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ABSTRACT
We consider the chiral model of twisted bilayer graphene introduced by Tarnopolsky, Kruchkov, and Vishwanath (TKV). TKV proved that
for inverse twist angles α such that the effective Fermi velocity at the moiré K point vanishes, the chiral model has a perfectly flat band at zero
energy over the whole Brillouin zone. By a formal expansion, TKV found that the Fermi velocity vanishes at α ≈ 0.586. In this work, we give
a proof that the Fermi velocity vanishes for at least one α between 0.57 and 0.61 by rigorously justifying TKV’s formal expansion of the Fermi
velocity over a sufficiently large interval of α values. The idea of the proof is to project the TKVHamiltonian onto a finite-dimensional subspace
and then expand the Fermi velocity in terms of explicitly computable linear combinations of modes in the subspace while controlling the error.
The proof relies on two propositions whose proofs are computer-assisted, i.e., numerical computation together with worst-case estimates on
the accumulation of round-off error, which show that round-off error cannot possibly change the conclusion of computation. The proposi-
tions give a bound below on the spectral gap of the projected Hamiltonian, an Hermitian 80 × 80 matrix whose spectrum is symmetric about
0, and verify that two real 18-th order polynomials, which approximate the numerator of the Fermi velocity, take values with a definite sign
when evaluated at specific values of α. Together with TKV’s work, our result proves the existence of at least one perfectly flat band of the chiral
model.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0054122

I. INTRODUCTION
A. Outline

Twisted bilayer graphene (TBG) is formed by stacking one layer of graphene on top of another in such a way that the Bravais lattices of
the layers are twisted relative to each other. For generic twist angles, the lattices will be incommensurate, so the resulting structure will not be
periodic. Bistritzer and MacDonald (BM)1 introduced an approximate model (BM model) for the electronic states of TBG, which is periodic
over the scale of the bilayer moiré pattern, where the twist angle enters as a parameter. Using this model, BM showed that the Fermi velocity,
the velocity of electrons at the Fermi level, vanishes at particular twist angles known as “magic angles.” The largest of these angles, known as
the first magic angle, is at θ ≈ 1.1○. Numerical computations on the BM model show the stronger result that at magic angles, the Bloch band
of the BMmodel at zero energy is approximately flat over the whole Brillouin zone.1,2 The flatness of the zero energy Bloch band is thought to
be a critical ingredient for recently observed superconductivity of TBG,3 although the precise mechanism for superconductivity in TBG is not
yet settled.

Aiming at a simplified model that explains the nearly flat band of TBG, Tarnopolsky, Kruchkov, and Vishwanath (TKV)4 introduced a
simplification of the BMmodel, which has an additional “chiral” symmetry, known as the chiral model. TKV showed analytically that at magic
angles (of the chiral model, still defined by vanishing of the Fermi velocity), the chiral model has exactly flat bands over the whole Brillouin
zone. Using a formal perturbation theory (for the chiral model, the natural parameter is the reciprocal of the twist angle up to a constant),
TKV derived approximate values for the magic angles of the chiral model. It is worth noting that the first magic angles of the chiral model and
the BMmodel are nearby, but the higher magic angles are not very close.
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Becker et al. introduced a spectral characterization of magic angles of the TKV model where the role of a non-normal operator is
emphasized [the operator Dα appearing in (1)]. Using this characterization, they numerically computed precise values for the magic angles
of the TKV model [see the discussion below (14)].5 In the same work, they also proved that the lowest band of the TKV model becomes
exponentially close to flat even away from magic angles as the natural small parameter tends to zero. The same authors also investi-
gated flat bands of the TKV model with more general interlayer coupling potentials and the spectrum of other special cases of the BM
model.6

In this work, we study the chiral model introduced by TKV and consider the problem of rigorously proving the existence of the first magic
angle. We do this by justifying the formal perturbation theory of TKV to make a rigorous expansion of the Fermi velocity to high enough
order, and over a large enough parameter range, so that we can prove the existence of a zero. By numerically verifying that the resulting
expansion attains a negative value and proving that the result continues to hold when the effect of round-off error is included (Proposition
II.2), we obtain existence of the magic angle (Theorem II.2).

The proof of validity of the expansion is challenging because the reciprocal of the twist angle at the zero of the Fermi velocity is large
relative to the spectral gap of the unperturbed Hamiltonian, which means that the magic angle falls outside of the interval of twist angles
where the perturbation series for the Fermi velocity is obviously convergent. To overcome this difficulty, we start by representing the chiral
model Hamiltonian in a basis that takes full advantage of model symmetries. Then, using a rigorous bound on the high frequency components
of the error, we reduce the error analysis to analysis of the eigenvalues of the chiral model projected onto finitely many low frequencies. The
final stage of the error analysis (Theorem II.1) is to prove a proposition about the eigenvalues of the projected chiral model by a numerical
computation that we prove continues to hold when the accumulation of round-off error is considered (Proposition IV.5). We discuss the
limitations of our methods and, in particular, whether our methods might be generalized to the more general settings considered by Becker
et al.5,6 in Remarks II.1–II.3.

B. Code availability
We have made code for the numerical computations used in our proofs available at github.com/abwats/magic_angle. We give

references to specific scripts in the text.

II. STATEMENT OF RESULTS
A. Tarnopolsky–Kruchkov–Vishwanath’s chiral model

The chiral model, such as the Bistritzer–MacDonald model (B–Mmodel) from which it is derived, is a formal continuum approximation
to the atomistic tight-binding model of twisted bilayer graphene. The BM and chiral models aim to capture physics over the length-scale of the
bilayer moiré pattern, which is, for small twist angles, much longer than the length-scale of the individual graphene layer lattices. Crucially,
even when the graphene layers are incommensurate so that the bilayer is aperiodic on the atomistic scale, the chiral model and BMmodel are
periodic (up to phases) with respect to the moiré lattice so that they can be analyzed via Bloch theory.

We define the moiré lattice to be the Bravais lattice

Λ = {m1a1 +m2a2 : (m1,m2) ∈ Z2}

generated by the moiré lattice vectors

a1 =
2π
3
(
√
3, 1), a2 =

2π
3
(−
√
3, 1),

and we denote a fundamental cell of the moiré lattice byΩ. The moiré reciprocal lattice is the Bravais lattice

Λ∗ = {n1b1 + n2b2 : (n1,n2) ∈ Z2}

generated by the moiré reciprocal lattice vectors defined by ai ⋅ bj = 2πδij, given explicitly by

b1 =
1
2
(
√
3, 3), b2 =

1
2
(−
√
3, 3).

We define q1 = (0,−1), which is the (re-scaled) difference of the K points (Dirac points) of each layer, and

q1 = (0,−1), q2 = q1 + b1 =
1
2
(
√
3, 1), q3 = q1 + b2 =

1
2
(−
√
3, 1).

We writeΩ∗ for a fundamental cell of the moiré reciprocal lattice and refer to such a cell as the Brillouin zone.
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Let ϕ ∶= 2π
3 . Tarnopolsky–Kruchkov–Vishwanath’s chiral Hamiltonian is defined as

Hα =
⎛
⎜
⎝
0 Dα†

Dα 0

⎞
⎟
⎠
, Dα =

⎛
⎜
⎝
−2i∂ αU(r)

αU(−r) −2i∂

⎞
⎟
⎠
, (1)

where ∂ = 1
2(∂x + i∂y), U(r) = e

−iq1 ⋅r + eiϕe−iq2 ⋅r + e−iϕe−iq3 ⋅r , † denotes the adjoint (Hermitian transpose), and α is a real parameter, which
we will take to be positive α ≥ 0 throughout [see (3)]. The chiral Hamiltonian Hα is an unbounded operator onH = L2(R2;C4) with domain
H1(R2;C4). We will write functions inH as

ψ(r) = (ψA
1 (r),ψA

2 (r),ψB
1 (r),ψB

2 (r)), (2)

where ∣ψστ (r)∣2 represents the electron density near to the K point (in momentum space) on sublattice σ and on layer τ. The diagonal terms
of Dα arise from Taylor expanding the single layer graphene dispersion relation about the K point of each layer, while the off-diagonal terms
of Dα couple the A and B sublattices of layers 1 and 2. The chiral model is identical to the BMmodel except that inter-layer coupling between
sublattices of the same type is turned off in the chiral model. The precise form of the interlayer coupling potential U can be derived under
quite general assumptions on the real space interlayer hopping.1,7 The parameter α is, up to unimportant constants, the ratio

α ∼ interlayer hopping strength betweenA andB sublattices
twist angle

. (3)

Although the limit α→ 0 can be thought of as the limit of vanishing interlayer hopping strength at fixed twist, it is physically more interesting
to view the limit as modeling increasing twist angle at a fixed interlayer hopping strength.

B. Rigorous justification of TKV’s formal expansion of the Fermi velocity and proof of existence
of first magic angle

Bistritzer and MacDonald studied the effective Fermi velocity of electrons in twisted bilayer graphene modeled by the BM model and
computed values of the twist angle such that the Fermi velocity vanishes, which they called “magic angles.” One can similarly define an effective
Fermi velocity for the chiral model and refer to values of α such that the Fermi velocity vanishes as “magic angles” [although technically α is
related to the reciprocal of the twist angle (3)].

TKV proved the remarkable result that, at magic angles, the chiral model has a perfectly flat Bloch band at zero energy. Let L2K denote the
L2 space on a single moiré cell Ω with moiré K point Bloch boundary conditions. The starting point of TKV’s proof is an expression for the
Fermi velocity as a function of α, v(α), as a functional of one of the Bloch eigenfunctions, ψα ∈ L2K , of Hα,

v(α) ∶=
∣⟨ψα∗(−r)∣ψα(r)⟩∣
∣⟨ψα∣ψα⟩∣ , (4)

where ⟨. ∣.⟩ denotes the L2K inner product. We give precise definitions of L2K , ψα, and v(α) in Definition III.2, Proposition III.6, and Definition
III.3, respectively. We give a systematic formal derivation of why (4) is the effective Fermi velocity at the moiré K point in Appendix A. To
complete the proof, TKV showed that zeros of v(α) imply zeros of ψα at special “stacking points” of Ω and that such zeros of ψα allow for
Bloch eigenfunctions with zero energy to be constructed for all k in the moiré Brillouin zone.

To derive approximate values for magic angles, TKV computed a formal perturbation series approximation of ψα,

ψα = Ψ0 + αΨ1 + ⋅ ⋅ ⋅ , (5)

and then substituted this expression into the functional for v(α) to obtain an expansion of v(α) in powers of α,

v(α) = 1 − 3α2 + α4 − 111
49 α

6 + 143
294α

8 + ⋅ ⋅ ⋅
1 + 3α2 + 2α4 + 6

7α6 +
107
98 α8 + ⋅ ⋅ ⋅

. (6)

By setting v(α) = 0, one obtains an approximation for the smallest magic angle: α ≈ 0.586.
Although TKV proved that flat bands occur at magic angles, they did not prove the existence of magic angles, and hence, they did not

prove the existence of flat bands. The contribution of the present work is to prove rigorous estimates on the error in approximation (5), which
are sufficiently high order and precise that, once substituted into (4), they suffice to rigorously prove the existence of a zero of v(α) and, hence,
via TKV’s proof, the existence of at least one perfectly flat band.
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It turns out to be relatively straightforward to prove that series (5) and (6) are uniformly convergent and to derive precise bounds on
the error in truncating the series for ∣α∣ < 1

3 ; see Proposition IV.3. The basic challenge, then, is to derive similar error bounds for α over an
interval, which includes the expected location of the first magic angle, at ≈ 1√

3
. The first main theorem we will prove, roughly stated, is the

following. See Theorem IV.1 for the more precise statement. The theorem relies on the existence of a spectral gap for an 80 × 80 Hermitian
matrix, which requires numerical computation for its proof; see Proposition IV.5.

Theorem II.1. The K point Bloch function ψα satisfies

ψα =
8

∑
n=0

αnΨn + ηα, (7)

where ηα�∑8
n=0 α

nΨn with respect to the L2K inner product and

∥ηα∥L2K ≤
3α9

15 − 20α f or all 0 ≤ α ≤ 7
10

. (8)

The functions Ψn for 0 ≤ n ≤ 8 are derived recursively: see Appendix C. We stop at eighth order in the expansion because this is the
minimal order such that we can guarantee the existence of a zero of v(α), but the functions Ψn are well-defined by a recursive procedure for
arbitrary positive integers n; see Proposition IV.1.

Substituting (7) into the functional for Fermi velocity (4) and using ηα�∑8
n=1 α

nΨn, we find that

v(α) = vN(α)
vD(α)

,

where

vN(α) ∶= ⟨
8

∑
n=0

αnΨn∗(−r)∣
8

∑
n=0

αnΨn(r)⟩

+ ⟨ηα
∗
(−r)∣

8

∑
n=0

αnΨn(r)⟩ + ⟨
8

∑
n=0

Ψn∗(−r)∣ηα(r)⟩

+ ⟨ηα
∗
(−r)∣ηα(r)⟩

(9)

and

vD(α) ∶= ⟨
8

∑
n=0

αnΨn∣
8

∑
n=0

αnΨn⟩ + ⟨ηα∣ηα⟩,

where ⟨. ∣.⟩ denotes the L2K inner product and ηα satisfies (8). The following is a straightforward calculation.

Proposition II.1. The following identities hold:

⟨
8

∑
n=0

αnΨn∗(−r)∣
8

∑
n=0

αnΨn(r)⟩

= 1 − 3α2 + α4 − 111
49

α6 + 143
294

α8 − 7 536 933
11 957 764

α10

+ 45 98 172 331
47 460 365 316

α12 − 30 028 809 212 865 451
520 327 364 608 478 700

α14 + 49 750 141 858 992 227
12 487 856 750 603 488 800

α16,

(10)

⟨
8

∑
n=0

αnΨn∣
8

∑
n=0

αnΨn⟩

= 1 + 3α2 + 2α4 + 6
7
α6 + 107

98
α8 + 5119

48 412
α10

+ 62 026 511
356 844 852

α12 + 355 691 470 247
113 410 497 953 025

α14 + 2 481 663 780 475 871
337 509 641 908 202 400

α16.

(11)
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We prove Proposition II.1 in Appendix F. Naïvely, expansions (10) and (11) approximate the formal infinite series expansions of
⟨∑∞n=0 αnΨn∗(−r)∣∑∞n=0 αnΨn(r)⟩ and ⟨∑∞n=0 αnΨn∣∑∞n=0 αnΨn⟩ up to terms of order α9. We prove in Proposition F.2 that because of some

simplifications, expansions (10) and (11) agree with the infinite series up to terms of order α10.
We are now in a position to state and prove our second result. This result also relies on a proposition, which requires numerical compu-

tation for its proof: that one real 18-th order polynomial in α attains a negative value and another attains a positive value, when evaluated at
specific values of α; see Proposition II.2.

Theorem II.2. There exist positive numbers αmin and αmax with 0.57 < αmin < αmax < 0.61 such that the Fermi velocity v(α) defined by (4)
has a zero α∗ satisfying αmin ≤ α∗ ≤ αmax.

Proof. Equation (9) and Cauchy and Schwarz imply that

∣vN(α) − ⟨
8

∑
n=0

αnΨn∗(−r)∣
8

∑
n=0

αnΨn(r)⟩∣ ≤ 2∥ηα∥
8

∑
n=0

αn∥Ψn∥ + ∥ηα∥2.

Using Theorem II.1 and Proposition C.3, we see that vN(α) is bounded above by the polynomial

1 − 3α2 + α4 − 111
49

α6 + 143
294

α8 − 7 536 933
11 957 764

α10

+ 4 598 172 331
47 460 365 316

α12 − 30 028 809 212 865 451
520 327 364 608 478 700

α14 + 49 750 141 858 992 227
12 487 856 750 603 488 800

α16

+ E(α),

(12)

where

E(α) ∶= 6α9

15 − 20α(1 +
√
3α +

√
2α2 +

√
14
7

α3 +
√
258
42

α4 +
√
1 968 837
3458

α5

+
√
106 525 799
31 122

α6 + 2
√
2 129 312 323 981 473

624 696 345
α7 +

√
183 643 119 755 214 454

4 997 570 760
α8)

+ 9α18

(15 − 20α)2 ,

where we use Proposition C.3 to calculate the term in brackets for all 0 ≤ α ≤ 7
10 . On the other hand, v(α) is bounded below for all 0 ≤ α ≤ 7

10
by the polynomial

1 − 3α2 + α4 − 111
49

α6 + 143
294

α8 − 7 536 933
11 957 764

α10

+ 4 598 172 331
47 460 365 316

α12 − 30 028 809 212 865 451
520 327 364 608 478 700

α14 + 49 750 141 858 992 227
12 487 856 750 603 488 800

α16

− E(α).

(13)

We now claim the following.

Proposition II.2. Expression (12), or equivalently the 18-th order polynomial obtained by multiplying (12) by (15 − 20α)2, is negative at
α = 0.61. Similarly, expression (13) is positive at α = 0.57.

Proposition II.2 obviously implies by continuity (12), (13), and vN(α), each has at least one zero in the interval 0.57 < α < 0.61. We
denote the largest zero of (12) in the interval by αmax and the smallest zero of (13) in the interval by αmin. Since the zeroes of vN(α) must lie
between those of (12) and (13), we are done. ◻

Proof of Proposition II.2 (computer-assisted). We will first prove that (12) attains a negative value at 0.61 and then explain the
modifications necessary to prove that (13) is positive at 0.57. Evaluating using the double-precision floating-point arithmetic, we find
that at α = 0.61, (12) attains the negative value −0.020 263 (five significant figures; this value was computed by running the script
compute_expansion_symbolically.py in the Github repo). It is straightforward to bound the numerical error, which accumulates when
evaluating an 18-th order polynomial using the floating-point arithmetic. Even the simplest exact bound, which does not account for error
cancellation (see, e.g., Eq. (8) of Oliver),8 yields an upper bound on the possible accumulated round-off error in the evaluation of an nth
order polynomial ∑n

j=0 pjα
j, for α ∈ [−1, 1], as (n + 1)[e(2n+1)ϵ − 1]sup0≤j≤n ∣pj∣, where ϵ is “machine epsilon”: roughly speaking, the maxi-

mum possible round-off error generated in a single arithmetic operation. Bounding the maximum coefficient in (12) by 1000, taking n = 18,

J. Math. Phys. 62, 091502 (2021); doi: 10.1063/5.0054122 62, 091502-5

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

and bounding ϵ by 3 × 10−16 (which was easily attained working in Python on our machine), the maximum possible numerical error in the
evaluation of (12) is ≈ 10−11, which is much smaller than 0.020 263. We conclude that the first claim of Proposition II.2 must hold. Regard-
ing the second, evaluating at α = 0.57, we find that (13) equals 0.029 138 (5sf). The same argument as before now shows that accumulated
round-off error in the evaluation cannot possibly change the sign of (13) at α = 0.57. ◻

We do not attempt to rigorously estimate αmin and αmax precisely in this work, but numerically computing roots of polynomials (12) and
(13) suggests αmin ≈ 0.576 83 (5sf) and αmax ≈ 0.601 77 (5sf), respectively, where 5sf is an abbreviation for five significant figure. Numerical
computation of the first zero of ⟨∑8

n=0 α
nΨn∗(−r)∣∑8

n=0 α
nΨn(r)⟩ gives 0.585 97 (5sf); see Fig. 1 (the zero values were computed by running

the script compute_expansion_symbolically.py in the Github repo).
Using Proposition C.1 and the package Sympy9 for symbolic computation, we can compute the formal expansion of v(α) up to arbitrarily

high order in α. In particular, we find the higher-order terms in expansion (6) to be

v(α) = 1 − 3α2 + α4 − 111
49 α

6 + 143
294α

8 − 10 227 257
11 957 764α

10 + 6 881 137 015
47 460 365 316α

12 − 130 055 941 435 858 531
520 327 364 608 478 700α

14 + ⋅ ⋅ ⋅
1 + 3α2 + 2α4 + 6

7α6 +
107
98 α8 +

16 011
48 412α10 +

134 058 653
356 844 852α12 +

26 407 145 691 649
226 820 995 906 050α14 + ⋅ ⋅ ⋅

. (14)

Truncating the numerator after order α40 and setting the numerator equal to zero yield α = 0.585 663 558 389 56 (14sf) for the first zero of
the Fermi velocity (to compute this value, run compute_expansion_symbolically.py in the Github repo with N = 40). This is consistent
with the numerical computation of Becker et al.,5 who found α = 0.585 663 558 389 55 truncated (not rounded) to 14 digits, by diagonalizing a
non-normal but compact operator whose reciprocal eigenvalues correspond to magic angles. Note that we do not attempt to rigorously justify
series (14) to such large values of α and to such high order in this work; see Remark II.4.

Remark II.1 (Higher magic angles). The chiral model has been conjectured to have infinitely many magic angles,5 but it is not straightfor-
ward to extend our methods to prove the existence of such higher magic angles. The problem is that calculating the perturbation series centered
at α = 0 requires diagonalizing the unperturbed operator H0. In principle, it might be possible to calculate the perturbation series to higher order
in order to get an accurate approximation of the Fermi velocity near to the higher magic angles. However, this would require significantly more
calculation compared with the present work, and we have no guarantee that the error can be made small enough to prove the existence of another
zero in that case.

Remark II.2 (More general interlayer hopping potentials). The chiral model (1) is an approximation to the full Hamiltonian of the twisted
bilayer, even in the chiral limit where coupling between sublattices of the same type is turned off because the interlayer hopping potential U only
allows for hopping between nearest neighbors in the momentum lattice (see Fig. 6). More general interlayer hopping potentials have been studied
by Becker et al.6 In principle, such models should be amenable to the analysis of this work, but longer-range hopping would lead to much more
involved calculations, and the construction of the finite-dimensional subspace Ξ of Proposition IV.4 would require more care: the fact that we can

FIG. 1. Left: plot of the numerator vN(α) of the Fermi velocity approximated by eighth order TKV expansion (6) (orange) and of eighth order expansions with worst-case (12)
(blue) and best-case (13) (green) errors. Right: detail showing computed roots of these functions near to α = 1√

3
. Numerically computing the zeroes of each curve yields

α = 0.585 97 (5sf), α = 0.601 77 (5sf), and α = 0.576 83 (5sf), respectively. The values of α (0.57 and 0.61) where we evaluated expressions (13) (green line) and (12) (blue
line) to prove that vN(α) has a zero between 0.57 and 0.61 are shown with the black crosses.
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choose Ξ so that ∥PΞH1P�Ξ∥ = 1 depends on H1 only coupling nearest neighbors in the momentum lattice. Locality of hopping in the momentum
space lattice has been exploited for efficient computation of density of states10 of twisted bilayers.

Remark II.3 (Generalization to BM model). Parts of our analysis should also apply to the full Bistritzer–MacDonald model. Specifically,
one could study perturbation series for Bloch functions near to zero energy in powers of the inter-layer hopping strength, derive an equivalent
expression for the Fermi velocity in terms of that series, and then study the zeroes of that series. However, there are various complications
because of the lack of “chiral” symmetry. First, there is no reason for the continuation of the zero eigenvalue of the unperturbed operator
to remain at zero. Second, the expression for the Fermi velocity in terms of the associated eigenfunction could be more complicated. Since
zeros of the BM model Fermi velocity do not imply the existence of flat bands for that model, we do not consider these complications in this
work.

Remark II.4 (Expanding to higher order). Our methods could, in principle, be continued to justify the expansion of the Fermi velocity to
arbitrarily high order and potentially over larger intervals of α values. However, these extensions are not immediate: pushing the expansion to
higher order or to a larger interval of α values would require a larger set Ξ in Lemma IV.1, and Proposition IV.5 would have to be re-proved for
the new set Ξ. Note that the essential difficulty is justifying the perturbation series for large α: the series are easily justified to all orders for ∣α∣ < 1

3 ;
see Proposition IV.3.

C. Structure of paper
We review the symmetries, Bloch theory, and symmetry-protected zero modes of TKV’s chiral model in Sec. III. We prove Theorem II.1

in Sec. IV, postponing most details of the proofs to Appendixes A–F. In Appendix A, we show why (4) corresponds to the effective Fermi
velocity at themoiréK point. In Appendix B, we construct an orthonormal basis, which we refer to as the chiral basis, which allows for efficient
computation and analysis of TKV’s formal expansion. We re-derive TKV’s formal expansions in Appendix C. We give details of the Proof of
Theorem II.1 in Appendixes D and E. We prove Proposition II.1 in Appendix F. In the supplementary material, we list the basis functions
of the subspace onto which we project the TKV Hamiltonian, give the explicit forms of the higher-order corrections in expansion (7), and
present a derivation of the TKV Hamiltonian from the Bistritzer–MacDonald model.

III. SYMMETRIES, BLOCH THEORY, AND ZERO MODES OF TKV’s CHIRAL MODEL
A. Symmetries of the TKV model

In this section, we review the symmetries of the TKV model for the reader’s convenience and to fix notation. Becker et al.5 gave a group
theoretical account of these symmetries, and further reviews can be found in the physics literature.11–13 Recall that ϕ = 2π

3 , and let Rϕ denote
the matrix, which rotates vectors counter-clockwise by ϕ, i.e.,

Rϕ =
1
2

⎛
⎜
⎝
−1 −

√
3

√
3 −1

⎞
⎟
⎠
.

We define the following.

Definition III.1. For any v ∈ Λ, we define a phase-shifted translation operator acting on functions f ∈H by

τv f ∶= diag(1, eiq1 ⋅v , 1, eiq1 ⋅v)τ̃v f, τ̃v f (r) = f (r + v). (15)

We define a phase-shifted version of the operator, which rotates functions f ∈H clockwise by ϕ by

R f ∶= diag(1, 1, e−iϕ, e−iϕ)R̃ f, R̃ f (r) = f (Rϕr). (16)

For any f ∈H, we finally define the “chiral” symmetry operator

S f ∶= diag(1, 1,−1,−1) f. (17)

We then have the following.

Proposition III.1. Operators (15) and (16) are symmetries in the sense that
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[Hα, τv] = Hατv − τvHα = 0 (18)

for all moiré lattice vectors v ∈ Λ,

[Hα,R] = HαR −RHα = 0,

and operator (17) is a “chiral” symmetry in the sense that

{Hα,S} = HαS + SHα = 0. (19)

Proof. The first claim is a direct calculation using the facts that for any v ∈ Λ,

τ̃−vU(r)τ̃v = e−iq1 ⋅vU(r), τ̃−v∂τ̃v = ∂.

The second claim is a direct calculation using the facts that

R̃−1U(r)R̃ = e−iϕU(r), R̃−1∂R̃ = e−iϕ∂.

The final claim is trivial to check. ◻
The “chiral” symmetry (19) implies that the spectrum of Hα is symmetric about zero because

Hαψ = Eψ ⇔ HαSψ = −ESψ.

The same calculation implies that zero modes of Hα can always be chosen without loss of generality to be eigenfunctions of S.

B. Bloch theory for the TKV Hamiltonian
We now want to reduce the eigenvalue problem for Hα using the symmetries just introduced. The symmetry (18) means that eigen-

functions of Hα can be chosen without loss of generality to be simultaneous eigenfunctions of τv for all v ∈ Λ. It therefore suffices to seek
solutions of

Hαψ = Eψ

for r in a fundamental cellΩ ∶= R2/Λ of the moiré lattice in the symmetry-restricted spaces

L2k ∶= { f ∈ L2(Ω;C4) : f (r + v) = eik⋅vdiag(1, eiq1 ⋅v , 1, eiq1 ⋅v) f (r) ∀v ∈ Λ}, (20)

where k is known as the quasimomentum. Since L2k+w = L2k for any w ∈ Λ∗, it suffices to restrict attention to k in a fundamental cell of Λ∗,
which we denote Ω∗ ∶= R2/Λ∗ and refer to as the Brillouin zone. We also define symmetry-restricted Sobolev spaces Hs

k for each k ∈ Ω∗ and
positive integer s by

Hs
k ∶= { f ∈ Hs(Ω;C4) : f (r + v) = eik⋅vdiag(1, eiq1 ⋅v , 1, eiq1 ⋅v) f (r) ∀v ∈ Λ}.

We claim the following.

Proposition III.2. For each fixed k ∈ Ω∗ and α ≥ 0, Hα, defined on the domain H1
k , extends to an unbounded self-adjoint elliptic operator

L2k → L2k with compact resolvent. In a complex neighborhood of every α ≥ 0, the family Hα is a holomorphic family of type (A) in the sense of
Kato.14

Proof. Ellipticity is immediate since the principal symbol of Hα is invertible. Self-adjointness is clear using the Fourier transform when
α = 0 and for α ≠ 0 because αH1 is a bounded symmetric perturbation ofH0 (see, e.g., Theorem 1.4 of Cycon et al.15). Elliptic regularity implies
that the resolvent maps L2k → H1

k , and compactness of the resolvent then follows by Rellich’s theorem (see, e.g., Proposition 3.4 of Taylor16).
The family Hα is holomorphic of type (A) since the domain of Hα is independent of α, and Hα f is holomorphic for every f ∈ H1

k (see Chap. 7
of Kato14). ◻

We now claim the following.

Proposition III.3. Let f ∈ L2k. Then,R f ∈ L2R∗ϕ k.
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Proof. By definition, for any v ∈ Λ,

R f (r + v) = diag(1, 1, e−iϕ, e−iϕ) f (Rϕr + Rϕv).

By the definition of L2k, we have

R f (r + v) = ei(R
∗
ϕ k)⋅vdiag(1, ei(R

∗
ϕ q1)⋅v , 1, ei(R

∗
ϕ q1)⋅v)R f (r).

The conclusion now follows from R∗ϕq1 = q1 + b2 and b2 ⋅ v = 0mod 2π for all v ∈ Λ. ◻

In particular, whenever R∗ϕk = kmod Λ∗, we haveRL2k = L2k. Regarding such k, the following is a simple calculation.

Proposition III.4. The moiré K and K′ points k = 0 and k = −q1 and the moiré Γ point k = q1 + b1 satisfy R∗ϕk = kmodΛ∗.

The moiré K, K′, and Γ points are shown in Fig. 2. Note that the moiré K, K′, and Γ points should not be confused with the single layer
K, K′, and Γ points. The moiré K point corresponds to the K point of layer 1, while the moiré K′ point corresponds to the K point of layer 2.
Interactions with the K′ points of layers 1 and 2 are formally small for small twist angles and are hence ignored.

In this work, we will be particularly interested in Bloch functions at the moiré K and K′ points. We therefore define the following.

Definition III.2.

L2K ∶= L20, L2K′ ∶= L2−q1.

Let ω = eiϕ. Since the spaces L2K and L2K′ are invariant under R, they can be divided up into invariant subspaces corresponding to the
eigenvalues ofR,

L2K = L2K,1 ⊕ L2K,ω ⊕ L2K,ω∗ , L2K′ = L2K′ ,1 ⊕ L2K′ ,ω ⊕ L2K′ ,ω∗ ,

where

L2K,σ ∶= { f ∈ L2K : R f = σ f } σ = 1,ω,ω∗

and L2K′ ,σ , σ = 1,ω,ω∗, are defined similarly.
The following, which is trivial to prove, will be important for studying the zero modes of Hα.

Proposition III.5. The operator S commutes with τv andR and hence maps the L2K,σ and L
2
K′ ,σ spaces to themselves for σ = 1,ω,ω∗.

Since S has eigenvalues ±1, we can define the spaces

FIG. 2. Diagram showing locations of moiré K (blue), K′ (red), and Γ (black) points within the moiré Brillouin zone (orange).
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L2K,σ,±1 = { f ∈ L2K,σ : S f = ± f } σ = 1,ω,ω∗

and spaces L2K′ ,σ,±1, σ = 1,ω,ω∗ similarly.

Remark III.1. Note that +1 eigenspaces of S correspond to wave-functions, which vanish in their third and fourth entries, which correspond,
through (2), to wave-functions supported only on A sites of the layers. Similarly, −1 eigenspaces of S correspond to wave-functions, which vanish
in their first and second entries, which are supported only on B sites of the layers.

C. Zero modes of the chiral model
We now want to investigate zero modes of Hα in detail. When α = 0, there are exactly four zero modes given by ej, j = 1, 2, 3, 4, where ej

equals 1 in its jth entry and 0 in its other entries. It is easy to check that

e1 ∈ L2K,1, e2 ∈ L2K′ ,1, e3 ∈ L2K,ω∗ , e4 ∈ L2K′ ,ω∗ , (21)

and hence, 0 is a simple eigenvalue of Hα when restricted to each of these subspaces. Recall that zero modes can always be chosen as
eigenfunctions of S, and indeed, we have

e1 ∈ L2K,1,1, e2 ∈ L2K′ ,1,1, e3 ∈ L2K,ω∗ ,−1, e4 ∈ L2K′ ,ω∗ ,−1. (22)

We now claim that these zero modes persist for all α. This was already established by TKV,4 and the following proposition is also similar to
Proposition 3.1 of Becker et al.5 We re-state it using our notation and give the proof for completeness.

Proposition III.6. There exist smooth functions ψα with ∥ψα∥ = 1 in each of the spaces L2K,1,1, L
2
K′ ,1,1, L

2
K,ω∗ ,−1, and L2K′ ,ω∗ ,−1 such that ψ0 is

as in (21), α↦ ψα is real-analytic, and Hαψα = 0 for all α. The dimension of kerHα restricted to each of the spaces L2K,1, L
2
K′ ,1, L

2
K,ω∗ , and L2K,ω∗

is always odd-dimensional.

Proof. Since S preserves each of the spaces L2K,1, L
2
K′ ,1, L

2
K,ω∗ , and L2K,ω∗ and anti-commutes with Hα, the spectrum of Hα restricted

to each space must be symmetric about 0 for all α. Since Hα restricted to each space has compact resolvent and Hα is a holomorphic
family of type (A), the spectrum of Hα consists of finitely degenerate isolated eigenvalues depending real-analytically on α, with associ-
ated eigenfunctions also real-analytically depending on α (although the real-analytic choice of eigenfunction at an eigenvalue crossing may
not respect ordering); see Theorem 3.9 of Chap. 7 of Kato.14 The null space of Hα in each of the spaces is one-dimensional at α = 0 by
explicit calculation, with the zero modes given by (up to non-zero constants) (21). For small α > 0, real-analyticity and the chiral symme-
try force the null space to remain simple and it is clear how to define ψα. For large α > 0, the non-zero eigenvalues of Hα may cross 0 at
isolated values of α, and in this case, we define ψα to be the real-analytic continuation of the zero mode through the crossings. Note that
real-analyticity prevents non-zero eigenvalues from equaling zero except at isolated points so that the real-analytic continuation of the zero
mode through the crossing must indeed be a zero mode. At crossings, the null space must be odd-dimensional in order to preserve symme-
try of the spectrum of Hα about 0. It remains to check that if ψ0 is in, say, L2K,1,1, then ψα must remain in L2K,1,1 for all α > 0. However, this
must hold because the S-eigenvalue of ψα cannot change abruptly while preserving real-analyticity. Smoothness of ψα follows from elliptic
regularity. ◻

In this work, we will restrict attention to the moiré K point and, especially, the family ψα ∈ L2K,1,1. We expect that our analysis would go
through with only minor modifications if we considered instead the moiré K′ point. The zero modes in L2K,1,1 and L2K,ω∗ ,−1 are related by the
following symmetry.

Proposition III.7. Let ψα1 and ψα−1 denote the zero modes of Hα in the spaces L2K,1,1 and L2K,ω∗ ,−1, respectively. Then, ψ
α
1 = (Φα, 0)⊺,

whereΦα ∈ L2(Ω;C2),Φα(r + v) = diag(1, eiq1 ⋅v)Φα(r) for all v ∈ Λ,Φα(Rϕr) = Φα(r). Up to gauge transformations ψα−1 ↦ eiϕ(α)ψα−1, which
preserve real-analyticity of ψα−1, we have ψ

α
−1(r) = (0,Φα∗(−r))⊺.

Proof. Since Sψα1 = ψα1 , the last two entries of ψα1 must vanish, so we can write ψα1 = (Φα, 0)⊺. That Φα satisfies the stated symmetries
follows immediately from ψα1 ∈ L2K,1. It is straightforward to check using the definitions of R and τv that (0,Φα∗(−r))⊺ ∈ L2K,ω∗ ,−1. To see
that (0,Φα∗(−r))⊺ is a zero mode, note that Φα satisfies DαΦα = 0, which implies that Dα†Φα∗(−r) = 0 by a simple manipulation. To see
that ψα−1(r) = (0,Φα∗(−r))⊺ (up to real-analytic gauge transformations) for all α, note first that this clearly holds for α = 0 [the zero modes
are explicit (22)]. For α > 0, the identity must continue to hold by uniqueness (up to real-analytic gauge transformations) of the real-analytic
continuation of ψα−1 starting from α = 0 and continuing first along the non-zero interval where ψα1 is non-degenerate in L2K,1,1 and then through
eigenvalue crossings as in the Proof of Proposition III.6. ◻
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In Appendix A, we use Proposition III.7 to derive the effective Dirac operator with the α-dependent Fermi velocity, which controls the
Bloch band structure in a neighborhood of the moiré K point. The Fermi velocity of the effective Dirac operator is given by the following.
Note that we drop the subscript +1 when referring to the zero mode of Hα in L2K,1,1 since the zero mode of Hα in L2K,ω∗ ,−1 plays no further
role.

Definition III.3. Let ψα ∈ L2K,1,1 be as in Proposition III.6. Then, we define

v(α) ∶=
∣⟨ψα∗(−r)∣ψα(r)⟩∣
∣⟨ψα∣ψα⟩∣ , (23)

where ⟨. ∣.⟩ denotes the L2K inner product.

IV. RIGOROUS JUSTIFICATION OF TKV’s EXPANSION OF THE FERMI VELOCITY
A. Alternative formulation of TKV’s expansion

We now turn to approximating the zero mode ψα ∈ L2K,1,1 by a series expansion in powers of α. We write Hα = H0 + αH1 and formally
expand ψα as a series

ψα = Ψ0 + αΨ1 + ⋅ ⋅ ⋅ , (24)

where H0Ψ0 = 0 and

H0Ψn = −H1Ψn−1 (25)

for all n ≥ 1. To solve H0Ψ0 = 0, we take Ψ0 = e1. We prove the following in Appendix C.

Proposition IV.1. Let P denote the projection operator in L2K,1 onto e1 and P� = I − P. The sequence of Eq. (25) has a unique solution such
that Ψn ∈ L2K,1,1 for all n ≥ 0 and PΨn = 0 for all n ≥ 1, given by Ψ0 = e1 and

Ψn = −P�(H0)−1P�H1Ψn−1 (26)

for each n ≥ 1.

Expansion (24) appears different from the series studied by TKV since we work only with the self-adjoint operators H0,H1, and Hα

rather than the non-self-adjoint operatorDα [defined in (1)]. Since functions in L2K,1,1 vanish in their last two components, there is no practical
difference. However, working with only self-adjoint operators allows us to use the spectral theorem, which greatly simplifies the error analysis.
We compute the first eight terms in expansion (24) in Proposition C.2 after developing some necessary machinery in Appendix B.

B. Rigorous error estimates for the expansion of the moiré K point Bloch function
In this section, we explain the essential challenge in proving error estimates for series (24) and explain how we overcome this challenge.

Our goal is to prove the following.

Theorem IV.1. Let ψα ∈ L2K,1,1 be as in Proposition III.6. Then,

ψα =
8

∑
n=1

αnΨn + ηα,

where ηα�∑8
n=1 α

nΨn with respect to the L2K inner product and

∥ηα∥L2K,1 ≤
3α9

15 − 20α f or all 0 ≤ α ≤ 7
10

.

Proposition IV.1 guarantees that series (24) is well-defined up to arbitrarily many terms. A straightforward bound on the growth of terms
in the series comes from the following proposition.

Proposition IV.2. The spectrum of H0 in L2K,1 is

σL2K,1(H
0) = {±∣G∣,±∣q1 +G∣ : G ∈ Λ

∗},
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and hence,

∥P�(H0)−1P�∥L2K,1→L2K,1
= 1. (27)

We also have

∥H1∥L2K,1→L2K,1
= 3. (28)

Proof. This proposition is a combination of Propositions B.2, B.4, and B.7, proved in Appendix B. ◻

Proposition IV.2 implies that ∥P�(H0)−1P�H1∥L2K,1→L2K,1
≤ 3, which implies the following.

Proposition IV.3. The formal series (24) converges to ψα in L2K , with an explicit error rate, for all ∣α∣ < 1
3 . The formal series for the Fermi

velocity v(α) obtained by substituting the series expansion of ψα into (23) converges for the same range of α, also with an explicit error rate.

Proof. For any non-negative integer N, let ψN,α ∶= ∑N
n=0 α

nΨn, where Ψn are as in (26). Since Ψ0� Ψn for all n ≥ 1 and ∥Ψ0∥ = 1, we
have that ∥ψN,α∥ ≥ 1 for all N. Let ϕN,α ∶= ψN,α

∥ψN,α∥
; then, we can decompose ϕN,α = cψα + ηα for some constant c and where ηα�ψα. Applying

Hα to both sides, we have that HαϕN,α = αN+1H1ΨN

∥ψN,α∥
= Hαηα. Now, fix α ≥ 0 such that ∣α∣ < 1

3 . Then, α∥H
1∥ < 1, and hence, the first non-zero

eigenvalue of Hα is bounded away from 0 by 1 − 3α (recall that the first non-zero eigenvalues of H0 are ±1). Since ηα � ψα, where ψα spans
the eigenspace of the zero eigenvalue of Hα, we have that ∥ηα∥ ≤ ∣α

N+1
∣∥H1ΨN

∥

∣1−3α∣∥ψN,α∥
. Using the bound ∥ΨN∥ ≤ (3α)N and the bound below on

∥ψN,α∥, we have that ∥ηα∥ ≤ (3α)
N+1

∣1−3α∣ , which clearly → 0 as N →∞, so that limN→∞ϕN,α = ψα (up to a non-zero constant). Now, consider
v(α) defined by (23). Assuming WLOG that ∥ψα∥ = 1 and substituting ψα = ϕN,α + ηα, we find immediately, using Cauchy–Schwarz, that

∣v(α) − ⟨ϕN,∗(−r)∣ϕN(r)⟩∣ ≤ 2∥ηα∥ + ∥ηα∥2. In terms of ψN , we have ∣v(α) − ⟨ ψ
N,∗
(−r)∣ψN

(r)⟩
⟨ ψN ∣ψN⟩

∣ ≤ 2∥ηα∥ + ∥ηα∥2. ◻

Proposition IV.3 shows that for ∣α∣ < 1
3 , series (24) converges to ψα and can be used to compute the Fermi velocity. However, this

restriction is too strong to prove that the Fermi velocity has a zero, which occurs at the larger value α ≈ 1√
3
. Of course, Proposition IV.2

establishes only the most pessimistic possible bound on the expansion functionsΨn, and this bound appears to be far from sharp from explicit
calculation of each Ψn; see Proposition C.3. We briefly discuss a possible route to a tighter bound in Remark C.2 but do not otherwise pursue
this approach in this work.

We now explain how to obtain error estimates over a large enough range of α values to prove v(α) has a zero. We seek a solution of
Hαψα = 0 in L2K,1,1 with the form

ψα = ψN,α + ηα, ψN,α ∶=
N

∑
n=0

αnΨn. (29)

For arbitrary α, let Qα denote the projection in L2K,1 onto ψN,α, and Qα,� ∶= I −Qα (note that Q0 = P). Note that Qα depends on N, but we
suppress this to avoid clutter. We assume WLOG that Qαηα(r) = 0. It follows that ηα satisfies

Qα,�HαQα,�ηα = −αN+1Qα,�H1ΨN .

To obtain a bound on ηα in L2(Ω), we require a lower bound on the operator Qα,�HαQα,� : Qα,�L2K,1 → Qα,�L2K,1. The following lemma gives
a lower bound on this operator in terms of a lower bound on the projection of this operator onto the finite-dimensional subspace of L2K,1
corresponding to a finite subset of the eigenfunctions of H0. The importance of this result is that since H1 only couples finitely many modes
of H0, for fixed N, by taking the subset sufficiently large, we can always arrange that ψN,α lies in this subspace.

Lemma IV.1. Let PΞ denote the projection onto a subset Ξ of the eigenfunctions of H0 in L2K,1, and let μ ≥ 0 be maximal such that

∥P�ΞH0P�Ξ f ∥ ≥ μ∥ f ∥ ∀ f ∈ H1
K,1, P�Ξ ∶= I − PΞ, (30)

(with this notation, the operator P introduced in Proposition IV.1 corresponds to PΞ with Ξ being the set {e1} and μ = 1). Suppose that QαPΞ
= PΞQα = Qα, i.e., that ψN,α lies in ranPΞ. Define gα by

gα ∶= min
⎧⎪⎪⎪⎨⎪⎪⎪⎩
∣E∣ :

E is an eigenvalue o f the matrix Qα,�PΞHαPΞQα,�

acting Qα,�PΞL2K,1 → Qα,�PΞL2K,1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.
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We note that PΞQα,� is the projection onto the subspace of PΞL2K,1 orthogonal to ψN,α. As long as

3α ≤ μ and α∥Qα,�PΞH1P�Ξ∥ < min(gα,μ − 3α),

then

∥Qα,�HαQα,�ηα∥ ≥ (min(gα,μ − 3α) − α∥Qα,�PΞH1P�Ξ∥)∥Qα,�ηα∥. (31)

Note that gα would be identically zero if not for the restriction that the matrix acts on Qα,�PΞL2K,1 since otherwise ψN,α would be an
eigenfunction with eigenvalue zero for all α. As it is, g0 = 1 and α ↦ gα is real-analytic so that gα must be positive for a non-zero interval of
positive α values.

Proof. Using QαPΞ = PΞQα, we have P�ΞQ
α,� = Qα,�P�Ξ = P�Ξ , and hence,

∥Qα,�HαQα,�ηα∥ = ∥Qα,�(PΞ + P�Ξ)Hα(PΞ + P�Ξ)Qα,�ηα∥
= ∥Qα,�PΞHαPΞQα,�ηα + αQα,�PΞH1P�Ξη

α + αP�ΞHαPΞQα,�ηα + P�ΞHαP�Ξη
α∥.

By the reverse triangle inequality,

∥Qα,�HαQα,�ηα∥ (32)

≥ ∣∥Qα,�PΞHαPΞQα,�ηα + P�ΞHαP�Ξη
α∥ − α∥Qα,�PΞH1P�Ξη

α + P�ΞHαPΞQα,�ηα∥∣.

We want to bound the second term above and the first term below. We start with the second term

∥Qα,�PΞH1P�Ξη
α + P�ΞHαPΞQα,�ηα∥2

= ∥Qα,�PΞH1P�Ξη
α∥2 + ∥P�ΞH1PΞQα,�ηα∥2

≤ ∥Qα,�PΞH1P�Ξ∥2(∥P�Ξηα∥2 + ∥PΞQα,�ηα∥2)
= ∥Qα,�PΞH1P�Ξ∥2∥Qα,�ηα∥2,

where we use Pythagoras’ theorem, P�ΞH
1PΞQα,�ηα = P�ΞH1PΞQα,�PΞQα,�ηα since PΞQα,� is a projection, and ∥Qα,�PΞH1P�Ξ∥ = ∥P�ΞH1PΞQα,�∥.

Hence, we can bound

∥Qα,�PΞH1P�Ξη
α + P�ΞHαPΞQα,�ηα∥ ≤ ∥Qα,�PΞH1P�Ξ∥∥Qα,�ηα∥. (33)

For the first term, first note that using Proposition IV.2 and the spectral theorem,

∥Qα,�P�ΞH
αP�ΞQ

α,�ηα∥ ≥ ∣∥Qα,�P�ΞH
0P�ΞQ

α,�ηα∥ − α∥Qα,�P�ΞH
1P�ΞQ

α,�ηα∥∣
≥ (μ − 3α)∥P�ΞQα,�ηα∥

as long as μ ≥ 3α. We now estimate

∥Qα,�PΞHαPΞQα,�ηα + P�ΞHαP�Ξη
α∥2

= ∥Qα,�PΞHαPΞQα,�ηα∥2 + ∥P�ΞHαP�Ξη
α∥2

≥ (gα)2∥Qα,�PΞηα∥2 + (μ − 3α)2∥P�Ξηα∥2

≥ min((gα)2, (μ − 3α)2)(∥Qα,�PΞηα∥2 + ∥P�Ξηα∥2)
= min((gα)2, (μ − 3α)2)∥Qα,�ηα∥2.

It follows that as long as 3α ≤ μ,

∥Qα,�PΞHαPΞQα,�ηα + P�ΞHαP�Ξη
α∥ ≥ min(gα,μ − 3α)∥Qα,�ηα∥. (34)

The conclusion now holds as long as 3α ≤ μ and α∥Qα,�PΞH1P�Ξ∥ ≤ min(gα,μ − 3α) upon substituting (33) and (34) into (32). ◻

For Lemma IV.1 to be useful, we must check that it is possible to choose Ξ so that the bound (31) is non-trivial, i.e., so that the constant
is positive. We will prove the following in Appendix D.

Proposition IV.4. There exists a subset Ξ of the eigenfunctions of H0 such that the following holds:
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1. The maximal μ such that (30) holds is μ = 7.
2. ψ8,α defined by (29) lies in ran PΞ.
3. ∥PΞH1P�Ξ∥ = 1, and hence, ∥Qα,�PΞH1P�Ξ∥ ≤ 1.

The set Ξ constructed in Proposition IV.4 is the set of L2K,1-eigenfunctions of H
0 with eigenvalues with magnitude ≤ 4

√
3, augmented

with two extra basis functions to ensure that ∥PΞH1P�Ξ∥ = 1. Including all L2K,1-eigenfunctions of H
0 with eigenvalue magnitudes up to and

including 4
√
3 ensure that ψ8,α lies in ran PΞ.

We now require the following.

Proposition IV.5. Let Ξ be as in Proposition IV.4. Then, gα ≥ 3
4 for all 0 ≤ α ≤

7
10 .

Proof (computer-assisted). Consider Hα
Ξ ∶= Qα,�PΞHαPΞQα,� acting on PΞL2K,1. Assuming that α is restricted to an interval such that

the zero eigenspace of Hα
Ξ is simple, then, using orthogonality of eigenvectors corresponding to different eigenvalues and the fact that Qα

is the spectral projection onto the unique zero mode of Hα
Ξ, H

α
Ξ has the same non-zero eigenvalues as the matrix Qα,�PΞHαPΞQα,� acting

on Qα,�PΞL2K,1. The matrix Hα
Ξ is an 81 × 81 matrix whose spectrum is symmetric about 0 because of the chiral symmetry. When α = 0,

the spectrum is explicit: 0 is a simple eigenvalue, and the smallest non-zero eigenvalues are ±1, both also simple. Proposition IV.5 is
proved if we can prove that the first positive eigenvalue of Hα

Ξ is bounded away from zero by 3
4 for all 0 ≤ α ≤ 7

10 . Note that if this holds,
the zero eigenspace of Hα

Ξ must be simple for all 0 ≤ α ≤ 7
10 , and hence, our basic assumption is justified. The strategy of the proof is as

follows.

1. Define a grid G ∶= { 7n
10N : n ∈ {0, 1, . . . ,N}}, where N is a positive integer taken sufficiently large that the grid spacing h ∶= 7

10N <
1

388 831
(the number 388 831 comes from Proposition IV.7).

2. Numerically compute the eigenvalues ofHα
Ξ for α ∈ G. We find that the numerically computed first positive eigenvalues of these matrices

are uniformly bounded below by 8
10 >

3
4 .

3. Perform a backward error analysis that fully accounts for round-off error in the numerical computation in order to prove that the exact
first positive eigenvalues of the matrices Hα

Ξ must also be bounded below by 8
10 at each α ∈ G.

4. Use perturbation theory to bound the exact first positive eigenvalue of Hα
Ξ below by 3

4 over the whole interval of α values between 0
and 7

10 .

When discussing round-off error due to working in the floating-point arithmetic, we will denote “machine epsilon” by ϵ. The significance of
this number is that we will assume that all complex numbers a can be represented by floating-point numbers ã such that ∣a − ã∣ ≤ ϵa. We will
also make the standard assumption about creation of round-off error in the floating-point arithmetic operations: if ã and b̃ are floating-point
complex numbers and if (ãOb̃)comp and ãOb̃ represent the numerically computed value and exact value of an arithmetic operation on the
numbers ã and b̃, then (ãOb̃)comp = ãOb̃ + e, where ∣e∣ ≤ (ãOb̃)ϵ. In Python, this is indeed the case, for all reasonably sized (such that stack
overflow does not occur) complex numbers, with ϵ = 2.220 44 × 10−16 (5sf). We now present the main points of parts 2–4 of the strategy,
postponing proofs of intermediate lemmas to Appendix E.

For part 2 of the strategy, for each α ∈ G, we let H̃α
Ξ denoteH

α
Ξ (which is known exactly) evaluated as floating-point numbers. We generate

numerically computed eigenpairs λ̃j, ṽj for 1 ≤ j ≤ 81 for each H̃α
Ξ using numpy’s Hermitian eigensolver eigh. We find that the smallest first

positive eigenvalue of H̃α
Ξ for α ∈ G is 0.814 719 126 144 543 6 (computed using compute_PHalphaP_enclosures.py in the Github repo).

Note that the difference between this number and 8
10 is bounded below by 0.01.

The main tool for part 3 of the strategy is the following theorem.

Theorem IV.2. Let m and n denote positive integers with m ≤ n. Let A be a Hermitian n × n matrix, and let {vj}1≤j≤m be orthonormal
n-vectors satisfying (A − λjI)vj = rj for scalars λj and n-vectors rj for each 1 ≤ j ≤ m. Then, there are m eigenvalues {αj}1≤j≤m of A, which can
be put into one-to-one correspondence with λj’s such that

∣λj − αj∣ ≤ 2m sup
1≤i≤m
∥ri∥2 f or all 1 ≤ j ≤ m.

Proof. See Appendix E 1. ◻

Naïvely, one would hope to be able to calculate enclosure intervals for every eigenvalue ofHα
Ξ and, in particular, a lower bound on the first

positive eigenvalue of Hα
Ξ by directly applying Theorem IV.2 with A = Hα

Ξ,m = 81, and λj and vj given for each 1 ≤ j ≤ 81 by the approximate
eigenpairs λ̃j, ṽj computed in part 2. However, we cannot directly apply the theorem because {ṽj}1≤j≤81 are not exactly orthonormal because of
round-off error. Hence, we will prove the existence of an exactly orthonormal set {v̂j}1≤j≤81 close to the set {ṽj}1≤j≤81 and apply Theorem IV.2
to the set {v̂j}1≤j≤81 (with the same λ̃j) instead. Note that to carry out this strategy, we must bound the residuals r̂j ∶= (Hα

Ξ − λ̃j)v̂j. The result
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we need to implement this strategy is the following. Note that the result requires numerical computation of inner products and residuals, and
we account for round-off error in these computations.

Theorem IV.3. Let m and n be positive integers with m ≤ n. Let A be an n × nHermitian matrix, let Ã denote A evaluated in floating-point
numbers, and let ṽj, λ̃j for 1 ≤ j ≤ m be a set of n-dimensional vectors and real numbers, respectively. Let ⟨ṽi∣ṽj⟩comp denote their numerically
computed inner products, and let r̃j,comp ∶= [(Ã − λ̃jI)ṽj]comp

denote their numerically computed residuals. Let ϵ denote machine epsilon, and
assume nϵ < 0.01. Let μ be

μ ∶= (1.01)n2ϵ( sup
1≤i≤m
∥ṽi∥∞)

2

+ sup
1≤i≤m
∣⟨ṽi∣ṽi⟩comp − 1∣ + sup

i≠j
1≤i,j≤m

∣⟨ṽi∣ṽj⟩comp∣.

Then, as long as mμ < 1
2 , there is an orthonormal set of n-vectors {v̂j}1≤j≤m whose residuals r̂j ∶= (A − λ̃jI)v̂j satisfy the bound

sup
1≤j≤m
∥r̂j∥2 ≤ 2−1/2n(∥A∥2 + sup

1≤j≤m
∣λ̃j∣)μ + n1/2 sup

1≤j≤m
∥r̃j,comp∥∞

+ (1.01)n5/2ϵ(∥Ã∥max + sup
1≤j≤m
∣λ̃j∣) sup

1≤j≤m
∥ṽj∥∞ + nϵ∥A∥max sup

1≤j≤m
∥ṽj∥∞, (35)

where ∥A∥max denotes the largest of the absolute values of the elements of the matrix A.

Proof. See Appendix E 2. ◻

Numerical computation (using the script compute_PHalphaP_enclosures.py in the Github repo) shows that the maximum of
sup1≤i≤m∣⟨ ṽi∣ṽi⟩comp − 1∣ and sup i≠j

1≤i,j≤m
∣⟨ ṽi∣ṽj⟩comp∣ over α ∈ G is bounded by 7 ×10−15. Hence, we can apply Theorem IV.3 with A = Hα

Ξ and

λ̃j, ṽj given by the numerically computed eigenpairs of H̃α
Ξ to obtain orthonormal sets {v̂j}1≤j≤81 whose residuals with respect to Hα

Ξ satisfy
(35). The following is straightforward.

Proposition IV.6.

sup
0≤α≤ 7

10

∥Hα
Ξ∥2 ≤ 10, sup

0≤α≤ 7
10

∥Hα
Ξ∥max ≤ 7.

Proof. The first estimate follows from ∥PΞH0PΞ∥ ≤ 7 and ∥H1∥ ≤ 3. The second estimate follows immediately from writing the matrix
Hα

Ξ in the chiral basis. ◻

We can now apply Theorem IV.2 with A = Hα
Ξ and λj, vj given by the numerically computed λ̃j from part 2 and v̂j com-

ing from Theorem IV.3, in order to derive rigorous enclosure intervals for every eigenvalue of Hα
Ξ. We find that (using the script

compute_PHalphaP_enclosures.py in the Github repo) the suprema over α ∈ G of sup1≤j≤m∥ṽj∥∞, sup1≤j≤m∥r̃j,comp∥∞, ∥H̃α
Ξ∥max, and

sup1≤j≤m∣λ̃j∣ are bounded by 1, 5 × 10
−14, 7, and 8, respectively. It is then easy to see that 2 × 81 times the right-hand side of (35) is much smaller

than 0.01 and is hence smaller than the distance between the minimum over α ∈ G of the numerically computed first positive eigenvalues of
H̃α

Ξ and 8
10 . We can therefore conclude that the first positive eigenvalues of Hα

Ξ are bounded below by 8
10 at every α ∈ G.

The main tool for part 4 of the strategy is the following.

Theorem IV.4. Let Aα be an n × n Hermitian matrix real-analytically depending on a real parameter α. Denote the ordered eigenvalues
of Aα by λαj for 1 ≤ j ≤ n. Then, for any α and α0,

∣λαj − λα0j ∣ ≤ ∣α − α0∣ sup
β∈[α0 ,α]

∥∂βAβ∥2 f or all 1 ≤ j ≤ n.

Proof. See Appendix E 3. ◻

We would like to apply Theorem IV.4 to bound the variation of eigenvalues of Hα
Ξ. To this end, we require the following proposition,

which bounds the derivative of Hα
Ξ with respect to α over the interval 0 ≤ α ≤ 7

10 .

Proposition IV.7.

sup
0≤α≤ 7

10

∥∂αHα
Ξ∥2 ≤ 38 883.

J. Math. Phys. 62, 091502 (2021); doi: 10.1063/5.0054122 62, 091502-15

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

Proof. See Appendix E 4. ◻

Proposition IV.7 combined with Theorem IV.4 explains the choice of distance h = 1
388 831 between grid points. Assuming that the first

positive eigenvalue of Hα
Ξ is bounded below by 8

10 at grid points between 0 and 7
10 separated by h, we see that as long as

38 883 h
2

< 8
10
− 3
4
⇐⇒ h < 1

388 830
,

Proposition IV.7 and Theorem IV.4 guarantee that the first eigenvalue of Hα
Ξ must be greater than 3

4 over the whole interval 0 ≤ α ≤
7
10 . ◻

Remark IV.1. In the Proof of Proposition IV.5, we bound the round-off error, which can occur in our numerical computations in order
to draw rigorous conclusions. A common approach to this is the interval arithmetic; see Rump17 and references therein. Our approach applies
directly to the present problem and is just as rigorous.

The results of a computation of the eigenvalues of Hα
Ξ are shown in Fig. 3.

Assuming Proposition IV.4 and Proposition IV.5, the bound (31) becomes, for all 0 ≤ α ≤ 7
10 ,

∥Qα,�HαQα,�ηα∥ ≥ (3
4
− α)∥Qα,�ηα∥.

We now assume the following, proved in Appendix C.

Proposition IV.8. ∥H1Ψ8∥ ≤ 3
20 .

We can now give the Proof of Theorem IV.1.

Proof of Theorem IV.1. The proof follows immediately from Lemma IV.1, Proposition IV.4, Assumption IV.5, and Proposition IV.8. ◻

FIG. 3. Plot of numerically computed eigenvalues of the 81 × 81 matrix Hα
Ξ acting on PΞL2

K,1 (blue lines), showing that the first non-zero eigenvalues are bounded away from

0 by 3
4

(red lines) when α is less than 7
10

(black line). The zero eigenvalue corresponds to the subspace spanned by ψ8,α, and the non-zero eigenvalues equal those of the
80 × 80 matrix Qα,�PΞHαPΞQα,� acting on Qα,�PΞL2

K,1 since non-zero eigenvectors v of Qα,�PΞHαPΞQα,� must be orthogonal to ψ8,α by orthogonality of eigenvectors
corresponding to different eigenvalues.
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SUPPLEMENTARY MATERIAL

In the supplementary material, we list the chiral basis functions, which span the space Ξ, list terms Ψ5 −Ψ8 in the formal expansion of
ψα, and derive the TKV Hamiltonian from the Bistritzer–MacDonald model.
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APPENDIX A: DERIVATION OF EXPRESSION FOR FERMI VELOCITY IN TERMS OF L2K ,1,1 ZERO MODE OF H α

The Bloch eigenvalue problem for the TKV Hamiltonian at quasi-momentum k is

Hαψαk = Ekψαk ,

where Hα is as in (1) and

ψαk(r + v) = eik⋅vdiag(1, eiq1 ⋅v , 1, eiq1 ⋅v)ψαk(r) ∀v ∈ Λ.

By Propositions III.6 and III.7, 0 is a twofold (at least) degenerate eigenvalue at the moiré K point k = 0, with associated eigenfunctions ψα±1
as in Proposition III.7. In what follows, we assume that 0 is exactly twofold degenerate so that ψα±1 form a basis of the degenerate eigenspace.
This assumption is clearly true for small α but could, in principle, be violated for α > 0.

Introducing χαk ∶= e−ik⋅rψαk , we derive the equivalent Bloch eigenvalue problem with k-independent boundary conditions

Hα
kχ

α
k = Ekχαk , (A1)

where

Hα
k ∶=
⎛
⎜
⎝
0 Dα†

k

Dα
k 0

⎞
⎟
⎠
, Dα

k =
⎛
⎜
⎝
Dx + kx + i(Dy + ky) αU(r)

αU(−r) Dx + kx + i(Dy + ky)

⎞
⎟
⎠
,

where Dx,y ∶= −i∂x,y and

χαk(r + v) = diag(1, eiq1 ⋅v , 1, eiq1 ⋅v)χαk(r) ∀v ∈ Λ.

Clearly, ψα±1 remain a basis of the zero eigenspace for the problem (A1) at k = 0.
Differentiating the operator Dα

k , we find ∂kxD
α
k = I2 and ∂kyD

α
k = iI2, where I2 denotes the 2 × 2 identity matrix, so that

∂kxH
α
k =
⎛
⎜
⎝
0 I2

I2 0

⎞
⎟
⎠
, ∂kyH

α
k =
⎛
⎜
⎝
0 −iI2
iI2 0

⎞
⎟
⎠
. (A2)

By degenerate perturbation theory,18 for small k, we have that eigenfunctions χαk of (A1) are given by

χαk ≈ ∑
σ=±1

cσ,kψασ ,

where the coefficients cσ,k and associated eigenvalues Ek ≈ ϵk are found by solving the matrix eigenvalue problem

⎛
⎜⎜⎜⎜⎜
⎝

⟨ψα1 ∣k ⋅ ∇kHα
0ψα1 ⟩

⟨ψα1 ∣ψα1 ⟩
⟨ψα1 ∣k ⋅ ∇kHα

0ψα−1⟩
⟨ψα1 ∣ψα1 ⟩

⟨ψα−1∣k ⋅ ∇kHα
0ψα1 ⟩

⟨ψα
−1∣ψα−1⟩

⟨ψα−1∣k ⋅ ∇kHα
0ψα−1⟩

⟨ψα
−1∣ψα−1⟩

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜
⎝
c+1,k

c−1,k

⎞
⎟
⎠
= ϵk
⎛
⎜
⎝
c+1,k

c−1,k

⎞
⎟
⎠
. (A3)

Using (A2) and the explicit forms of ψα±1 given by Proposition III.7, we find that the matrix on the left-hand side of (A3) can be simplified to

⎛
⎜⎜
⎝

0 λ(α)(kx − iky)

λ∗(α)(kx + iky) 0

⎞
⎟⎟
⎠
, λ(α) ∶=

⟨ψα1(r)∣ψα
∗

1 (−r)⟩
⟨ψα1 ∣ψα1 ⟩

.
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It follows that, for small k, we have Ek ≈ ±v(α)∣k∣, where v(α) = ∣λ(α)∣ is as in (23).

APPENDIX B: THE CHIRAL BASIS OF L2K ,1 AND ACTION OF H 0 AND H1 WITH RESPECT TO THIS BASIS

1. The spectrum and eigenfunctions of H 0 in L2K
The first task is to understand the spectrum and eigenfunctions of H0 in L2K . In the Appendix B 2, we will discuss the spectrum and

eigenfunctions of H0 in L2K,1. Recall that

H0 =
⎛
⎜
⎝
0 D0†

D0 0

⎞
⎟
⎠
, D0 =

⎛
⎜
⎝
−2i∂ 0

0 −2i∂

⎞
⎟
⎠
,

where ∂ = 1
2(∂x + i∂y). To describe the eigenfunctions of H0 in L2K , we introduce some notation. Let v = (v1 ,v2) be a vector in R2. Then, we

will write

zv = v1 + iv2, ẑv =
v1 + iv2
∣v∣ .

Finally, let V denote the area of the moiré cellΩ.

Proposition B.1. The zero eigenspace of H0 in L2K is spanned by

χ0± =
1√
2V
(1, 0,±1, 0).

For all G ≠ 0 in the reciprocal lattice, then

χG±(r) =
1√
2V
(1, 0,±ẑG, 0)eiG⋅r

are eigenfunctions with eigenvalues ±∣G∣. For all G in the reciprocal lattice,

χq1+G± (r) = 1√
2V
(0, 1, 0,±ẑG+q1)e

i(q1+G)⋅r

are eigenfunctions with eigenvalues ±∣q1 +G∣. The operator H0 has no other eigenfunctions in L2K other than linear combinations of these, and
hence, the spectrum of H0 in L2K is

σL2K (H
0) = {±∣G∣,±∣q1 +G∣ : G ∈ Λ

∗}.

Proof. The proof is a straightforward calculation taking into account the L2K boundary conditions given by (20) with k = 0. For example,
e2 and e4 are zero eigenfunctions of H0 but in L2K′ , not L

2
K . ◻

Note that (as it must be because of the chiral symmetry) the spectrum is symmetric about 0 and all of the eigenfunctions with negative
eigenvalues are given by applying S to the eigenfunctions with positive eigenvalues.

The union of the lattices Λ∗ and Λ∗ + q1 has the form of a honeycomb lattice in momentum space, where the lattice Λ∗ corresponds to
“A” sites and Λ∗ + q1 corresponds to “B” sites (or vice versa); see Fig. 4.

2. The spectrum and eigenfunctions of H 0 in L2K ,1
We now discuss the spectrum of H0 in L2K,1.

Proposition B.2. The zero eigenspace of H0 in L2K,1 is spanned by

χ0̃ ∶= 1√
V
e1.

For all G ≠ 0 in the reciprocal lattice Λ∗,

χG̃± ∶=
1√
3

2

∑
k=0

RkχG± =
1√
3

2

∑
k=0

χ
(R∗ϕ )

kG
±
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FIG. 4. Diagram showing A (blue) and B (red) sites of the momentum space lattice. Each site corresponds to two L2
K -eigenvalues of H0, given by ± the distance between the

site and the origin (black). The lattice vectors b1 and b2 are shown as well as the A site nearest neighbor vectors q1, q2, and q3.

are eigenfunctions of H0 in L2K,1 with associated eigenvalues ±∣G∣. For all G in the reciprocal lattice Λ∗,

χ±G̃+q1 = 1√
3

2

∑
k=0

RkχG+q1± = 1√
3

2

∑
k=0

χ
(R∗ϕ )

k
(G+q1)

±

are eigenfunctions of H0 in L2K,1 with associated eigenvalues ±∣q1 +G∣. The operator H0 has no other eigenfunctions in L2K,1 other than linear
combinations of these, and hence, the spectrum of H0 in L2K,1 is

σL2K,1(H
0) = {±∣G∣,±∣q1 +G∣ : G ∈ Λ

∗}.

Proof. The proof is another straightforward calculation starting from Proposition B.1. ◻

For an illustration of the support of the L2K,1-eigenfunctions of H
0 on the momentum space lattice, see Fig. 5. It is important to note that

the notation introduced in Proposition B.2 is not one-to-one because, for example,

χ±G̃ = χ±R̃
∗
ϕG = χ±(̃R

∗
ϕ )

2G

for any G ≠ 0 in Λ∗.

3. The chiral basis of L2K ,1
Recall that zero modes ofHα can be assumed to be eigenfunctions of the chiral symmetry operator S. It follows that the most convenient

basis for our purposes is not be the spectral basis just introduced but the basis of L2K,1 consisting of eigenfunctions of S. We call this basis the
chiral basis.

Definition B.1. The chiral basis of L2K,1 is defined as the union of the functions

χ0̃ = 1√
V
e1,
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FIG. 5. Diagram showing support of L2
K,1-eigenfunctions of H0 superposed on the momentum space lattice. Each eigenfunction is given by superposing an L2

K -eigenfunction

of H0 with its rotations by 2π
3

and 4π
3

. The support of the eigenfunctions χ±q̃1 with eigenvalues ±1 is shown with the black crosses, while the support of the eigenfunctions

χ±b̃1 with eigenvalues ±
√

3 is shown with the black circles.

χG̃,±1 ∶= 1√
2
(χG̃ ± χ−G̃), G ∈ Λ∗/{0},

and

χq̃1+G,±1 ∶= 1√
2
(χq̃1+G ± χ−q̃1+G), G ∈ Λ∗.

The following is straightforward.

Proposition B.3. The chiral basis is an orthonormal basis of L2K,1. The modes χ0̃, χG̃,1, and χq̃1+G,1 are +1 eigenfunctions of S, while the
modes χG̃,−1 and χq̃1+G,−1 are −1 eigenfunctions of S.

Written out, chiral basis functions have a very simple form. We have

χ0̃ = 1√
V
e1, (B1)

and for all G ∈ Λ∗/{0},

χG̃,1(r) = 1√
3V

e1
2

∑
k=0

ei((R
∗
ϕ )

kG)⋅r , χG̃,−1(r) = 1√
3V

ẑGe3
2

∑
k=0

e−ikϕei((R
∗
ϕ )

kG)⋅r , (B2)

and for all G ∈ Λ∗,

χG̃+q1 ,1(r) = 1√
3V

e2
2

∑
k=0

ei((R
∗
ϕ )

k
(q1+G))⋅r ,

χG̃+q1 ,−1(r) = 1√
3V

ẑG+q1e4
2

∑
k=0

e−ikϕei((R
∗
ϕ )

k
(q1+G))⋅r .

(B3)
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We use the chiral basis to divide up L2K,1 as follows.

Definition B.2. We define spaces L2K,1,±1 to be the spans of the ±1 eigenfunctions of S in L2K,1, respectively.

Clearly, we have

L2K,1 = L2K,1,1 ⊕ L2K,1,−1.

We can divide up the chiral basis more finely as follows.

Definition B.3. We define

L2K,1,1,A ∶= {χ0̃} ∪ {χG̃,1 : G ∈ Λ∗/{0}},

L2K,1,1,B ∶= {χG̃+q1 ,1 : G ∈ Λ∗},

L2K,1,−1,A ∶= {χG̃,−1 : G ∈ Λ∗/{0}},

L2K,1,−1,B ∶= {χG̃+q1 ,−1 : G ∈ Λ∗}.

Remark B.1. Note that notations A and B in Definition B.3 refer to A and B sites of the momentum space lattice, not to the A and B sites of
the real space lattice. Recalling Remark III.1 and comparing (B2) and (B3) with (2), we see that L2K,1,1,A corresponds to wave-functions supported
on A sites of layer 1, L2K,1,1,B corresponds to wave-functions supported on A sites of layer 2, L2K,1,−1,A corresponds to wave-functions supported on
B sites of layer 1, and L2K,1,−1,B corresponds to wave-functions supported on B sites of layer 2.

Clearly, we have

L2K,1 = L2K,1,1,A ⊕ L2K,1,1,B ⊕ L2K,1,−1,A ⊕ L2K,1,−1,B.

The following propositions are straightforward to prove. For the first claim, note that {S,H0} = 0.

Proposition B.4. Operator H0 maps L2K,1,±1,σ → L2K,1,∓1,σ for σ = A,B. The action of H0 on chiral basis functions is as follows:

H0χ0̃ = 0

for all G ∈ Λ∗ with G ≠ 0,

H0χG̃,±1 = ∣G∣χG̃,∓1,

and for all G ∈ Λ∗,

H0χq̃1+G,±1 = ∣q1 +G∣χ
q̃1+G,∓1.

Proposition B.5. Let P denote the projection operator onto χ0̃ in L2K,1, and P� = 1 − P. Then, the operator P�(H0)−1P� maps L2K,1,±1,σ
→ L2K,1,∓1,σ for σ = A,B, and

P�(H0)−1P�χG̃,±1 = 1
∣G∣ χ

G̃,∓1

for all G ∈ Λ∗ with G ≠ 0, and

P�(H0)−1P�χq̃1+G,±1 = 1
∣q1 +G∣

χq̃1+G,∓1

for all G ∈ Λ∗.

In the Appendixes B 4 and 5, we will study the action of the operator H1 on L2K,1 with respect to the chiral basis.
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4. The spectrum of H1 in L2K and L2K ,1
Recall that

H1 =
⎛
⎜
⎝
0 D1†

D1 0

⎞
⎟
⎠
, D1 =

⎛
⎜
⎝

0 U(r)
U(−r) 0

⎞
⎟
⎠
,

where U(r) = e−iq1 ⋅r + eiϕe−iq2 ⋅r + e−iϕe−iq3 ⋅r . We claim the following.

Proposition B.6. For each r0 ∈ Ω, ±∣U(r0)∣ and ±∣U(−r0)∣ are eigenvalues of H1 : L2K → L2K . For r0 such that U(r0) ≠ 0, the ±∣U(r0)∣
eigenvectors are

(0, 1,± U(r0)
∣U(r0)∣

, 0)δ(r − r0).

For r0 such that U(−r0) ≠ 0, the ±∣U(−r0)∣ eigenvectors are

(1, 0, 0,± U(−r0)
∣U(−r0)∣

)δ(r − r0).

When U(r0) = 0, zero is a degenerate eigenvalue with associated eigenfunctions e2δ(r − r0) and e3δ(r − r0). When U(−r0) = 0, zero is a
degenerate eigenvalue with associated eigenfunctions e1δ(r − r0) and e4δ(r − r0). Finally,

σL2K (H
1) = [−3, 3]. (B4)

Proof. We prove only (B4) since the other assertions are clear. The triangle inequality yields the obvious bound

∣U(r0)∣ ≤ 3

so that the L2K spectrum of H1 must be contained in the interval [−3, 3]. To see that the spectrum actually equals [−3, 3], note that if
r0 = (

4π

3
√

3
, 0); then,

q1 ⋅ r0 = 0, (q1 + b1) ⋅ r0 =
1
2
(
√
3, 1) ⋅ r0 =

2π
3
, (q1 + b2) ⋅ r0 =

1
2
(−
√
3, 1) ⋅ r0 = −

2π
3
,

and hence, U(r0) = 3. On the other hand, when r0 = 0, we have U(r0) = 0 so that the spectrum of H1 in L2K equals [−3, 3]. ◻

By taking linear combinations of rotated copies of the H1 eigenfunctions, just as we did with the H0 eigenfunctions, it is straightforward
to prove an analogous result to Proposition B.6 in L2K,1. We record only the following.

Proposition B.7.

σL2K,1(H
1) = [−3, 3].

5. The action of H1 on L2K ,1 with respect to the chiral basis

We now want to study the action of H1 on L2K,1 with respect to the chiral basis. We will prove two propositions, which parallel
Proposition B.4.

Proposition B.8. The operator H1 maps L2K,1,1,A → L2K,1,−1,B and L2K,1,1,B → L2K,1,−1,A. The action of H1 on chiral basis functions is as
follows:

H1χ0̃ =
√
3̂zq1χ

q̃1 ,−1 (B5)

and

H1χq̃1 ,1 = eiϕẑq1−q2χ
q̃1−q2 ,−1 + e−iϕẑq1−q3χ

q̃1−q3 ,−1. (B6)
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FIG. 6. Illustration of the action of H1 in L2
K,1 as hopping in the momentum space lattice described by Eq. (B7) (left, starting at b1) and (B8) (right, starting at q1 + b1 − b2).

The origin is marked by a black dot.

For all G ∈ Λ∗/{0},

H1χG̃,1 = ẑG+q1χ
G̃+q1 ,−1 + eiϕẑG+q2χ

G̃+q2 ,−1 + e−iϕẑG+q3χ
G̃+q3 ,−1. (B7)

For all G ∈ Λ∗/{0},

H1χG̃+q1 ,1 = ẑGχG̃,−1 + eiϕẑG+q1−q2χ
G̃+q1−q2 ,−1 + e−iϕẑG+q1−q3χ

G̃+q1−q3 ,−1. (B8)

Note that H1 exchanges chirality (S eigenvalue) and the A and B momentum space sublattices, while H0 only exchanges chirality.
Proposition B.8 has a simple interpretation in terms of nearest neighbor hopping in the momentum space lattice; see Figs. 6 and 7.

FIG. 7. Illustration of the action of H1 as hopping in the momentum space lattice described by Eq. (B5) (left, starting at 0) and (B6) (right, starting at q1). Although it appears that
the hopping in these cases does not respect 2π

3
rotation symmetry, this is an artifact of working with chiral basis functions, which individually respect the rotation symmetry;

see (B9).
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Remark B.2. At first glance, (B5) and (B6) appear different from (B7) and (B8) because they appear to violate 2π
3 rotation symmetry. How-

ever, this is not the case since every chiral basis function individually respects this symmetry. For example, using χq̃1 ,−1 = χq̃2 ,−1 = χq̃3 ,−1 and ẑq1
= eiϕẑq2 = e

−iϕẑq3 , we can re-write (B5) in a way that manifestly respects the 2π
3 rotation symmetry as

H1χ0̃ = 1√
3
(̂zq1χ

q̃1 ,−1 + eiϕẑq2χ
q̃2 ,−1 + e−iϕẑq3χ

q̃3 ,−1). (B9)

Equation (B6) can also be written in a manifestly rotationally invariant way, but the expression is long, and hence, we omit it. Note that (B6)
cannot have a term proportional to χ0̃ since χ0̃ ∈ L2K,1,1 and H1 maps L2K,1,1 → L2K,1,−1.

Proof of Proposition B.8. We will prove (B7); the proofs of the other identities are similar and hence omitted. We have

H1χG̃,1 = 1√
3 V
(eiq1 ⋅r + eiϕei(q1+b1)⋅r + e−iϕei(q1+b2)⋅r)(eiG⋅r + ei(R

∗
ϕG)⋅r + ei((R

∗
ϕ )

2G)⋅r)e4.

Multiplying out, we have

1√
3V
(ei(q1+G)⋅r + eiϕei(q1+G+b1)⋅r + e−iϕei(q1+G+b2)⋅r

+ ei(q1+(R
∗
ϕG))⋅r + eiϕei(q1+(R

∗
ϕG)+b1)⋅r + e−iϕei(q1+(R

∗
ϕG)+b2)⋅r

+ ei(q1+((R
∗
ϕ )

2G))⋅r + eiϕei(q1+((R
∗
ϕ )

2G)+b1)⋅r + e−iϕei(q1+((R
∗
ϕ )

2G)+b2)⋅r)

= 1√
3V
(ei(q1+G)⋅r + eiϕei(q1+G+b1)⋅r + e−iϕei(q1+G+b2)⋅r

ei(R
∗
ϕ (q1+G+b1))⋅r + eiϕei(R

∗
ϕ (q1+G+b2))⋅r + e−iϕei(R

∗
ϕ (q1+G))⋅r

+ ei((R
∗
ϕ )

2
(q1+G+b2))⋅r + eiϕei((R

∗
ϕ )

2
(q1+G))⋅r + e−iϕei((R

∗
ϕ )

2
(q1+G+b1)⋅r)

= 1√
3V
(ei(q1+G)⋅r + e−iϕei(R

∗
ϕ (q1+G))⋅r + eiϕei((R

∗
ϕ )

2
(q1+G))⋅r)

+ 1√
3V

eiϕ(ei(q1+G+b1)⋅r + e−iϕei(R
∗
ϕ (q1+G+b1))⋅r + eiϕei((R

∗
ϕ )

2
(q1+G+b1))⋅r)

+ 1√
3V

e−iϕ(ei(q1+G+b2)⋅r + e−iϕei(R
∗
ϕ (q1+G+b2))⋅r + eiϕei((R

∗
ϕ )

2
(q1+G+b2))⋅r),

from which (B7) follows. ◻

Proposition B.9. The operator H1 maps L2K,1,−1,A → L2K,1,1,B and L
2
K,1,−1,B → L2K,1,1,A. The action of H1 on chiral basis functions is as follows:

H1χq̃1 ,−1 = ẑq1(
√
3χ0̃ + e−iϕχq̃1−q2 ,1 + eiϕχq̃1−q3 ,1).

For all G ∈ Λ∗/{0},

H1χG̃,−1 = ẑG(χG̃+q1 ,1 + e−iϕχG̃+q2 ,1 + eiϕχG̃+q3 ,1).

For all G ∈ Λ∗,
H1χG̃+q1 ,−1 = ẑG+q1(χ

G̃,1 + e−iϕχG̃+q1−q2 ,1 + eiϕχG̃+q1−q3 ,1).

Proof. The proof is similar to that of Proposition B.8 and is hence omitted. ◻

APPENDIX C: FORMAL EXPANSION OF THE ZERO MODE

We now bring to bear the developments of the Appendix B on the asymptotic expansion of the zero mode ψα ∈ L2K,1,1 starting from
Ψ0 = e1 = χ0̃. We first give the Proof of Proposition IV.1.
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Proof of Proposition IV.1. We have seen that χ0̃ ∈ L2K,1,1. By the calculations of the Appendix B 5, H1χ0̃ ∈ L2K,1,−1, which is orthogonal to
the null space of H0. The general solution of H0Ψ1 = −H1Ψ0 is

Ψ1 = −P�(H0)−1P�H1Ψ0 + CΨ0,

where C is an arbitrary constant, which is in L2K,1,1 by Proposition B.4. To ensure thatΨ1 is orthogonal toΨ0, we take C = 0. It is clear that this
procedure can be repeated to derive an expansion to all orders satisfying the conditions of Proposition IV.1. ◻

Our goal is to calculate Ψn ∈ L2K,1,1 satisfying the conditions of Proposition B.4 up to n = 8. This amounts to calculating, for n = 1
to n = 8,

Ψn = −P�(H0)−1P�H1Ψn−1.

We do this algorithmically by repeated application of the following proposition, which combines Proposition B.8 and Proposition B.5.

Proposition C.1. The operator −P�(H0)−1P�H1 maps L2K,1,1,A → L2K,1,1,B and L2K,1,1,B → L2K,1,1,A. Its action on chiral basis functions is as
follows:

− P�(H0)−1P�H1χ0̃ = −
√
3̂zq1χ

q̃1 ,1 (C1)

and

− P�(H0)−1P�H1χq̃1 ,1 = − e
iϕ ẑq1−q2
∣q1 − q2∣

χq̃1−q2 ,1 − e−iϕ ẑq1−q3
∣q1 − q3∣

χq̃1−q3 ,1. (C2)

For all G ∈ Λ∗/{0},

− P�(H0)−1P�H1χG̃,1 =

− ẑG+q1
∣G + q1∣

χG̃+q1 ,1 − eiϕ ẑG+q2
∣G + q2∣

χG̃+q2 ,1 − e−iϕ ẑG+q3
∣G + q3∣

χG̃+q3 ,1.
(C3)

For all G ∈ Λ∗/{0},

−P�(H0)−1P�H1χG̃+q1 ,1 = − ẑG
∣G∣ χ

G̃,1 − eiϕ ẑG+q1−q2
∣G + q1 − q2∣

χG̃+q1−q2 ,1 − e−iϕ ẑG+q1−q3
∣G + q1 − q3∣

χG̃+q1−q3 ,1.

We now claim the following.

Proposition C.2. Let Ψn be the sequence defined by Proposition IV.1. Then,

Ψ1 = −
√
3iχq̃1 ,1, (C4)

Ψ2 = (
√
3 − i
2
)χ−̃b1 ,1 + (

√
3 + i
2
)χ−̃b2 ,1, (C5)

Ψ3 = 1√
7
(
√
7 − 3
√
21i

14
)χq̃1−b2 ,1 + 1√

7
(−
√
7 − 3
√
21i

14
)χq̃1−b1 ,1, (C6)

Ψ4 = 1√
21
(−5
√
7 +
√
21i

14
)χ−̃b2 ,1 + 1

2
√
21
(2
√
7 +
√
21i

7
)χ−̃2b2 ,1

+ 1√
21
(−5
√
7 −
√
21i

14
)χ−̃b1 ,1 + 1

2
√
21
(2
√
7 −
√
21i

7
)χ−̃2b1

+ 2
√
3

21
χ−̃b1−b2 ,1.

(C7)

Proof. Equations (C4) and (C5) follow immediately from (C1) and (C2) and using q2 = q1 + b1 and q3 = q1 + b2. The derivation of
Eq. (C6) is more involved, so we give details. Using linearity and applying (C3) twice, we find that
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− P�(H0)−1P�H1Ψ2 =

(
√
3 − i
2
)( ẑq1−b2
∣q1 − b2∣

χq̃1−b2 ,1 + eiϕ ẑq1+b1−b2
∣q1 + b1 − b2∣

χ
̃q1+b1−b2 ,1 + e−iϕ ẑq1χ

q̃1 ,1)

+ (
√
3 + i
2
)( ẑq1−b1
∣q1 − b1∣

χq̃1−b1 ,1 + eiϕ ẑq1χ
q̃1 ,1 + e−iϕ ẑq1+b2−b1

∣q1 + b2 − b1∣
χ
̃q1+b2−b1 ,1).

First, the terms proportional to χq̃1 ,1 cancel. Next, since Rϕ(q1 + b1 − b2) = q1 + b2 − b1, we have χ ̃q1+b1−b2 ,1 = χ ̃q1+b2−b1 ,1. These terms also
cancel, leaving (C6). The derivation of (C7) (and the higher corrections) is involved but does not depend on any new ideas and is therefore
omitted. ◻

We give the explicit forms of Ψ5-Ψ8 in the supplementary material.

Remark C.1. Written out, (C4) and (C5) become

Ψ1 = −
√
3i

1√
3V

e2(eiq1 ⋅r + eiq2 ⋅r + eiq3 ⋅r)

and
Ψ2 = −ieiϕ 1√

3V
e1(eib1 ⋅r + ei(b2−b1)⋅r + e−ib2 ⋅r) + ie−iϕ

1√
3V

e1(eib2 ⋅r + e−ib1 ⋅r + ei(b1−b2)⋅r),

which agree with Eq. (24) of Tarnopolsky et al.4 up to an overall factor of
√
V (this factor cancels in the Fermi velocity, so there is no discrepancy).

Using orthonormality of the chiral basis functions, it is straightforward to calculate the norms of each of the Ψn. We have the following.

Proposition C.3.

∥Ψ0∥ = 1, ∥Ψ1∥ =
√
3, ∥Ψ2∥ =

√
2, ∥Ψ3∥ =

√
14
7

, ∥Ψ4∥ =
√
258
42

, ∥Ψ5∥ =
√
1 968 837
3458

,

∥Ψ6∥ =
√
106 525 799
31 122

, ∥Ψ7∥ = 2
√
2 129 312 323 981 473

624 696 345
, ∥Ψ8∥ =

√
183 643 119 755 214 454

4 997 570 760
.

Remark C.2. Note that the sequence of norms of the expansion functions grows much slower than the pessimistic bound ∥ΨN+1∥
≤ 3∥ΨN∥,N = 0, 1, 2, . . . guaranteed by Proposition IV.2. The reason is that bounds (27) and (28) are never attained. As N becomes larger,
the bound (27) is very pessimistic because ΨN is mostly made up of eigenfunctions of H0 with eigenvalues strictly larger than 1. The bound (28)
is also very pessimistic because it is attained only at delta functions, which can only be approximated with a superposition of a large number of
eigenfunctions of H0. It seems possible that a sharper bound could be proved starting from these observations, but we do not pursue this in this
work.

We finally give the Proof of Proposition IV.8.

Proof of Proposition IV.8. Explicit computation using Proposition B.8 and orthonormality of the chiral basis functions gives

∥H1Ψ8∥ =
√
4 855 076 200 233 765 642

14 992 712 280
≈ 0.147 ≤ 3

20
.

◻

APPENDIX D: PROOF OF PROPOSITION IV.4

We choose Ξ as

Ξ ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

L2K,1 − eigenfunctions ofH0 with

eigenvalues withmagnitude ≤ 4
√
3

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋃{χ

̃q1−4b1+b2 ,±1, χ
̃q1+b1−4b2 ,±1}.

Part 1 of Proposition IV.4 follows immediately from observing that χ ̃q1−2b1−2b2 ,±1 is not in Ξ, but ∣q1 − 2b1 − 2b2∣ = 7. That μ = 7 is optimal can
be seen from Fig. 8.
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FIG. 8. Illustration of Ξ in the momentum space lattice. The circle has radius 4
√

3 so that every dot within the circle corresponds to two chiral basis vectors included in Ξ. Chiral
basis vectors exactly 4

√

3 away from the origin, marked with black dots, are also included in Ξ. We also include in Ξ the chiral basis vectors {χ ̃q1−4b1+b2 ,±1, χ ̃q1+b1−4b2 ,±1
},

which correspond to the dots marked with circles, which are distance 7 (NB. 7 > 4
√

3) from the origin. We do not include the chiral basis vectors χ ̃q1−2b1−2b2 ,±1, marked with
the black crosses, which are also a distance 7 from the origin. The reason for this is so that part 3 of Proposition IV.4 holds. With this choice, every dot in Ξ has at most one
nearest neighbor lattice point outside of Ξ. It follows immediately from Propositions B.8 and B.9 (H1 acts by nearest neighbor hopping in the momentum space lattice) that
∥PΞH1P�Ξ ∥ = 1. Note that if we chose Ξ to include χ ̃q1−2b1−2b2 ,±1, this would no longer hold because these basis functions would have two nearest neighbors outside Ξ,
resulting in the worse bound ∥PΞH1P�Ξ ∥ ≤

√

2.

Part 2 follows from the fact that ψ8,α depends only on eigenfunctions of H0 with eigenvalues with magnitude less than or equal to 4
√
3.

The largest eigenvalue is 4
√
3, coming from dependence of Ψ8 on χ−̃4b2 ,1, since ∣ − 4b2∣ = 4

√
3.

Part 3 can be seen from Fig. 8.

APPENDIX E: PROOF OF PROPOSITION IV.5
1. Proof of Theorem IV.2

We will prove Theorem IV.2 starting from Theorem 11.5.1 of Parlett,19 where the proof can be found.

Lemma E.1. Let Q be an n ×mmatrix, which satisfies Q†Q = Im. Define H = Q†AQ and R = AQ −QH. Let {θj}1≤j≤m denote the eigenval-
ues of H (the Ritz values). Then, m of A’s eigenvalues {αj}1≤j≤m can be put into one-to-one correspondence with the {θj}1≤j≤m in such a way
that

∣θj − αj∣ ≤ ∥R∥2 1 ≤ j ≤ m.

Proof of Theorem IV.2. Let Q be the matrix whose columns are v1, . . . , vm. Using orthonormality of the vj, Q†Q = Im and

H = Q†AQ = diag(λ1, . . . , λm) +
⎛
⎜⎜⎜⎜
⎝

⟨v1∣r1⟩ ⋅ ⋅ ⋅ ⟨v1∣rm⟩
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⟨vn∣r1⟩ ⋅ ⋅ ⋅ ⟨vn∣rn⟩

⎞
⎟⎟⎟⎟
⎠
.

We now prove that the eigenvalues of H, denoted by θj, are close to λj’s. By the Gershgorin circle theorem, we have
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∣θi − (λi + ⟨vi∣ri⟩)∣ ≤
m

∑
j≠i
∣⟨vi∣rj⟩∣,

which implies, using ∥vj∥2 = 1,

∣θi − λi∣ = ∣θi − λi − ⟨vi∣ri⟩ + ⟨vi∣ri⟩∣ ≤
m

∑
j=1
∣⟨vi∣rj⟩∣ ≤ m sup

1≤i≤m
∥ri∥2.

We can now use Lemma E.1 to bound the difference between λjs and exact eigenvalues αj,

∣λj − αj∣ = ∣λj − θj + θj − αj∣ ≤ m sup
1≤i≤m
∥ri∥2 + ∥R∥2,

where R ∶= AQ −QH = (I −QQ†)AQ. Since QQ† projects onto vj, R simplifies to

R = (I −QQ†)R′, R′ ∶= (r1 ⋅ ⋅ ⋅ rm).

Since QQ† is a projection, so is I −QQ†, and hence, ∥R∥2 ≤ ∥R′∥2. To bound ∥R′∥2, note that for any v with ∥v∥2 = 1, we have

∥R′v∥2 = ⟨ e1∣v⟩r1 + ⋅ ⋅ ⋅ + ⟨ em∣v⟩rm ≤ m sup
1≤i≤m
∥ri∥2,

where ej denote the standard orthonormal basis vectors. The result now follows. ◻

2. Proof of Theorem IV.3

Proof of Theorem IV.3. We start with the following lemma, which guarantees that numerically computed approximately orthonormal
sets can be approximated by exactly orthonormal sets.

Lemma E.2. Let ṽ1, . . . , ṽm be n-dimensional vectors, let ⟨ ṽi∣ṽj⟩comp for 1 ≤ i, j ≤ m denote their numerically computed inner products, let
ϵ denote machine epsilon, and assume that nϵ < 0.01. Define

μ ∶= (1.01)n2ϵ sup
1≤i≤m
∥ṽi∥2∞ + sup

i
∣⟨ ṽi∣ṽi⟩comp − 1∣ + sup

i≠j
∣⟨ ṽi∣ṽj⟩comp∣. (E1)

Then, as long as mμ < 1
2 , there is a set of n-dimensional orthonormal vectors v̂1, . . . , v̂m, which satisfy

∥v̂j − ṽj∥2 ≤ 2−1/2mμ, 1 ≤ j ≤ m.

Proof. Bounding the round-off error in computing inner products in the usual way (see, for example, Chap. 2.7 of Golub andVan Loan20)
and assuming that nϵ < 0.01, we have that for each 1 ≤ i, j ≤ m, ⟨ ṽi∣ṽj⟩ = ⟨ ṽi∣ṽj⟩comp + eij, where ∣eij∣ ≤ (1.01)nϵ∣ṽi∣

⊺∣ṽj∣ ≤ (1.01)nϵ∥ṽi∥2∥ṽj∥2.
Letting Q̃ denote the matrix whose columns are ṽi’s, then Q̃†Q̃ − Im = E, where, for all i ≠ j, ∣Eij∣ ≤ ∣⟨ ṽi∣ṽj⟩comp∣ + (1.01)nϵ∥ṽi∥2∥ṽj∥2, and for
all i, ∣Eii∣ ≤ ∣1 − ⟨ ṽi∣ṽi⟩comp∣ + (1.01)nϵ∥ṽi∥

2
2. Paying the price of factors of

√
n to replace ∥ ⋅ ∥2 norms by ∥ ⋅ ∥∞ norms, we can obtain a trivial

bound on the maximal element of E, denoted as ∥E∥max, by

∥E∥max ≤ (1.01)n2ϵ(sup
i
∥ṽi∥∞)

2

+ sup
i
∣⟨ ṽi∣ṽi⟩comp − 1∣ + sup

i,j
∣⟨ ṽi∣ṽj⟩comp∣.

Note that this is nothing but μ in the statement of the theorem. Using the Gershgorin circle theorem, we then have that the eigenvalues λ of
Q̃†Q̃ satisfy ∣λ − 1∣ ≤ m∥E∥max. We claim that there are exact orthonormal vectors v̂j near (in the ∥ ⋅ ∥2-norm) to the ṽj. To see this, note that
Q̂ ∶= Q̃(Q̃†Q̃)−1/2 satisfies Q̂†Q̂ = Im and

∥Q̂ − Q̃∥2 ≤ ∥Q̂∥2∥(Q̃†Q̃)1/2 − Im∥2 = ∥(Q̃†Q̃)1/2 − Im∥2.

Let λmax and λmin denote themaximum andminimum eigenvalues of Q̃†Q̃, respectively. Then, ∥(Q̃†Q̃)1/2 − Im∥
2
≤ max{∣λ1/2min − 1∣, ∣λ

1/2
max − 1∣}.

Since λmin is bounded below by 1 −m∥E∥max and λmax is bounded above by 1 +m∥E∥max, we have
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∥(Q̃†Q̃)1/2 − Im∥2 ≤ max{∣(1 +m∥E∥max)1/2 − 1∣, ∣(1 −m∥E∥max)1/2 − 1∣}.

Using Taylor’s theorem, for ∣x∣ < 1
2 , we have that ∣(1 + x)

1/2 − 1∣ ≤ 2−1/2∣x∣ and ∣(1 − x)1/2 − 1∣ ≤ 2−1/2∣x∣. Since by assumption m∥E∥max < 1
2 ,

we conclude

∥Q̃ − Q̂∥2 ≤ ∥(Q̃†Q̃)1/2 − Im∥2 ≤ 2−1/2m∥E∥max.

Letting v̂j denote the columns of Q̂ and noting that ∥v̂j − ṽj∥2 ≤ ∥Q̂ − Q̃∥2 for all 1 ≤ j ≤ m, the result is proved. ◻

Using Lemma E.2, we have that there exists an exactly orthonormal set {v̂j}1≤j≤m nearby to the set {ṽj}1≤j≤m. We now want to bound the
residuals of the v̂j in terms of numerically computable quantities. We start with the following easy lemma whose proof is a straightforward
manipulation.

Lemma E.3. Let A be an n × n Hermitian matrix, and suppose that r̂ ∶= (A − λ̃I)v̂ and r̃ ∶= (A − λ̃I)ṽ. Then,

∥r̂∥2 ≤ (∥A∥2 + ∣λ̃∣)∥v̂ − ṽ∥2 + ∥r̃∥2.

The following lemma quantifies the error in approximating exact residuals by numerically computed values.

Lemma E.4. Let A be a Hermitian n × n matrix, and let Ã denote the matrix whose entries are those of A evaluated as floating-point
numbers. Let [(Ã − λ̃I)ṽ]

comp
denote the numerically computed value of (Ã − λ̃I)ṽ in the floating-point arithmetic. Then, r̃ ∶= (A − λ̃I)ṽ

satisfies

∥r̃∥2 ≤ n1/2∥[(Ã − λ̃I)ṽ]comp
∥
max
+ (1.01)n5/2ϵ∥Ã − λ̃I∥max∥ṽ∥∞ + nϵ∥A∥max∥ṽ∥∞.

Proof. For matrices A and B with entries Aij and Bij, we will write ∣A∣ to denote the matrix with entries ∣Aij∣ for all i, j, and ∣A∣ ≤ ∣B∣
if ∣Aij∣ ≤ ∣Bij∣ for all i, j. It is straightforward to see that (see Chap. 2.7 of Golub and Van Loan20) Ã = A + F, where ∣F∣ < ϵ∣A∣. In addition,
(Ã − λ̃I)ṽ = [(Ã − λ̃I)ṽ]

comp
+ g, where ∣g∣ ≤ (1.01)nϵ∣(Ã − λ̃I)∣∣ṽ∣. Now, note that (A − λ̃I)ṽ = (Ã − λ̃I)ṽ − Fṽ so that

∥r̃∥2 ≤ ∥[(Ã − λ̃I)ṽ]comp
∥
2
+ ∥g∥2 + ∥Fṽ∥2.

Noting that

∥g∥2 = (1.01)nϵ∥∣Ã − λ̃I∣∣ṽ∣∥2 ≤ (1.01)n5/2ϵ∥Ã − λ̃I∥max∥ṽ∥∞,

∥Fṽ∥2 ≤ ϵ∥∣A∣∣ṽ∣∥2 ≤ nϵ∥A∥max∥ṽ∥∞,

and

∥[(Ã − λ̃I)ṽ]
comp
∥
2
≤ n1/2∥[(Ã − λ̃I)ṽ]

comp
∥
max

,

the result is proved. ◻

We now prove estimate (35). Applying Lemma E.2 to the set {ṽj}1≤j≤m yields an orthonormal set {v̂j}1≤j≤m such that ∥v̂j − ṽj∥2
≤ 2−1/2mμ, where μ is as in (E1). By Lemma E.3, we have that

∥r̂j∥2 ≤ 2−1/2m(∥A∥2 + ∣λ̃j∣)μ + ∥r̃j∥2, 1 ≤ j ≤ m.

The estimate now follows easily upon applying Lemma E.4 and taking the sup over j. ◻

3. Proof of Theorem IV.4

Proof of Theorem IV.4. The proof is a simple consequence of the min–max characterization of eigenvalues of Hermitian matrices. By
min–max (here, U denotes a subspace of Cn),

∣λαj − λα0j ∣ = min
dimU=j

max
v∈U
v≠0

∣ ⟨v∣(A
α − Aα0)v⟩
⟨v∣v⟩ ∣.
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On the other hand, for any fixed v ≠ 0, we have by Taylor’s theorem

∣ ⟨v∣(A
α − Aα0)v⟩
⟨v∣v⟩ ∣ ≤ ∣α − α0∣ sup

β∈[α0 ,α]

RRRRRRRRRRR
∂β
⟨v∣(Aβ − Aα0)v⟩

⟨v∣v⟩

RRRRRRRRRRR
≤ ∣α − α0∣ sup

β∈[α0 ,α]
∥∂βAβ∥2,

and the result follows immediately. ◻

4. Proof of Proposition IV.7

Proof of Proposition IV.7. Differentiating Hα
Ξ yields

∂αHα
Ξ = (−∂αQα)PΞHαPΞQα,� +Qα,�PΞH1PΞQα,� +Qα,�PΞHαPΞ(−∂αQα).

For α < 1, we have ∥PΞHαPΞ∥2 ≤ 10, and ∥H1∥2 ≤ 3. It remains only to estimate ∥∂αQα∥2. Using the Dirac notation to represent L2K,1-
projections, we have

Qα = ∣Ψ(8)⟩⟨Ψ(8)∣ = ∣
8

∑
m=0

αmΨm⟩⟨
8

∑
n=0

αnΨn∣ =
8

∑
m=0

8

∑
n=0

αm+n∣Ψm⟩⟨Ψn∣

so that

∂αQα =
8

∑
m=0

8

∑
n=0
(m + n)αm+n−1∣Ψm⟩⟨Ψn∣.

Using ∥ ∣Ψm⟩⟨Ψn∣ ∥2 ≤ ∥Ψm∥2∥Ψn∥2 and max0≤j≤8 ∥Ψj∥2 ≤
√
3 by Proposition C.3, we have, for α ≤ 1,

∥∂αQα∥2 ≤ 3
8

∑
m=0

8

∑
n=0
(m + n) = 1944.

Putting everything together, we conclude

sup
0≤α≤ 7

10

∥∂αHα
Ξ∥2 ≤ 2 × 10 × 1944 + 3 = 38 883.

◻

APPENDIX F: PROOF OF PROPOSITION II.1

We can now prove Proposition II.1. We start by proving (11).

1. Proof of (11)
We now prove (11). It is straightforward to derive

⟨
8

∑
n=0

αnΨn∣
8

∑
n=0

αnΨn⟩ =
8

∑
n=0

n

∑
j=0
⟨Ψj∣Ψn−j⟩αn +

7

∑
n=0

n

∑
j=0
⟨Ψ8−j∣Ψ8−(n−j)⟩α16−n. (F1)

We now make two observations which simplify the computation. First, recall that the operator −P�(H0)−1P�H1 maps L2K,1,1,A → L2K,1,1,B and
L2K,1,1,B → L2K,1,1,A. It follows that Ψ0 ∈ L2K,1,1,A, Ψ1 ∈ L2K,1,1,B, Ψ2 ∈ L2K,1,1,A, and so on, and hence,

⟨Ψ2i∣Ψ2j+1⟩ = 0 ∀i, j ∈ {0, 1, 2, . . .}.

It follows that all terms in (F1) with odd powers of α vanish. Second, note that since Ψ0 ∈ ranP, while Ψn ∈ ran P� for all n ≥ 1, we have that
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⟨Ψn∣Ψ0⟩ = ⟨Ψ0∣Ψn⟩ = 0 ∀n ∈ {1, 2, . . .}.

Deriving (11) is then just a matter of computation using the properties of the chiral basis. For the leading term, we have

⟨Ψ0∣Ψ0⟩ = ⟨χ0̃∣χ0̃⟩ = 1.

For the α2 term, the only non-zero term is

⟨Ψ1∣Ψ1⟩ = ⟨−
√
3iχq̃1 ,1∣ −

√
3iχq̃1 ,1⟩ = 3,

using (C4). For the α4 term, the possible non-zero terms are

⟨Ψ3∣Ψ1⟩ + ⟨Ψ2∣Ψ2⟩ + ⟨Ψ1∣Ψ3⟩,

but Ψ3 and Ψ1 depend on orthogonal chiral basis vectors [see (C4) and (C6)], so we are left with

⟨Ψ2∣Ψ2⟩ = ⟨(
√
3 − i
2
)χ−̃b1 ,1 + (

√
3 + i
2
)χ−̃b2 ,1∣(

√
3 − i
2
)χ−̃b1 ,1 + (

√
3 + i
2
)χ−̃b2 ,1⟩ = 2,

using (C5) and orthgonality of χ−̃b1 ,1 and χ−̃b2 ,1. We omit the derivation of the higher terms since the derivations do not require any new
ideas.

2. Proof of (10)
It is straightforward to derive

⟨
8

∑
n=0

αnΨn∗(−r)∣
8

∑
n=0

αnΨn(r)⟩ =
8

∑
n=0

n

∑
j=0
⟨Ψj∗(−r)∣Ψn−j(r)⟩αn

+
7

∑
n=0

n

∑
j=0
⟨Ψ8−j∗(−r)∣Ψ8−(n−j)(r)⟩α16−n. (F2)

We now note the following.

Proposition F.1. Let χ be a chiral basis function in L2K,1,1. Then, χ∗(−r) = χ(r).

Proof. The proof follows immediately from the explicit forms of the chiral basis functions in L2K,1,1 given by (B1)–(B2)–(B3) and the

observation that for any k ∈ R2, (eik⋅(−r))
∗

= eik⋅r . ◻

Using Proposition F.1 and the same two observations as in the Appendix F 1, we have that the only non-zero terms in (F2) are those with
even powers of α and that other than the leading term, terms involving Ψ0 do not contribute. The calculation is then similar to the previous
case. For the leading order term, we have

⟨Ψ0∗(−r)∣Ψ0(r)⟩ = ⟨χ0̃∣χ0̃⟩ = 1.

The only non-zero α2 term is

⟨Ψ1∗(−r)∣Ψ1(r)⟩ = ⟨
√
3iχq̃1 ,1∣ −

√
3iχq̃1 ,1⟩ = −3.

The only non-zero α4 term is

⟨Ψ2∗(−r)∣Ψ2(r)⟩

= ⟨(
√
3 + i
2
)χ−̃b1 ,1 + (

√
3 − i
2
)χ−̃b2 ,1∣(

√
3 − i
2
)χ−̃b1 ,1 + (

√
3 + i
2
)χ−̃b2 ,1⟩

= (
√
3 − i
2
)
2

+ (
√
3 + i
2
)
2

= 1.
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We omit the derivation of the higher terms since the derivations do not require any new ideas.
Proposition IV.1 implies that the series expansion of ψα exists up to any order. We can therefore define formal infinite series by

⟨
∞

∑
n=0

αnΨn∗(−r)∣
∞

∑
n=0

αnΨn(r)⟩, (F3)

⟨
∞

∑
n=0

αnΨn∣
∞

∑
n=0

αnΨn⟩. (F4)

We then have the following.

Proposition F.2. Expansions (10) and (11) approximate the formal series (F3) and (F4) up to terms of order α10.

Proof. The series agree exactly without any simplifications up to terms of α9. However, because the even and odd terms in the expansion
of ψα are orthogonal (since they lie in L2K,1,1,A and L2K,1,1,B, respectively), all terms with odd powers of α vanish in expansions (F3) and (F4).
The series may disagree at order α10 because the infinite series includes terms arising from inner products of Ψ1 and Ψ9. ◻
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Existence of Magic Angle for Twisted Bilayer Graphene

We list the chiral basis functions spanning Ξ in Section I, list the higher terms in the

expansion of the K point wavefunction ψα ∈ L2
K,1,1 in Section II, and derive the TKV

Hamiltonian from the Bistritzer-MacDonald model in Section III.

I. CHIRAL BASIS FUNCTIONS SPANNING THE SUBSPACE Ξ

The chiral basis functions spanning the subspace Ξ are as follows. We note which of the

subspaces of H0 acting on L2
K,1 are spanned by the chiral basis vectors at the right.

χ0̃ 0 eigenspace

χq̃1,±1 = χq̃1+b1,±1 = χq̃1+b2,±1 ±1 eigenspace

χ−̃b1,±1 = χb̃2,±1 = χb̃1−b2,±1

χ−̃b2,±1 = χb̃1,±1 = χb̃2−b1,±1 ±
√

3 eigenspace

χ
˜q1+b1+b2,±1 = χ

˜q1+b1−b2,±1 = χ
˜q1+b2−b1,±1 ±2 eigenspace

χq̃1−b1,±1 = χ
˜q1+2b2,±1 = χ

˜q1+2b1−b2,±1

χq̃1−b2,±1 = χ
˜q1+2b1,±1 = χ

˜q1+2b2−b1,±1 ±
√

7 eigenspace

χb̃1+b2,±1 = χ
˜b1−2b2,±1 = χ

˜b2−2b1,±1

χ
˜−b1−b2,±1 = χ

˜2b2−b1,±1 = χ
˜2b1−b2,±1 ±3 eigenspace

χ−̃2b1,±1 = χ2̃b2,±1 = χ
˜2b1−2b2,±1

χ−̃2b2,±1 = χ2̃b1,±1 = χ
˜2b2−2b1,±1 ±2

√
3 eigenspace

χ
˜q1+b1−2b2,±1 = χ

˜q1−2b1+2b2,±1 = χ
˜q1+2b1+b2,±1

χ
˜q1+b2−2b1,±1 = χ

˜q1−2b2+2b1,±1 = χ
˜q1+2b2+b1,±1 ±

√
13 eigenspace

χ
˜q1−b1−b2,±1 = χ

˜q1−b1+3b2,±1 = χ
˜q1+3b1−b2,±1 ±4 eigenspace

χ
˜q1−2b1,±1 = χ

˜q1+3b2,±1 = χ
˜q1+3b1−2b2,±1

χ
˜q1−2b2,±1 = χ

˜q1+3b1,±1 = χ
˜q1+3b2−2b1,±1 ±

√
19 eigenspace

χ
˜−3b1+b2,±1 = χ

˜2b1−3b2,±1 = χ
˜b1+2b2,±1

χ
˜−3b1+2b2,±1 = χ

˜b1−3b2,±1 = χ
˜2b1+b2,±1

χ
˜−b1−2b2,±1 = χ

˜−2b1+3b2,±1 = χ
˜3b1−b2,±1

χ
˜−b2−2b1,±1 = χ

˜−2b2+3b1,±1 = χ
˜3b2−b1,±1 ±

√
21 eigenspace

χ
˜q1+2b1+2b2,±1 = χ

˜q1+2b1−3b2,±1 = χ
˜q1−3b1+2b2,±1 ±5 eigenspace

2
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χ−̃3b1,±1 = χ3̃b2,±1 = χ
˜3b1−3b2,±1

χ−̃3b2,±1 = χ3̃b1,±1 = χ
˜3b2−3b1,±1 ±3

√
3 eigenspace

χ
˜q1−3b1+b2,±1 = χ

˜q1+3b1−3b2,±1 = χ
˜q1+b1+3b2,±1

χ
˜q1−3b1+3b2,±1 = χ

˜q1+b1−3b2,±1 ±2
√

7 eigenspace

χ
˜q1−2b1−b2,±1 = χ

˜q1+4b1−2b2,±1 = χ
˜q1−b1+4b2,±1

χ
˜q1−2b1+4b2,±1 = χ

˜q1−b1−2b2,±1 = χ
˜q1+4b1−b2,±1 ±

√
31 eigenspace

χ
˜−4b1+2b2,±1 = χ

˜2b1−4b2,±1 = χ
˜2b1+2b2,±1

χ
˜−2b1−2b2,±1 = χ

˜4b1−2b2,±1 = χ
˜−2b1+4b2,±1 ±6 eigenspace

χ
˜q1−3b1,±1 = χ

˜q1+4b1−3b2,±1 = χ
˜q1+4b2,±1

χ
˜q1−3b1+4b2,±1 = χ

˜q1−3b2,±1 = χ
˜q1+4b1,±1 ±

√
37 eigenspace

χ
˜−4b1+b2,±1 = χ

˜3b1−4b2,±1 = χ
˜b1+3b2,±1

χ
˜−4b1+3b2,±1 = χ

˜b1−4b2,±1 = χ
˜3b1+b2,±1

χ
˜−3b1−b2,±1 = χ

˜4b1−3b2,±1 = χ
˜−b1+4b2,±1

χ
˜−3b1+4b2,±1 = χ

˜−b1−3b2,±1 = χ
˜4b1−b2,±1 ±

√
39 eigenspace

χ
˜q1−4b1+2b2,±1 = χ

˜q1+3b1−4b2,±1 = χ
˜q1+2b1+3b2,±1

χ
˜q1−4b1+3b2,±1 = χ

˜q1+2b1−4b2,±1 = χ
˜q1+3b1+2b2,±1 ±

√
43 eigenspace

χ−̃4b1,±1 = χ
˜4b1−4b2,±1 = χ4̃b2,±1

χ
˜−4b1+4b2,±1 = χ−̃4b2,±1 = χ4̃b1,±1 ±4

√
3 eigenspace.

We finally add four out of the six modes which span the ±7 eigenspace

χ
˜q1−4b1+b2,±1 = χ

˜q1+4b1−4b2,±1 = χ
˜q1+b1+4b2,±1

χ
˜q1−4b1+4b2,±1 = χ

˜q1+b1−4b2,±1 = χ
˜q1+4b1+b2,±1.

3
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II. TERMS Ψ5-Ψ8 IN THE EXPANSION

Here we list terms Ψ5-Ψ8 in the expansion of ψα in powers of α. The calculations were

assisted by Sympy1.

Ψ5 =
√

21

42

(√
21 + 2

√
7i

7

)
χq̃1−b2,1 +

√
21

42

(
−
√

21 + 2
√

7i

7

)
χq̃1−b1,1

+
2
√

3i

21
χ

˜q1+b1−b2,1 − 4
√

3i

21
χq̃1,1 −

√
3i

42
χ

˜q1−b2−b1,1

+

√
273

546

(
5
√

273 + 4
√

91i

91

)
χ

˜q1+b1−2b2,1 +

√
399

798

(
2
√

399− 11
√

133i

133

)
χ

˜q1−2b2,1

+

√
273

546

(
−5
√

273 + 4
√

91i

91

)
χ

˜q1+b2−2b1,1 +

√
399

798

(
−2
√

399− 11
√

133i

133

)
χ

˜q1−2b1,1,

Ψ6 =
√

91

42

(
9
√

273− 11
√

91i

182

)
χ−̃b1,1 +

4
√

1729

5187

(
−45
√

5187− 29
√

1729i

3458

)
χ−̃2b1,1

+

√
91

42

(
9
√

273 + 11
√

91i

182

)
χ−̃b2,1 −

√
3

26
χ

˜−2b1+b2,1 +

√
133

2394

(
9
√

399− 17
√

133i

266

)
χ−̃3b1,1

+

√
57

798

(
59
√

19− 9
√

57i

266

)
χ

˜−2b1−b2,1 +

√
13

546

(
−17
√

39− 41
√

13i

182

)
χ

˜−3b1+b2,1

+

√
57

798

(
59
√

19 + 9
√

57i

266

)
χ

˜−b1−2b2,1 +
4
√

1729

5187

(
−45
√

5187 + 29
√

1729i

3458

)
χ−̃2b2,1

+

√
133

2394

(
9
√

399 + 17
√

133i

266

)
χ−̃3b2,1 +

√
13

546

(
−17
√

39 + 41
√

13i

182

)
χ

˜b1−3b2,1,
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Ψ7 =
√

1032213

10374

(
−97
√

1032213− 562
√

344071i

344071

)
χq̃1−b1,1 −

√
3i

42
χq̃1,1 − 2

√
3i

273
χ

˜q1−b1+b2,1

+

√
3549637

217854

(
−2621

√
3549637 + 1563

√
10648911i

7099274

)
χ

˜q1−2b1,1

+

√
178087

24206

(
−241

√
178087 + 467

√
534261i

356174

)
χ

˜q1−2b1+b2,1

+

√
1032213

10374

(
97
√

1032213− 562
√

344071i

344071

)
χq̃1−b2,1

+

√
178087

24206

(
241
√

178087 + 467
√

534261i

356174

)
χ

˜q1−2b1+2b2,1

+

√
4921

88578

(
−53
√

4921− 75
√

14763i

9842

)
χ

˜q1−3b1,1

+
2
√

247

15561

(
−215

√
247 + 27

√
741i

3458

)
χ

˜q1−3b1+b2,1

+

√
1767

24738

(
−10
√

1767− 169
√

589i

4123

)
χ

˜q1−2b1−b2,1 +
2
√

3i

2793
χ

˜q1−b1−b2,1

+
29
√

3i

19110
χ

˜q1−3b1+2b2,1 +

√
1767

24738

(
10
√

1767− 169
√

589i

4123

)
χ

˜q1−b1−2b2,1

+

√
3549637

217854

(
2621
√

3549637 + 1563
√

10648911i

7099274

)
χ

˜q1−2b2,1

+

√
4921

88578

(
53
√

4921− 75
√

14763i

9842

)
χ

˜q1−3b2,1

+
2
√

247

15561

(
215
√

247 + 27
√

741i

3458

)
χ

˜q1+b1−3b2,1,
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Ψ8 =
√

160797

10374

(
−206

√
53599− 61

√
160797i

53599

)
χ−̃b1,1

+

√
1694251299

1307124

(
16249

√
564750433− 10012

√
1694251299i

564750433

)
χ−̃2b1,1

+
317
√

3

11466
χ

˜−b1−b2,1 +

√
160797

10374

(
−206

√
53599 + 61

√
160797i

53599

)
χ−̃b2,1

+
67
√

3

16758
χ

˜−2b1+b2,1 +

√
837273

620046

(
−496

√
279091− 105

√
837273i

279091

)
χ−̃3b1,1

+

√
997694607

20260422

(
5849
√

332564869− 20785
√

997694607i

665129738

)
χ

˜−2b1−b2,1

+

√
2667

13230

(
−59
√

889− 5
√

2667i

1778

)
χ

˜−3b1+b2,1

+

√
1694251299

1307124

(
16249

√
564750433 + 10012

√
1694251299i

564750433

)
χ−̃2b2,1

+

√
2667

13230

(
−59
√

889 + 5
√

2667i

1778

)
χ

˜−3b1+2b2,1

+

√
14763

1062936

(
43
√

4921− 32
√

14763

4921

)
χ−̃4b1,1

+

√
114919077

39454506

(
11413

√
38306359− 2767

√
114919077i

76612718

)
χ

˜−3b1−b2,1

+
2
√

57

46683

(
−29
√

19− 31
√

57i

266

)
χ

˜−4b1+b2,1

+
199
√

3

1038996
χ

˜−2b1−2b2,1 − 29
√

3

114660
χ

˜−4b1+2b2,1

+

√
997694607

20260422

(
5849
√

332564869 + 20785
√

997694607i

665129738

)
χ

˜−b1−2b2,1

+

√
114919077

39454506

(
11413

√
38306359 + 2767

√
114919077i

76612718

)
χ

˜−b1−3b2,1

+

√
837273

620046

(
−496

√
279091 + 105

√
837273i

279091

)
χ−̃3b2,1

+

√
14763

1062936

(
43
√

4921 + 32
√

14763i

4921

)
χ−̃4b2,1 +

2
√

57

46683

(
−29
√

19 + 31
√

57i

266

)
χ

˜b1−4b2,1
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III. DERIVATION OF THE TKV HAMILTONIAN FROM THE

BISTRITZER-MACDONALD MODEL

The Bistritzer-MacDonald model of bilayer graphene, with relative twist angle θ, is as

follows2. Starting from two graphene layers laid exactly on top of each other (i.e., AA

stacking configuration), we rotate one layer (call this layer 1) clockwise by θ
2
, and the other

layer (call this layer 2) counter-clockwise by θ
2
. Making the standard Dirac approximation

for wavefunctions at the Dirac points, we are lead to the following Hamiltonian describing

electrons near to the K-points of the respective layers which are coupled through an “inter-

layer coupling potential” T (r)

H =

−iv0σθ/2 ·∇ T (r)

T †(r) −iv0σ−θ/2 ·∇

 , (III.1)

where σθ = e−i
θ
2
σ3σei

θ
2
σ3 and σ = (σ1, σ2) is the vector of Pauli matrices, acting on

L2(R2;C4) with domain H1(R2;C4). Note that H ignores possible interactions between elec-

trons with quasi-momentum away from the K-points of each layer, e.g., with the K ′-points

of each layer. Since the Fermi level occurs at the Dirac energy and interactions between

K and K ′ points are small for small twist angles3, this is a reasonable simplification. The

Hamiltonian (III.1) acts on wavefunctions

ψ(r) =
(
ψA1 (r), ψB1 (r), ψA2 (r), ψB2 (r)

)
where ψστ (r) represents the electron density near to the K point (in momentum space) on

sublattice σ and on layer τ .

Under quite general assumptions, the inter-layer coupling has the following form3:

T (r) =

 wAA(e−iq1·r + e−iq2·r + e−iq3·r) wAB(e−iq1·r + e−iq2·re−iφ + e−iq3·reiφ)

wAB(e−iq1·r + e−iq2·reiφ + e−iq3·re−iφ) wAA(e−iq1·r + e−iq2·r + e−iq3·r)

 ,

(III.2)

where

q1 = kθ

(
0,−1

)
, q2,3 =

kθ
2

(
±
√

3, 1
)
.

Here kθ = 2kD sin(θ/2) is the distance between the K points of the different layers, and

kD = |K1| = |K2| is the distance from the origin to the K point of either layer. Let φ := 2π
3

,

then q2 = Rφq1 and q3 = Rφq2 where Rφ is the matrix which rotates counterclockwise by

7



Existence of Magic Angle for Twisted Bilayer Graphene

φ. Note that (III.2) is written in such a way as to show clearly which couplings are between

the A lattices of the layers (proportional to wAA and occuring on the diagonal) and between

the A and B lattices (proportional to wAB and occuring off the diagonal).

A. Translation and rotation symmetries of the Bistritzer-MacDonald model

The operator H essentially describes coupling on the scale of the bilayer moiré pattern.

The moiré lattice vectors are

a1 =
2π

3kθ

(√
3, 1
)
, a2 =

2π

3kθ

(
−
√

3, 1
)
.

We denote the moiré lattice generated by these vectors as Λ. It is straightforward to check

that H commutes with the “phase-shifted” moiré translation operators

τvf(r) := diag(1, 1, eiq1·v, eiq1·v)τ̃vf(r), τ̃vf(r) = f(r + v),

for all v ∈ Λ.

The operator also has rotational symmetry. Let Rφ be the matrix which rotates vectors

by φ counter-clockwise

Rφ =

−1
2
−
√
3
2

√
3
2
−1

2

 .

Then H commutes with the “phase-shifted” rotation operator

R̃f(r) := diag(1, e−iφ, 1, e−iφ)Rf(r), Rf(r) = f(Rφr).

B. Deriving TKV from BM

The first step to deriving Tarnopolsky-Kruchkov-Vishwanath’s chiral model is to set

wAA = 0 in the Bistritzer-MacDonald model. Physically, this assumption is motivated by

the observation that relaxation effects penalize the AA-stacking configuration, so that one

expects4 |wAA| � |wAB|.

With this simplification, conjugatingH → VθHV
†
θ (here † represents the adjoint/Hermitian

transpose) by

Vθ := diag(eiθ/4, e−iθ/4, e−iθ/4, eiθ/4)

8
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removes the explicit θ dependence of the Hamiltonian (although H still depends on θ through

q1, q2, q3) so that

H =

−iv0σθ/2 · ∇ TAB(r)

T †AB(r) −iv0σ−θ/2 · ∇


where

TAB =

 0 wAB(e−iq1·r + e−iq2·re−iφ + e−iq3·reiφ)

wAB(e−iq1·r + e−iq2·reiφ + e−iq3·re−iφ) 0

 .

Conjugating once more H → ρHρ† by

ρ =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


yields

H =

 0 D†

D 0

 , D =

 −2iv0∂ wABU(r)

wABU(−r) −2iv0∂

 ,

where ∂ = 1
2
(∂x + i∂y) and U(r) = e−iq1·r + eiφe−iq2·r + e−iφe−iq3·r.

After changing variables r → kθr and re-scaling the qi →
qi
kθ
, i = 1, 2, 3, we derive

H =

 0 D†

D 0

 , D =

 −2iv0kθ∂ wABU(r)

wABU(−r) −2iv0kθ∂

 .

Finally dividing by v0kθ and defining

α :=
wAB
v0kθ

yields the TKV Hamiltonian stated in the main text.
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