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Abstract— Prior works have analyzed the security of esti-
mation and control (E&C) for linear, time-invariant systems;
however, there are few analyses of nonlinear systems despite
their broad safety-critical use. We define two attack objectives
on nonlinear E&C and illustrate that realizing the optimal
attacks against the widely-adopted extended Kalman filter
with industry-standard χ2 anomaly detection is equivalent to
solving convex quadratically-constrained quadratic programs.
Although these require access to the true state of the system,
we provide practical relaxations on the optimal attacks to allow
for execution at runtime given a specified amount of attacker
knowledge. We show that the difference between the optimal
and relaxed attacks is bounded by the attacker knowledge.

I. INTRODUCTION

Security analysis of estimation and control (E&C) in
cyber-physical systems (CPS) has attracted considerable re-
search interest due to safety-critical CPS applications. Most
of the influential work in E&C CPS security has centered
on linear, time-invariant (LTI) systems. For instance, [1]–
[4] exploited vulnerabilities of LTI E&C with information
models ranging from full system access to single-sensor level
knowledge to demonstrate concerning vulnerabilities in some
of the most widely used E&C algorithms. After the discovery
of LTI E&C vulnerabilities, subsequent works proposed
algorithms for detecting attacks and architectures for attack-
resilient state estimation [5]–[8]. As a response, recent focus
has been directed towards undetectable or “stealthy” attacks
on LTI CPS (e.g., [9]).

However, insights from analysis of LTI CPS lack practical
relevance because controlled physical processes of safety-
critical importance are often nonlinear. For example, automo-
tive applications with inertial measurement units (IMUs) are
nonlinear in control. Add in relative-range sensor or tightly-
coupled global positioning systems (GPS), and the problem
is also nonlinear in the measurements. Airborne applications
such as drones are similarly often highly nonlinear.

A handful of works have attempted to analyze nonlin-
ear, time-invariant control from a security perspective. For
example, [10] investigated nonlinear AC control in power
grids and designed false-data injection attacks. However,
these often consider highly specialized attack goals, e.g.,
[10] derived attacks in closed-form with precise dynamical
equations; [11] analyzed the extended Kalman filter (EKF)
but considered stochastic attacks rather than an optimal
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attack. These works, while interesting case studies, provide
little in advancing a broad understanding of CPS security.

Thus, there is a gap in existing literature. LTI system
analyses leverage the simplicity of the dynamics to derive
provably optimal attacks and accurate resilient estimators
(e.g., [6], [7]). Unfortunately, few of these ideals can be
transferred to nonlinear systems. The complexity and subop-
timality of nonlinear estimators has correspondingly allowed
for few established guarantees in nonlinear theory and ap-
plications; hence, recent works mainly focused on the use
of deep-learning for effective attack design (yet, without any
guarantees) on system with nonlinear dynamics (e.g., [12]).

Consequently, to address this shortcoming, in this work,
we establish optimal and stealthy false-data-injection attacks
against the widely-used EKF. We select a permissive infor-
mation model and describe two myopic (one-step) attack
objectives. The first is a myopic maximum deviation (MMD)
attack that maximally deviates the state estimation error
in an attacker-defined subspace of the state space. The
second is a myopic adversarial state approach (MASA)
attack that optimally pushes the victim’s state towards an
adversarial state in an attacker-defined subspace. We show
that the designs of both attacks can be captured as convex
optimization problems that are solvable in polynomial time.

Several of the derived optimal attacks are practically infea-
sible because they require more knowledge than the attacker
may be able to acquire. In such cases, we pursue practical
relaxations of the original objective based on an information
model and derive guarantees on the boundedness of the sub-
optimality for the relaxed case. Finally, we demonstrate the
effectiveness of attacks in a case study and find that attacking
nonlinear estimation is effective and has robust performance
guarantees. With strong guarantees and efficient runtime per-
formance, our proposed attacks establish a new framework
for security analysis of nonlinear dynamical systems.

The paper is organized as follows: Section II presents the
state estimation models of linear and nonlinear systems. Sec-
tion III introduces the security model including the attacker’s
knowledge and goals. Section IV then derives the optimal
myopic attacks on nonlinear Kalman filtering and provides
guarantees on practical relaxations. Finally, Section V covers
case studies and Monte Carlo simulations to evaluate the
optimal attacks and derived bounds.

Notation: N and R denote the sets of natural and real
numbers, respectively. Rn

+ is the non-negative subspace
of Rn. Pr denotes the probability for a random variable.
N (µ,Σ) denotes a Gaussian distribution with mean vector
µ and covariance matrix Σ. We represent positive-(semi)-
definiteness of a matrix M, as M ≻ (⪰)0.



II. SYSTEM MODEL AND PRELIMINARIES

In this section, we formally introduce the model of non-
linear estimation in CPS.

A. State Estimation
We consider a discrete-time nonlinear time-invariant phys-

ical process modeled in the standard state-space form as

xk = f (xk−1,uk)+wk,

zk = h(xk)+ vk;
(1)

here, xk ∈Rn, uk ∈Rm, zk ∈Rp are the state, input and output
vectors of the plant at time k ∈ N; f and h are nonlinear
functions capturing state transition and measurement models,
respectively. Finally, wk ∈Rn and vk ∈Rp are the process and
measurement noises that are assumed to be Gaussian with
zero mean and Q and R covariance matrices, respectively.

1) Extended Kalman Filter (EKF): If f and h are non-
linear and at least differentiable to first-order, the EKF is a
practical way to estimate states. The EKF uses a propagation
step to mix control signal and dynamical equations and an
update step to fuse measurements.

Propagation: Linearizing f as Fk := ∂ f
∂x

∣∣∣
x=x̂k−1|k−1

, the state

is propagated using the control signal,

x̂k|k−1 = f (x̂k−1|k−1,uk)

Pk|k−1 = FkPk−1|k−1FT
k +Qk,

(2)

where P ≻ 0 is the state covariance matrix.
Update: Linearizing h as Hk := ∂h

∂x

∣∣∣
x̂k|k−1

, the state is updated

with the innovation, ỹk (i.e., the residual),

ỹk = zk −h(x̂k|k−1); Sk = HkPk|k−1HT
k +Rk,

x̂k|k = x̂k|k−1 +Kkỹk; Kk = Pk|k−1HT
k S−1

k ,
(3)

with Sk the innovation covariance and Kk the Kalman gain.
2) Anomaly Detection: If the system is truly linear

with Gaussian noise, the innovations are white (i.e., ỹk ∼
N (0,Sk)) and the scalar gχ2

k := ỹT
k S−1

k ỹk follows a χ2 distri-
bution with p degrees of freedom. This leads to a statistical
anomaly detection function for incoming measurements:

reject measurement if: gχ2

k > τ

where β = Pr(V ≤ τ), gχ2

k := ỹkS−1
k ỹk;

(4)

i.e., a measurement is rejected if gχ2

k exceeds a threshold
τ . That threshold is set such that, for a perfect χ2 random
variable V , the smallest β (e.g., β= 99% [13]) are accepted.

The χ2 anomaly detector is still used in non-linear sys-
tems in practice using the linearizations and assuming the
dynamical models capture the behavior of the plant.

III. STATE ESTIMATION SECURITY MODEL

We make two assumptions on the attacker. First, the
attacker has access to a “full-reactive” suite of knowledge,
defined in Section III-A. Second, the attack goal is myopic.
A fully general attack could trade short-term loss for long-
term gains. However, as described in Section III-B, this can
be challenging to formalize and compute in real-time.

A. Threat Model

1) Knowledge: We consider four elements of knowledge
important for CPS controllers. Namely, these are:

• System Goal State – Knowledge of the intended future
state of the system;

• Control Signals – Access to the control signals, uk, and
the state propagation in (2);

• Measurement Models – Access to the state update
of (3) including the measurement model and measure-
ment noise;

• Sensor Data – Access to sensor data from one or more
sensors in real-time.

In this work, we analyze cases where the attacker has near-
complete knowledge. Specifically, we consider a “full reac-
tive” set of knowledge where the attacker has all knowledge
except the system’s goal state.

2) Capability: We assume the attacker can only modify
existing sensor data and cannot send additional sensor data
nor modify the measurement timestamp, consistent with
e.g., [3], [6], [14]. We also assume the attacker cannot
reliably compromise control signals. In general, such attacks
can be modeled as an adversarial bias – i.e., za

k := zk +ak.
Thus, the state update of (3) with anomaly detection of (4)

under such an attack can be captured as

x̂k|k(ak) =

{
x̂k|k−1 if ỹT

k (ak)S−1
k ỹk(ak)> τ

x̂k|k−1 +Kkỹk(ak) otherwise
(5)

with ỹk(ak) := zk+ak−h(x̂k|k−1); i.e., any measurement trig-
gering the detector is not included in the estimation update.

B. Attack Goal

A fully general attack could trade short-term loss for
long-term gain. However, it is challenging to formalize an
attacker planning for short and long term horizons when the
attack goal may be unbounded in state space (e.g., maximum
deviation). Thus, we formalize attacks as myopic (one-step)
optimization problems. We define two classes of attacker
goal for E&C: the myopic maximum deviation (MMD) and
the myopic adversarial state approach (MASA) attacks.

The MMD attack maximizes the error between the victim’s
state and the true state of the system.

Definition 1 (Myopic Maximum Deviation (MMD)): An
attack a∗k ∈ Rp is a myopic maximum deviation attack if

a∗k = argmax
a

1
2

∥∥C(xk − x̂k|k(ak))
∥∥2

, (6)

where C ∈ Rw×n
+ , w ≤ n, is an attacker-specified projection

(e.g., weight) matrix.
The MASA attack optimally moves towards an adversary-

defined state at each step, implemented with two subvariants.
Definition 2 (Myopic Adversarial-State Approach (MASA)):

Let placeholder νk ∈ Rn be a function of attack ak ∈ Rp.
Let C ∈ Rw×n

+ be an attacker-specified projection matrix,
w ≤ n. Let X a

k ∈ Rw be an attacker-specified state. Then,
νk approaches X a

k under the attack if

∥Cνk(ak)−X a
k ∥< ∥Cνk(0)−X a

k ∥ .



Such an attack is myopic optimal if
ak = a∗k = argmin

a

1
2

∥Cνk(a)−X a
k ∥2 . (7)

Definition 2.1: An estimated-state MASA attack is a
MASA attack with νk := x̂k|k. In addition, a true-state MASA
attack is a MASA attack with νk := xk.

In the remainder of this work, we derive opti-
mal, polynomial-time realizations of MMD, estimated-state
MASA, and true-state MASA attacks. We also provide prac-
tical relaxations to for a “full reactive” knowledge model.

IV. OPTIMAL ATTACKS

We derive polynomial-time optimal attacks for MMD and
MASA objectives. Under the full-reactive knowledge, the
MMD optimization is infeasible due to the required knowl-
edge of the true state. Thus, we propose a feasible plant-state
relaxation to the MMD attack. We find the estimated-state
MASA is feasible while the true-state MASA is infeasible
and requires relaxation. However, we do not show guarantees
on the relaxed true-state MASA attack.

a) Additional notation: To simplify our notation, we
use x̂ := x̂k|k, x̂− := x̂k|k−1, and ĥ− := h(x̂k|k−1). Since the
attacks are myopic, we safely drop time (k) subscripts for
any E&C element. Below, we define the substitutions used
to transform nonlinear attack objectives into quadratically-
constrained quadratic program (QCQPs), as in Proposi-
tions 1, 4, and 5, and introduce subscripts only to differen-
tiate between the objective (A0, b0) and constraints (A1, b1,
d1). We also define the following terms (the “Substitutions”):

A0 := (CKk)
TCKk ≥ 0

b0 :=−(CKk)
TC

(
xk − (x̂k|k−1 +Kk(zk −h(x̂k|k−1))

)
b̆0 :=−(CKk)

TC
(
x̆k − (x̂k|k−1 +Kk(zk −h(x̂k|k−1))

)
b̄0 := (CKk)

TC(x̂k|k−1 +Kk(zk −h(x̂k|k−1)))− (CKk)
T X a

˘̄b0 := (CKk)
TC(x̂k|k−1 +Kk(zk −h(x̂k|k−1)))− (CKk)

T X b

X b :=Cx̂k|k−1 +Cx̆k|k −X a

A1 := 2S−1
k > 0

b1 := 2S−1
k (zk −h(x̂k|k−1))

d1 := (zk −h(x̂k|k−1))
T S−1

k (zk −h(x̂k|k−1))− τ.

Objectives: J(a) := 1/2 aT A0a+bT
0 a

J̆(a) := 1/2 aT A0a+ b̆T
0 a

J̄(a) := 1/2 aT A0a+ b̄T
0 a

˘̄J(a) := 1/2 aT A0a+ ˘̄bT
0 a

Constraint: G(a) := 1/2 aT A1a+bT
1 a+d1 ≤ 0.

A. Design of MMD Attacks
We now consider how to implement optimal and practical

MMD attacks introduced in Definition 1.
Proposition 1: The MMD attack (from Definition 1) can

be obtained as the solution of the optimization problem

a∗mmd = argmax
a

J(a) = argmax
a

1
2

aT A0a+bT
0 a,

subject to G(a) =
1
2

aT A1a+bT
1 a+d1 ≤ 0.

(8)

Intuitively, Proposition 1 states that the most effective
attack is stealthy for the employed attack detector (i.e., does
not trigger the anomaly detector (4)) because, due to (5),
sensor measurements that trigger the detector are rejected.

Proof: We begin with (6) and perform transformations
that do not change the optimization. We consider x̂(a)
according to (5) which is piecewise with cases as follows.

Case (1): when ỹT (a)S−1ỹ(a)≤ τ . Then, from (6), using l :=
x− x̂−−Kz+Kĥ−, it holds that

a∗ = argmax
∥∥C(x− (x̂−+Kỹ(a)))

∥∥2

= argmax (l −Ka)TCTC(l −Ka)

= argmax aT KTCTCKa−2lCTCKa+ lTCTCl

= argmax
1
2

aT KTCTCKa− lCTCKa

= argmax J(a),

Case (2): when ỹT (a)S−1ỹ(a)> τ > 0. Then, from (6),

a∗ = argmax
∥∥C(x− x̂−)

∥∥2

= argmax
∥∥C(x− x̂(a− ĥ−− z))

∥∥2
.

Thus, any attack causing the χ2-detector to exceed the
threshold τ has the same effect on x̂ as the stealthy attack
a0 = ĥ− − z. Therefore, it is sufficient to consider only
stealthy attacks {a | gχ2

k (a) ≤ τ}, which is equivalent to
imposing the constraint G(a)≤ 0.

The MMD attack is thus a QCQP with a single constraint,
which is solvable in polynomial time regardless of the
convexity of the objective and constraint functions [15].
Nevertheless, the MMD QCQP is convex (A0 ⪰ 0, A1 ≻ 0).

Proposition 2: G(a∗) = 0 for a∗ the optimal MMD attack.
Equivalently, y(a∗)T S−1y(a∗) = τ.

Proof: The MMD objective is a convex maximization
problem. The global maximum of a convex function f :Rn →
R is attained at an extreme feasible point over the domain
of f . With continuous convex constraints, this point satisfies
the constraint with equality (see e.g., [16] Theorem I.1).

1) Practical Relaxations: It is not possible to know b0
due to the dependence on the true plant state x. We therefore
propose a plant-state relaxation of the MMD attack using an
attacker’s uncompromised estimate of the plant, x̆ := x̆k|k.

Definition 3 (Plant-State MMD Attack): An attack a† ∈
Rp is a plant-state MMD attack if

a† = argmax
a

1
2
∥C(x̆− x̂(a))∥2 , (9)

where x̆ is the attacker’s uncompromised estimate of x.
Proposition 3: The plant-state MMD attack is the solution

a† = argmax
a

f̆ (a) = argmax
a

1
2

aT A0a+ b̆T
0 a,

subject to G(a) =
1
2

aT A1a+bT
1 a+d1 ≤ 0.

(10)

Proof: Follows Proposition 1, replacing x with x̆.
The plant-state MMD attack is feasible at runtime under

full-reactive knowledge with the attacker’s estimate of the



true state. However, the optimal plant-state MMD attack
from (10) will be suboptimal on the MMD objective from (6)
compared to the optimal MMD attack from (8). We therefore
seek to bound the performance loss in the following result.

Theorem 1 (Optimal Attack Error Absolutely Bounded):
The error between the plant-state and true-state MMD
attacks is bounded by∥∥a∗−a†∥∥≤ 2

√
τλmax(S), (11)

where λmax(S) is the largest eigenvalue of the innovation
covariance matrix S and τ is the χ2 threshold.

Proof: Let a∗, a† be solutions to the true-state
and plant-state MMD problems (i.e., (8), (10)). From
Prop. 1, 3, all choices a satisfies y(a)T S−1y(a) ≤ τ . Since
∥y(a)∥2

λmin(S−1) ≤ y(a)T S−1y(a), ∥y(a)∥2 ≤ τ

λmin(S−1)
=

τλmax(S). Finally,
∥∥y(a∗)− y(a†)

∥∥=
∥∥a∗−a†

∥∥≤ ∥y(a∗)∥+∥∥y(a†)
∥∥≤ 2

√
τλmax(S), completing the proof.

With a full-reactive knowledge model, this result provides
a bound on the error between the optimal attack of the
feasible plant-state MMD problem compared to the optimal
attack of the infeasible MMD problem.

Estimators tend not to be provably optimal for non-linear
systems except in special cases. However, methods such as
the EKF have shown consistent performance in practice.
Often, with Monte Carlo simulation or trials on real data,
a bound on the estimation error can be experimentally
determined. We use the idea that the estimation error may
be unknown but bounded to pursue guarantees on the attack
performance in terms of the objective function, J.

Definition 4 (Subspace-Bounded): An estimate of some
state west is subspace bounded from the true value wtrue by
δ if ∥C(west −wtrue)∥ ≤ δ , for a predefined projecting (e.g.,
weight) matrix C.

Specifically, we continue with the idea that the error of the
attacker’s estimate of the plant state is unknown but subspace
bounded by satisfying ∥C(x− x̆)∥ ≤ δ at each timestep.

Lemma 1: If the error of the attacker’s estimate of the
plant state is subspace bounded by δ , then the error between
the true and observable QCQP linear coefficients, b0 and b̆0,
in the objective function at each timestep is bounded by∥∥b0 − b̆0

∥∥≤ δσmax(CK), (12)

where σmax(CK) is the largest singular value of CK, C is an
attacker-defined weight matrix, and K the Kalman gain.

Proof: Let us define w := x̂−+K(z− ĥ−). Then,∥∥b0 − b̆
∥∥=

∥∥−(CK)TC(x−w)+(CK)TC(x̆−w)
∥∥

=
∥∥KTCTC(x̆− x)

∥∥
≤ ∥CK∥∥C(x̆− x)∥ ≤ δ ∥CK∥= δσmax(CK),

completing the proof.
Lemma 2: If the error of the attacker’s state estimate is

subspace bounded by δ , then for any a1, a2 ∈ Rp such that
J(a1)≥ J(a2), the difference in the objectives is bounded by

0 ≤ J(a1)− J(a2)

≤ 1
2

ε
2
λmax(A0)+ ε

(
∥A0a2∥+δσmax(CK)+

∥∥b̆0
∥∥) , (13)

where ε := ∥a1 −a2∥, and λmax(A0) is the largest eigenvalue
of A0, while σmax(CK) is the largest singular value of CK,
A0 is defined by the Substitutions, C is the attacker-defined
weight matrix, and K is the Kalman gain.

Proof: Using e := a1 −a2, A0 = AT
0 , it follows that

0 ≤ J(a1)− J(a2) = 1/2 aT
1 A0a1 +bT

0 a1 − 1/2 aT
2 A0a2 −bT

0 a2

= 1/2 eT A0(e+2a2)+bT
0 e

≤ 1/2 ∥e∥2 ∥A0∥+∥e∥∥A0a2 +b0∥
= 1/2 ε

2
λmax(A0)+ ε ∥A0a2 +b0∥ .

In addition,

∥A0a2 +b0∥ ≤ ∥A0a2∥+
∥∥(b0 − b̆0)+ b̆0

∥∥
≤ ∥A0a2∥+δσmax(CK)+

∥∥b̆0
∥∥

from Lemma 1, thus completing the proof.
Theorem 2 (Suboptimality in Plant-State MMD): If the

error of the attacker’s state estimate is subspace bounded by
δ , then the difference between the MMD objective evaluated
on the solutions of (8) and (10) (a∗ and a†), is bounded by

0 ≤ J(a∗)− J(a†)≤ 2τλmax(S)λmax(A0)+

+2
√

τλmax(S)
(
∥A0a2∥+δσmax(CK)+

∥∥b̆0
∥∥) .
(14)

Proof: The proof follows by from Lemma 2 and using
ε :=

∥∥a∗−a†
∥∥≤ 2

√
τλmax(S) from Theorem 1.

All quantities on the right-hand-side of Theorem 2 are
available at runtime under full-reactive knowledge without
access to the true state of the plant. This bound can thus
be computed online and dictates how far the attacker can be
from the optimal attack impact.

Finally, we bound the difference between the attacker’s
perceived impact and the true impact of an attack.

Theorem 3 (Perceived vs. True Impact): If the error of
the attacker’s estimate of the plant state is subspace bounded
by δ , then the difference between the true impact and the
perceived impact of an attack a is bounded by

|J(a)− J̆(a)| ≤ δσmax(CK)∥a∥ ; (15)

here, σmax(CK) is the largest singular value of CK, C is a
weight matrix, and K the Kalman gain.

Proof: The result directly holds since from Lemma 1,
|J(a)− J̆(a)|= |(b0 − b̆0)

T a| ≤
∥∥b0 − b̆0

∥∥∥a∥ ≤
≤ δσmax(CK)∥a∥ .

B. Design of MASA Attacks

We now employ the same procedure to design MASA
attacks and bound online attack performance. We start with
the following result for fully optimal MASA attack design.

Proposition 4: The estimated-state MASA attack
(Def. 2.1) is the solution of the optimization problem

a∗masa, es = argmin
a

1
2

aT A0a+ b̄T
0 a

subject to
1
2

aT A1a+bT
1 a+d1 ≤ 0.

(16)

Proof: Follows directly from Proposition 1 by replacing
Cx with X a where X a is the attacker specified state.



Note that the estimated-state MASA attack does not re-
quire knowledge of the true state of the plant and is thus
feasible (i.e., can be executed online).

1) Relaxations: The true-state MASA attack from Defi-
nition 2.1 requires the true plant state which is unavailable
to the attacker. Furthermore, the relaxation using x̆ instead
of the true state is not sufficient in the MASA attack due to
the delayed dependence of x̆ on a – i.e., the attack impacts
x̆ after control corrects for errors in x̂ (which does depend
on a through the compromised update in (5)). Such delayed
dependence can be highly non-linear and depends on the
victim’s goal and controller which are not fully available
under a full-reactive knowledge model.

Therefore, we propose an alternative relaxation using a
reflection of the attacker’s estimated state of the plant.

Definition 5 (Reflected True-State MASA): Let X a ∈ Rw

be an attacker-specified state for true-state MASA (Def. 2.1).
Let C be an attacker-specified projection matrix. An attack
a† is a reflected true-state MASA attack if obtained as

a†
masa, ts = argmin

a
∥Cx̂(a)−X b∥2

2

s.t. ỹ(a)S−1ỹT (a)≤ τ

X b :=Cx̂−+C (x̆−X a) .

(17)

Now, we can capture the following result.
Proposition 5: The reflected true-state MASA attack can

be obtained as a solution to the following problem

a†
masa, ts = argmin

a

1
2

aT A0a+ ˘̄bT
0 a

subject to
1
2

aT A1a+bT
1 a+d1 ≤ 0.

(18)

Proof: Follows from Proposition 1, by replacing Cx
with X b ”where X b is the reflection of the attacker’s goal
state across the current state.

The reflected true-state MASA attack will myopically
push x̂ in the opposite direction of the attacker’s goal state,
X a, which intuitively will cause the control to compensate
towards the adversary’s goal state. However, without access
to the control module, i.e., without knowing how the control
will react to the state estimate error, this has few guarantees
and the worst-case error may be difficult if not impossible
to bound. That said, we find that it works well in practice.

V. EVALUATION

We demonstrate impact of the myopic attacks on nonlinear
state estimation in a kinematic case study. Subsequently,
the bounds from Theorems 1, 2, and 3, and Lemma 1 are
validated using Monte Carlo (MC) simulations.

A. Case Studies

We use a nonlinear kinematic state estimation application.
Still, the presented principles and experiments generalize to
all applications of linear and extended Kalman filtering.

1) Model: We simulate a dynamic target tracking scenario
by modeling spherical coordinate returns from a radar sensor
with component-wise Gaussian noise according to [17].
We simulate range, azimuth, and elevation measurements
(ρ,θ ,φ) relative to a fixed sensor platform and use an EKF
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Fig. 1: Nonlinear estimation is easily compromised by my-
opic MMD attacks. Attack quickly and stealthily compro-
mises spherical coordinate measurements. Estimation errors
grow beyond the uncertainty bounds suggested by the EKF.

to process measurements. We estimate position, velocity,
and acceleration states using a nearly-constant-acceleration
model from [17]. We allow the filter to converge over t =
10.0 s before starting the attacks and running until t = 18.0 s.

2) Methods: Each attack objective is convex with closed-
form gradients and Hessians. We pre-condition follow-
ing [15] using the Cholesky factorization of the inverse
constraint Hessian to achieve faster convergence. This step is
essential to obtaining real-time convergence, particularly in
the case of order-of-magnitude scaling discrepancies between
measurements (i.e., ρ >> θ , φ ).

We choose a constrained trust-region optimization algo-
rithm and find that the optimization runs faster than the
simulation rate, easily keeping up with real-time.

3) Case Study I – MMD: Fig. 1 shows results of the MMD

attacks with the projection matrix set as Ci, j =

{
1 i = j
0 i ̸= j

,

w = 3, n = 9. The attack quickly compromises the victim’s
(i.e., plant) state estimate, even with nonlinearities in E&C.
Fig. 1 illustrates that the attack never exceeds the threshold
set by the χ2 anomaly detector meaning the attack remains
stealthy, entirely in accordance with Proposition 2.

4) Case Study II– MASA: Fig. 2 shows the same model
with an estimated-state MASA attack following (7). The
attacker drives x̂ towards a specified goal state, X a. In this
kinematic application, we find that solely specifying attack
goal as a position state (i.e., C ∈ R3×9

+ ) does succeed in
rapidly pushing the state estimate towards the attacker goal,
but that overshoot occurs. This is expected since the attack
was formulated as a myopic optimization. Thus, we choose
an attacker goal state that has both position and velocity.

Specifically, Ci, j =

{
1 i = j
0 i ̸= j

, w = 6, n = 9. We observe the

objective remains constant at 0 in Fig. 2 without overshoot.
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Fig. 2: MASA attack quickly drives the estimated state
towards attacker-specified state. The optimization objective
drops to 0 once the attacker perfectly reaches the state.

B. MC Bound Simulation

Next, we use Monte Carlo simulations without a dedicated
dynamics model to investigate the bounds derived in Sec. IV.

1) Methods: Given a fixed true state xk ∈ R9, x̂k|k−1
and x̆k|k are sampled from a Gaussian distribution given a
fixed victim-state covariance matrix, P ∈ R9×9

+ , P ≻ 0. A
measurement model creates a measurement from the true
state for the EKF. We choose C ∈ R3×9

+ to maximize the
deviation in the first three states.

2) Results: N = 10000 Monte Carlo trials are used to
observe behavior of the myopic attacks. Fig. 3 shows his-
tograms of quantities derived in Theorems 1, 2, 3 and
Lemma 1. All bounds are order-of-magnitude tight.

VI. CONCLUSION

We defined myopic maximum deviation and myopic ad-
versarial state approach attacks. When attacking EKFs with a
χ2 anomaly detector, each attacker goal can be formulated as
a convex QCQP. We provided practical relaxations to ensure
run-time feasibility given an appropriate attacker knowledge
model. Finally, we showed that the difference between the
optimal and relaxed problems is bounded. Future work will
use this as a basis to derive attacks with relaxed information
models and develop robust estimators for nonlinear systems.
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