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Abstract
To enable safe and reliable decision-making, autonomous
vehicles (AVs) feed sensor data to perception algorithms to
understand the environment. Sensor fusion with multi-frame
tracking is becoming increasingly popular for detecting 3D
objects. Thus, in this work, we perform an analysis of camera-
LiDAR fusion, in the AV context, under LiDAR spoofing
attacks. Recently, LiDAR-only perception was shown vulner-
able to LiDAR spoofing attacks; however, we demonstrate
these attacks are not capable of disrupting camera-LiDAR fu-
sion. We then define a novel, context-aware attack: frustum at-
tack, and show that out of 8 widely used perception algorithms
– across 3 architectures of LiDAR-only and 3 architectures
of camera-LiDAR fusion – all are significantly vulnerable
to the frustum attack. In addition, we demonstrate that the
frustum attack is stealthy to existing defenses against LiDAR
spoofing as it preserves consistencies between camera and
LiDAR semantics. Finally, we show that the frustum attack
can be exercised consistently over time to form stealthy longi-
tudinal attack sequences, compromising the tracking module
and creating adverse outcomes on end-to-end AV control.

1 Introduction
Autonomous vehicles (AVs) have enjoyed millions of miles

of partially automated road travel [1, 2]. This has been en-
abled by advances in perception, the foundation for safe and
reliable decision-making in AVs. Sensors including cameras
and light detection and ranging (LiDAR) collect data so per-
ception can provide AVs enough awareness of surroundings
to make informed decisions in safety-critical tasks such as
obstacle/pedestrian avoidance and traffic sign detection.

The camera and LiDAR are the most used AV sensors [3–6].
Inexpensive, high-quality cameras can provide high resolu-
tion, dense 2D outputs on limited fields of view. LiDAR is
complementary to the camera, providing up to 360◦ view
of the surroundings and fully resolving the 3D position of
objects with a sparse set of points (i.e., point clouds).

Due to AVs’ safety-critical nature, misinformation or
wrong decisions can quickly lead to severe adverse out-

comes [7, 8]. The high-impact outcomes underscore the need
for security research in the domain. In particular, the increas-
ing reliance of AVs on deep neural networks (DNNs) for
real-time perception has sparked security questions at the
algorithm level. There is a growing body of AV perception
security work: an attacker can perturb sensor data to change
object classification (misclassification) [9], introduce fake ob-
jects (false positives) [10, 11], and remove existing objects
(false negative) [12, 13], each with devastating consequences
at the driving decision and control levels.

Initially, security analysis of perception focused on the
image domain with LiDAR only recently emerging as the
target for security research. Spoofing attacks against LiDAR
have since been demonstrated [10, 11, 14–16], and applied to
LiDAR-only perception [10,11]. The use of physical adversar-
ial objects has also been explored [12, 13, 17], demonstrating
outcomes against end-to-end AV pipelines [17].

However, existing security analyses of LiDAR-based
perception have several limitations. Reported physically-
realizable attacks mainly consider single-sensor (e.g., LiDAR-
only, camera-only) perception. On the other hand, de-
ployed AV architectures such as Waymo’s One [1], Baidu’s
Apollo [6], and NVIDIA’s DRIVE [5] employ multi-sensor
perception with multi-frame tracking. Security analysis of
multi-sensor fusion has been recently considered [12, 13, 17];
e.g., [17] focuses on the impact of adversarial physical objects
on camera-LiDAR perception. Yet, these approaches require
highly representative models of the deployed perception algo-
rithms to design attacks with white-box optimization online
or a-priori. To the best of our knowledge, there is no analysis
of black-box (i.e., when the perception model is not known
to the attackers) attacks against sensor-fusion perception.

Consequently, in this work, we present security anal-
ysis for camera-LiDAR sensor fusion under physically-
demonstrated black-box LiDAR spoofing attacks. Using the
LiDAR-spoofing threat model from [10,11], we first show that
camera-LiDAR fusion confers additional robustness against
general black-box (i.e., naive) LiDAR attacks; this is be-
cause the naive spoofing does not retain consistency be-
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tween camera data and thus can be filtered. That attack suc-
cess may be greatly reduced with sensor fusion when not
all sensors are compromised has been suggested in prior
works [10–12, 18, 19], and is systematically evaluated for
the first time in this work.

Unlike the recent work of [18] that restricts analysis to
naive LiDAR attacks, we introduce a new class of percep-
tion attacks, the frustum attack, which compromises camera-
LiDAR fusion by preserving semantic consistencies between
the camera and LiDAR data. To achieve this, the attacker only
needs to know approximate locations of true objects in the
scene. We experimentally demonstrate that the frustum attack
can be executed in the physical world with limited knowledge.
We describe five scenarios where an adversary can use contex-
tual information to launch spoofing attacks relative to existing
objects in the scene. This expands upon prior works [10, 11]
that focused only on naive, isolated placement at 5-8 m range.

We then evaluate the frustum attack against state-of-the art
defenses against LiDAR spoofing [11, 18, 20] using a diverse
set of eight perception algorithms across three distinct LiDAR-
only and three distinct camera-LiDAR fusion architectures,
including cascaded-semantic, feature-level, and tracking-level
fusions (Fig. 1) on over 75 million attack scenarios. To the
best of our knowledge, this constitutes the largest analysis of
LiDAR spoofing to date and the first that extensively evaluates
multiple architectures of multi-sensor fusion for perception.

In addition to false positives (FPs), we demonstrate that the
frustum attack is successful in generating false negative (FN)
and translation attack outcomes, as defined in Section 3.1,
which is a novel discovery for LiDAR spoofing attacks.

We also show that a key assumption about the required at-
tacker’s capabilities from prior work can be relaxed. Existing
spoofing attacks have only had success at creating FPs or FNs
with precise (cm-level) placement of points; furthermore, ex-
isting LiDAR spoofing attacks have required either white-box
model access [10] or carefully-crafted point placements in the
outline of real vehicles (e.g., adversary pre-captures samples
and replays them [11]). We establish that inserting a random
sample of normally-distributed points is comparably as suc-
cessful as inserting points in the outline of a car. This confers
inherent attack robustness to small perturbations, facilitating
attack deployment with a physical spoofing device such as
in (e.g., [10, 14–16]), and as demonstrated in Section 5.3.1.

Finally, to assess the impact of LiDAR attacks on AVs
equipped with multi-frame tracking, we present frustum at-
tack case studies using longitudinal sequences of perception
data. First, we explicitly analyze the multi-frame fusion and
tracking module, which is employed by all industry AVs, us-
ing representative algorithms. Then, we test the frustum attack
on Baidu Apollo [6] using the LGSVL simulator [21]. The
case studies illuminate that high-impact adversarial situations
that endanger vehicle and passenger safety occur under the
frustum attack when attacking over multiple time points, ef-
fectively deceiving the host vehicle’s tracking and control.

In summary, we make the following main contributions:
• We show that several sensor-fusion algorithms are robust to
naive LiDAR spoofing at some of the highest defensive rates
yet observed (e.g., < 1% for some algorithms), suggesting
sensor fusion is inherently secure against naive attacks.
• We introduce a novel class of LiDAR spoofing attacks on
AVs, the frustum attack, and experimentally validate frustum
attack feasibility with existing hardware.
• We perform a thorough analysis of LiDAR-only and camera-
LiDAR perception and show the frustum attack’s first-of-a-
kind ability to compromise 8 high-performing perception
algorithms across 3 LiDAR-only and 3 camera-LiDAR fusion
architectures. We also show that the frustum attack is stealthy
even against existing defenses of LiDAR spoofing.
• We perform longitudinal studies of security against per-
ception attacks. We show that, on an end-to-end AV driving
software, by using frustum attacks to fool the AV’s tracking
and control, the attacker has high levels of attack success at-
tacking at short and long range, expanding on previous short
range attack cases.

2 Background and Related Work
2.1 Perception

AVs interact in complex environments with active agents
and dynamic weather and terrain situations. To accomplish
desired tasks while retaining consistent situational awareness,
deployed AVs are equipped with multiple sensors of multiple
modalities as well as with perception algorithms to translate
sensor data into meaningful semantic information (e.g., vehi-
cle tracking for situational awareness).

2.1.1 Camera and LiDAR Sensing
AVs are equipped with multiple cameras spaced around the

vehicle. Individual cameras provide monocular vision which
resolve azimuth and elevation angles to targets. Cameras are
inexpensive compared to LiDAR and radar and thus are the
preferred sensing modality for many AVs [3, 5, 6, 22, 23].

A central scanning LiDAR is commonly mounted on the
roof of AVs for maximum viewing opportunity. LiDAR is
complementary to the camera; it is an active sensor that sends
primarily infrared light and constructs transmit-receive time
differences to resolve the full 3D position of point returns [3].
LiDAR has demonstrated enhanced robustness compared to
cameras in situations including adverse weather [24].

2.1.2 AV Benchmarks
We use KITTI [22] and the LGSVL Simulator [21] to test

our algorithms and attacks. KITTI is composed of synchro-
nized camera and LiDAR captures with ground truth 2D and
3D bounding boxes. We use perception algorithms with pub-
licly available models pretrained on KITTI (see Sec. 2.1.3) as
well as Baidu Apollo’s open source end-to-end AV stack [6].

2.1.3 Perception Algorithms
Recently, novel DNN-based methods have been proposed

for processing point cloud data from LiDAR. Three general
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(a) Cascaded semantic-level fusion (b) Integrated semantic-level fusion (e.g., fusion at tracking) (c) Feature-level fusion
Figure 1: The three widely-used classes of multi-sensor fusion in perception.

Table 1: LiDAR-only and camera-LiDAR fusion perception
algorithms of multiple architectures are all evaluated under
the naive and frustum attacks and with defenses.

Algorithm Type Architecture

PointPillars [27] LiDAR Voxel-Based
PointRCNN [28] LiDAR Point-Based
PIXOR [33] LiDAR BEV

Frust.-ConvNet [30] Camera-LiDAR Casc. Semantic
Frust.-PointNet [29] Camera-LiDAR Casc. Semantic
AVOD [31] Camera-LiDAR Feature-Level
EPNET [32] Camera-LiDAR Feature-Level
Baidu Apollo [6] Camera-LiDAR Integ. Semantic

classes of LiDAR-only perception were reported in [11] and
include the bird’s-eye view (BEV) (e.g., [6, 25]), voxeliza-
tion of the 3D space (e.g., [26, 27]), and direct ingesting of
points (e.g., [28]). These early works focused on single-sensor
perception pipelines without considering multi-sensor fusion.

We consider three broad classes of multi-sensor fusion for
perception, illustrated in Fig. 1: (1) cascaded semantic fusion
(e.g., [29, 30]) using the output of perception on one or more
sensors to augment the input of other single-sensor perception,
(2) integrated semantic fusion (e.g., [6]) that runs isolated per-
ception for each sensor and fuses semantic outputs (e.g., in
tracking), and (3) feature-level fusion (e.g., [31, 32]) that
combines low-level (machine-learned) features from multiple
perception sources to produce a unified output. Specifically,
we analyze state-of-the-art LiDAR-only (PointPillars [27],
PointRCNN [28], PIXOR [33]) and camera-LiDAR fusion
(Frustum-ConvNet [30], Frustum-PoinNet [29], AVOD [31],
EPNET [32], Baidu Apollo [6]) perception algorithms, as
summarized in Table 1.

2.2 Attacks on Perception
Attacks on camera-based perception. Camera-based per-
ception algorithms that use DNN models have been shown
vulnerable to black-box attacks (e.g., [34]). Attacks on
camera-based perception have been extended to AV-specific
contexts [9, 35], showing that object detection and classifica-
tion are vulnerable when using only camera data.

Demonstrations of LiDAR spoofing attacks. Recently,
[10,11,14–16] have demonstrated feasibility of LiDAR spoof-
ing devices. A relay system where LiDAR pulses were re-
ceived by a photodiode and relayed through an attack laser

was introduced in [14]; the system was expanded to con-
trol the 3D positioning of spoof points with a delay com-
ponent [15], capitalizing on the regular patterning of Li-
DAR emissions. With this foundation, [10] established a 60
point stable spoofing baseline on a per-frame basis, subse-
quently improved to 200 points [11].
Attacks on point cloud detection. Spoofing attacks have
motivated security studies of LiDAR-based perception. The
placement of spoof points is considered as a white-box op-
timization problem in [10]. In [11], black-box attacks are
introduced, exploiting that DNNs may not encode causality
about the data (e.g., occluded objects). To date, only mild
success is seen in obtaining FPs with spoofed points from a
real laser due to engineering limitations [10, 11]; thus, many
security studies use simulated spoofing models [10, 11, 18]
while engineering is improved [16].

Further, [17] develops physical adversarial objects capable
of compromising sensor fusion using gradient-based shape
and texture optimization. The model is an expansion on single-
sensor adversarial objects, as both camera and LiDAR per-
ception model gradients are used to update shape of the ad-
versarial object. Physical-adversarial-object approaches, such
as [17], require white-box access to the deployed or highly
representative perception models for training offline. Addi-
tionally, [12, 13] introduce attacks with adversarial patches
and physical objects that are optimized for color, shape, and
texture. Each attack performs optimization over training
data [12, 13]. It has not been studied whether these attacks
can generalize across perception algorithms.
2.3 Perception Defenses

Several defenses have been proposed to counteract LiDAR
spoofing attacks, including model-agnostic defenses indepen-
dent of the perception model (e.g., CARLO [11], Shadow-
Catcher [20]) and model-based defenses that fortify the per-
ception architecture (e.g., SVF [11], LIFE [18]).

CARLO [11] is a detection-centric defense, guarding
LiDAR-only perception against naive spoofing in front-near
positions. The exploits the intuition that, if there are many
LiDAR points appearing to pass through a detected object, the
object is likely a false positive (FP). ShadowCatcher [20] is a
detection-centric defense and uses a similar line of reasoning
to CARLO: if a detection has a highly anomalous shadow
region – defined as a high anomaly score using features of
the shadow region – it is likely an FP. SVF [11] is a model-
based defense and guards LiDAR-only perception against
naive spoofing by augmenting LiDAR data with a point-wise
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confidence score from the front-view (FV) under the intuition
that naive FPs do not maintain FV consistency. LIFE [18] is a
hybrid model-based detection-centric perception defense that
compares LiDAR and camera data detections and raw sensor
data. To cross-check sensor detections, the object matching
method compares camera and LiDAR detections in the front
view. To compare raw sensor data, the corresponding point
method checks consistency of camera feature points with raw
LiDAR data in a depth image, and the sensor reliability evalu-
ation uses machine-learned prediction algorithms to compare
predicted and captured sensor data. LIFE was tested against
naive spoofing attacks using LiDAR and stereo imagery [18].
Sensor Fusion. The use of multi-sensor fusion to enhance
perception resiliency has been suggested [10, 11, 18, 19, 36].
Yet, no systematic evaluation of sensor fusion under spoof-
ing attacks has been performed (e.g., LIFE [18] was evalu-
ated using naive spoofing without analysing spoofing perfor-
mance, [17] used optimized physical adversarial objects as
threat model). Thus, in this work we thoroughly evaluate the
fusion models’ performance under spoofing attacks.

3 Attack Objectives and Threat Model
We use the following terminology in describing the attacker

goals, capabilities, and strategy. By the victim vehicle, we
refer to the AV running perception algorithms. The attack’s
goal is to cause adverse outcomes for the victim. The attacker
may wish to orchestrate attacks in some relation to an object
in the scene (e.g., another vehicle) other than the victim. This
object is referred to as a target vehicle. Any other vehicle or
object in the scene is denoted as other.

3.1 Attack Goals
We consider false positive (FP) and false negative (FN)

attack outcomes consistent with the literature [10–12, 17], as
well as translation attack outcomes where a detected object’s
bounding box is translated (i.e., moved) by some distance.
The goal of achieving a false positive outcome is to force
the victim to perform dangerous maneuvers (e.g., emergency
braking or lane change) to avoid the false object. For example,
LiDAR spoofing attacks can result in safety-critical incidents,
as shown with Baidu’s Apollo [6, 11].
The goal of achieving a false negative outcome is to remove
an existing object from the perception output such that path
planning and control are compromised. Such attacks can have
the devastating consequence of the victim crashing into an
unsuspecting object hidden to perception (e.g., as in [17]).
Translation outcome. We find FP and FN outcomes are
insufficient to fully capture the effects of perception attacks.
Some cascaded semantic fusion architectures (e.g., FPN) en-
force one-to-one matching between 2D and 3D detections;
thus, an FP necessarily implies an FN. We call such instances
translation outcomes as the attacker has created physical dis-
tance between the negated ground truth (FN) and the spoofed
detection (FP). Translation outcomes may cause emergency

Table 2: Gaussian moments for sampling spoof point positions
relative to the desired FP location. Coordinate frame is local-level
Cartesian, axes are frustum-relative (forward is toward the victim).

Direction Forward Left Up

Mean (m) 1.0 0 1.0
Std. Dev. (m) 0.1 0.5 0.2

braking if objects are moved to front-near positions or colli-
sion when moved farther from the victim or to a different lane.

3.2 Threat Model
3.2.1 Environment

We consider scenarios where the victim AV may have mul-
tiple sensors; i.e., we consider both LiDAR-only and camera-
LiDAR perception models, widely used in AVs [1, 5, 6, 23].

3.2.2 Attacker Capability
We assume the attacker has no access to the AV’s internal

processing, has no way to attack the camera, and can only
inject signal along the same physical channels as normal Li-
DAR. The attacker uses a LiDAR spoofing attack similar
to [10, 11, 14–16], which established how to control the 3D
positioning of LiDAR points using a relay and delay system.
Further, we follow the threat model from [11] which demon-
strated injecting up to 200 spoof points. While [10,11] assume
high-precision spoofing where LiDAR points are placed in
well-crafted patterns (e.g., outline of a car), we also relax this
assumption in some cases by allowing the attacker to place
points by randomly sampling a distribution; the parameters
of this distribution are summarized in Table 2. This simplifies
the attack design compared to the model from [10, 11] and
may be more representative of a noisy attack laser.

3.2.3 Attack Strategy
In this work, we consider the following attack strategies.

Naive attacks. In general, naive attacks compromise a sin-
gle sensor without regard for consistency between multiple
sensors or the environment. Naive LiDAR spoofing attacks
against AVs were first proposed in [10] and followed up
with [11]. Naive spoofing attacks are examined in Section 4.
Frustum attacks. We introduce the novel frustum attack
which retains consistency across multiple sensors even only
attacking a single sensor. It is motivated by the fact that 2D
detections of a target vehicle from the victim camera’s front-
view cannot resolve range, and thus the 3D uncertainty of
a 2D (camera) detection defines a frustum from the camera
image plane in the direction of the target vehicle (see Fig. 2).
Attacking within the frustum of a target vehicle retains consis-
tency with semantic and feature information between camera
and LiDAR data. Frustum attacks are examined in Section 5.

3.2.4 Attacker Knowledge
System. In all cases, the attacker requires no knowledge of
the underpinnings of perception, including the machine learn-
ing model and perception architecture. Further, to instantiate
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Figure 2: The frustum attack leverages that the camera is
only a 2D projection of 3D space. Any feature or detection
in a single 2D image could be resolved to any distance along
the range axis. Thus, spoofing within the frustum retains
consistency between camera and LiDAR data association.
The frustum is defined by an object’s 2D bounding box when
extended into 3D (diagram shown is unattacked).

the attacks, the attacker need not have access to existing sensor
data, other than what is required in the relay system [14, 15].
Environmental. For the frustum attacks, we assume the
attacker knows the approximate position of the target object
so as to obtain a frustum region for spoof point placement. In
addition to FP outcomes, this also enables FN or translation
attack outcomes targeting a particular (valid) object.

4 Naive LiDAR Spoofing
We first consider general black-box (i.e., naive) attacks on

LiDAR-only perception. To fully evaluate the state of the art,
we reproduce the LiDAR spoofing attack from [11] using pat-
terns of occluded vehicles extracted from KITTI and sweep
number of attack points in steps of 10, from 10 to 200. This
is a naive method as it does not attempt to maintain consis-
tency among sensors and is black-box as it does not require
knowledge of the employed perception model or sensor data.

4.1 Spoofing Against LiDAR-Only Perception
We test a perception algorithm from each of the three cat-

egories of LiDAR-only perception architectures, consistent
with [11] and outlined in Table 1. Specifically, we use voxel-
based PointPillars [27], point-based PointRCNN [28], and
BEV-based PIXOR [33] for 3D object detection. We repro-
duce the attack success rate (ASR) from [11]. Details on the
reproduced results are in Appendix A.1, showing high ASR
of the naive spoof attacks at front-near positions.

4.1.1 State-of-the-Art Defenses
We reproduced CARLO, SVF, and ShadowCatcher, as no

source code was available; reproduced results are presented
in Appendix A.2. Our results for CARLO and SVF against
naive attacks are consistent with [11] – i.e., the ASR is greatly
reduced in front-near positions against naive attacks. How-
ever, with realistic assumptions, we obtained lower defense
performance for ShadowCatcher than reported in [20]. The
reasons, outlined in Appendix A.2, include that the original

Figure 3: Naive spoofing attacks against LiDAR-only with
CARLO defense outside front-near: CARLO is not suitable at
guarding perception against naive spoofing for false positives
outside of front-near; the ASR of CARLO-guarded models is
nearly as high as without CARLO (see Fig. 16)

work tuned parameters on the test set as well as used the
ground-truth information instead of the output of a perception
algorithm; ground-truth information is not available for a real
system and significantly reduces noise.

Very recently, [18] introduced LIFE defense that designed
point-based and frame-based camera-LiDAR consistency
checks as a preprocessing step to guard against both camera
and LiDAR attacks. As reported in [18], LIFE is well-suited
to detect naive spoofing attacks, as naive spoofing does not
retain consistency between the camera and LiDAR data.

4.1.2 Some Existing Defenses Have Vulnerabilities
Under further scrutiny of existing defenses, we find several

naive attack configurations not tested in [11] that suggest the
CARLO defense introduces additional vulnerabilities.
CARLO Vulnerability to False Positives. While CARLO
demonstrates high success guarding against naive spoofing
in front-near [11], naive spoofing is stealthy to CARLO when
placed outside of front near. Intuitively, as the range to
spoofed objects increases, the angle subtended by the frustum
towards the detection decreases. This leads to a decrease in
the number of LiDAR points contained in the frustum as the
emitted LiDAR points spread in a spherical pattern (constant
angular density). Thus, an increase in range leads to spoofed
instances that appear more similar to normal instances under
the CARLO hypothesis. We show this by spoofing points at a
range of 30 m from the victim; our results in Fig. 3 show that
CARLO is incapable of guarding against these naive spoofing
attacks, as the ASR is on-par with the defense-less system
(compare Figs. 3 and 17). Analysis for additional spoofed
point distances is provided in Appendix B.

Spoofing attacks applied at greater ranges can have severe
adverse outcomes when exercised longitudinally (i.e., over
multiple time steps). For example, since LiDAR-only percep-
tion cannot be guarded by CARLO outside of front-near, as
shown in Fig. 4 an adversary can create false positives over
multiple time steps to give the appearance of a vehicle moving
directly toward the victim with high velocity. This may trigger
braking and collision avoidance maneuvers even before the
false vehicle reaches close range. Detailed investigation of
longitudinal attacks is provided in Section 6.
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(a) Stealthy FP at 40 m (b) Stealthy FP at 30 m (c) Stealthy FP at 20 m (d) FP invalidated at 10 m

Figure 4: Even with the CARLO defense, a spoofing scenario starting at long-range can evade the defense for many frames until
it reaches front-near position. During this time, the AV will build a (adversarial) track on the spoofed object, which can cause
adverse control outcomes (e.g., collision avoidance maneuver).

Figure 5: Naive spoofing attacks against camera-LiDAR fu-
sion: Many fusion algorithms (including FPN, FCN, AVOD)
have high inherent resiliency to naive spoofing attacks (< 5%
ASR) without specialized defenses. EPNET’s vulnerability is
due to its high baseline false positive rate - nearly 40% of all
EPNET’s detections are FPs, even without attack.

CARLO Vulnerability to False Negatives. We also find
that CARLO, even at front-near, is vulnerable to FN invali-
dation attacks. Since CARLO relies on physics violations –
i.e., many points appearing to “pass through" a detected ob-
ject, which should not occur for normal objects – the attacker
can instead use the spoofer to create these physics violations
on normal instances to obtain FNs (i.e., invalidation of true
objects). Specifically, an adversary can spoof points behind
valid objects (in no particular spoofing pattern, unlike the
attacks required by [10, 11]) which will trigger CARLO into
believing the detected object is invalid. Thus, a true object will
be rendered as a false negative, potentially causing a head-on
collision of the victim vehicle.

The FN outcomes against CARLO depend on the range to
the target to invalidate. This follows from the decrease in the
frustum angle with range and the constant angular density of
LiDAR points. Using a 200-point maximum capability and
requiring only random injections, attacks achieve upwards of
40% success at invalidating objects 50 m away (Appendix B).

4.2 Sensor Fusion
No prior work has systematically evaluated whether sensor

fusion is more resilient to spoofing. Thus, we evaluate the
naive spoofing attacks against multiple camera-LiDAR fu-
sion algorithms across multiple architectures summarized in
Table 1. We find the majority of tested sensor fusion are inher-
ently resilient to the naive spoofing attacks (Fig. 5). Overall,
this level of intrinsic defense renders naive spoofing attacks
ineffective even without the addition of specialized defenses.

Specifically, widely used camera-LiDAR fusion algorithms
FPN [29], FCN [30], and AVOD [31] have high resiliency with
ASR generally lower than 5%. We find EPNET [32] is still
vulnerable; we believe this is due to EPNET’s high baseline
FP rate. On the (unattacked) KITTI validation set, EPNET
has 220% the number of FPs compared to AVOD; nearly 40%
of all EPNET’s detections on (unattacked) KITTI are FPs.
Summary: Impact of Black-box Attacks. LiDAR-only
perception alone is vulnerable to naive black-box spoofing
attacks in front-near positions, as previously reported [10,11].
However, there are several promising specialized defenses, al-
though CARLO is insufficient in preventing black box spoof-
ing attacks outside front-near positions and is vulnerable to
invalidation attacks. Finally, we showed that sensor fusion is
intrinsically more robust to naive attacks. Yet, in what follows,
we demonstrate that the perception models and defenses per-
form poorly under a new class of attacks: the frustum attacks.

5 Frustum Attack on LiDAR
In this section, after establishing the feasibility of the frus-

tum attack, we evaluate the impact of frustum spoofing on
modern perception methods. We show both LiDAR-only and
camera-LiDAR fusion perception are widely vulnerable to the
context-aware frustum attacks: all 8 tested algorithms falling
across 6 different architectures from Table 1 are vulnera-
ble and none of the state-of-the-art defenses against LiDAR
spoofing are capable of defending against the frustum attack.

5.1 Frustum Attack Motivation & Definition
While naive spoofing is damaging against LiDAR-only

perception, it does not maintain consistency with physical
invariants or between camera and LiDAR data; as shown in
Section 4, this inconsistency can be leveraged to filter out
the naive spoofing attacks. Consequently, the frustum attack
is conceived as a black-box method of retaining consistency
between the camera and LiDAR data and consistency with
physical invariants using easily obtained contextualizing in-
formation from the environment. Specifically, an adversary
can leverage that the camera is only a 2D projection of the 3D
space; any detection or feature in the camera can be resolved
to any point along the line extending from the camera out
to infinite range (in practice, ∼ 100 m for AV applications)
because a single camera cannot resolve range information.
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The frustum attack thus places spoof points to leverage the
projective nature of the camera. Points are placed behind or
in front of existing objects so that they have front-view con-
sistency. This can be realized by spoofing within a pyramid
(i.e., the frustum) where the tip of the pyramid is at the victim
sensor and the base is the projection of the 2D, front-view
bounding box of a true object out along the range axis.

Thus, due to the projection and by spoofing in-view of ex-
isting (target) objects, perception algorithms may associate
(unattacked) features/detections in the camera and the spoofed
LiDAR points even if the spoof LiDAR points are at a differ-
ent range than the target object. By spoofing in the frustum of
valid objects, frustum attack FPs maintain many natural quali-
ties of normal objects (see Fig. 8), helping them to be stealthy
against existing defenses relying on physical invariants or
camera-LiDAR consistency checks.

We denote this ‘in-view’ spoofing as the frustum attack
since a 2D bounding box around an object in the camera’s
image defines a frustum when the uncertainty of the 2D box is
extended into 3D along the range axis, as illustrated in Fig. 2;
also, in the bird’s eye view (BEV) in Fig. 8. Importantly, the
adversary needs to only approximately know the frustum.

5.2 Attack Feasibility and Practicality
Feasibility of naive spoofing attacks has been shown

in [10,11]. Here, we provide experimental justification for the
frustum attack. We first describe five situations that naturally
arise in nearly all day-to-day driving conditions that enable
frustum-based spoofing. We then demonstrate one scenario
of the frustum attack experimentally. Three of the situations
are attainable with current engineering/LiDAR technology.
Work is underway to advance optics and tracking which may
enable additional spoofing scenarios (e.g., see [16]).
5.2.1 Frustum-Attack Spoofing Scenarios

We describe five common scenarios where the frustum
attack can be exercised; the scenarios are illustrated in Fig. 22
in Appendix C. In all cases, the spoofer has full control over
the range of placement of the spoof points along the frustum
by increasing or decreasing the delay timing.
S1: Spoofer on target. A spoofer is placed on a target car
and aimed at victim (the target AV owner/passengers may or
may not be aware of this). The target car does not have to be
endangered for this to have impact because the attacker creates
FPs that cause the victim to perform evasive maneuvers. The
target car is by definition in line with its own frustum. Any
spoofed points along the line-of-sight (LOS) between the
target and the victim will remain in the frustum.
S2: Spoofer on other vehicle in line. Spoofer is placed
on a non-target car on the line defined by the victim AV and
target vehicle. This scenario arises often in natural driving, as
a lane, which is usually locally straight, helps cars stay in line
with each other, and thus in each others frustums.
S3: Spoofer on other vehicle not in line. A fully general
spoofing attack could take place out-of-line. However, exe-
cuting this attack outside the frustum is not currently feasible

and requires more precise aiming of the laser than has been
demonstrated. Engineering advances will enable this scenario,
and work is already underway in this area [16].
S4: Spoofer on environment in line. A spoofer is placed in
the environment in line with a lane. Examples include placing
the spoofer on a bridge transverse to the road or on low-lying
traffic signs, tree limbs, etc.
S5: Spoofer on environment not in line. This resembles S3
with similar feasibility constraints but with a spoofer placed
on a static object in the environment (e.g., road-side sign).

5.2.2 Feasibility Demonstration
We adopt the physical hardware from [10, 11] and use a

VLP-16 PUCK for the LiDAR sensor and for the spoofing
system, an OSRAM SFH 213 FA photodiode, an OSRAM
SPL PL90 attack laser, and an additional lens for beam focus-
ing. The VLP-16 is a rotating LiDAR scanner providing full
360◦ azimuth coverage and is compatible with many mod-
ern industry AVs and perception, including LGSVL [21] and
Baidu Apollo [6], which have LiDAR plugins for the VLP-16.

To test frustum attack feasibility, the spoofing device is
placed behind the target vehicle (Fig. 6). The spoofer has just
enough visibility above the target car for the attack laser to
have LOS to the LiDAR sensor. This is easily realized in ev-
eryday driving so long as the attacking vehicle is slightly
larger than the victim or the spoofing device is elevated
(e.g., placed on the roof of AVs, like existing LiDAR).

We find the spoofer can command the delay timing to inject
spoof clusters at varying distances relative to the target car.
In Fig. 7, spoof point clusters are moved successively farther
from the target car (or closer, if run in reverse) in a dynamic
environment with longitudinal consistency. We also repeat the
experiment with a moving target car but stationary victim and
spoofer; for conciseness, those scenarios (including videos)
are only available online, along with the project code, at [37].
Discussion. The above experiments cover two situations:
(1) victim, target, and spoofer are in-line and (relatively) static
which encompasses S1 and S2 for vehicles traveling in unison
(e.g., vehicle platooning), and (2) target moving relative to
spoofer which encompasses the same prior situations (this
time with relative motion) as well as S4 due to the relative
velocity between the vehicles. The outcomes of these spoof-
ing experiments validate that common, everyday spoofing
scenarios are feasible even with existing spoofing hardware,
although executing the frustum attack with motion of the
spoofer and target has not been fully demonstrated.

In fact, a frustum attack only requires LOS between the
spoofing device and the victim AV with at least one object
in the scene. The victim and target vehicles always define a
frustum, so it is up to the attacker to position the spoof points
within the frustum; this is trivially satisfied when the spoofer
is in the same lane as the vehicles (e.g., on another car) or may
simply require a lane change or velocity adjustment. With
improvements in laser aiming, the number of natural frustum
attack scenarios will only increase [16].
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Figure 6: A spoofer launches a malicious frustum attack
against a victim AV using a target car. Spoof points are placed
at any distance within the frustum behind the target car to ob-
tain false positive, false negative, and/or translation outcomes.

Figure 7: A physical experiment demonstrates that an attacker
can stably spoof longitudinally consistent points in the frus-
tum of a target vehicle and has control over the placement
distance. We run a continuous scenario where spoof points
are moved successively towards and away from the target, and
show three select frames here. Running FPN as perception
would cause a translation outcome where the target car would
be detected at the spoof point location. Full video online [37].

Finally, if started near the target vehicle, moving spoof point
clusters, as in videos online [37], can create longitudinally-
consistent frustum attacks that drift the track further away
(or closer to the victim, if run in reverse), as described in
Section 6.1. Case studies of the related tracking and end-to-
end control outcomes are presented in Sections 6.1 and 6.2.

5.3 Frustum Attack Performance Analysis
5.3.1 Experimental Methods

We run a large-scale experiment on over 75 million sce-
narios to assess the vulnerability of perception to the frustum
attack for FP, FN, and translation outcomes.

For each of the first 7 perception algorithms in Table 1,
we select each valid vehicle in each frame of the KITTI val-

idation set. Each vehicle becomes the "target vehicle". For
our analysis, we discard any valid vehicles not detected by
the unattacked perception algorithm, as this would artificially
inflate the FN attack success metric. For each valid vehicle,
we simulate frustum attack spoofing using different combina-
tions of the number of spoof points ni and the relative distance
of placement di, i.e., (ni,di), within ni ∈ [2,200] points and
di ∈ [r0−10,r0+30] m; here, r0 is the original range to the tar-
get. The experiment captures existence of spoofing-induced:
(a) FP at the spoof location, and (b) FN of the target object.

This experiment yielded on average 11 million attack traces
for each perception algorithm with a total of over 75 million
attack traces for the frustum attack. We also assess the four
aforementioned (three experimentally, one in discussion) de-
fenses for each perception algorithm. Due to the combinato-
rial nature of such evaluation (algorithm × points × distance
× defense), we sample a set of attack traces over a coarse grid
of parameters for each tested perception algorithm.
Example outcome. An example successful frustum attack
against FPN fusion is in Fig. 8, where 20 spoofed points are
placed in a random pattern with a mean location 7 m be-
hind and within the frustum of a target valid object. We find
that, as long as spoof points are within the frustum, it is less
important how precise those points are placed. In fact, we find
in general that spoofing using a normal distribution of points
with moments specified in Table 2 can achieve performance
on-par with extracting occluded traces from KITTI as done
in [11] (see Appendix D for detailed comparison).

In this case, the target object is composed of 238 points, an
order of magnitude more than the spoofed points, and is at
25 m range from the victim. As shown in Fig. 8, even only
attacking LiDAR, the frustum attack is successful in obtaining
an FP at the spoof point cluster.

5.3.2 Results I: Frustum Attacks Compromise All Per-
ception Algorithms

We now show that the frustum attack is capable of not only
compromising LiDAR-only perception but also compromis-
ing camera-LiDAR fusion. Also, the frustum attack succeeds
across multiple architectures of both LiDAR-only and camera-
LiDAR perception. Here, we describe the main observed re-
sults. Additional results are presented in Appendix E.

Attackability: Attack Existence
A frustum is "attackable" if there is at least one combina-

tion (ni,di) within the established attacker capability that is
successful in generating an FP near the spoof points (or FN
of the targeted object, depending on attacker’s goal). Given a
fixed set of input sensor data, the vulnerability of a perception
algorithm depends on how many target objects are attackable.

Fig. 9 illustrates the vulnerability of each perception al-
gorithm by presenting the fraction of target objects that are
attackable. Presented are both FP (Fig. 9a) and FN (Fig. 9b)
outcomes to comprehensively illustrate the vulnerability. Con-
sidering FP outcomes, at middle ranges to target objects (i.e.,
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(a) Clean RGB detection (b) Frustum with attack

(c) BEV shows FPN detects inserted points, not original points.

Figure 8: (a) 2D detection yields (b) a 3D frustum of points. In-
jecting just 20 points in random pattern (bracketed red) de-
ceives 3D object detection, even against a valid object (brack-
eted yellow) of 238 points; (c) BEV projection of the 3D
detection show success of the frustum attack with translation
outcomes, as the FP detection (red box) is far from the FN
ground truth (white box).

15− 40 m) nearly 100% of instances using any of the per-
ception algorithms are attackable, showing the widespread
vulnerability to frustum attacks. In fact, except for FCN which
has a dip in attackability from 40−60 m, this near-100% at-
tackability extends for all other perception algorithms from
15−60 m, which is a devastating outcome for AV perception.

Similarly, we show a surprisingly high degree of FN vul-
nerability (Fig. 9b) even after discarding targeted vehicles not
detected without attack. At a 35 m range, with a suitable selec-
tion of spoof distance, half of all vehicles can be negated with
a frustum spoofing attack for all algorithms except EPNET.

Due to space constraints, in the rest of the work, we focus
on analysis of FP outcomes which we find are more success-
ful, repeatable, and adaptable to different spoofing distances
compared to FN outcomes.

Attack Success Across Number of Spoofed Points
Attack success depends on the number of spoofed points,

up to a certain point of convergence. Here, we look at two key
indicators of spoofing success: 1) the rate of attack success
across the range to target objects for discrete numbers of
spoof points, and 2) the minimum attacker requirements for
successful attacks in general.
Attack success by number of points. Fig. 10 presents how
attack success depends on the discrete numbers of spoofed
points. Surprisingly, even spoofing just 2 points may be
enough to obtain FP outcomes at the site of spoofed point
placement given an optimal selection of spoof point distance.
The attack success quickly converges to a rate similar to the
one in Fig. 9 at just 60 spoof points.
Minimum attack requirement. In general, more spoof
points yields higher ASR. However, since an attacker only
needs a few successful attacks to cause devastating outcomes

(a) For FP: All algorithms are highly attackable for FP outcomes,
particularly when the target objects are at 15−60 m range – here,
the attackability is near 100% across the board (except FCN’s dip).

(b) For FN: Perception demonstrates a surprising vulnerability to
FN outcomes under LiDAR spoofing. The targeted object can be
negated (i.e., not detected) for all perception algorithms, even under
a small, spoofing frustum attack model.

Figure 9: Percentage of instances in the KITTI dataset (over
number of points and distance of placement) where there
exists a successful (a) FP, and (b) FN frustum attack; all
perception algorithms show widespread vulnerability to both
(a) FP and (b) FN outcomes under the frustum attack.

and may not have the ability to spoof large numbers (e.g., hun-
dreds) of spoof points, it is important to understand the aver-
age smallest number of points needed for a successful attack.
To compute this estimate of the 0th order statistic of spoof-
ing, for each perception algorithm, if the target vehicle were
attackable, we logged the range to that target object, r0, and
stored the smallest number of points, ni,min, where an attack
succeeded, marginalizing over distance, di. We then computed
the mean of this collection of minima against range to the
target object (see Fig. 11) and find that only tens of points are
needed on average. Note that these results can be interpreted
as a measure of robustness of the perception algorithm to
small numbers of spoof points; e.g., FPN is significantly more
robust at intermediate ranges, FCN, PIXOR, and AVOD are
more robust than PointPillars, PointRCNN, and EPNET.

Attack Success Across Range to Target Vehicle
The location of the target car is an important element in the

success of a frustum attack. For different ranges to target ve-
hicles, Fig. 12 breaks down the success against AVOD as a
function of both the placement of the spoof points relative to
the target vehicle and the number of spoof points and does not
marginalize over parameters. This highlights that spoofing
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Figure 10: Percentage of instances in the KITTI dataset (over
the placement distance) where there exists a successful FP at-
tack for different numbers of spoof point: the frustum attacks
are successful across a wide range of spoof point numbers.

Figure 11: For each perception algorithm, the mean of the
smallest number of spoof points for a successful FP attack,
marginalized over the relative spoof placement, is low. Gen-
erally, the mean smallest set is less than 20 for nearly all
algorithms for all ranges to target vehicles.

attacks are generally more successful as the range to target ve-
hicles increases. A similar pattern is observed across all tested
perception algorithms, as shown in Fig. 25 in Appendix E.

5.3.3 Results II: Frustum Attacks Compromise Defenses
We show that in addition to being effective against both

LiDAR-only and camera-LiDAR fusion, the frustum attack is
stealthy to the aforementioned defenses.

We collected a sample of attack traces using each pairwise
combination of spoof points in ni ∈ {10,60,100,200} and
attack distance di ∈ r0 + {5,9,12,16} m and run each com-

Table 3: Nearly all frustum attacks against both fusion (left)
and LiDAR-only (right) are stealthy to CARLO defense

Algorithm % Stealthy

FCN 100%
FPN 99.76%

AVOD 100%
EPNET 99.9%

Algorithm % Stealthy

PointPillars 100%
PointRCNN 99.9%

PIXOR 92.3%

Table 4: Frustum attack is stealthy to SVF defense
Algorithm % Stealthy

SVF-PointPillars 90.3%

Table 5: ShadowCatcher fails to detect a significant number
of frustum attacks and has too high induced FN rate.

Algorithm % Stealthy % Induced FN Rate

FCN 80.7% 70.3%
FPN 57.8% 96.9%

AVOD 84.9% 72.9%
EPNET 90.5% 64.4%

Algorithm % Stealthy % Induced FN Rate

PointPillars 91.0% 68.0%
PointRCNN 89.3% 67.1%

PIXOR 81.5% 42.9%

bination for 200 frames of data for each algorithm, totaling
nearly 25,000 attack traces per each defense. We observed that
stealthiness to the defenses as a function of the parameters is
nearly constant; thus, aggregated results across parameters are
summarized in Tables 3, 4, 5. We report the fraction of frus-
tum attacks that are still successful after applying the defense
as the "% Stealthy", and, where relevant, the fraction of erro-
neously invalidated valid objects as the "Induced FN Rate".
CARLO: The frustum attack against all perception algo-
rithms is nearly completely stealthy to the CARLO defense
since attacks are placed in the frustum and few LiDAR points
travel through the spoofed object; see results in Table 3.
SVF: The frustum attack is stealthy to the SVF defense
since frustum spoofs are consistent with information from the
front-view projection; see results in Table 4.
Shadow-Catcher: ShadowCatcher does not perform well
at detecting the frustum attack or identifying normal objects
as valid, as confirmed by results in Table 5. Our results show
an unacceptably high induced FN rate (i.e., it invalidates true
objects at too high of a rate).
LIFE: LIFE is designed to identify faults, miscalibrations,
and attacks against AVs equipped with panoptic stereo cam-
eras and a central, wide-angle or scanning LiDAR sensor
using an Object Matching Method (OMM), a correspond-
ing point method (CPM), and a sensor reliability evaluation
(SREM) [18]. However, each of these components are ill-
posed for detecting the frustum attack, as noted even by
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(a) FP ASR on vehicles [15, 20)m (b) FP ASR on vehicles [25, 30)m (c) FP ASR on vehicles [35, 40)m (d) FP ASR on vehicles [50, 55)m

Figure 12: ASR when AVOD is used as a function of the spoof points’ distance (relative to the target vehicle). Attacks are more
successful at increased range of the target ((a) vs. (b), (c), (d)). Horizontal axis represents relative placement of spoof points; each
line represents a different number of spoof points from 0−200. Number of points determines attack success up to a steady state
where additional points provide marginal benefit. High FPs are seen spoofing both in front (-x axis) and behind (+x) the target.

the authors in [18]; specifically, Section 8.4.1 of [18] states
that a common failure mode is when "most injected fake
echoes/points are behind or very near existing aboveground
objects...the induced fake objects cannot be detected." Specif-
ically, OMM fails to detect the frustum attack because it uses
a projection of LiDAR onto the 2D image plane to check
consistency between 2D image and 2D LiDAR – the frustum
attack is designed to retain consistency for this very purpose.
Second, CPM fails to detect the frustum attack because it gen-
erates a small set of 3D features from the camera, then checks
for a corresponding LiDAR point. Thus, CPM cannot detect
the frustum attack as it maintains consistency with the camera
data and is placed in sparse regions where no checking will
occur. Finally, SREM projects LiDAR to the image plane
and compares the 2D camera and 2D (front-view) projected
LiDAR where the frustum attack is designed to be consistent.

5.3.4 Security Implications
The presented results establish that the frustum attack is

successful in compromising both LiDAR-only perception as
well as camera-LiDAR fusion, whereas existing state-of-the-
art defenses against LiDAR spoofing are ineffective against
the frustum attack. Consequently, existing perception algo-
rithms are not secure against LiDAR spoofing when additional
contextual information is available for identifying frustums.

6 Longitudinal Case Studies
Isolated instances of spurious attacks on perception will not

survive against real AVs with multiple sensors capturing data
over time. With map-aided tracking, AVs can flag FPs that
do not comply with semantic map or dynamics information.
Tracking also builds resiliency to isolated FNs by allowing
for coast time in between measurements [38].

The frustum attack, with robustness to number of points
and distance of injections, as well as success against multiple
algorithms and random spoof patterns, is suitable for tem-
porally consistent spoofing to achieve impact at the tracking
level (i.e., over time). The physical spoofing experiments from
Section 5.2 and linked videos [37] show longitudinal frustum
attacks where a spoofer can gradually adjust the position

of spoof points to simulate motion of a spoofed object. We
provide additional visualizations to understand longitudinal
frustum attacks in Appendix F, Fig. 24.

To confirm impact of the frustum attack on real systems
using temporal fusion, we perform two evaluations. First, we
explicitly analyze spoofing’s impact on the multi-frame track-
ing algorithm and present two case studies showing that such
attacks jeopardize AV safety. Second, we apply the frustum
attack to an end-to-end, industry-level AV software stack,
Baidu Apollo [6] using the LGSVL simulator [21] and show
resulting adverse planning and control outcomes.

6.1 Frustum Attack Impact on Tracking
6.1.1 Tracking Algorithm

We implement a Kalman filter tracker with position, ve-
locity, and acceleration states according to [38]. All major
industry players, including Baidu Apollo [6], Autoware [23],
and OpenPilot [39] use variations on the Kalman Filter for
tracking and fusion. We use one tracker per frustum using
FPN as perception, as FPN encodes a one-object-per-frustum
requirement. The track (i.e., trajectory) is predicted forward
using a nearly-constant acceleration model and process noise
according to [40], which is consistent with industry-level
AVs [6]. 3D detections from camera-LiDAR perception are
fed at 5 Hz to the tracking module which tracks box centers
over time. We use an industry-standard χ2 gating between
predicted tracks and timestamped measurements as tracking
integrity; this ensures temporal consistency between mea-
surements and prevents unlikely associations from updating
tracks. We use the 99% threshold of the χ2 gate, specified as
0.99 = Pr(gk > τ), where gk = zT Q−1z; here, τ is the thresh-
old found using the χ2 inverse CDF, z is the innovation be-
tween propagated state and measurement, and Q is the innova-
tion covariance from the Kalman update [38]. In other words,
we neither forced perception to detect our spoofed points nor
did we force tracks to accept the resulting detection. We fixed
attacker capability at 65 points, which is substantially less
than the maximum demonstrated capability.
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Initial detection 
of vehicle

Track over 9 
subsequent injections

1-Sigma projected track bounds 
on [0, 1.2] seconds later

Figure 13: Attacking over multiple frames at attacker-
specified distances creates adversarial tracks. Sequences of
65 point spoofs create false detections that are accepted by
tracker integrity. Initial spoof detection (red) travels along
(white) track with time-to-impact with the victim vehicle pre-
dicted 1 s later, with high-certainty (cyan) near impact.

6.1.2 Scenario I: Vehicles at Intersection
We first consider an attacker creating an adversarial track

on a crash course for collision with the victim. We select a
scene where the target is at 35 m range. With traffic lanes 4 m
wide and vehicles 5 m long, this scenario represents a large
intersection where the cars are initially static.

Due to perception’s high frame rate, the attacker need only
to succeed in attacking over a short time window for a false
track to be created. The attacker injects 10 sequences of point
clusters behind the target, corresponding to 2 s of real-time,
and alters the distance between successive spoofs so that the
vehicle appears to accelerate towards the victim.

Fig. 13 illustrates the BEV of the false track created from
this spoofing attack. Eight of the attacker’s ten injections were
falsely detected by perception and accepted by the χ2 gate to
update the created (adversarial) track.

For path planning, it is essential that AVs understand both
the current states of nearby vehicles as well as their future tra-
jectories in order to plan a safe path through the environment.
After two seconds of attack, a path planner predicts the exist-
ing track forward, shown in Fig. 13, and the vehicle in front
of the victim is on a collision course with a time-to-impact
of just over 1 s. This can trigger dangerous, aggressive and
unnecessary collision avoidance maneuvers.

6.1.3 Scenario II: Highway Adaptive Cruise Control
Here, we consider highway flow of traffic (e.g., 25 m/s)

where adaptive cruise control uses perception to monitor ob-
jects and to keep up with traffic flow. We consider a likely case
in which the victim AV has already achieved high-precision
track on a true vehicle in front. An existing high-confidence
track is more challenging for an attacker to manipulate (e.g.,
see [41]). In this case, any dramatic deviation in the location of
that object may trigger an alarm or rejection by the χ2 integrity
monitor, particularly since perception operates at high rate.

Over just five spoofs which corresponds to 1 s of real-time,
an attacker can manipulate an existing track by gradually
increasing the distance of spoof points away from the target
(Fig. 14). While initially the track has no relative velocity
(i.e., vehicles traveling in unison), path planning updates track

1-Sigma projected track bounds 
on [0, 2] seconds later

Track over 9 
subsequent injections

Final detection 
of vehicle

Figure 14: Attacking 5 frames using only 60 points can trans-
form a high-confidence track of a valid vehicle into a low-
confidence track with adversarial velocity away from victim.
Predicted path shows target vehicle is moving away when, in
reality, the target and victim vehicles have no relative velocity.

prediction for the vehicle in front after the frustum attack, and
it appears to travel away at an accelerating rate. This will
cause an increase in the adaptive cruise control speed of the
victim vehicle, due to the apparent increased velocity of the
traffic flow, when in reality, the ground truth vehicle is still
traveling with no relative velocity; thus, the victim vehicle
will dangerously approach the car in front.

6.2 Frustum Attack Impact At Driving-
Decision Level: Baidu Apollo Study

We perform another case study using the high-fidelity
physics-based simulator, LGSVL [21], and the Baidu Apollo
AV stack [6]. We use LGSVL with a 32-beam LiDAR model
and a Full-HD 1080p camera model to capture realistic Li-
DAR and camera sensor data for the frustum attack. While
the physics engine of LGSVL is built on Unity and robust, the
LGSVL API is under continuous development. As a result, it
is unclear how to modify low-level sensor data in real-time.
Thus, we took a multi-stage approach to evaluating the end-to-
end consequences of the frustum attack on Apollo’s control.
First, we capture LiDAR and camera data during normal oper-
ation. Second, we execute the frustum attack on the captured
data and run Apollo offline to get detected objects and con-
trol decisions. Finally, we replay the control data through the
LGSVL bridge to observe and visualize the outcomes. We
were able to use this approach as the control commands of the
vehicles were matching in the first and second runs, up to the
point when the victim vehicle initiates emergency braking.

The scene is set consistent with the physical experiment
(Section 5.2) and following Fig. 22b (i.e., S2): a target car is
between the victim and the spoofing adversary. Fig. 15 shows
snapshots of two LiDAR captures with detected objects when
running Apollo perception (left) and the control outcome
observed when replayed through LGSVL (right). Initially,
Apollo detects the target car, as expected. The spoofing adver-
sary is not detected due to strong occlusion, also as expected.
Part-way through the sequence, the adversary launches the
frustum attack, and Apollo detects the spoofed points as a
nearby object which triggers emergency braking, unnecessar-
ily stopping (and thus endangering the victim vehicle). Full
video of the playback sequence is available at [37].
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Remarks. Attacks on perception must propagate into ad-
versarial tracks to impact AVs. We have shown that frustum
attacks can be exercised longitudinally to have high-impact
at the tracking, decision, and control levels. An attacker can
use mere seconds of real-time to create false scenarios of
predicted collision or accelerate the flow of traffic. The frus-
tum attack allows for both starting attacks at longer range
and attacking in front-near. We show that this can be of great
benefit for the attacker because it can create a diverse set of
attacker-specified, high-confidence maneuvers.

7 Discussion and Future Work
7.1 Limitations
Datasets. We use KITTI and LGSVL to evaluate the consid-
ered LiDAR spoofing attacks. Although we generated over 75
million attack scenarios, KITTI is a small dataset and may not
be fully representative of day-to-day AV driving. We use the
LGSVL simulator to study Baidu Apollo, and future work will
leverage high-fidelity simulators and additional open-source
datasets to perform studies on frustum attack generalization.

Apollo Evasive Maneuvers. Besides our testing of the frus-
tum attack in front of the target vehicle on Apollo (Sec. 6.2),
we intended to test the frustum attack in the shadow region
(i.e., behind target) since the shadow is more vulnerable to
attack, as identified in Sec. 5.3.2. However, this was not at-
tainable with Apollo’s capabilities. We observed that Apollo
has minimal ability to execute any evasive maneuvers, even
when we aimed a target car heading straight for Apollo using
ground-truth perception data. This is consistent with findings
from evaluations of limitations of Apollo capabilities [42].

Optical Engineering and Dynamic Spoofing. The frustum
attack is logistically possible in the scenarios described in
Sec. 5.2. While these commonly occur in everyday driving,
only three are technically feasible with today’s technology,
and only two have thus been demonstrated - those also used
static spoofer and static victim. The current experiments have
not shown attack feasibility when there are relative distance
and angle changes between the spoofer and the victim. In all
five targeted attack scenarios in Fig. 22, the victim should
be moving to cause serious attack consequences. This would
require the spoofing device to dynamically track and aim at
the victim, and this engineering feat has not yet been fully
demonstrated, with some recent progress in this direction [17].

7.2 Future Work
Shadow Vulnerability. The shadow region, a subset of the
frustum behind the target object, is an important element for
the frustum attack success. Future work will explore in detail
the low-level behavior of the perception DNNs to illuminate
why the shadow is so vulnerable, including possibilities of
overfitting or intrinsic vulnerability of free space.
Defenses. We evaluated state-of-the-art defenses against Li-
DAR spoofing and found none are suitable to protect against

Figure 15: Frustum attack achieved on AV running Baidu
Apollo software using perception data from LGSVL simulator
with setup matching the physical experiment from Section 5.2.
Target vehicle (white) detected throughout by image-detection
pipeline. Target vehicle initially detected by LiDAR percep-
tion (blue) and followed by Apollo. When spoofing happens,
Apollo detects spoofed points as new object (red); thus, un-
necessarily engages emergency brakes and stops mid-lane.

the frustum attack. Future works will propose defenses capa-
ble of defending against the frustum attack.

Generalization. The high degree of frustum attack success
and the large number of evaluations performed suggests that
a single choice of attack parameters can generalize across per-
ception algorithms. However, this belief has only been tested
implicitly using consistent attack parameters in the large-scale
study. Future works will explicitly consider the success of
transferring specific attack traces between algorithms.

8 Conclusion
In this work, we exposed the vulnerability of LiDAR-only

perception and camera-LiDAR fusion to the frustum attack:
small-scale (i.e., tens of points) LiDAR spoofing in-view of ex-
isting, valid objects. We evaluated the frustum attack on three
distinct LiDAR-only architectures and five models within
three different architectures of camera-LiDAR fusion, includ-
ing fusion at the semantic, feature, and tracking levels. Within
each class, we used single-sensor and sensor fusion algorithms
from top-performers on popular datasets ( [27, 28, 30–33]),
established benchmarks ( [27–29, 31]), and algorithms repre-
sentative of leading end-to-end, full-stack industry pipelines
( [6, 27, 28]). We demonstrated a singular attack model ca-
pable of compromising each class perception in AVs. The
attack model is black-box; furthermore, it does not require
any knowledge of the perception algorithm. Such broad suc-
cess with a black-box attack model illuminates a systematic
vulnerability across both LiDAR-only and camera-LiDAR
perception algorithms.
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A Existing Attacks and Defenses
A.1 Naive Spoofing on LiDAR-only Perception

We implement the naive spoofing of [10, 11] with the at-
tack model described in Section 5.2. We follow [11] to evalu-
ate the attack success; i.e., we selected 5 attack traces using
{10, 20, ...200} points per trace over multiple trials for 100
attack evaluations, and placed the spoofed points in front-near
positions, 5−8 m from the victim vehicle. We extend the eval-
uation to outside of the front-near when evaluating defenses.
Attack Success Rate (ASR) for FP outcomes is defined as the
fraction of times a fictitious object is detected over the number
of targeted attempts (e.g., number of spoof point clusters), as
there could be more than one FP per frame. Similarly, we
define the FN ASR as the fraction of times an object is missed
over the number of attempts.

Our results, summarized in Fig. 16, confirm the success of
the naive black-box spoofing attacks. The ASR is consistently
high when 60 or more spoof points are used for all LiDAR-
only algorithms showing that each of the 3 architectures are
deeply vulnerable to spoof injections in front-near positions.

A.2 Existing Defenses against LiDAR Spoofing
We reproduce the state-of-the-art defenses against LiDAR

spoofing; we showed that both CARLO and SVF dramatically
reduce the ASR in front-near positions, while ShadowCatcher
has challenges defending naive attacks (see Figs. 17 and 18).
Note that SVF requires model-level changes and expensive
retraining which are not possible with all the tested perception
algorithms. Thus, we rearchitect and retrain PointPillars with
SVF, following the approach from [11].

While the ShadowCatcher defense is impressively simple,
we do not expect to obtain the high accuracy reported in [20].
The reason is that the original work made several assumptions
that are unrealistic, including tuning parameters on the test
set, using ground truth bounding boxes instead of outputs of
a perception algorithm, which significantly alters the shadow-
region estimation noise, and only testing on 200 scenes with
only three selections of 200 spoofed points. Still, we repro-
duced the original ShadowCatcher defense and obtained not as
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Figure 16: Naive spoofing attacks against LiDAR-only percep-
tion: Reproduced naive black-box spoofing attacks from [11]
applied to LiDAR-only perception, one method from each of
the three LiDAR-only architecture categories from Table 1.

Figure 17: Naive spoofing attacks on LiDAR-only perception
with CARLO: CARLO guards LiDAR-only perception against
naive black-box spoofing attacks only in front-near positions.

Figure 18: Naive spoofing attacks on LiDAR-only percep-
tion with SVF: SVF guards LiDAR-only perception against
naive black-box spoofing in front-near positions. SVF re-
quires rearchitecting the perception model which is not feasi-
ble for every algorithm. We test SVF-modified PointPillars.

Figure 19: Naive spoofing attacks on LiDAR-only perception
with ShadowCatcher: ShadowCatcher has limited ability to
guard against LiDAR spoofing attacks presented in [11] due
to difficulty handling noisy shadow estimation.

strong detection results without these assumptions (Fig. 19).

B CARLO Vulnerabilities
We described in Section 4.1.1 that CARLO introduces vul-

nerability to FP attacks outside front-near and FN invalidation

Figure 20: ROC for FP attack on CARLO using PointPillars
as perception with (left) 60 and (right) 200 spoofed points.

Figure 21: The CARLO defense is vulnerable to FN attacks.
Classification of valid objects significantly degrades when
randomly spoofing 200 points behind valid objects, as well as
when range to target object increases.

attacks. Here, we provide additional quantitative analysis.
To evaluate CARLO outside front-near, we collect receiver

operating characteristics (ROC) on CARLO’s ability to dis-
tinguish between valid and spoof objects placed at different
ranges from the victim AV; the results are presented in Fig. 20.
As in [11], we use PointPillars for this test; yet, CARLO is
model-agnostic and these results generalize across other al-
gorithms. We observe that, as range of the spoofed objects
increases, CARLO’s classification performance deteriorates
(i.e., the defense breaks) and the ROC curve moves towards
the center; e.g., in the case of 200 spoof points at 30 m (green),
CARLO is similar to the random-guessing classifier.

Similarly, to test the FN invalidation attack, we collect ROC
curves where each curve represents the range to the targeted
valid object in Fig. 21. For each object, we record the range to
that object, add 200 spoof points in a random pattern behind it,
run CARLO on the detected result, and check if it invalidated
the true object. We find that CARLO’s performance against
the invalidation attack deteriorates when true objects are at an
increased range from the victim, likely due to the decreased
density of LiDAR points when objects are farther away.

C Spoofing Scenarios for Frustum Attacks
We illustrate common situations where vehicle configura-

tions enable frustum attack spoofing (Fig. 22); the specific
scenarios are described in Sec. 5.2. We execute the physical
experiment in Section 5.2 corresponding to the scenario in
Fig. 22b and similar to the scenario in Fig. 22a. We also per-
form the longitudinal case study in Sec. 6.2 in accordance
with the scenario from Fig. 22b. Anticipated advances in opti-
cal technology and tracking will soon enable spoofing points
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(a) Spoofer placed on target vehicle and points spoofed in LOS.
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(b) Spoofer placed on larger vehicle in front of target, pointing in
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(c) Spoofer placed on other vehicle in nearby lane, pointing out of
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(d) Spoofer placed in environment e.g., on roadside obstacle, in
LOS (e.g., on bridge) or out of LOS (e.g., on roadside)

Figure 22: The frustum attack in everyday driving scenarios.
Adversaries can place a spoofer on target car, on other cars,
or on roadside obstacles, placing points anywhere along line-
of-sight (LOS) (e.g., in front or behind the target car).

outside of line-of-sight as demonstrated in e.g., [16].

D Impact of Spoof Point Placement
Prior works required spoofed points to be placed in patterns

of occluded vehicles [11]. Here, we show that spoofing in a
normally-distributed pattern for the frustum attack can have
success nearly matching using occluded traces.

In Fig. 23, we compare the attackability of FPN perception
when using the two spoof point generation methods (similar
results are also obtained for the other aforementioned percep-
tion algorithms). We first provide a comparison of the fraction
of instances where an attack succeeds using both methods, as
function of the distance to the target (Fig. 23-left) As can be
observed, it is difficult to distinguish between the performance
of the two methods (random points vs. car-pattern).

We further provide an analysis of the attackability as a func-
tion of the number of points in the target objects’ bounding
box (Fig. 23-right) We define attackability as the ability to
find an attack that succeeds within the attacker-specified capa-
bilities. Both methods perform similarly, with a small benefit
of car patterned injections at medium range. This improve the
feasibility of LiDAR-based spoofing, as a normally distributed
pattern does not require unrealistically careful placement of
spoof points, and is robust to small displacements.

Figure 23: Spoofing in a Gaussian random pattern (Table 2)
achieves performance on-par with using an occluded car pat-
tern; we test spoofing patterns on FPN and show dependence
of attackability on (left) range to target and (right) number of
points in target object bounding box with histogram showing
frequency (%) of occurrence of such objects in KITTI.

(a) Full point cloud with ground truth object box at 16 m (white)

(b) Frustum with original and spoof points - detection (red) at 20 m

(c) Frustum with original and spoof points - detection (red) at 24 m

(d) Frustum with original and spoof points - detection (red) at 27 m

Figure 24: Target object (front, white box) at 16 m with 492
points in bounding box. Just 65 points alter the target vehicle’s
location and achieve detections (translations) using FPN.

E Frustum Attack By Range to Target
Fig. 12, in Section 5.3.2, summarizes the frustum attack

performance against the AVOD perception algorithm for dif-
ferent parameter combinations. Here, we provide the results
for all other aforementioned algorithms (Fig. 25). The ma-
jority of algorithms are vulnerable to frustum attacks both in
front and behind the targeted object. In general, attack success
increases as the range to the target object increases (left to
right in a row), with low attack success for all algorithms when
attacks occur near the target object; this is expected as the
original object and false positive will be "merged" (i.e. only a
single detection) once they are on top of each other.

F Longitudinal Frustum Attack Visualizations
Spoofing points in successively changing distances causes

the FP injection to appear to travel longitudinally. Fig. 24
shows a BEV visualization of such a longitudinal attack where
the perception detects motion of the spoofed points (red).
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Figure 25: Frustum attack success rate against all perception algorithm for different parameters (i.e., number of spoofed points,
target vehicle range, distance of spoofing behind the target) combinations, tested on all objects in KITTI validation set. Each
tested algorithm (row) is widely vulnerable to the frustum attack. ASR depends on the range to the target vehicle (column). Note
a dead-zone near the target vehicle (i.e. relative distance=0) where attacks do not succeed and increased ASR as target range
increases. Most algorithms are vulnerable to spoofing both in front (< 0 on x-axis) and behind (> 0 on x-axis) target objects.
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