm_Pres2 of the conveyor
monitor, shown as CIPN in Fig. 2) and reset when conveyor monitor returns
to initial state (i.e., over Tcm_RetInit)
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(a) DoS Tx-timeout model
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G:RxAck==1
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Ta_ackFail
[ 𝑡𝑤𝑓𝐴𝑐𝑘, 𝑡𝑤𝑓𝐴𝑐𝑘]

Pa_DoSdetect

G:TxRtryCnt==5
Ta_DoSdetectG:A_RxAck==0

U:TxRtryCnt++

Tb_wfRx

Pb_wfRx

G:B_RxBuf==SigVal
G:B_RxMAC==MAC
U:B_RxBuf=0

(b) Spoofing Rx-check model

Pb_IntrusionDetect

G:B_RxMAC!=MAC
Tb_ IntrusionDetect

Fig. 6. Model adaptation to addition of security services; (a) for DoS
detection, and (b) against spoofing. Additional places and transitions are
shown in blue color.

Fig. 7. Tx-to-Rx and Rx-to-Ack times measured on our IEEE 802.15.4-
enabled LC platform described in Section VI.

The aforementioned properties are violated regardless of the
values of timing parameters used in the model. Note that
bounds on time-to-transmit and time-to-acknowledge can be
obtained from experimental measurements, or directly from
network specifications. Also, transceiver-related timings (e.g.,
back-off time during clear channel assessment) can be obtained
from the employed transceivers’ specifications.

Regarding verification scalability—in the system model, one
nominal pick & place cycle, with all attacks disabled, contains
around 35 transitions, which is on the order of the number
of states in the model. Model complexity increases with the
addition of non-deterministic attack choices, besides the time-
induced non-determinism (in the plant model).13 Yet, in all
cases, the tool takes less than 1 s to find an execution path
violating the properties, on a workstation with an Intel i7-
8086K CPU (4 GHz clock) and 64 GB memory.

A. Addressing the Discovered Vulnerabilities

As our previous analysis have shown, attack actions may
significantly affect performance of distributed IoT-based in-
dustrial automation systems; to address them, it is necessary
to add certain security mechanisms. In this section, we discuss
how such security mechanisms affect system models and
verifiability of the relevant properties.

1) Detecting DoS Attacks: Packet and acknowledgement
dropouts are common in wireless communication, and hence
ACK and retransmission mechanisms are commonly used in
such setups. For instance, in our experimental setup described
in Sec. VII, ACK request can be disabled in transceiver
settings, in which case no retransmissions are attempted on
the data link layer. For two isolated transceivers, this amounts
to the one-way packet success rate of approximately 99 % (see
histograms in Fig. 7 that exclude unsuccessful transmissions).
Thus, when ACK requests are enabled, up to three data-link

13Romeo does not output statistics of the state space underlying the model.

layer retransmissions are performed,14 and we experimentally
observed that no application-level retries are required beyond
the three low-level protocol-provided retransmissions, in the
case when a single industrial machine operates in isolation.

On the other hand, to increase network utilization, we
emulated a number of additional machines communicating
over the same wireless channel in physical vicinity (described
in more detail in Section VII); we experimentally observed
the one-way packet success rate of approximately 98 %. Thus,
two application-level retries were sufficient to enable reliable
exchange of events, ensuring correct operation. Intuitively,
protocol-provided retries are issued in short bursts while
application-level retransmissions incur significant delay; the
channel is more likely to be continuously busy for a short pe-
riod of time (e.g., occupied by other legitimate transmissions).
Yet, an adversary may repeatedly deny network access to
legitimate controllers preventing the system from progressing.
Consequently, the modeled system does not satisfy Property 2,
despite application-level retransmissions, unless DoS attacks
can be detected and system halted (or other precautionary
actions taken), using e.g., a separate secure channel.

From the operational perspective, every LC may implement
a limited number of successive application-level retransmis-
sions before declaring that it is under attack. For instance,
if in our setup from Section VII, we limited the number
of retransmissions to five, amounting to a theoretical one-
way packet success rate of eight nines (if application-level
retransmissions are assumed to be independent). To address
this from the modeling perspective, we add an additional place
where the transmitter’s model transitions to, when application-
level retries are exhausted (see Fig. 6(a)). Hence, we can verify
that if infinite blocking of medium access is allowed, LCs
may end up in the place Pa_DoSdetect. Conversely, if DoS
attacks are limited to four consecutive channel access denials,
Property 2 is satisfied. Note that immediate emergency halt of
the machinery may not be possible if a secure communication
channel is not available or the DoS attacks cannot be isolated
from the network (e.g., using bus guardians).

2) Authenticating network flows: Traditional cryptographic
techniques for ensuring integrity of network flows rely on sign-
ing packets with Message Authentication Codes (MAC) [17],
and can be used to defend against spoofing attacks. In this
setting, every transmission between LCs is signed by the
transmitter using a secret key, and the signature is verified
by the receiver; therefore, the attacker cannot tamper with the
message payload, or else (s)he will be detected.

From the modeling perspective, introducing authentication
can be modeled as an additional condition on the receiving
transitions (in the controller models) where the received pay-
load is compared to desired values; i.e., the MAC portion
of the payload is compared to a secret value that cannot
be altered (in the case of modification) or generated (in the
case of spoofing attacks) by the attacker. Specifically, the
transition Tb_wfRx in the LCB model in Fig. 4(b) would
feature an additional guard function on the B_RxMAC variable.
Optionally, if the signature verification fails, a transition to a

14The XCVR model in Fig. 4(d) is compatible with these specifications.
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place modeling intrusion detection reaction can be added as
shown in Fig. 6(b); this is left to the application designer as
reacting to detected intrusions is highly application-specific.

Using the developed framework, we verified that if non-
authenticated transmissions are not allowed (i.e., authentica-
tion implemented), Properties 1 and 3 can be verified over
our running example, under the condition that infinite denial of
network access to LCs is not allowed, as previously discussed.

3) Acknowledgement Spoofing: Authenticating transmis-
sion does not affect ACKs as the data-link layer is responsible
for ACK packets while MACs are added to the packet pay-
load. In addition, non-encrypted sequence numbers, which are
part of the packet frame, can be overheard by the attacker.
Thus, valid ACKs can be generated on behalf of inactive
(failed) LCs. Also, undelivered (i.e., intercepted) transmissions
can be falsely acknowledged, even when authentication is
used. This is a well-known shortcoming of data link layer
ACKs [19], [70], and could be alleviated by application-level
ACKs. Enforcing consensus over event-propagation in discrete
event systems spans beyond the scope of this paper; yet,
the presented modeling techniques can be utilized to model
additional implemented protocols.

While this section introduced the general security-aware
modeling aspects, with occasional focus on specific medium
access techniques to avoid overly general discussions, in the
following section we demonstrate the use of the presented
framework on real-world industrial case studies.

VII. CASE STUDIES: INDUSTRIAL MANIPULATORS

We consider a full physical implementation of a recon-
figurable industrial pneumatic manipulator with a variable
number of modules/degrees of freedom (DOF) controlled in a
distributed fashion; i.e., one local controller per module/DOF.
We demonstrate effectiveness of our framework on multiple
module configurations (i.e., 2-DOF, 3-DOF).

A. 2-DOF Industrial Pneumatic Manipulator

The pneumatic industrial manipulator in the 2-DOF config-
uration is depicted in Fig. 8(a); two double-acting cylinders
(denoted A and B) provide translational degrees of freedom,
while the pneumatic gripper (denoted C) provides means of
handling the workpiece. All actuation commands are issued by
updating electrical signals xp, x ∈ {a,b,c} which activate
monostable dual control pneumatic valves.15 Notice that sig-
nals are denoted with x while cylinders are denoted with X .
Cylinders A an B are equipped with two proximity switches
which allow position (i.e., fully retracted, fully extended) sens-
ing. Signals corresponding to fully retracted (home) position
are denoted x0, while fully extended (end) position signals are
denoted x1. Additionally, the system contains a start switch
whose corresponding signal is denoted by st.

CIPN-based models of three LCs are shown in Fig. 9.
Initially, cylinders A and B are fully retracted, and gripper
C released—in this state the manipulator is ready to begin

15A control valve is the interface between the controller and the pneumatic
cylinder; it converts the actuation signal from the controller into mechanical
movement that controls flow of pressured air towards pneumatic cylinders.

3.5”

(2) LC

(1) 3-DOF manipulator

(c) Physical setup for configuration (b) and an LC

Cylinder A

Cylinder B

Gripper D

Pick and return 
position

Controller A

Controller B Controller C

Cylinder C

Controller D

Immerse 
position

(b) Pick-immerse-shake-return configuration

(a) Pick and place 
configuration

Cylinder A
Cylinder B

Gripper C Pick and place positions

Controller A

Controller B

Controller C

Fig. 8. Pneumatic manipulator in multiple configurations: (a) 2-DOF pick
& place configuration; (b) 3-DOF pick-immerse-shake-return configuration;
(c,1) upper portion of the physical setup of the configuration (b) shows
cylinders; (c,2) low-cost ARM Cortex-M3-based networked controller; each
physical component (cylinders and the gripper) are equipped with one LC.
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Fig. 9. CIPN-based distributed controller of a 2-DOF pneumatic manipulator.

its work cycle. The initial work cycle of the manipulator
is started by pressing the start switch (st==1), after which
operation is fully automated. First, cylinder B extends towards
the workpiece picking position (due to actuation command
bp=1). Once cylinder B reaches its end position (b1==1),
gripper C is commanded gripping (cp=1). Controller B waits
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for 500 ms for the part to be gripped.16 Then, cylinder
B retracts (due to command bp=0), and once it reaches
home position (b0==1), cylinder A extends (due to command
ap=1). After reaching its end position (a1==1), cylinder
B extends towards the placing position (due to command
bp=1). Once it reaches its end position (b1==1), gripper C
is commanded release of the workpiece (command cp=0).
500 ms later, cylinder B retracts (bp=0 followed by b0==1),
after which cylinder A retracts (ap=0 followed by a0==1).
The manipulator returnees into its initial state, after which
the next cycle is automatically executed. Signals (i.e., sensors
outputs and actuator inputs) are allocated to LCs according
to their physical proximity: {ap,a0,a1} are mapped to
controller A (i.e., LCA), {bp,b0,b1,st} to controller B
(LCB), and {cp} to controller C (LCC).

TPN models are obtained from these specifications as de-
scribed in Section IV, but are omitted here due to their size. On
the other hand, pneumatic cylinders are modeled as two-state
plants with bounded, non-deterministic extending/retracting
times obtained from experimental measurements. We ex-
tract timing parameters (i.e., bounds on time-to-transmit,
time-to-acknowledge, and back-off timing) from experimental
measurements—histograms for 10, 000 messages are shown in
Fig. 7, for the employed low-cost ARM Cortex-M3-based con-
trollers equipped with an IEEE 802.15.4-compliant transceiver.
On the other hand, we obtain transceiver-related timings (e.g.,
back-off time during clear channel assessment) from the radio
specifications [67]. While we verified a large number of safety
and liveness properties for this setup, we illustrate verification
and security patching on a more complex 3-DOF setup.

B. 3-DOF Industrial Pneumatic Manipulator

A 3-DOF configuration of the described manipulator is
shown in Fig. 8(b). The additional rotational DOF, provided
by cylinder C, introduces an additional LC and increases the
complexity of the LC coordination. This configuration may be
used to prepare workpieces for painting by immersing them
into a pool with cleaning solution, and returning them to the
pick-up position for further processing by another machine.

Fig. 8(c,1) shows the physical setup for this configuration;
the upper portion of the manipulator is shown such that
cylinders are visible. Fig. 8(c,2) shows the low-cost ARM
Cortex-M3-based LC with the corresponding IEEE 802.15.4
transceiver. While the models are more complex than in the
2-DOF case, they are semantically similar and thus omitted.
Fig. 10(a) shows event timing—i.e., states of all sensing and
actuation signals, for one sample pick-immerse-shake-return
run; messages exchanged by LCs are denoted with blue arrows
originating at the source event and terminating at the triggered
event. Among the many safety liveness and QoC properties,
we illustrate verification on the following examples.

Property 4: Gripper D is always gripped before
cylinder B picks the workpiece; formally captured as,
AG(M(PdGRIP_Gripped)==1 and
M(PbCTRL_bCYL_Retract1)==1).

16The gripper C does not have end position sensing due to size constraints;
thus a timed delay is used to permit secure gripping/releasing of the workpiece.
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Fig. 10. Sensing/actuation signal timings for a nominal pick & place run (a),
a run where a signal injection is performed resulting in a dropped workpiece
(b), and a run where progress is inhibited due to a DoS attack (c). Messages
exchanged by LCs are marked with blue arrows. X axis is unlabeled as the
speed of the workcycle can be controlled by regulating air pressure in the
system and is thus not crucial.

Property 5: A workpiece is eventually pro-
cessed, once the work cycle is started. Formally,
M(PbCTRL_bCyl_Extend1)==1-->
(M(PcCTRL_cGRIP_Release)==1.

When no security mechanisms are employed, we verified
violation of these properties. Property 4 is violated due to
a possible impersonation attack at the gripper controller; an
attacker may send the command to release the workpiece
before it was returned to the return position. Fig. 10(b) shows
signal timings acquired on a sample cycle run in which the
workpiece is dropped due to a maliciously injected command
to release the gripper (potentially causing mechanical damage
to the workpiece and/or the manipulator).

However, if transmissions are authenticated, and the model
adjusted correspondingly as described in Section VI-A2, this
vulnerability is alleviated. We applied a software security
patch by including the mbed TLS (Secure Sockets Layer)
library that our IIoT controllers are fully compatible with.
Signing a 128 bit message authentication code over one
transmitted signal incurs computational overhead of ∼ 100 µs
on the employed low-cost ARM Cortex-M3-based LCs; this
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practically negligibly slows down manipulator’s work cycle,
while providing security guarantees. Hence, Property 4 is
satisfied following this security patch.

Property 5 is violated due to the possibility of a DoS attack
that infinitely delays progress. From the model’s perspective,
this attack does not cause a deadlock—while the physical
process is stalled, the cyber process is in fact livelocked
reattempting to access the channel (i.e., same places are
revisited and same transitions fire infinitely often). Fig. 10(c)
shows signal timings acquired on a sample run where a
DoS attack is launched by enabling carrier transmission on
the attacker’s transceiver, in order to jam messages after
the workpiece was picked up from the immersion pool. As
described in Section VI-A1, wireless control nodes can keep
track of unsuccessful medium access attempts, and promptly
halt operation when a DoS attack is detected. In such cases,
distributing the information about DoS detection requires a
secure channel, which we do not consider in this work.

VIII. CONCLUSION AND DISCUSSION

In this paper, we have introduced a framework for security
analysis of distributed sequential control systems captured by
CIPN-based models. As CIPNs do not support verification
of safety properties in the presence of attacks, our approach
transforms control models into TPNs that inherently enable
this verification by supporting non-determinism in transition
times as well as transition firing; this imposes minimal as-
sumptions on adversarial actions. We have shown how a
model of a network-based attacker can be integrated into the
non-deterministic communication channel model, and verified
violation of safety properties in presence of attacks.

Additionally, we have shown how verification results can
be used to pinpoint vulnerabilities in control software imple-
mentation, suggesting security patches to alleviate the impact
of the attacks on control performance. We have also provided
the loop back to the modeling stage, enabling re-verification
of properties that are now satisfied due to the use of the
appropriate security mechanisms. Finally, we have evaluated
our framework on a real-world industrial case study.

Note that the runtime effects such as utilization of commu-
nication channels and mechanical wear may affect parameters
of developed models (e.g., timing bounds in TPN). Thus, the
presented system can be combined with runtime monitoring
that evaluates whether real-time process and communication
channel measurements comply with the aforementioned plant
and channel models, raising alarm if potential violations are
detected (e.g., similar to [47]). Finally, providing resilience
of low-level distributed controllers is only a part of securing
IoT-based Industry 4.0 systems. Integrating such resilient
subsystems with enterprise-level resilience mechanisms (e.g.,
data-driven monitoring) will be a part of the future work.
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