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ABSTRACT

We consider the chiral model of twisted bilayer graphene introduced by Tarnopolsky, Kruchkov, and Vishwanath (TKV). TKV proved that
for inverse twist angles « such that the effective Fermi velocity at the moiré K point vanishes, the chiral model has a perfectly flat band at zero
energy over the whole Brillouin zone. By a formal expansion, TKV found that the Fermi velocity vanishes at a ~ 0.586. In this work, we give
a proof that the Fermi velocity vanishes for at least one « between 0.57 and 0.61 by rigorously justifying TKV’s formal expansion of the Fermi
velocity over a sufficiently large interval of a values. The idea of the proofis to project the TKV Hamiltonian onto a finite-dimensional subspace
and then expand the Fermi velocity in terms of explicitly computable linear combinations of modes in the subspace while controlling the error.
The proof relies on two propositions whose proofs are computer-assisted, i.e., numerical computation together with worst-case estimates on
the accumulation of round-off error, which show that round-off error cannot possibly change the conclusion of computation. The proposi-
tions give a bound below on the spectral gap of the projected Hamiltonian, an Hermitian 80 x 80 matrix whose spectrum is symmetric about
0, and verify that two real 18-th order polynomials, which approximate the numerator of the Fermi velocity, take values with a definite sign
when evaluated at specific values of a. Together with TKV’s work, our result proves the existence of at least one perfectly flat band of the chiral
model.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0054122

I. INTRODUCTION
A. Outline

Twisted bilayer graphene (TBG) is formed by stacking one layer of graphene on top of another in such a way that the Bravais lattices of
the layers are twisted relative to each other. For generic twist angles, the lattices will be incommensurate, so the resulting structure will not be
periodic. Bistritzer and MacDonald (BM)' introduced an approximate model (BM model) for the electronic states of TBG, which is periodic
over the scale of the bilayer moiré pattern, where the twist angle enters as a parameter. Using this model, BM showed that the Fermi velocity,
the velocity of electrons at the Fermi level, vanishes at particular twist angles known as “magic angles.” The largest of these angles, known as
the first magic angle, is at 6 ~ 1.1°. Numerical computations on the BM model show the stronger result that at magic angles, the Bloch band
of the BM model at zero energy is approximately flat over the whole Brillouin zone."> The flatness of the zero energy Bloch band is thought to
be a critical ingredient for recently observed superconductivity of TBG,’ although the precise mechanism for superconductivity in TBG is not
yet settled.

Aiming at a simplified model that explains the nearly flat band of TBG, Tarnopolsky, Kruchkov, and Vishwanath (TKV)* introduced a
simplification of the BM model, which has an additional “chiral” symmetry, known as the chiral model. TKV showed analytically that at magic
angles (of the chiral model, still defined by vanishing of the Fermi velocity), the chiral model has exactly flat bands over the whole Brillouin
zone. Using a formal perturbation theory (for the chiral model, the natural parameter is the reciprocal of the twist angle up to a constant),
TKV derived approximate values for the magic angles of the chiral model. It is worth noting that the first magic angles of the chiral model and
the BM model are nearby, but the higher magic angles are not very close.
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Becker et al. introduced a spectral characterization of magic angles of the TKV model where the role of a non-normal operator is
emphasized [the operator D" appearing in (1)]. Using this characterization, they numerically computed precise values for the magic angles
of the TKV model [see the discussion below (14)].” In the same work, they also proved that the lowest band of the TKV model becomes
exponentially close to flat even away from magic angles as the natural small parameter tends to zero. The same authors also investi-
gated flat bands of the TKV model with more general interlayer coupling potentials and the spectrum of other special cases of the BM
model.”

In this work, we study the chiral model introduced by TKV and consider the problem of rigorously proving the existence of the first magic
angle. We do this by justifying the formal perturbation theory of TKV to make a rigorous expansion of the Fermi velocity to high enough
order, and over a large enough parameter range, so that we can prove the existence of a zero. By numerically verifying that the resulting
expansion attains a negative value and proving that the result continues to hold when the effect of round-off error is included (Proposition
11.2), we obtain existence of the magic angle (Theorem II.2).

The proof of validity of the expansion is challenging because the reciprocal of the twist angle at the zero of the Fermi velocity is large
relative to the spectral gap of the unperturbed Hamiltonian, which means that the magic angle falls outside of the interval of twist angles
where the perturbation series for the Fermi velocity is obviously convergent. To overcome this difficulty, we start by representing the chiral
model Hamiltonian in a basis that takes full advantage of model symmetries. Then, using a rigorous bound on the high frequency components
of the error, we reduce the error analysis to analysis of the eigenvalues of the chiral model projected onto finitely many low frequencies. The
final stage of the error analysis (Theorem II.1) is to prove a proposition about the eigenvalues of the projected chiral model by a numerical
computation that we prove continues to hold when the accumulation of round-off error is considered (Proposition IV.5). We discuss the
limitations of our methods and, in particular, whether our methods might be generalized to the more general settings considered by Becker
et al.”® in Remarks II.1-11.3.

B. Code availability

We have made code for the numerical computations used in our proofs available at github.com/abwats/magic_angle. We give
references to specific scripts in the text.

Il. STATEMENT OF RESULTS
A. Tarnopolsky-Kruchkov-Vishwanath’s chiral model

The chiral model, such as the Bistritzer-MacDonald model (B-M model) from which it is derived, is a formal continuum approximation
to the atomistic tight-binding model of twisted bilayer graphene. The BM and chiral models aim to capture physics over the length-scale of the
bilayer moiré pattern, which is, for small twist angles, much longer than the length-scale of the individual graphene layer lattices. Crucially,
even when the graphene layers are incommensurate so that the bilayer is aperiodic on the atomistic scale, the chiral model and BM model are
periodic (up to phases) with respect to the moiré lattice so that they can be analyzed via Bloch theory.

We define the moiré lattice to be the Bravais lattice

A= {mlal + moa; : (ml,mz) € Zz}
generated by the moiré lattice vectors
2 2
a = ?(ﬁ,l), a = ?(—\/5,1),

and we denote a fundamental cell of the moiré lattice by Q). The moiré reciprocal lattice is the Bravais lattice

A = {n1b1 +mby i (n1,m2) € ZZ}

generated by the moiré reciprocal lattice vectors defined by a; - b; = 27d;;, given explicitly by

1 1
b = E(\/?,?)), b, = E(_\/g’?))'
We define g, = (0,-1), which is the (re-scaled) difference of the K points (Dirac points) of each layer, and

q, = (0,—1), q,=q, +b = %(\/51) q,=q, +b: = 1(—\/5,1).

2

We write Q* for a fundamental cell of the moiré reciprocal lattice and refer to such a cell as the Brillouin zone.
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Let ¢ := . Tarnopolsky-Kruchkov-Vishwanath’s chiral Hamiltonian is defined as

. [0 DT o [ 200 au(r
H" = , D= I 1)
D" 0 aU(-r) -2i0

where 0 = 1(9, + i), U(r) = e ™" + &7 + ¢7¥e™:7 § denotes the adjoint (Hermitian transpose), and « is a real parameter, which
we will take to be positive a > 0 throughout [see (3)]. The chiral Hamiltonian H* is an unbounded operator on H = L? (RZ; (C4) with domain
H'(R* C*). We will write functions in H as

v() = (Vi (v (D v (0, E (), @

where |y? (r)|* represents the electron density near to the K point (in momentum space) on sublattice o and on layer 7. The diagonal terms
of D" arise from Taylor expanding the single layer graphene dispersion relation about the K point of each layer, while the off-diagonal terms
of D" couple the A and B sublattices of layers 1 and 2. The chiral model is identical to the BM model except that inter-layer coupling between
sublattices of the same type is turned off in the chiral model. The precise form of the interlayer coupling potential U can be derived under
quite general assumptions on the real space interlayer hopping.'” The parameter « is, up to unimportant constants, the ratio

interlayer hopping strength between A and B sublattices

3)

twist angle

Although the limit &« — 0 can be thought of as the limit of vanishing interlayer hopping strength at fixed twist, it is physically more interesting
to view the limit as modeling increasing twist angle at a fixed interlayer hopping strength.

B. Rigorous justification of TKV's formal expansion of the Fermi velocity and proof of existence
of first magic angle

Bistritzer and MacDonald studied the effective Fermi velocity of electrons in twisted bilayer graphene modeled by the BM model and
computed values of the twist angle such that the Fermi velocity vanishes, which they called “magic angles.” One can similarly define an effective
Fermi velocity for the chiral model and refer to values of a such that the Fermi velocity vanishes as “magic angles” [although technically « is
related to the reciprocal of the twist angle (3)].

TKV proved the remarkable result that, at magic angles, the chiral model has a perfectly flat Bloch band at zero energy. Let L denote the
L? space on a single moiré cell Q with moiré K point Bloch boundary conditions. The starting point of TKV’s proof is an expression for the
Fermi velocity as a function of &, v(«), as a functional of one of the Bloch eigenfunctions, y“ € L%, of H%,

I(w“*(—r)lw“(r))l,

o(@) = Ty

4

where (.|.) denotes the L% inner product. We give precise definitions of L%, ¥*, and v(a) in Definition II1.2, Proposition I11.6, and Definition
II1.3, respectively. We give a systematic formal derivation of why (4) is the effective Fermi velocity at the moiré K point in Appendix A. To
complete the proof, TKV showed that zeros of v(«) imply zeros of y* at special “stacking points” of Q) and that such zeros of y* allow for
Bloch eigenfunctions with zero energy to be constructed for all k in the moiré Brillouin zone.

To derive approximate values for magic angles, TKV computed a formal perturbation series approximation of ¢,

VAR S (5)

and then substituted this expression into the functional for v(«) to obtain an expansion of v(«) in powers of «,

1—3a2+a4—%a6+£(x8+---
: (6)
1+3a% + 20t + Sa6 + S ad + - -

v(a) =

By setting v(a) = 0, one obtains an approximation for the smallest magic angle: a ~ 0.586.

Although TKV proved that flat bands occur at magic angles, they did not prove the existence of magic angles, and hence, they did not
prove the existence of flat bands. The contribution of the present work is to prove rigorous estimates on the error in approximation (5), which
are sufficiently high order and precise that, once substituted into (4), they suffice to rigorously prove the existence of a zero of v(«) and, hence,
via TKV’s proof, the existence of at least one perfectly flat band.
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It turns out to be relatively straightforward to prove that series (5) and (6) are uniformly convergent and to derive precise bounds on
the error in truncating the series for |af < %; see Proposition IV.3. The basic challenge, then, is to derive similar error bounds for « over an

interval, which includes the expected location of the first magic angle, at ~ % The first main theorem we will prove, roughly stated, is the
following. See Theorem IV.1 for the more precise statement. The theorem relies on the existence of a spectral gap for an 80 x 80 Hermitian
matrix, which requires numerical computation for its proof; see Proposition IV.5.

Theorem I1.1. The K point Bloch function y“ satisfies

8
wzx _ Z an\yn " 110{, (7)
n=0
where 5*LY.5_, «™P" with respect to the L inner product and

« 30’ 7
< — orall 0<a< —. 8
Il < 35 500 f 10 ®
The functions ¥" for 0 < n < 8 are derived recursively: see Appendix C. We stop at eighth order in the expansion because this is the
minimal order such that we can guarantee the existence of a zero of v(«), but the functions ¥" are well-defined by a recursive procedure for
arbitrary positive integers #; see Proposition IV.1.
Substituting (7) into the functional for Fermi velocity (4) and using #°1¥.5_, a"¥", we find that

un(@)
v(a) = ,
(@) on(a)
where
8 . 8
un(a) := < Dad"V (-n)[>] oc"‘I’"(r))
n=0 n=0
. 8 8, )
i ol wvo) (S enlro)
n=0 n=0

(" (0 (n)

and
8 n n 8 n n o o
(e = 0w |3 0w7) « 7).
n=0 n=0
where (.|.) denotes the L inner product and #* satisfies (8). The following is a straightforward calculation.
Proposition II.1. The following identities hold:
8 . 8
< > ad" ()| oc"‘I’"(r))
n=0 n=0
= 1—30c2+0c4—£0c6+g0c8— 7536933 o' (10)

49 294 11957764
4598172331 1, 30028809212865451 14 . 49750 141858992227 16

47 460365316 “- 520327 364 608 478 700 * 12487 856 750 603 488 800 *

>

8
Z oc"‘l’”)
n=0

8
(Z(x"‘}’"
n=0
6 6 107 8 5119 10 (11)

=1+3d+2a* + o’ + —a’ + o
7 98 48412

, 62026511 , = 355691470247 . 2481663780475871
44 44 o .
356 844 852 113410497 953 025 337509 641 908 202 400
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We prove Proposition II.1 in Appendix F. Naively, expansions (10) and (11) approximate the formal infinite series expansions of
( oI (—r)‘z,f‘z’o (x"\P”(r)) and (£, " ¥"|302, a¥") up to terms of order a’. We prove in Proposition F.2 that because of some
simplifications, expansions (10) and (11) agree with the infinite series up to terms of order «'’.

We are now in a position to state and prove our second result. This result also relies on a proposition, which requires numerical compu-

tation for its proof: that one real 18-th order polynomial in « attains a negative value and another attains a positive value, when evaluated at
specific values of &; see Proposition IL.2.

Theorem I1.2. There exist positive numbers amin and amax With 0.57 < Qmin < Omax < 0.61 such that the Fermi velocity v(a) defined by (4)
has a zero o™ satisfying min < & < Gmax.

Proof. Equation (9) and Cauchy and Schwarz imply that

on(ar) - < Zo P L )

28: a"‘{’"(r))

8
<2 3 o ¥ + ")
n=0

Using Theorem I1.1 and Proposition C.3, we see that vx(«) is bounded above by the polynomial

111 ¢ 143 § 7536933 1

1-30" +a' - —a®+ —a’ - " g
49 294 11957764
N 4598172331 1, 30028809212865451 14 N 49750141858992227 5 (12)
a - « o

47 460365316 520327364608 478 700 12487 856 750 603 488 800

+&(a),
where
60° \/ 14 V258 V1968 837
() = ———([1+V3a+V2a" + ——a’ + ot + o
15 - 20« 42 3458
V106 525799 o+ 21/2129312323981473 o+ 183643 119755214454 o
31122 624696 345 4997570760
9a!®

o,
(15 - 20a)?

where we use Proposition C.3 to calculate the term in brackets for all 0 < & < 75. On the other hand, v(«) is bounded below for all 0 < & < 5
by the polynomial

2 4 111 ¢ 143 ¢ 7536933 |
1-3a"+a ——a + —& — ————«
49 294 11957 764
4598172331 RN 30028 809212865451 e 49750141858992227 16 (13)
47460365 316 520327 364 608 478 700 12487 856 750 603 488 800

- &(a).
We now claim the following.

Proposition I1.2. Expression (12), or equivalently the 18-th order polynomial obtained by multiplying (12) by (15 — 20&)?, is negative at
a = 0.61. Similarly, expression (13) is positive at e = 0.57.

Proposition I1.2 obviously implies by continuity (12), (13), and vy (e), each has at least one zero in the interval 0.57 < & < 0.61. We
denote the largest zero of (12) in the interval by dmax and the smallest zero of (13) in the interval by auin. Since the zeroes of vu(«) must lie
between those of (12) and (13), we are done. |

Proof of Proposition II.2 (computer-assisted). We will first prove that (12) attains a negative value at 0.61 and then explain the
modifications necessary to prove that (13) is positive at 0.57. Evaluating using the double-precision floating-point arithmetic, we find
that at @ =0.61, (12) attains the negative value —0.020263 (five significant figures; this value was computed by running the script
compute_expansion_symbolically.py in the Github repo). It is straightforward to bound the numerical error, which accumulates when
evaluating an 18-th order polynomial using the floating-point arithmetic. Even the simplest exact bound, which does not account for error

cancellation (see, e.g., Eq. (8) of Oliver),® yields an upper bound on the possible accumulated round-off error in the evaluation of an nth
order polynomial Z;l:()pjaj> fora € [-1,1], as (n+ 1)[6(2”“)6 - l]supOSan |pj|, where € is “machine epsilon”: roughly speaking, the maxi-
mum possible round-off error generated in a single arithmetic operation. Bounding the maximum coefficient in (12) by 1000, taking n = 18,
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and bounding e by 3 x 107 (which was easily attained working in Python on our machine), the maximum possible numerical error in the
evaluation of (12) is ~ 107!, which is much smaller than 0.020 263. We conclude that the first claim of Proposition II.2 must hold. Regard-
ing the second, evaluating at « = 0.57, we find that (13) equals 0.029 138 (5sf). The same argument as before now shows that accumulated
round-off error in the evaluation cannot possibly change the sign of (13) at « = 0.57. O

We do not attempt to rigorously estimate ain and amax precisely in this work, but numerically computing roots of polynomials (12) and
(13) suggests amin ~ 0.576 83 (5sf) and amax » 0.601 77 (5sf), respectively, where 5sf is an abbreviation for five significant figure. Numerical
computation of the first zero of { ¥_o V" (=1)| X5y a"¥"(r)) gives 0.58597 (5sf); see Fig. 1 (the zero values were computed by running
the script compute_expansion_symbolically.py in the Github repo).

Using Proposition C.1 and the package Sympy” for symbolic computation, we can compute the formal expansion of v(«) up to arbitrarily
high order in a. In particular, we find the higher-order terms in expansion (6) to be

2, 4 111.6, 1438 10227257 10 , 6881137015 12 _ 130055941 435858 531 14
(@) = 1-3a"+a" — 5o + 555" — fos7764 % 47 460 365 316 % 520 327 364 608 478 700 ¥ (14)
= 2 4 6.6, 107 3, 16011 10, 134058653 17 . 26407 145691649 14 . .. "
L+ 30 + 20" + Za° + G o® + o 356 844 852 226 820995906050 % T

Truncating the numerator after order a*® and setting the numerator equal to zero yield « = 0.585 663 558 389 56 (14sf) for the first zero of
the Fermi velocity (to compute this value, run compute_expansion_symbolically.py in the Github repo with N = 40). This is consistent
with the numerical computation of Becker et al.,” who found « = 0.585 663 558 389 55 truncated (not rounded) to 14 digits, by diagonalizing a
non-normal but compact operator whose reciprocal eigenvalues correspond to magic angles. Note that we do not attempt to rigorously justify
series (14) to such large values of & and to such high order in this work; see Remark II.4.

Remark II.1 (Higher magic angles). The chiral model has been conjectured to have infinitely many magic angles,” but it is not straightfor-
ward to extend our methods to prove the existence of such higher magic angles. The problem is that calculating the perturbation series centered
at « = 0 requires diagonalizing the unperturbed operator H'. In principle, it might be possible to calculate the perturbation series to higher order
in order to get an accurate approximation of the Fermi velocity near to the higher magic angles. However, this would require significantly more
calculation compared with the present work, and we have no guarantee that the error can be made small enough to prove the existence of another
zero in that case.

Remark I1.2 (More general interlayer hopping potentials). The chiral model (1) is an approximation to the full Hamiltonian of the twisted
bilayer, even in the chiral limit where coupling between sublattices of the same type is turned off because the interlayer hopping potential U only
allows for hopping between nearest neighbors in the momentum lattice (see Fig. 6). More general interlayer hopping potentials have been studied
by Becker et al.° In principle, such models should be amenable to the analysis of this work, but longer-range hopping would lead to much more
involved calculations, and the construction of the finite-dimensional subspace E of Proposition IV.4 would require more care: the fact that we can

2.0
—— 8th order expansion of v(«) numerator with worst-case error bound ® oot of expansion of v(a) numerator w/ worst-case error at o =0.60177
1.5 8th order expansion of v(«r) numerator 0.6 1 root of expansion of v(«) numerator at a =0.58597
—— 8th order expansion of v(«) numerator with best-case error bound ® oot of expansion of v(a) numerator w/ best-case error at o =0.57683
1.0 0.4 1
0.5 02 \
T 00 T 00 A
—0.5 1 —0.2
~1.04 —0.41
—1.5 1 064
-2.0 T T T T T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.54 0.56 0.58 0.60 0.62 0.64
« o

FIG. 1. Left: plot of the numerator v-(e) of the Fermi velocity approximated by eighth order TKV expansion (6) (orange) and of eighth order expansions with worst-case (12)
(blue) and best-case (13) (green) errors. Right: detail showing computed roots of these functions near to a = % Numerically computing the zeroes of each curve yields

a = 0.58597 (5sf), « = 0.601 77 (5sf), and « = 0.576 83 (5sf), respectively. The values of « (0.57 and 0.61) where we evaluated expressions (13) (green line) and (12) (blue
line) to prove that ua(a) has a zero between 0.57 and 0.61 are shown with the black crosses.
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choose E so that |PsH'Px | = 1 depends on H" only coupling nearest neighbors in the momentum lattice. Locality of hopping in the momentum

10

space lattice has been exploited for efficient computation of density of states'” of twisted bilayers.

Remark I1.3 (Generalization to BM model). Parts of our analysis should also apply to the full Bistritzer—-MacDonald model. Specifically,
one could study perturbation series for Bloch functions near to zero energy in powers of the inter-layer hopping strength, derive an equivalent
expression for the Fermi velocity in terms of that series, and then study the zeroes of that series. However, there are various complications
because of the lack of “chiral” symmetry. First, there is no reason for the continuation of the zero eigenvalue of the unperturbed operator
to remain at zero. Second, the expression for the Fermi velocity in terms of the associated eigenfunction could be more complicated. Since
zeros of the BM model Fermi velocity do not imply the existence of flat bands for that model, we do not consider these complications in this
work.

Remark I1.4 (Expanding to higher order). Our methods could, in principle, be continued to justify the expansion of the Fermi velocity to
arbitrarily high order and potentially over larger intervals of « values. However, these extensions are not immediate: pushing the expansion to
higher order or to a larger interval of « values would require a larger set B in Lemma IV.1, and Proposition IV.5 would have to be re-proved for
the new set E. Note that the essential difficulty is justifying the perturbation series for large a: the series are easily justified to all orders for |a| < %;
see Proposition IV.3.

C. Structure of paper

We review the symmetries, Bloch theory, and symmetry-protected zero modes of TKV’s chiral model in Sec. III. We prove Theorem II.1
in Sec. IV, postponing most details of the proofs to Appendixes A-F. In Appendix A, we show why (4) corresponds to the effective Fermi
velocity at the moiré K point. In Appendix B, we construct an orthonormal basis, which we refer to as the chiral basis, which allows for efficient
computation and analysis of TKV’s formal expansion. We re-derive TKV’s formal expansions in Appendix C. We give details of the Proof of
Theorem II.1 in Appendixes D and E. We prove Proposition IL.1 in Appendix F. In the supplementary material, we list the basis functions
of the subspace onto which we project the TKV Hamiltonian, give the explicit forms of the higher-order corrections in expansion (7), and
present a derivation of the TKV Hamiltonian from the Bistritzer-MacDonald model.

Ill. SYMMETRIES, BLOCH THEORY, AND ZERO MODES OF TKV’s CHIRAL MODEL
A. Symmetries of the TKV model

In this section, we review the symmetries of the TKV model for the reader’s convenience and to fix notation. Becker et al.” gave a group
theoretical account of these symmetries, and further reviews can be found in the physics literature.'' '* Recall that ¢ = %, and let Ry denote
the matrix, which rotates vectors counter-clockwise by ¢, i.e.,

1{-1 -V3

Ry =
2\V3 -1
We define the following.

Definition IIL.1. For any v € A, we define a phase-shifted translation operator acting on functions f € H by

Tof = diag(L, e, 1,eM ™ )y f,  Tof(r) = f(r+v). (15)
We define a phase-shifted version of the operator, which rotates functions f € H clockwise by ¢ by
Rf :=diag(L1e ™ e )RS, Rf(r) = f(Ryr). (16)
For any f € H, we finally define the “chiral” symmetry operator
Sf := diag(1,1,-1,-1) . (17)

We then have the following.

Proposition IIL.1. Operators (15) and (16) are symmetries in the sense that
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[HY 70| = H'Tp - 1o H" = 0 (18)
for all moiré lattice vectors v € A,
[H*,R] = H*R - RH" =0,

and operator (17) is a “chiral” symmetry in the sense that

{H",S} =H"S+ SH" = 0. (19)

Proof. The first claim is a direct calculation using the facts that for any v € A,

FoU(r)iw = e WPU(r), T-00%y = 0.

The second claim is a direct calculation using the facts that

RI'UMR=e"U(r), R'OR=e"0.

The final claim is trivial to check. |

The “chiral” symmetry (19) implies that the spectrum of H* is symmetric about zero because

H% =Ey < H"Sy=-ESy.

The same calculation implies that zero modes of H* can always be chosen without loss of generality to be eigenfunctions of S.

B. Bloch theory for the TKV Hamiltonian

We now want to reduce the eigenvalue problem for H* using the symmetries just introduced. The symmetry (18) means that eigen-
functions of H* can be chosen without loss of generality to be simultaneous eigenfunctions of 7., for all v € A. It therefore suffices to seek
solutions of

H" =Ey

for r in a fundamental cell Q) := R?/A of the moiré lattice in the symmetry-restricted spaces

Ly = {f e L (CH: f(r+v) = eik'vdiag(l,eiql'v, L, f(r) Vo e A}, (20)

where k is known as the quasimomentum. Since L, ,, = L; for any w € A*, it suffices to restrict attention to k in a fundamental cell of A*,
which we denote Q* := R*/A* and refer to as the Brillouin zone. We also define symmetry-restricted Sobolev spaces H for each k € Q* and
positive integer s by

Hj = {f e H'(QCY) : f(r+v) = ¥ diag(1,e™, 1,e™) f(r) Vv ¢ A}.
We claim the following.

Proposition IIL2. For each fixed k € Q* and a > 0, H%, defined on the domain Hy, extends to an unbounded self-adjoint elliptic operator
Ly — Li with compact resolvent. In a complex neighborhood of every a > 0, the family H* is a holomorphic family of type (A) in the sense of
Kato."

Proof. Ellipticity is immediate since the principal symbol of H” is invertible. Self-adjointness is clear using the Fourier transform when
o« = 0and for & # 0 because aH" is a bounded symmetric perturbation of H° (see, e.g., Theorem 1.4 of Cycon et al."). Elliptic regularity implies
that the resolvent maps L; — Hjy, and compactness of the resolvent then follows by Rellich’s theorem (see, e.g., Proposition 3.4 of Taylor'®).
The family H* is holomorphic of type (A) since the domain of H* is independent of a, and H*f is holomorphic for every f € Hj. (see Chap. 7
of Kato'*). |

We now claim the following.

Proposition II1.3. Let f € Ly. Then, Rf € Lé;k.
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Proof. By definition, for any v € A,
Rf(r+v) = diag(1,1,¢ *,e™ )f(Rgr + Ryv).
By the definition of L}, we have
Rf(r+v) = iRV diag(1, /Ria)v 1 SR VYR £(p),
The conclusion now follows from R:;ql =g, +byand b, - v =0mod2n forall v € A. ]
In particular, whenever Ryk = kmod A*, we have RL; = L. Regarding such k, the following is a simple calculation.

Proposition II1.4. The moiré K and K’ points k = 0 and k = —q1 and the moiré T point k = qu + by satisfy Ryk = kmod A*.

The moiré K, K’, and T points are shown in Fig. 2. Note that the moiré K, K’, and T points should not be confused with the single layer
K, K', and T points. The moiré K point corresponds to the K point of layer 1, while the moiré K’ point corresponds to the K point of layer 2.
Interactions with the K’ points of layers 1 and 2 are formally small for small twist angles and are hence ignored.

In this work, we will be particularly interested in Bloch functions at the moiré K and K’ points. We therefore define the following.

Definition II1.2.
Ly =1Ly Li =L,

Let @ = €. Since the spaces L% and L%, are invariant under R, they can be divided up into invariant subspaces corresponding to the
eigenvalues of R,

Lk = L1 ® Lk ® Lkw» L =Lir1 ® Ly ® Lir e
where
Lio = {r €Ly :Rf = of} o=lLwow'

and Lfg,o, 0=1,w, 0", are defined similarly.
The following, which is trivial to prove, will be important for studying the zero modes of H*.

Proposition IIL.5. The operator S commutes with 7., and R and hence maps the Ly , and Ly, , spaces to themselves for o = 1, , 0*.

Since & has eigenvalues +1, we can define the spaces

1.51
1.0 1 L]
> 0.5
0.0 1 ®
—0.5 1
-1.0 7['),5 OTO OTS li(] 1i5 2.0

FIG. 2. Diagram showing locations of moiré K (blue), K’ (red), and T (black) points within the moiré Brillouin zone (orange).
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Lios = {f €Lk, :Sf=2f} o=lLwa"

2 o
and spaces Lg: ;1,0 = 1, w, 0™ similarly.

Remark IIL.1. Note that +1 eigenspaces of S correspond to wave-functions, which vanish in their third and fourth entries, which correspond,
through (2), to wave-functions supported only on A sites of the layers. Similarly, —1 eigenspaces of S correspond to wave-functions, which vanish
in their first and second entries, which are supported only on B sites of the layers.

C. Zero modes of the chiral model

We now want to investigate zero modes of H” in detail. When « = 0, there are exactly four zero modes given by ¢;,j = 1,2, 3,4, where ¢;
equals 1 in its jth entry and 0 in its other entries. It is easy to check that

2 2 2 2
e €Lk, e €Lk, e3€Lkyr, e4€Lkgry+, (21)

and hence, 0 is a simple eigenvalue of H* when restricted to each of these subspaces. Recall that zero modes can always be chosen as
eigenfunctions of S, and indeed, we have

2 2 2 2
et €Llx11, e €Llgiyy, € €Lggye_1, €1€Lgryr 1. (22)

We now claim that these zero modes persist for all a. This was already established by TKV,* and the following proposition is also similar to
Proposition 3.1 of Becker et al.” We re-state it using our notation and give the proof for completeness.

Proposition IIL.6. There exist smooth functions y* with || = 1 in each of the spaces Ly 1.1, Lxr.1.1» Li.or—1» and Lgs o+ _y such that y° is
asin (21), a > y* is real-analytic, and H*y" = 0 for all a. The dimension of ker H* restricted to each of the spaces L 1, L1, Lx o+ and Li -

is always odd-dimensional.

Proof. Since S preserves each of the spaces Lfm, Lfc,l, Lfm*, and Li,w* and anti-commutes with H*, the spectrum of H* restricted
to each space must be symmetric about 0 for all a. Since H” restricted to each space has compact resolvent and H® is a holomorphic
family of type (A), the spectrum of H® consists of finitely degenerate isolated eigenvalues depending real-analytically on &, with associ-
ated eigenfunctions also real-analytically depending on « (although the real-analytic choice of eigenfunction at an eigenvalue crossing may
not respect ordering); see Theorem 3.9 of Chap. 7 of Kato."* The null space of H* in each of the spaces is one-dimensional at a = 0 by
explicit calculation, with the zero modes given by (up to non-zero constants) (21). For small a > 0, real-analyticity and the chiral symme-
try force the null space to remain simple and it is clear how to define y“. For large a > 0, the non-zero eigenvalues of H* may cross 0 at
isolated values of «, and in this case, we define ¥ to be the real-analytic continuation of the zero mode through the crossings. Note that
real-analyticity prevents non-zero eigenvalues from equaling zero except at isolated points so that the real-analytic continuation of the zero
mode through the crossing must indeed be a zero mode. At crossings, the null space must be odd-dimensional in order to preserve symme-
try of the spectrum of H* about 0. It remains to check that if y° is in, say, L%, ;, then y* must remain in L%, for all « > 0. However, this
must hold because the S-eigenvalue of y* cannot change abruptly while preserving real-analyticity. Smoothness of ¢ follows from elliptic
regularity. O

In this work, we will restrict attention to the moiré K point and, especially, the family y* € L ; ;. We expect that our analysis would go
through with only minor modifications if we considered instead the moiré K’ point. The zero modes in L ; ; and L+ _ are related by the
following symmetry.

Proposition TIL7. Let v} and y*, denote the zero modes of H® in the spaces Ly 1, and Li .« _,, respectively. Then, v = (®%,0)7,
where % € L*(Q;C?), ®*(r + v) = diag(1,e1"?)D%(r) for all v € A, ®*(Ryr) = ©*(r). Up to gauge transformations y*, — e y®, which
preserve real-analyticity of y%,, we have y*,(r) = (0, % (=r))".

Proof. Since Sy{ = y{, the last two entries of y§ must vanish, so we can write y{ = (©%,0)". That ®* satisfies the stated symmetries
follows immediately from w{ € L% ;. It is straightforward to check using the definitions of R and 7, that (0, oY (-1)" € Lx o+, To see
that (0, % (=r)) is a zero mode, note that ®* satisfies D*®* = 0, which implies that D*'®% (=) = 0 by a simple manipulation. To see
that y*,(r) = (0,®% (=r))" (up to real-analytic gauge transformations) for all a, note first that this clearly holds for a = 0 [the zero modes
are explicit (22)]. For « > 0, the identity must continue to hold by uniqueness (up to real-analytic gauge transformations) of the real-analytic
continuation of y*, starting from a = 0 and continuing first along the non-zero interval where y{' is non-degenerate in Lk ; ; and then through
eigenvalue crossings as in the Proof of Proposition IIL.6. O
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In Appendix A, we use Proposition IIL.7 to derive the effective Dirac operator with the a-dependent Fermi velocity, which controls the
Bloch band structure in a neighborhood of the moiré K point. The Fermi velocity of the effective Dirac operator is given by the following.
Note that we drop the subscript +1 when referring to the zero mode of H* in L, ; since the zero mode of H* in L .« _; plays no further
role.

Definition IIL.3. Let y* € Lk ;| be as in Proposition IIL6. Then, we define

I(I//“*(—r)lw“(r))l)

v@) = Ty

(23)

where (. |.) denotes the L inner product.

IV. RIGOROUS JUSTIFICATION OF TKV’'s EXPANSION OF THE FERMI VELOCITY
A. Alternative formulation of TKV’'s expansion

We now turn to approximating the zero mode y“ ¢ L%m,l by a series expansion in powers of a. We write H* = H° + aH' and formally
expand y” as a series

VAR S (24)
where H*¥° = 0 and
HY" = -H'¥""! (25)
forall n > 1. To solve H*¥° = 0, we take ¥° = ;. We prove the following in Appendix C.

Proposition IV.1. Let P denote the projection operator in Ly, onto e; and P* = I — P. The sequence of Eq. (25) has a unique solution such
that ¥" € Ly 1, for alln > 0 and PY" = 0 for all n > 1, given by ¥° = e; and

\Ijn _ _PL(HO)—IPLHI\PV!—I (26)
foreachn > 1.

Expansion (24) appears different from the series studied by TKV since we work only with the self-adjoint operators H’, H', and H*
rather than the non-self-adjoint operator D* [defined in (1)]. Since functions in L ; ; vanish in their last two components, there is no practical
difference. However, working with only self-adjoint operators allows us to use the spectral theorem, which greatly simplifies the error analysis.
We compute the first eight terms in expansion (24) in Proposition C.2 after developing some necessary machinery in Appendix B.

B. Rigorous error estimates for the expansion of the moiré K point Bloch function

In this section, we explain the essential challenge in proving error estimates for series (24) and explain how we overcome this challenge.
Our goal is to prove the following.

Theorem IV.1. Let y“ ¢ L%<,1,1 be as in Proposition II1.6. Then,
8
V/(X — Z an\yn + 170(,
n=1
where 5" LY.5_, «™¥" with respect to the L inner product and

o 3069 7
< ——— orall 0<a< —.
I, < 550 m

Proposition IV.1 guarantees that series (24) is well-defined up to arbitrarily many terms. A straightforward bound on the growth of terms
in the series comes from the following proposition.

Proposition IV.2. The spectrum of H® in Lk, is

o (H) = {£]G], t|q, + G| : Ge A"},
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and hence,

0y—1
[P P g = L. @)

We also have

1

I1H i, ~r2, =3 (28)
Proof. This proposition is a combination of Propositions B.2, B.4, and B.7, proved in Appendix B. O
Proposition IV.2 implies that |P*(H) ™' P*H'|| 12 2, < 3, which implies the following.

Proposition IV.3. The formal series (24) converges to y* in L, with an explicit error rate, for all |a| < 1. The formal series for the Fermi
velocity v(e) obtained by substituting the series expansion of y* into (23) converges for the same range of a, also with an explicit error rate.

Proof. For any non-negative integer N, let y™* := >N/ a"¥", where ¥" are as in (26). Since ¥°1L ¥" for all #> 1 and |¥°| = 1, we
N
have that || > 1 for all N. Let ¢™* := H&ﬂ’ then, we can decompose ¢™* = cy® + 4 for some constant ¢ and where #*Ly*. Applying

N+1 N
H" to both sides, we have that H*¢™* = % = H*". Now, fix a > 0 such that |a| < ;. Then, a|H'| < 1, and hence, the first non-zero

eigenvalue of H” is bounded away from 0 by 1 — 3« (recall that the first non-zero eigenvalues of H” are +1). Since 1 L y*, where y* spans

the eigenspace of the zero eigenvalue of H, we have that ||7*| < L[l Using the bound |¥"| < (3&)" and the bound below on

= 1=3al e

N+1
[y, we have that |#%] < G) "~ which clearly = 0 as N — oo, so that limy—e¢™* = y* (up to a non-zero constant). Now, consider

= |1-3q]
v(a) defined by (23). Assuming WLOG that |y®| = 1 and substituting y* = ¢™* + 4%, we find immediately, using Cauchy-Schwarz, that
[o(a) = (¢ (=) [¢" ()] < 205*] + |"|*. In terms of y, we have |v<a> - W EOWON o) + 171 0

Proposition IV.3 shows that for |af < %, series (24) converges to y* and can be used to compute the Fermi velocity. However, this
restriction is too strong to prove that the Fermi velocity has a zero, which occurs at the larger value «a » % Of course, Proposition IV.2
establishes only the most pessimistic possible bound on the expansion functions V", and this bound appears to be far from sharp from explicit
calculation of each ¥"; see Proposition C.3. We briefly discuss a possible route to a tighter bound in Remark C.2 but do not otherwise pursue
this approach in this work.

We now explain how to obtain error estimates over a large enough range of « values to prove v(«) has a zero. We seek a solution of
H*y® = 0in Lk, | with the form

N
Wot _ v/N,oc 4 rla’ V/N)a - Z (xn\yn. (29)
n=0

For arbitrary a, let Q" denote the projection in Li)l onto V/N % and Q®* := I - Q" (note that Q° = P). Note that Q* depends on N, but we
suppress this to avoid clutter. We assume WLOG that Q*#*(r) = 0. It follows that 1 satisfies

Qa,LH(an,L ’1a _ _aNJrl ro,lHl\{jN

To obtain a bound on #* in L*(Q), we require a lower bound on the operator Q**H*Q™* : Q**L§.; - Q™* L. The following lemma gives
a lower bound on this operator in terms of a lower bound on the projection of this operator onto the finite-dimensional subspace of L%()l
corresponding to a finite subset of the eigenfunctions of H’. The importance of this result is that since H' only couples finitely many modes
of HY, for fixed N, by taking the subset sufficiently large, we can always arrange that y™** lies in this subspace.

LemmaIV.1. Let Pz denote the projection onto a subset & of the eigenfunctions of H® in Ly, and let y > 0 be maximal such that

|PeH°P:f| > ulfl VfeHky, Ps:=I-Ps, (30)

(with this notation, the operator P introduced in Proposition IV.1 corresponds to Pz with B being the set {e1} and y = 1). Suppose that Q" Pz
=PzQ" = QY i.e, that """ lies in ranPz. Define g* by

E is an eigenvalue of the matrix Q" PsH P Q™"

g" :=min{ |E| : 5 5
acting Q**PsLy, - Q™ PsLy,
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We note that P=Q™* is the projection onto the subspace of P=L, orthogonal to y™*. As long as
3a < pand a| Q¥ PzH'P5 || < min(g®% u - 3a),
then

1Q™ H Q™ 5" > (min(g",p — 3a) — | Q™ P=H' P2 ) |Q™ 1. (31)

Note that g* would be identically zero if not for the restriction that the matrix acts on Q™*PsL%; since otherwise y™* would be an
eigenfunction with eigenvalue zero for all a. As it is, g° = 1 and a ~ g* is real-analytic so that g” must be positive for a non-zero interval of
positive « values.

Proof. Using Q*Ps = PsQ", we have P£Q™" = Q®*P% = P3, and hence,

[Q™ H Q™ 5" = Q™ (P= + P)H"(P= + P)Q™ |
= |Q** PeH*P=Q™ * + aQ™* Pz H'Pi* + aPEH Pz Q™" + PsH"Par"|.

By the reverse triangle inequality,

HQDt,J_H(xQ(x,J.ﬂ(x “ (32)
>||Q** PH P=Q™ " + PsH*Pin*|| - o Q“*P=H'Piy* + PEH*P=Q™ 1" .

We want to bound the second term above and the first term below. We start with the second term

” Q(X,LPEHIPénOt + PEHIXPEQO(,LHWHZ
QU PeH P ¢ [P PoQ
< [Q% PeH"Pz|*(| Par"|” + [P=Q™ 1"|?)
= [Q“*PeH"Pz|* Q™ 1|,
where we use Pythagoras’ theorem, Pz H' PQ™*#* = PsH' PsQ™* P=Q™* 1" since PsQ™" is a projection, and |Q**PzH' P} | = |PsH'P=Q™*|.
Hence, we can bound
|Q™ PH'Py* + PEH PQ™ | < | Q™ P=H' P5 ||Q"* 1| (33)

For the first term, first note that using Proposition IV.2 and the spectral theorem,

|Q* PzH PzQ™ 1| 2 | Q™ PH P2Q™ 1| — o] @™ PEH' Pz Q™" |
2 (u=30) [P2Q™ 1"
as long as 4 > 3a. We now estimate

| Q™ P<H*P=Q"" 1" + PH"PL4"|?
= |Q™ P=H PQ™ 1f*||* + | PsH Pz’
> (¢’ 1Q" Pen*||* + (u = 3a)* | P
>min((g")", (u ~30)*) (1Q** Per" | + [ Pan”|*)
= min((g")", (u - 30)") [Q* 1.

It follows that as long as 3a < y,
|Q* P=H"P=Q™ 11" + PsH*Par"| > min(g", u - 3a) | Q™ 11" (34)
The conclusion now holds as long as 3a < y and | Q™*PsH"P%|| < min(g® p — 3a) upon substituting (33) and (34) into (32). ]

For Lemma IV.1 to be useful, we must check that it is possible to choose Z so that the bound (31) is non-trivial, i.e., so that the constant
is positive. We will prove the following in Appendix D.

Proposition IV.4. There exists a subset B of the eigenfunctions of H° such that the following holds:
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1. The maximal y such that (30) holds is y = 7.
2. y** defined by (29) lies in ran Ps.
3. |PzH'P:| = 1, and hence, |Q**PsH'P%| < 1.

The set E constructed in Proposition IV.4 is the set of L% ,-eigenfunctions of H” with eigenvalues with magnitude < 41/3, augmented
with two extra basis functions to ensure that |[PsH'P5| = 1. Including all L}, -eigenfunctions of H® with eigenvalue magnitudes up to and

including 4./3 ensure that 1//8’“ lies in ran Ps.
We now require the following.

Proposition IV.5. Let B be as in Proposition IV.4. Then, g* > %for all0<a< %.

Proof (computer-assisted). Consider HE := Q**PsH*P=Q™" acting on PzL . Assuming that « is restricted to an interval such that
the zero eigenspace of Hg is simple, then, using orthogonality of eigenvectors corresponding to different eigenvalues and the fact that Q*
is the spectral projection onto the unique zero mode of Hg, Hg has the same non-zero eigenvalues as the matrix Q“*PzH*PzQ*" acting
on Q“'PsL% . The matrix HE is an 81 x 81 matrix whose spectrum is symmetric about 0 because of the chiral symmetry. When « = 0,
the spectrum is explicit: 0 is a simple eigenvalue, and the smallest non-zero eigenvalues are +1, both also simple. Proposition IV.5 is

proved if we can prove that the first positive eigenvalue of Hg is bounded away from zero by % forall 0 <a< 1—70. Note that if this holds,
the zero eigenspace of Hz must be simple for all 0 < a < %,

follows.

and hence, our basic assumption is justified. The strategy of the proof is as

1. Defineagrid G:= {{% :ne{0,1,...,N}}, where N is a positive integer taken sufficiently large that the grid spacing h := o <
(the number 388 831 comes from Proposition IV.7).

2. Numerically compute the eigenvalues of Hg for a € G. We find that the numerically computed first positive eigenvalues of these matrices
are uniformly bounded below by & > 2.

3. Perform a backward error analysis that fully accounts for round-off error in the numerical computation in order to prove that the exact

first positive eigenvalues of the matrices Hg must also be bounded below by % ateacha € G.

_1
388 831

4. Use perturbation theory to bound the exact first positive eigenvalue of Hg below by 3 over the whole interval of « values between 0
and %.

When discussing round-off error due to working in the floating-point arithmetic, we will denote “machine epsilon” by €. The significance of
this number is that we will assume that all complex numbers a can be represented by floating-point numbers a such that |a — a| < ea. We will
also make the standard assumption about creation of round-off error in the floating-point arithmetic operations: if @ and b are floating-point
complex numbers and if (&Ol;)mmp and aOb represent the numerically computed value and exact value of an arithmetic operation on the
numbers & and b, then (2Ob)comp = Ob + e, where |¢| < (aOb)e. In Python, this is indeed the case, for all reasonably sized (such that stack
overflow does not occur) complex numbers, with e = 2.220 44 x 107" (5sf). We now present the main points of parts 2-4 of the strategy,
postponing proofs of intermediate lemmas to Appendix E.

For part 2 of the strategy, for each a € G, we let H% denote HE (which is known exactly) evaluated as floating-point numbers. We generate
numerically computed eigenpairs A, @; for 1 < j < 81 for each HS using numpy’s Hermitian eigensolver eigh. We find that the smallest first
positive eigenvalue of Hg for a € G is 0.814719 126 144 543 6 (computed using compute_PHalphaP_enclosures.py in the Github repo).
Note that the difference between this number and % is bounded below by 0.01.

The main tool for part 3 of the strategy is the following theorem.

Theorem IV.2. Let m and n denote positive integers with m < n. Let A be a Hermitian n x n matrix, and let {vj}1<jcm be orthonormal
n-vectors satisfying (A — ;;I)vj = rj for scalars A; and n-vectors rj for each 1 < j < m. Then, there are m eigenvalues {a; }1<j<m 0f A, which can
be put into one-to-one correspondence with A;’s such that

A —aj| <2msup |rillz  foralll <j<m.
1<i<m

Proof. See Appendix E 1. O

Naively, one would hope to be able to calculate enclosure intervals for every eigenvalue of Hg and, in particular, a lower bound on the first
positive eigenvalue of Hg by directly applying Theorem IV.2 with A = Hg, m = 81, and A; and v; given for each 1 < j < 81 by the approximate
eigenpairs A, 9; computed in part 2. However, we cannot directly apply the theorem because {#;} 1<j<s1 are not exactly orthonormal because of
round-off error. Hence, we will prove the existence of an exactly orthonormal set {9;}1<j<s1 close to the set {©;}1<j<s1 and apply Theorem IV.2
to the set {®;}1<jcs1 (with the same ‘A;) instead. Note that to carry out this strategy, we must bound the residuals #; := (H — A;)®;. The result
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we need to implement this strategy is the following. Note that the result requires numerical computation of inner products and residuals, and
we account for round-off error in these computations.

Theorem IV.3. Let m and n be positive integers with m < n. Let A be an n x n Hermitian matrix, let A denote A evaluated in floating-point

numbers, and let ©;,A; for 1 < j < m be a set of n-dimensional vectors and real numbers, respectively. Let (1’1,-|1'1j)mmp denote their numerically

computed inner products, and let jcomp := [(A - ijl)f]j]comp denote their numerically computed residuals. Let € denote machine epsilon, and

assume ne < 0.01. Let y be

2
2 ~ o~ |~ ~ |~
4= (LOD)n ( sup ||v,-Hm) b 5up 5oy — 11+ 0D (B85}
1<i<m 1<i<m i#j
1<i,j<m

Then, as long as my < 1, there is an orthonormal set of n-vectors {;}1<j<m whose residuals #; := (A — ;) satisfy the bound

A —-1/2 Y 1/2 ~
sup [ <27 ( IAl2+ sup Mjl)u 47 sup [Faompl

1<j<m <j<m 1<j<m
. (1-01)n5/ze(HAHmax + oup |ij|) sup [271ee + el Allmas 5up [55]ee (5)
1<j<m 1<j<m 1<j<m

where | A| max denotes the largest of the absolute values of the elements of the matrix A.

Proof. See Appendix E 2. O

Numerical computation (using the script compute_PHalphaP_enclosures.py in the Github repo) shows that the maximum of

SUP | cicpnl( DilDi) oy — 1] and SUpizj [{0i[0}) | OVer a € G is bounded by 7 x107"°. Hence, we can apply Theorem IV.3 with A = HE and
<ij<m

A, 9; given by the numerically computed eigenpairs of HS to obtain orthonormal sets {%;}1<j<s1 Whose residuals with respect to HS satisfy
(35). The following is straightforward.

Proposition IV.6.
sup [Hgl2 <10,  sup |Hz[max < 7.

7 7
<a< <a<
0<as 10 0<a< 10

Proof. The first estimate follows from |P=H’Pz| < 7 and |H'|| < 3. The second estimate follows immediately from writing the matrix
HE in the chiral basis. o

We can now apply Theorem IV.2 with A = H and Aj,v; given by the numerically computed A; from part 2 and ©; com-
ing from Theorem IV.3, in order to derive rigorous enclosure intervals for every eigenvalue of Hg. We find that (using the script
compute_PHalphaP_enclosures.py in the Github repo) the suprema over a € G of sup, i, [ ¥jllos SUP; iyl icomp|oo> | HE | max, and
sup; Sm|/~1j| arebounded by 1,5 x 107", 7, and 8, respectively. It is then easy to see that 2 x 81 times the right-hand side of (35) is much smaller
than 0.01 and is hence smaller than the distance between the minimum over « € G of the numerically computed first positive eigenvalues of
A% and % We can therefore conclude that the first positive eigenvalues of Hg are bounded below by % ateverya € G.

The main tool for part 4 of the strategy is the following.

Theorem IV.4. Let A® be an n x n Hermitian matrix real-analytically depending on a real parameter «. Denote the ordered eigenvalues
of A by A}’ for 1 < j < n. Then, for any a and o,

A5 =251 < = ol sup |3pa” o forall1 <5<,

Belaoa]

Proof. See Appendix E 3. O

We would like to apply Theorem IV.4 to bound the variation of eigenvalues of Hg. To this end, we require the following proposition,
which bounds the derivative of Hg with respect to a over the interval 0 < a < .

Proposition IV.7.
sup |OuHz|

7
<a<L
O<as<y;

, 38883,
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Proof. See Appendix E 4. =]

Proposition IV.7 combined with Theorem IV 4 explains the choice of distance h = 5'= between grid points. Assuming that the first

positive eigenvalue of Hg is bounded below by 1% at grid points between 0 and 1—70 separated by h, we see that as long as

38883 h 8 3 1
— < —-- < h< ,
2 10 4 388830
Proposition IV.7 and Theorem IV .4 guarantee that the first eigenvalue of Hz must be greater than i over the whole interval 0 < o < %. ]

Remark IV.1. In the Proof of Proposition IV.5, we bound the round-off error, which can occur in our numerical computations in order
to draw rigorous conclusions. A common approach to this is the interval arithmetic; see Rump'” and references therein. Our approach applies
directly to the present problem and is just as rigorous.

The results of a computation of the eigenvalues of Hz are shown in Fig. 3.
Assuming Proposition IV.4 and Proposition IV.5, the bound (31) becomes, forall 0 < « < 1—70,

. 0 X, o 3 , o
QB > (5 - o)l

We now assume the following, proved in Appendix C.
Proposition IV.8. |H"¥*| < 2.
We can now give the Proof of Theorem IV.1.

Proof of Theorem IV.1. The proof follows immediately from Lemma IV.1, Proposition IV .4, Assumption IV.5, and Proposition IV.8. O

] -\-——/-—-\

!

(1]

m \
3

m 0

[l

A

4

3 0.0

&

u—

o

g o

E /
©

> /

c

D 10

.20

(]

~154 Z—'—\ e

0.0 0.2 0.4 0.6 0.8 10

(%

—2.0

FIG. 3. Plot of numerically computed eigenvalues of the 81 x 81 matrix H§ acting on PELﬁ’1 (blue lines), showing that the first non-zero eigenvalues are bounded away from
0 by % (red lines) when « is less than % (black line). The zero eigenvalue corresponds to the subspace spanned by v, and the non-zero eigenvalues equal those of the
80 x 80 matrix Q**PsH*PzQ™* acting on Q‘“PEL%1 since non-zero eigenvectors v of Q%+ P=zH*P=Q** must be orthogonal to ®* by orthogonality of eigenvectors
corresponding to different eigenvalues.
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SUPPLEMENTARY MATERIAL

In the supplementary material, we list the chiral basis functions, which span the space &, list terms ¥> — ¥® in the formal expansion of
y*, and derive the TKV Hamiltonian from the Bistritzer-MacDonald model.
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APPENDIX A: DERIVATION OF EXPRESSION FOR FERMI VELOCITY IN TERMS OF L2 .. ZERO MODE OF H*

K11
The Bloch eigenvalue problem for the TKV Hamiltonian at quasi-momentum k is
If“%& :<Ek¢£’
where H* is as in (1) and
vi(r+v) = e*Vdiag(1,e1, 1,61 )yl (r) VoveA.

By Propositions I11.6 and IIL.7, 0 is a twofold (at least) degenerate eigenvalue at the moiré K point k = 0, with associated eigenfunctions v,
as in Proposition IIL.7. In what follows, we assume that 0 is exactly twofold degenerate so that yZ, form a basis of the degenerate eigenspace.
This assumption is clearly true for small « but could, in principle, be violated for « > 0.

Introducing yi := e *"y® we derive the equivalent Bloch eigenvalue problem with k-independent boundary conditions

HI‘:XI‘: = Ekxl‘:) (Al)

where

HE o ( 0 DZT), b - (Dx + ke +i(Dy +ky) aU(r) )

Dy 0 aU(-r) Dy + ks +i(Dy + ky)
where Dy := —idy, and
Xk (r+v) = diag(1,e1, 1,61 )y (r) Vo eA.

Clearly, y4, remain a basis of the zero eigenspace for the problem (A1) at k = 0.
Differentiating the operator Dy, we find 8kxDﬁ =], and 8kyDz = i, where I, denotes the 2 x 2 identity matrix, so that

0 I 0 —il
oHi=| | oH - ‘| (A2)
L 0 il 0

By degenerate perturbation theory,'® for small k, we have that eigenfunctions yi of (A1) are given by

Xk~ Y CokVas

o=+l

where the coefficients ¢,k and associated eigenvalues Ej ~ ¢ are found by solving the matrix eigenvalue problem

(vilk- ViHoyt)  (yilk- ViHoy)

{vilvr) {wilvr) Cork Cork
€ (A3)
= e .
(viilk- VeHgyy)  (v&i]k- ViHoyt) Co1k Co1k
(V’ilwa (l//fl‘wfl)

Using (A2) and the explicit forms of y£, given by Proposition III.7, we find that the matrix on the left-hand side of (A3) can be simplified to

0 Ma) (ks = iky) Ma) := M
A (a) (ks + iky) 0 ’ (vslvs)
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It follows that, for small k, we have Ej ~ +v(a)|k|, where v(a) = [A(a)| is as in (23).

APPENDIX B: THE CHIRAL BASIS OF Li'1 AND ACTION OF H° AND H' WITH RESPECT TO THIS BASIS

1. The spectrum and eigenfunctions of H® in L2

The first task is to understand the spectrum and eigenfunctions of H® in L%. In the Appendix B 2, we will discuss the spectrum and
eigenfunctions of H® in L%m- Recall that
, [0 D o [-200 o
H =| , D= _|
D 0 0 -2i0

where 0 = %(BX +i0y). To describe the eigenfunctions of H in L, we introduce some notation. Let v = (v1.v,) be a vector in R?. Then, we
will write
V1 + iUz

Zy =V + V2, Zo =
|v]

Finally, let V denote the area of the moiré cell Q.

Proposition B.1. The zero eigenspace of H' in L is spanned by

XL = ﬁ(l,o,il,o).

For all G # 0 in the reciprocal lattice, then

iG-r

1
G _ N
Xi(r) - /_2V(1)0) iZG>0)e
are eigenfunctions with eigenvalues +|G|. For all G in the reciprocal lattice,

q,+G _ 1 N i(q,+G)r
) = —m(o, 1,0, 421, )™

are eigenfunctions with eigenvalues +|qi + G|. The operator H® has no other eigenfunctions in Lk other than linear combinations of these, and
hence, the spectrum of H® in L is
0 *
o2 (H') = {£|G|, +[q, + G| : Ge A"}
Proof. The proof is a straightforward calculation taking into account the L} boundary conditions given by (20) with k = 0. For example,
ez and ey are zero eigenfunctions of H° but in L%/, not L. O

Note that (as it must be because of the chiral symmetry) the spectrum is symmetric about 0 and all of the eigenfunctions with negative
eigenvalues are given by applying S to the eigenfunctions with positive eigenvalues.

The union of the lattices A* and A* + q; has the form of a honeycomb lattice in momentum space, where the lattice A* corresponds to
“A” sites and A* + q; corresponds to “B” sites (or vice versa); see Fig. 4.

2. The spectrum and eigenfunctions of H® in L |

We now discuss the spectrum of H %in L?m.

Proposition B.2. The zero eigenspace of H' in L, is spanned by

] 1
= —er.
X \/V 1
For all G + 0 in the reciprocal lattice A*,
P 2 2 *\k
G 1 ke 1 (R))G
Xii= =2, Rxi=—72).x
+ \/gl;) + \/glg) +
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FIG. 4. Diagram showing A (blue) and B (red) sites of the momentum space lattice. Each site corresponds to two Lﬁ-eigenvalues of HY, given by + the distance between the
site and the origin (black). The lattice vectors by and b, are shown as well as the A site nearest neighbor vectors g4, g2, and gs.

are eigenfunctions of H® in L, with associated eigenvalues +|G|. For all G in the reciprocal lattice A*,

a0 2 2 wnk
+Grg, _ 1 ZRk G+, _ 1 (Ry)"(G+q;)
- Xe = X+

3 k=0 \/gkzo

are eigenfunctions of H in Ly, with associated eigenvalues +|qi + G|. The operator H® has no other eigenfunctions in Ly, other than linear
combinations of these, and hence, the spectrum of H® in L, is

0 *
013, (H') = {i‘G|’i|‘11 +G|:GeA }
Proof. The proof is another straightforward calculation starting from Proposition B.1. 5

For an illustration of the support of the L , -eigenfunctions of H” on the momentum space lattice, see Fig. 5. It is important to note that
the notation introduced in Proposition B.2 is not one-to-one because, for example,

el * (R*)2G
+ iR¢G:X:t(R¢)G

(e
X =X
forany G+ 0in A™.

3. The chiral basis of L ,

Recall that zero modes of H” can be assumed to be eigenfunctions of the chiral symmetry operator S. It follows that the most convenient
basis for our purposes is not be the spectral basis just introduced but the basis of L ; consisting of eigenfunctions of S. We call this basis the
chiral basis.

Definition B.1. The chiral basis of Ly, is defined as the union of the functions

0

1
= —=key,
= 5o
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. ®

FIG. 5. Diagram showing support of Lﬁj-eigenfunctions of H® superposed on the momentum space lattice. Each eigenfunction is given by superposing an Lf(-eigenfunction
of H® with its rotations by %” and %” The support of the eigenfunctions x*7 with eigenvalues +1 is shown with the black crosses, while the support of the eigenfunctions
X1 with eigenvalues +1/3 is shown with the black circles.

XG’H = %(Xﬁ :Q:X_E), G e A*\{0},
and

X"lljé’il = I(Xm:{:)(_m), GeA".

V2
The following is straightforward.

q,+G,1

Proposition B.3. The chiral basis is an orthonormal basis of Ly ;. The modes Xﬁ’ Xé’l, and x are +1 eigenfunctions of S, while the

+G,—1

modes y*" and y are —1 eigenfunctions of S.

Written out, chiral basis functions have a very simple form. We have

1 1
Xo = Web (B1)
and for all G € A*\{0},
Xm(’) _ 1 eliei((R;)kG}r Xé,—l(r) _ 1 %Gesie—ikqﬁei((R;)kG)r (B2)
V3V S ’ V3VTTS ’
and for all G € A™,
A (r) = = ezZZ: (B a+e)r,
i (B3)
N 2
Gty o L s N ik (R (4, 46))
X ( ) /_3V G+q, 41;)
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We use the chiral basis to divide up Lﬁ,l as follows.
Definition B.2. We define spaces Ly 1 ., to be the spans of the +1 eigenfunctions of S in Ly, respectively.
Clearly, we have
2 2 2
Lk = Lk11 @ Lg,1,-1-

We can divide up the chiral basis more finely as follows.

Definition B.3. We define

Remark B.1. Note that notations A and B in Definition B.3 refer to A and B sites of the momentum space lattice, not to the A and B sites of
the real space lattice. Recalling Remark IIL.1 and comparing (52) and (B3) with (2), we see that Lk, 1 4 corresponds to wave-functions supported
on A sites of layer 1, Ly 1 1  corresponds to wave-functions supported on A sites of layer 2, Ly 1 _y 4 corresponds to wave-functions supported on
Bsites of layer 1, and Ly 1 _, g corresponds to wave-functions supported on B sites of layer 2.

Clearly, we have
2 2 2 2 2
L1 = Li1,1,4 ® Li1,1,8 ® Li1,-1,4 ® Li1,-1,8-

The following propositions are straightforward to prove. For the first claim, note that {S, H’} = 0.

Proposition B.4. Operator H® maps L%(,l)ﬂ,o - L,zm,ﬂﬂ for o = A, B. The action of H° on chiral basis functions is as follows:

HO)(6 =0
forall G € A* with G 0,

HOXE,ﬂ _ |G|XE,¢1

>

and for all G € A,

0 g,+Gxl _ 4,+G.¥1
Hym™= =g, + G

Proposition B.5. Let P denote the projection operator onto Xﬁ in L., and P* = 1 — P. Then, the operator P*(H®) ™' P* maps L}, .1,
— L%(,L;Mfor 0=A,B, and

_ rel 1 ¢
P(HY) IPLXG,il _ EXc,xl
|G|
forall G € A* with G # 0, and
PL(HO)—IPLXW,:H __ L gEem
|q1 +Gl

forallGe A,

In the Appendixes B 4 and 5, we will study the action of the operator H' on L, with respect to the chiral basis.
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12 2
4. The spectrum of H' in L, and L},
Recall that

, (o D N )
D' o0 U(-r) 0
where U(r) = ¢ ™" + %7 4 ¢7%¢7" ' We claim the following.

Proposition B.6. For each ro € Q, £|U(ro)| and £|U(-ro)| are eigenvalues of H' : L% — L%. For ry such that U(ry) £ 0, the +|U(ro
p g

eigenvectors are
U(ro) )
0,1,+ ,0)8(r —ro).
( [U(ro)]

For ro such that U(-ro) # 0, the £|U(—ro)| eigenvectors are

U(—ro)
(1,0, 0, im)ﬁ(r‘ - 19).

When U(ro) =0, zero is a degenerate eigenvalue with associated eigenfunctions e;8(r — ro) and e38(r —ro). When U(-ro) =0, zero is a
degenerate eigenvalue with associated eigenfunctions e, 8(r — ro) and esd(r — ro). Finally,

op (H') = [-3,3]. (B4)

Proof. We prove only (B4) since the other assertions are clear. The triangle inequality yields the obvious bound

|U(ro)‘ <3

so that the L% spectrum of H' must be contained in the interval [-3,3]. To see that the spectrum actually equals [-3,3], note that if
ro = (v ) then,

1 2
q,-10=0,(q +b1)-ro= = (\/_1) ro—j(q1+b2)'1‘0=E(—\/§,1)"‘0=—£,

3 3
and hence, U(#y) = 3. On the other hand, when ro = 0, we have U(#o) = 0 so that the spectrum of H' in L} equals [-3, 3]. ]

By taking linear combinations of rotated copies of the H' eigenfunctions, just as we did with the H® eigenfunctions, it is straightforward
to prove an analogous result to Proposition B.6 in L ;. We record only the following.

Proposition B.7.

(TL}(J(HI) =[-3,3].

5. The action of H' on L% | with respect to the chiral basis

We now want to study the action of H' on L, with respect to the chiral basis. We will prove two propositions, which parallel
Proposition B.4.

Proposition B.8. The operator H' maps L?<,1,1,A - L%Q,_LB and L%Q)LB — Lfﬂ,_m. The action of H' on chiral basis functions is as
follows:

H X~ = V3 57 (B5)
and
Hlxq‘ = el¢2q1_qzx T l¢%q1 -4, X w1 (B6)
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-1 0 1 2 -1 0 1 2 3

FIG. 6. lllustration of the action of H' in Lfm as hopping in the momentum space lattice described by Eq. (B7) (left, starting at b;) and (B8) (right, starting at g1 + by — by).
The origin is marked by a black dot.

For all G € A*\{0},

g Gqy—1

1 ,—1 —ipx  G+qy—1
BT+ %64, x +e ¢zG+q3X L (B7)

Gl ~—— G+
Hx™ =Z6+q,X

For all G € A*\{0},

Ta,—qp—1 | —idr— G+q,—q5—1
9,-49, +e l¢ZG+q1—q3X 9,495 . (BS)

1. G+q,,l _ 5 G-1 g G
H X = 26X + e¢zG+‘11“‘12X

Note that H' exchanges chirality (S eigenvalue) and the A and B momentum space sublattices, while H® only exchanges chirality.
Proposition B.8 has a simple interpretation in terms of nearest neighbor hopping in the momentum space lattice; see Figs. 6 and 7.

) 0 1 3 2 -1 0 1

FIG. 7. lllustration of the action of H' as hopping in the momentum space lattice described by Eq. (B5) (left, starting at 0) and (B6) (right, starting at g1). Although it appears that
the hopping in these cases does not respect %” rotation symmetry, this is an artifact of working with chiral basis functions, which individually respect the rotation symmetry;
see (B9).
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Remark B.2. At first glance, (B5) and (B6) appear different from (B7) and (B8) because they appear to violate % rotation symmetry. How-
ever, this is not the case since every chiral basis function individually respects this symmetry. For example, using y1™" = %71 = &1 gnd Zq,
= eid’% = e_wa, we can re-write (B5) in a way that manifestly respects the 27” rotation symmetry as

0 1 (— - b= q,— —ig=" 5~
H'y' = 7(2'11)(% R e 1)' (B9)

V3

Equation (B6) can also be written in a manifestly rotationally invariant way, but the expression is long, and hence, we omit it. Note that (B6)

cannot have a term proportional to XO since Xo € L%m,l and H' maps LIZQ,I — L?(,l,_l.

Proof of Proposition B.8. We will prove (B7); the proofs of the other identities are similar and hence omitted. We have

[l 1 igor | ¢ i(q+b)r  —ip i(q+b)r\[ iGr  i(REG)r | i((R))G)r
H'y® = 7(e"‘1r+e'¢e’(ql+‘ +e Pttt )(e 4+ T L )e4.
V3V
Multiplying out, we have
1 i(q,+G)r | ¢ i(q+G+by)r | —ig i(q,+G+by)r
—\e " +e'e ! +e Te !
\/3V(

@R T i i+ (REG) b ) =i i+ (R G) o)

4 @R @) T | b i+ (R6)+b) T e—wei(q,+(<R;>Zc>+bz>«)

+e'e

1 i(q,+G)r | ¢ i(q,+G+by)r | —i¢ i(q,+G+by)r
—le" +e'e ! +e Te
vV 3V<

JR (@ Grb))r g iR (4GB, =id (R} (4,+6))r

+e'e

£ O @HOT | R a7 | b () (a3

_ i

+e

1 (07 4 o a7 o i,

V3V
+——e
V3V
—¢
s

from which (B7) follows. |

i((Rg)z(q1+G))-r)
(ei(ql+G+bl)-r n e—igbei(R;(q]JrGerl))»r i ei¢ei((R;)2(q,+G+bl))~r)

A@+Grh)r e—i¢ei(R;(ql+G+b2))~r i((R;)Z(qlJrGerz))-r)’

+ +e?e

Proposition B.9. The operator H' maps Ly, _, 4 — Lk, g and Lk, _, p — Lx.11 4. The action of H' on chiral basis functions is as follows:
HyT ™ =z, <\/§X0 T R eisbqu—qyl)'

For all G € A*\{0},

H1XG,—1 _ %G(XGJrql,l i e—i¢XG+qz,l i ei¢XG+q3,1)_
Forall G € A¥,
HIXC?IT,—I = %61q (X’é,l " e—i¢XG+ql—q2,l N ei¢XG+ql—q3,l).
1
Proof. The proof is similar to that of Proposition B.8 and is hence omitted. O

APPENDIX C: FORMAL EXPANSION OF THE ZERO MODE

We now bring to bear the developments of the Appendix B on the asymptotic expansion of the zero mode y* € Li,l,l starting from
¥° = ¢; = y°. We first give the Proof of Proposition IV.1.
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Proof of Proposition IV.1. We have seen that XH € L. 11. By the calculations of the Appendix B 5, Hl;(H € L., _1, which is orthogonal to
the null space of H’. The general solution of H*¥' = —H"¥° is
' = —pH(H")'PH'Y’ + Y,

where C is an arbitrary constant, which is in L, ; by Proposition B.4. To ensure that ¥" is orthogonal to ¥, we take C = 0. It is clear that this
procedure can be repeated to derive an expansion to all orders satisfying the conditions of Proposition IV.1. O

Our goal is to calculate ¥" € Ly ;; satisfying the conditions of Proposition B.4 up to n = 8. This amounts to calculating, for n = 1
ton =3,

\Pn _ _PJ_ (HO)—IPJ_HI\Pn—l
We do this algorithmically by repeated application of the following proposition, which combines Proposition B.8 and Proposition B.5.

Proposition C.1. The operator —P* (Ho)flPlH1 maps L§<,1,1,A - L%(,I,I,B and L%(,I,I,B — L%(,I,I,A- Its action on chiral basis functions is as
follows:

~PHH)PHHY = -/ (c1)
and
_ P AL Tp— PR T —
_pL(HO) IPLHlqu’l - _ 9 ‘lzXq a1 _ 9,45 qu 431 (C2)
|9, — 4,/ lq, — ]

For all G € A*\{0},

_pt (Ho)—llelxé,l _

_ .%GJrql Gtq,,l ei¢ 2G+q2 X’G:,‘l;l _ eii(b AZG+q3 G+q;.1 (C3)
IG+q,] IG + q,| IG + g,
For all G € A*\{0},
_pi(HO)—lpiHl)(aI,l _ _EXE’I - Lw 2Gray-a,  Grqapl _ ¢ " 2Gra,a, G+ =451
|G| IG+4q, - q,| IG+4q, - q;|
We now claim the following.
Proposition C.2. Let ¥" be the sequence defined by Proposition IV.1. Then,
¥ = VBt (C4)
¥ = (\/g")ﬁl'u(ﬁ“)f’l’l, (C5)
2 2
¥ - 1 V7 -3v/21i X'ﬁ’l . 1 —\/7 -3v/21i Xﬁ’l, (C6)
V7 14 V7 14
gio | —5V/7 +/21i N 1 (27 +/21i X_sz’l
V21 14 2V/21 7
L1 -5V7-/21i\ 7., R 2V7 - V/21i X;‘fh’l )
V21 14 2v/21 7

2\/3 Y
+ ="y .
21

Proof. Equations (C4) and (C5) follow immediately from (C1) and (C2) and using g2 = q1 + by and g3 = q1 + ba. The derivation of
Eq. (C6) is more involved, so we give details. Using linearity and applying (C3) twice, we find that
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_ PL(HO)—IPJ_HI\I,Z _

. — S a—
V3-i Zq,-by _q,-by1 + €7 2q,+b,-b, Xq,+b1—bz,1 e T Xq;,1
2 lq, - b2 lq, + b1 - by o
, I — g T
+ (\/5 + l)( Zq,~b, qu—h],l igs— 3.1, € “q+by—b q1+h2—b1,1)

+e'z +
AV wX T g by - bf¥

First, the terms proportional to y®! cancel. Next, since Rg(qi + by — by) = q1 + by — by, we have yn 0 7b2! = y0+b=b0l ‘Thege terms also

cancel, leaving (C6). The derivation of (C7) (and the higher corrections) is involved but does not depend on any new ideas and is therefore
omitted. O

We give the explicit forms of ¥*-¥® in the supplementary material.

Remark C.1. Written out, (C4) and (C5) become

1 ) . .
Wl s Bi ey (N + T 4 BT
V3V 2 )

and

‘I’Z _ _iei¢ el(eib1~r + ei(bz—bl)‘r + e—ibz~t‘) i ie—i(p el(eib2~r + e—ib1~r + ei(bl—bz)‘r>’

1 1
V3V V3V
which agree with Eq. (24) of Tarnopolsky et al.* up to an overall factor of \/V (this factor cancels in the Fermi velocity, so there is no discrepancy).

Using orthonormality of the chiral basis functions, it is straightforward to calculate the norms of each of the ¥". We have the following.

Proposition C.3.

>

M) = L = VAR = VE ] = S e = YR et = YR

T 3458

183643 119755214454
4997570760

V106 525799

31122

 2/2129312323981473
- 624 696 345

6 7 8
7] = e =

Remark C.2. Note that the sequence of norms of the expansion functions grows much slower than the pessimistic bound |¥N*!|
<3|¥Y|,N =0,1,2,... guaranteed by Proglosition IV.2. The reason is that bounds (27) and (28) are never attained. As N becomes larger,
the bound (27) is very pessimistic because ¥~ is mostly made up of eigenfunctions of H° with eigenvalues strictly larger than 1. The bound (28)
is also very pessimistic because it is attained only at delta functions, which can only be approximated with a superposition of a large number of

eigenfunctions of H'. It seems possible that a sharper bound could be proved starting from these observations, but we do not pursue this in this
work.

We finally give the Proof of Proposition IV.8.

Proof of Proposition IV.8. Explicit computation using Proposition B.8 and orthonormality of the chiral basis functions gives

||H1‘I’8H _ 4855076 200233765 642 0147 < i
14992712280 20

APPENDIX D: PROOF OF PROPOSITION IV.4

We choose E as

Ly, — eigenfunctions of H’ with

==

q,—4b,+by,x1 g, +b;—4b;, 1
. . . X X :
eigenvalues with magnitude < 4v/3

Part 1 of Proposition IV.4 follows immediately from observing that y =21 =2%>*! js not in &, but |q, — 2b; — 2b,| = 7. That u = 7 is optimal can
be seen from Fig. 8.
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FIG. 8. lllustration of E in the momentum space lattice. The circle has radius 4/3 so that every dot within the circle corresponds to two chiral basis vectors included in E. Chiral
basis vectors exactly 41/3 away from the origin, marked with black dots, are also included in E. We also include in Z the chiral basis vectors {X"‘ =Dtne P =Lzt }
which correspond to the dots marked with circles, which are distance 7 (NB. 7 > 4+/3) from the origin. We do not include the chiral basis vectors y41=21=2b21 ‘marked with

the black crosses, which are also a distance 7 from the origin. The reason for this is so that part 3 of Proposition V.4 holds. With this choice, every dot in Z has at most one
nearest neighbor lattice point outside of E. It follows immediately from Propositions B.8 and B.9 (H' acts by nearest neighbor hopping in the momentum space lattice) that

[P=H'PZ | = 1. Note that if we chose & to include y%~21=2b2+1  this would no longer hold because these basis functions would have two nearest neighbors outside &,
resulting in the worse bound ||P=H'PL|| < /2.

Part 2 follows from the fact that y** depends only on eigenfunctions of H® with eigenvalues with magnitude less than or equal to 4v/3.

The largest eigenvalue is 41/3, coming from dependence of ¥* on X:th,l’ since | — 4by| = 4V/3.
Part 3 can be seen from Fig. 8.

APPENDIX E: PROOF OF PROPOSITION IV.5
1. Proof of Theorem IV.2

We will prove Theorem IV.2 starting from Theorem 11.5.1 of Parlett,'” where the proof can be found.

LemmaE.1. Let Q be an n x m matrix, which satisfies Q'Q=1,. Define H = Q'AQand R = AQ - QH. Let {6;}1<j<m denote the eigenval-

ues of H (the Ritz values). Then, m of A’s eigenvalues {&;}1<j<m can be put into one-to-one correspondence with the {0;}1<j<m in such a way
that

16—l <[R]2 1<j<m.
Proof of Theorem IV.2. Let Q be the matrix whose columns are vy, . . ., V. Using orthonormality of the vj, Q‘LQ =I,, and

(vilr) -+ (vi]rm)
H=Q'AQ = diag(A1,...,Aw) +

(valr) -+ (vnlra)

We now prove that the eigenvalues of H, denoted by 8;, are close to A;’s. By the Gershgorin circle theorem, we have
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16: = (i + (wilri))| < i I{ilr;)l,

i
which implies, using |vj|2 = 1,
m
|6,‘—Ai| = |9i—/\i—<’l}z|rz ’Ut‘rl Z Ui|r] < m sup ||1’,||2
j=1 1<i<m

We can now use Lemma E.1 to bound the difference between A;s and exact eigenvalues «;,

Wi = = [4j = 6 + 6 — aj| < m sup [rifl2 + R[]z,
1<i<m

where R:= AQ-QH = (I - QQf )AQ. Since QQf projects onto vj, R simplifies to
R=(I-QQ"R, R:=(r - ry)-

Since QQ is a projection, so is I — QQ', and hence, |R|2 < |R[. To bound ||R’| 2, note that for any v with |v|> = 1, we have

IRv[2 = (erfv)ry + - + (em|v)rm < m sup [rill2,
1<i<m

where e; denote the standard orthonormal basis vectors. The result now follows. |

2. Proof of Theorem IV.3

Proof of Theorem IV.3. We start with the following lemma, which guarantees that numerically computed approximately orthonormal
sets can be approximated by exactly orthonormal sets.

Lemma E.2. Let ¥y, ...,0m be n-dimensional vectors, let (1'),'|1”)j>wmp for 1 <i,j < m denote their numerically computed inner products, let
€ denote machine epsilon, and assume that ne < 0.01. Define

= (1.01)n’e sup |o:])% + sup|( il i) mp — 1| + sup|( 1’1,-|1”1j)wmp|. (E1)
<i<m i#f
Then, as long as my < %, there is a set of n-dimensional orthonormal vectors 01, . . ., Om, which satisfy

[0 — 0j]2 < 2Py, 1<j<m.
Proof. Bounding the round-off error in computing inner products in the usual way (see, for example, Chap. 2.7 of Golub and Van Loan*")
and assuming that ne < 0.01, we have that for each 1 <i,j < m, (0;|t;) = (1’1,—|1’)j)wmp + ejj, where |e;| < (1.01)neldi]"|9;] < (1.01)ne| :]2] 92
Letting Q denote the matrix whose columns are ;’s, then Q'Q — I, = E, where, for all i # j, |Ej| < [ 9:]#;) |+ (1.01)ne|9:]2] ;] 2, and for

all 4, |Eii| <1 = (0i]i) s + (1.01)ne||©;])3. Paying the price of factors of \/7 to replace || - |2 norms by | - | e norms, we can obtain a trivial
bound on the maximal element of E, denoted as | E| max, by

comp

2
2 ~ J J
|l < (101)n e(supuvfnw) Sl 361) 0y — 11+ SUPI(B17) g
i i L]

Note that this is nothing but g in the statement of the theorem. Using the Gershgorin circle theorem, we then have that the eigenvalues A of
Q' Q satisfy |A — 1| < ] E||max. We claim that there are exact orthonormal vectors ; near (in the | - |,-norm) to the @;. To see this, note that

Q:= Q(Q'Q) ™'/ satisfies QTQ = I, and
< |Q1(Q" Q) ~ Lnl2 = 1(Q1Q)* = Lu]2.

Let Amax and Amin denote the maximum and minimum eigenvalues of QT Q, respectively. Then,

(Q'Q)"* ~ I, < max{ 0 - 11 Mla = 11}
Since Amin is bounded below by 1 — | E| max and Amax is bounded above by 1 + m||E| max, we have
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Q') = Inla < max{|(1 + m] Elmax)"”* = 1111 = m] Elmax) /2 = 1]}.

Using Taylor’s theorem, for |x| < ;, we have that |(1 + %)M —1) < 27" |x] and |(1 - x)"2 - 1] < 272|x]|. Since by assumption 7 E|max < %
we conclude

1Q-Ql2 < Q" Q) = L2 < 27/*m|[E| max.

Letting ©; denote the columns of Q and noting that |9; — ;]2 < |Q — Q|» for all 1 < j < m, the result is proved. ]

Using Lemma E.2, we have that there exists an exactly orthonormal set {9; }1<j<m nearby to the set {9 }1<j<m. We now want to bound the
residuals of the 9; in terms of numerically computable quantities. We start with the following easy lemma whose proof is a straightforward
manipulation.

Lemma E.3. Let A be an n x n Hermitian matrix, and suppose that i := (A — AI)d and 7 := (A — AI)0. Then,

172 < (l4]2 + A])

o=z + |72
The following lemma quantifies the error in approximating exact residuals by numerically computed values.

Lemma E.4. Let A be a Hermitian n x n matrix, and let A denote the matrix whose entries are those of A evaluated as floating-point
numbers. Let [(A —M)f)]wmp denote the numerically computed value of (A —M)f) in the floating-point arithmetic. Then, 7:= (A - AI)D

satisfies

5/2

72 <n'?|[(4 - A1)5] + (1.01) 1| A = A max 5] oo + 1] A max | 7] -

comp Hmax

Proof. For matrices A and B with entries A;; and By, we will write |A| to denote the matrix with entries |A;| for all 4,j, and |A| < |B|
if |Ajj| < |By| for all 4,j. It is straightforward to see that (see Chap. 2.7 of Golub and Van Loan’’) A = A + F, where |F| < ¢|A|. In addition,

(A=A =[(A-AI)D]  +g, wherel|g| < (1.01)ne|(A — AI)||D|. Now, note that (A — AI)% = (A — AI)© — Fi so that

comp

7 < |[A-AD3],,,, |, +Igl2 + |Fo]..

Noting that
lgl> = (101)ne]|A - Aflo]]> < (1.01)n* ]| & = Al max ]
IFo]2 < el |Allo]]2 < nel Allmax 9] oo

and

T 1205 5 -

[ —M)v]wmsz <n'?|[a-1n3],, | s

the result is proved. O

We now prove estimate (35). Applying Lemma E.2 to the set {?;}1<j<m yields an orthonormal set {;}i<j<m such that |9; - oj2
<2712 my, where y is as in (E1). By Lemma E.3, we have that

A -1/2 Y ~ .
I5l2 <27 Pm(AL + G)u + il 1<j<m.
The estimate now follows easily upon applying Lemma E.4 and taking the sup over j. O

3. Proof of Theorem IV.4

Proof of Theorem IV.4. The proof is a simple consequence of the min-max characterization of eigenvalues of Hermitian matrices. By
min-max (here, U denotes a subspace of C"),

(v|(A” - A%)v)
{vlv) '

[Aj =A% = min max
1 dim U=j veU
v#0

J. Math. Phys. 62, 091502 (2021); doi: 10.1063/5.0054122 62, 091502-29
Published under an exclusive license by AIP Publishing


https://scitation.org/journal/jmp

Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

On the other hand, for any fixed v # 0, we have by Taylor’s theorem

(o](A° - A%)0)
{olo)

v|(AP - A®)v)

a< <la— AP,
s Colo) o — ao| sup [[OpA”2

Belag.a

< la— ap| sup
Belao.a]

and the result follows immediately. O

4. Proof of Proposition IV.7

Proof of Proposition IV.7. Differentiating Hg yields

OuHE = (~8,Q")PeH P Q™" + Q™ PsH' P=Q™" + Q™' PeH"P=(-8,Q").

For a < 1, we have |P=H*Ps|> < 10, and |H'|> < 3. It remains only to estimate |0«Q%|2. Using the Dirac notation to represent L -
projections, we have

N A

m=0n=0

>

m=0

@)

8
wwﬂzww
n=0

so that

8 8
0.Q" =3 > (m+ n)(xm+"_1|‘l’m)(‘l’"|.

m=0 n=0

Using | [ )(¥"] > < [¥" 2" > and maxo<jes |/ |2 < /3 by Proposition C.3, we have, for a < 1,

8 8
10aQ%2 <33 > (m+n) =1944.

m=0n=0
Putting everything together, we conclude

sup [|OxHz[2 <2 x 10 x 1944 + 3 = 38 883.

7
<a<L
O<as<y;

O
APPENDIX F: PROOF OF PROPOSITION I1.1
We can now prove Proposition II.1. We start by proving (11).
1. Proof of (11)
We now prove (11). It is straightforward to derive
8 8 8 n , 7. . .
< S o[ ww} S (W 33 (D e (F1)
n=0 n=0 n=0 j=0 n=0 j=0

We now make two observations which simplify the computation. First, recall that the operator —P*(H®) ™' P*H" maps L,2<,1)1, 4= Li)LLB and
L%<,1,1,B - L%Q,LA. It follows that ¥° ¢ L%CM)A, v L%(,I,I,B> v e Lf{,M)A, and so on, and hence,

(P97 =0 Vije{0,1,2,...}.

It follows that all terms in (F1) with odd powers of « vanish. Second, note that since Y0 ¢ ranP, while ¥" € ran P* for all n > 1, we have that
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(w0 = (¥'|¥") =0 Vne{1,2,...}.

Deriving (11) is then just a matter of computation using the properties of the chiral basis. For the leading term, we have

(V)= (1)) =1
For the o’ term, the only non-zero term is

(') :(—ﬁix‘fv

— /3! ) =

using (C4). For the a* term, the possible non-zero terms are

(W) + (Wr7) + (7).

but ¥ and P! depend on orthogonal chiral basis vectors [see (C4) and (C6)], so we are left with

bl . We omit the derivation of the higher terms since the derivations do not require any new

using (C5) and orthgonality of y =

ideas.

and y

2. Proof of (10)

It is straightforward to derive

< ZO ‘xn\yn* (_r)

é“n‘l’"(r)) =Y S W )

n=0 j=0

M:

2

n=0 j;

(7 ()| D (), (F2)

-
Il
=)

We now note the following.

Proposition F.1. Let y be a chiral basis function in Lk 1 . Then, y* (=) = x(r).

Proof. The proof follows immediately from the explicit forms of the chiral basis functions in LKl 1 given by (B1)-(B2)-(B3) and the
observation that for any k € R?, ( ik-(~ ’)) = ¢k O
Using Proposition F.1 and the same two observations as in the Appendix F 1, we have that the only non-zero terms in (F2) are those with

even powers of @ and that other than the leading term, terms involving ¥° do not contribute. The calculation is then similar to the previous
case. For the leading order term, we have

(¥ (-n° (1) = (") = 1.
The only non-zero o term is
(W (n)¥' (n) = (V3ir™| - VaiT) = -3
The only non-zero o term is

(¥ (-n)|¥*(r)
()

() (A

(e ()
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We omit the derivation of the higher terms since the derivations do not require any new ideas.
Proposition IV.1 implies that the series expansion of y* exists up to any order. We can therefore define formal infinite series by

( i o (-r)

itx"\P"(r)), (F3)
n=0

n n
a ¥

—
{ngli

> a"‘I’”). (F4)
n=0
We then have the following.

Proposition F.2. Expansions (10) and (11) approximate the formal series (F3) and (F4) up to terms of order alf,

Proof. The series agree exactly without any simplifications up to terms of a’. However, because the even and odd terms in the expansion
of y* are orthogonal (since they lie in L%()Ll 4 and L%()LLB, respectively), all terms with odd powers of « vanish in expansions (F3) and (F4).
The series may disagree at order a'® because the infinite series includes terms arising from inner products of ¥' and ¥°. ]
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Existence of Magic Angle for Twisted Bilayer Graphene

We list the chiral basis functions spanning = in Section I, list the higher terms in the
expansion of the K point wavefunction ¢¥* € L%Ll in Section II, and derive the TKV

Hamiltonian from the Bistritzer-MacDonald model in Section III.

I. CHIRAL BASIS FUNCTIONS SPANNING THE SUBSPACE =

The chiral basis functions spanning the subspace = are as follows. We note which of the

subspaces of H® acting on L? %1 are spanned by the chiral basis vectors at the right.

0

Y 0 eigenspace
X{E,ﬂ:l Xq1+b1,i1 Xq1+b27i1 +1 eigenspace
X_T)l,ﬂ _ XEE,il _ XbT—vbg,il

Xj/bg,il _ XBT,il _ Xb/Qj/bl,il +1/3 eigenspace

Xq1+b1+b2,:|:1 — Xq1+b1—b27:|:1 — qu-f-bz by, %1 +9 eigenspace

Xq?bi,ﬂ _ Xq??ﬂng,il _ quﬁ—bg,ﬂ

Xq?fz,,ﬂ Xq1+2b1,i1 Xq1+2b2 by, +1 ++/7 eigenspace
Xb?\riz,il _ be—?@,ﬂ _ szf—\2/bl,j:1

X’m*ﬂ = X2b2 btl — Xsz’ﬂ +3 eigenspace
Xfib/l,il _ Xé?;,ﬂ _ XQbT—EbQ,il

Xfﬁ’;’il = Xibvl’il = X%;_v%l’il +21/3 eigenspace
Xq1+b1 2by,41 _ québxl?rzb%ﬂ _ quﬁzﬁlb%ﬂ

Xq1+/b§f2b1,i1 _ qu—&?;rzbl,ﬂ _ Xq1+/232/+b1,i1 +1/13 eigenspace
XQ1:F/“b2’i1 = X‘h:bﬁ%%il = X‘hﬁ_b%il +4 eigenspace
qu/j_in,il _ Xq?fﬁ)g,il _ Xq1+§g;2b2,i1

Xq;\{b%il = qul’ﬂ = Xq1+§b\2/_2b1’i1 +4/19 eigenspace
X73/bTJ:b2,:I:1 X2b173b2,:|:1 Xbl/?ﬂu,ﬂ

X_3mb2’ﬂ _ Xbl—Sbg,il _ X2m27i1

b1 —2bo, 41 _ . —2b113bo, 1 _ . 3bi—bo,+1
X =X =X

X*bg*Zbl,il — X*2b2+3b1,i1 — X3b27b1,il + /21 eigenspace

@y +2b1 +2bo,+1 @y +2b1—3bo,+1 @y —3b1+2by, 1

+5 eigenspace

X =X =X
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Z3b1,41 _  3bo, 41l _ . 3b1—3bo,+1
=X =X

X

X:EBZ,ﬂ T X3b§?§bl¢1

qu—@ﬂbz,ﬂ _ Xq1+53;3b2¢1 _ qum?)bz,il
qu—gb\;i—?,bg,j:l _ qubefgbg,il

q1—2b1—bo,+1 gy +4bi—2bo,+1 g —b1+4bo,£1
X = X" = X"

Xq1—2b1+4b2,i1 _ qu—bl—QbQ,il — Xq1+4b1—b2,i1

—db142by, 41 . 2b1—dby, 1 . 2b142bg, %1
=X =X

X

—2b1—2bo,+1 . 4b —2by, A1 . —2b1 +4bo, 41
X =X =X

@1-8b1, 41 _ g +4bi—3bo,£1 _ g, {4by,+1
Xt =X =X

@1—3b1+4b2, 41 _ | q;—3bo, £l _ | q,+4by, %1
X 1 — X 1 — X 1

—Abi+bo, 41 3bi—4dby,+1 _ _ b1+43bo,+1
X =X =X

—4b1 +3bo,+1 bi—4by,t1 _ X3b/1:-/bg,ﬁ:1

X =X
“3by—ba,+1 _ 4b;—3ba,+1 _  —byt4bo,+1
X =X =X
—3b1+4bo, 41 . —b1—3bo, 1 Abi—bo, 41
X =X =X

g1 —4b1+2ba,+1 g 4+3b1—4by,+1 g, +2b1+3bo,£1
Xt = X" = X"

Xq174b1+3b2,:|:1 — Xq1+2b174b2,i1 — Xq1+3b1+2b2,i1

T4by 41 Abi—4bo,+1 _  4by £l
X =X =X

—4bi4by, 41 —dby, 1 4by 41
X =X =X

+3v/3 eligenspace

+2V/7 eigenspace

++/31 eigenspace

+6 eigenspace

++v/ 37 eigenspace

++/39 eigenspace

++v/43 eigenspace

+4/3 eigenspace.

We finally add four out of the six modes which span the 4+7 eigenspace

Xq174b1+b2,:|:1 — Xq1+4b174b2,i1 — Xq1+b1+4b2,il

e

@y —4b1 +4by,+1 qy+bi—4by +1

X =X =X

q1+4b1+bo,+1
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II. TERMS U¥5-¥® IN THE EXPANSION

Here we list terms U2-¥® in the expansion of ¢* in powers of a. The calculations were

assisted by Sympy?.

0o =
1+ 2\/_Z QﬁQ:l + v v + 2\/_Z Afhl
42 7 42 7
+ 2\/§qu1‘:l;1/—b2,1 _ 4\/§ZXZI\I71 — @qu—/b\/g—bl,l
21 42
V273 [ 53273 + 44/91i ;blv_QM N V399 (2v/399 — 11V133i\ 5,
546 91 798 133
V273 [ —5v/273 4+ 4911 qlg,;jzbhl N V399 [ =2v399 — 11v133i | =5 4
546 91 798 133 ’
o =
VOl (9273 — 11915\ — 41729 [ —45/5187 — 294/1729i \ —
b1,1 + 2b1,1
12 182 X 5187 3453
N Vo1 [ 9273 + 11914 x‘N”“ B ﬁx—szﬁbz,l N V133 (9v/399 — 17V133i \ =55,
42 182 26 2394 266

n \/ﬁ 59\/@ — 9\/@@ _le bo,1 + \/_ 17\/_ 41\/_Z 3b1+b2,1
798 266 546 182

VBT (59vV19+9VBTi\ 50 4\/172 —45+/5187 + 29+/1729i =
798 266 X 5187 3458

n V133 [ 9v399 + 17v/133¢ XjS\b/z,l L V13 [ =17v39 + 41v13¢ b1 8b21
266 046 182
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U7 =
V1032213 ( —97v1032213 — 562v/344071i \ .~ V3i &
10374 344071 X IR
| V/3519G37 (—2621/3549637 + 1563/ 106489117 =
217854 7099274
| VITBOST ( ~241V/T78087 + 467V/534261i T
24206 356174
| V1032213 (97V/1032213 — 562/344071i =
10374 344071
| VITSOST (241178087 + 4675342611\ o, 55720,
24206 356174
| VA9L (~53v/4921 — T5VIATE3 | o
88578 9842
| 2V2T (2157247 + 27V T I et
15561 3458
VIT67 [ —10V/1767 — 1691/589i Tt V30 2V/3i b b
24738 4123 2793 X

19110

24738 4123

. V3549637 (2621\/354963 +1563\/106489112) byl

217854 7099274
V4921 (534921 — 75V/14763i \ 5.,
88578 9842

+_2\/247 215v/247 + 27V/741i N

15561 3458

231
— =X

273

29¢$X%4£§%Mﬁ_VNB7(Hhﬂﬂﬁ—l&)5&%>XQQ;QMJ

q;—b1+b2,1
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U8 =
V160797 [ —206+/53599 — 614/1607974 LB
10374 53599
%_\/169425129 16249+/564750433 — 100121/1694251299; =
1307124 564750433
3173 e 1%_\/16079 —206v/53599 + 611/160797: N
11466 10374 53599

* 16758 620046 279091
n V997694607 (5849\/33256486 20785\/9976946072) b b1

673 it V33723 ( 496\/279091——105\/837273z> e

20260422 665129738
%_\/2667 —59+/389 — 5v/2667i T
13230 1778
V1694251299 [ 16249v/564750433 + 10012v/1694251299; =
1307124 564750433
+_\/2667 —59v/889 + 5v/2667i N e
13230 1778
V14763 [ 434921 — 320/14763 =
1062936 4921
V114919077 ( 11413v/38306359 — 2767/ 1149190771 \ 5=, 1
39454506 76612718
2v/57 [ —20V19 — 31V5Ti\ 5 s
16683 266 X
" 199v/3 X—23f—/2b2,1 B 29V/3 X—4E1/2b2,1
1038996 114660
%_\/99769460 58491/332564869 4 20785+/997694607 T
20260422 665129738
+_\/11491907 11413v/38306359 + 2767V 1149190777 \ 551
39454506 76612718
+_\/83727 —496+/279091 + 105+/337273i =
620046 279091
V14763 [ 43/4921 + 32/14763i S 2V57 [ —29v19+ 31VBTi \ gy
1062936 1921 X 16683 266 X
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III. DERIVATION OF THE TKV HAMILTONIAN FROM THE
BISTRITZER-MACDONALD MODEL

The Bistritzer-MacDonald model of bilayer graphene, with relative twist angle 6, is as
follows?. Starting from two graphene layers laid exactly on top of each other (i.e., AA
stacking configuration), we rotate one layer (call this layer 1) clockwise by g, and the other
layer (call this layer 2) counter-clockwise by g. Making the standard Dirac approximation
for wavefunctions at the Dirac points, we are lead to the following Hamiltonian describing
electrons near to the K-points of the respective layers which are coupled through an “inter-
layer coupling potential” T'(r)

o | eV 1) , (I1L.1)

T (r) —ig0 g2 - V
where oy = e"1373g¢13% and o = (01,09) is the vector of Pauli matrices, acting on
L*(R?;C*) with domain H*(R?; C*). Note that H ignores possible interactions between elec-
trons with quasi-momentum away from the K-points of each layer, e.g., with the K’-points
of each layer. Since the Fermi level occurs at the Dirac energy and interactions between
K and K’ points are small for small twist angles®, this is a reasonable simplification. The

Hamiltonian (III.1) acts on wavefunctions

v(r) = (), 0P (), 04 (r), 05 (r)

where 17 (r) represents the electron density near to the K point (in momentum space) on
sublattice o and on layer 7.
Under quite general assumptions, the inter-layer coupling has the following form3:
was(e T 4 TR 4 e T) qyp(eT DT 4 e TeTI0 s Tl
T(r) =
( ) wAB(e*i‘h'T —+ efiCIz-T‘eitﬁ + 6*“13""6*1@5) wAA(e*iql'T + 6*1"12'7‘ + efiq3-7') ’

(111.2)

where
ko
q, = ko (0, —1) y Go3 = o (i\/g, 1) .
Here ky = 2kpsin(f/2) is the distance between the K points of the different layers, and

kp = |Ki| = |K,| is the distance from the origin to the K point of either layer. Let ¢ := 2,
then g, = R4q, and q5 = R4q, where Ry is the matrix which rotates counterclockwise by

7
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¢. Note that (I11.2) is written in such a way as to show clearly which couplings are between
the A lattices of the layers (proportional to wa4 and occuring on the diagonal) and between

the A and B lattices (proportional to wap and occuring off the diagonal).

A. Translation and rotation symmetries of the Bistritzer-MacDonald model

The operator H essentially describes coupling on the scale of the bilayer moiré pattern.

The moiré lattice vectors are

27

We denote the moiré lattice generated by these vectors as A. It is straightforward to check

that H commutes with the “phase-shifted” moiré translation operators

va(’l") = diag(la L 6z‘q1-'v7 eiql.v)%'vf(r% 7~—'vf(’r.) = f(’f’ + ’U),

for all v € A.
The operator also has rotational symmetry. Let R4 be the matrix which rotates vectors

by ¢ counter-clockwise

S

[S
N—= N

Then H commutes with the “phase-shifted” rotation operator

Rf(r) :=diag(l,e7, 1,e " *)Rf(r), Rf(r) = f(RyT).

B. Deriving TKV from BM

The first step to deriving Tarnopolsky-Kruchkov-Vishwanath’s chiral model is to set
waa = 0 in the Bistritzer-MacDonald model. Physically, this assumption is motivated by
the observation that relaxation effects penalize the AA-stacking configuration, so that one
expects? [waa| < |wagl.

With this simplification, conjugating H — Vp H VJ (here } represents the adjoint /Hermitian
transpose) by

‘/9 = diag(€i€/476—1’0/4’6—1'49/47 ei0/4>

8
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removes the explicit § dependence of the Hamiltonian (although H still depends on 6 through
q1, 9>, q3) so that

H o —10009/2 . V TAB(T')
T;‘B(T) —iUQU,Q/Q -V

where

0 wAB(e—iql-r + e—ti're—izf) + e—iq3~r6i¢)
Tap =

wAB(efiql-r + efiqg-'r'ezd) + efiq3-'r67i¢>) 0
Conjugating once more H — pHp' by

1000
0010
0100
0001
yields
0 Df b —2iv90  wapU(r)
D 0 wapU(—7) —2ivy0

where 9 = (9, +i0,) and U(r) = e '01" 4 e%e =07 4 e~ P,
After changing variables » — kyr and re-scaling the q, — Z—;,z’ =1,2,3, we derive
0 D —2ivokod  wapU(r)

, D= _
D 0 U)ABU(—’I") —2@'1}0/{;98

H =

Finally dividing by voky and defining

WAB
vokg

o =

yields the TKV Hamiltonian stated in the main text.
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