
1

Adaptive Gradient Descent Bit-Flipping Diversity
Decoding

Srdan Brkic, Member, IEEE, Predrag Ivaniš Senior Member, IEEE and Bane Vasić Fellow, IEEE

Abstract—In this letter we propose a novel framework for
designing decoders, for Low-Density Parity Check (LDPC) codes,
that surpasses the frame error rate performance of Belief-
Propagation (BP) decoding on binary symmetric channels. Its
key component is the adaptation method, based on the genetic
optimization algorithm, that is incorporated into the recently pro-
posed Gradient Descent Bit-Flipping Decoding with Momentum
(GDBF-w/M). We show that the resulting decoder outperforms
all state-of-the-art probabilistic bit-flipping d ecoders a nd, addi-
tionally, it can be trained to perform beyond BP decoding, which
is verified by numerical examples that include codes used in IEEE
802.3an and 5GNR standards. The proposed framework provides
a systematic method for decoder optimization without requiring
knowledge of trapping sets. Moreover, it is applicable to both
regular and irregular LDPC codes.

Index Terms—Belief-propagation, error-floors, g radient de-
scent bit-flipping, g enetic a lgorithm, l ow-density parity-check
codes.

I. INTRODUCTION

BELIEF propagation (BP) is the state-of-the-art algorithm
used for decoding low-density parity-check (LDPC)

codes, as it provides reasonably good decoding performance
on a variety of communication channels. The BP decoder is
also credited for LDPC codes approaching Shannon capacity
on Gaussian noise channels and binary symmetric channels
(BSCs). Its hardware-friendly versions are used in protocols
that involve LDPC codes, like the fifth-generation standard
for broadband cellular networks (5GNR), or IEEE 802.3an
networks.

However, on short and medium length LDPC codes, the
BP performance is far from the maximum-likelihood (ML)
performance bounds. This behavior of the BP decoder is
attributed to unavoidable dense structures in Tanner graphs
of finite-length LDPC codes, referred to as trapping sets.
Over the years, significant effort was made to identify such
structures and to design more resilient decoders (e.g., see [1]
and references therein). This led to the development of the
Finite Alphabet Iterative Decoders (FAIDs), which surpass the
BP on regular column weight-3 codes [2]. However, designing
a FAID for higher column-weights or for irregular LDPC codes
is challenging, as those codes contain a significantly larger
variety and a larger number of trapping sets.

To circumvent this problem, recent attempts to build su-
perior decoders are oriented towards incorporating artificial

S. Brkic and P. Ivaniš are with the University of Belgrade, School of
Electrical Engineering, 11000 Belgrade, Serbia (e-mails: srdjan.brkic@etf.rs,
predrag.ivanis@etf.rs).

B. Vasić is with the University of Tucson, Department of ECE, Tucson,
Arizona (e-mail: vasic@ece.arizona.edu).

intelligence concepts into decoder design. Nachmani et al.
showed in [3] that the BP decoder represents only a variant of
sparse deep neural network (DNN) and that its performance
can be improved via training and back-propagation weight
updating. The idea was further elaborated by Lugosch and
Gross [4] and especially by Xiao et al. [5], where recurrent
quantified DNNs are used to design FAIDs that converge
faster than the BP. In the most recent publication [6], the
same authors showed that, for short regular LDPC codes, it
is possible to build a diversity of complement DNN-based
FAIDs. However, due to the complexity of the proposed DNN
framework, it is uncertain if it can be extended to longer or
higher column-weight codes. In another research direction,
DNNs are not used to train the decoder, but rather as a
part of the decoding process [7]–[9]. Although such decoding
schemes can operate beyond BP, their complexity is high, and
the majority of them are restricted to very short LDPC codes.

Until recently, bit-flipping decoders were not considered to
be competitive with the BP decoding (and its simplifications).
It has been reported that newly proposed solutions [10]–[14],
that emerged from the gradient descent bit-flipping (GDBF)
decoder, originally proposed by Wadayama et al. [15], in
some cases, perform relatively close to the BP decoding on
the BSC. The GDBF decoder tries to solve the ML decoding
problem by using the gradient descent optimization. In each
decoding iteration, the GDBF decoder flips bit values in order
to minimize the ML objective function, i.e., bits with the
lowest energy. However, being only an approximation of the
ML decoder, the GDBF decoder frequently gets stuck at
local optima (trapping sets). It is widely assumed that the
optimal way to break a trapping set is to insert randomness
into the decoding process, as the best bit-flipping decoders
employ random generators [10]–[14]. It was shown in [16]
that the probabilistic GDBF (PGDBF) decoder can approach
even the ML decoding bound, if an unbounded number of
iterations is allowed. For example, the Information Storage Bit
Flipping (ISBF) decoder, proposed by Cui et al. [12], defines
two flipping thresholds and flips only a portion of randomly
chosen bits, with the energy beyond the thresholds. In the
most recent publication [14], Savin added the momentum term
to the PGDBF energy function and showed that (P)GDBF
decoder with momentum ((P)GDBF-w/M) closely approaches
the performance of the floating-point BP decoding.

In this letter we propose a novel framework for designing
decoders on the BSC, that surpass the BP decoder in the error
floor region. Our framework couples GDBF-w/M decoders
with different parameters into a unified diversity decoder,
while parameters of the component decoders are learned by

2

employing genetic algorithm optimization. The constructed di-
versity decoder outperforms state-of-the-art PGDBF-w/M and
ISBF decoders. More importantly, for the proposed framework,
it is immaterial if an LDPC code is regular or irregular, low
or high-variable degree or what the code rate is, and can
be constructed without explicit knowledge of trapping sets.
This - to the best of our knowledge - makes it unique. In
addition, the diversity decoder is purely deterministic (it does
not use random number generators), and for regular codes can
be implemented by using only integer arithmetic.

II. ADAPTIVE GDBF DIVERSITY DECODING

A. State-of-the-art Decoder Description

Consider an arbitrary chosen LDPC code (N,K), with a
code rate R = K/N and parity check matrix H = [hji]M×N ,
used to increase reliability of transmission through the BSC
with crossover probability α. Each code bit (variable) vi (N ≥
i ≥ 1) is associated with a set of parity equations P(vi) =
{j|hji = 1}, where the cardinality γi = |P(vi)| represents
the weight of the column, that corresponds to the variable vi.
Similarly, ρj denotes weight (number of ones) of the j-th row
of H. If γi = γ, ∀i and ρj = ρ ∀j, the code is regular,
otherwise we speak of an irregular code. In the rest of the
manuscript, if not stated otherwise, we will assume regular
codes. The output of the BSC (channel vector), is denoted by
y = (y1, y2, . . . , yN), where y ∈ {0, 1}N .

The GDBF-w/M decoder, in each iteration, calculates the
inverse energy of variables and flips the variables with the
highest inverse energy. Let x(ℓ) be a vector of variable
estimates from the ℓ-th decoding iteration and corresponding
syndrome is defined as s(ℓ) = x(ℓ) ×HT , where T denotes
matrix transposition. Initial variable estimates are received
from the channel, i.e., x(0) = y. Consider now the inverse
energy associated with the i-th variable in the ℓ-th iteration

E(ℓ)(vi) = a(x
(ℓ)
i ⊕ yi) + b

∑
j∈P(vi)

s
(ℓ)
j −mℓi , (1)

where a and b are positive scaling constants1, ℓi is the number
of iterations, passed from the last flip of the variable vi, while
m = (m1, . . . ,mL) is a predefined momentum vector that
contains non-negative integers sorted in non-increasing order
[14], i.e., m1 ≥ m2 . . . ≥ mL′ ≥ 0 = mL′+1 = . . . = mL,
where L represents the maximal number of decoding itera-
tions. Note that we limit the effect of momentum to at most
L′ consecutive iterations, meaning mℓi = 0 for all ℓi > L′,
while ℓi values are initialized to L for all variables.

A flipping rule is the following

x
(ℓ+1)
i =

{
x
(ℓ)
i if E(ℓ)(vi) = E

(ℓ)
th

x
(ℓ)
i otherwise,

(2)

where x represents complement of x and

E
(ℓ)
th = max

1≤i≤N
E(ℓ)(vi). (3)

1In case of an irregular code it is possible to associate different scaling
constants to variables with different weights.

Decoding halts when all parity checks are satisfied, i.e.,
x(ℓ+1) ×HT = 0, or when the maximal number of iterations
L is reached – in which case the decoder fails.

In a probabilistic version of the algorithm, called the
PGDBF-w/M decoder, variables with inverse energy E

(ℓ)
th are

not flipped automatically, but with some predefined probabil-
ity, that is channel and code specific.

To summarize, the GDBF-w/M decoder, x(ℓ) = Dec(y),
applied to its input y and producing the output x(ℓ) at the ℓ-th
iteration, is specified by the following parameters: the decoder
input y, the maximum number of iterations L, scaling values
a and b and the momentum vector m. The parameters are
organized in a 5-tuple (y, L, a, b,m).

B. Diversity Decoding and Parameters Adaptation

Consider a collection of MD decoders D =

L

{Dec1, Dec2, . . . , DecMD }, wherein Dect is a component
GDBF-w/M decoder with parameters (zt, Lt, at, bt, mt).
The output of the t-th decoder is xt = Dect(zt) where
zt = (1 − rt)xt−1 + rty, wherein rt ∈ {0, 1} are binary
“restart” switches (and x0 = y). In other words, the
component decoders are run sequentially, i.e., Dect+1 is
employed in the case of Dect failure, and the next component
decoder has a choice of either: (i) using the codeword
estimate/output of the previous decoder as an input (rt = 0),
or (ii) starting from the channel vector (rt = 1). We refer
to the above concatenation as an adaptive diversity GDBF
decoder (AD-GDBF), and denote it as D. The values rt, at,
bt, and mt are subject to the numerical optimization, while
in the rest of the manuscript we consider that Lt is fixed
and empirically chosen. Furthermore, we consider that the
momentum length L′ is fixed for all the component decoders.

It is important to note that the restart switches play a
critical role in the diversity decoder, and are motivated by
findings reported in [11], [16], where it was shown that a
probabilistic bit-flipping decoder, in some cases, provides a
codeword estimate that contains significantly more errors than
the channel output vector. The frequent momentum updates -
while not random - may cause a similar behavior. We prevent
this by allowing decoder restarts.

We next provide a back-of-the-envelope calculation of the
number of possible decoder configurations. L et u s b ound the
maximal momentum value by some positive integer I , i.e.,
mℓi ∈ S = {0, 1, . . . , I}. Then, we form a set that collects all
possible momentum vectors m as R = {m|mi ∈ S ∧ mi ≥
mi+1 ∧ mi = 0, L ≥ i > L′}, (

I+
where

L′) according to the
basic combinatorial analysis |R| = ′ . Let us also, for
the sake of simplicity of this calculation, assume that at
and bt are fixed for the entire diversity set, while we can
optimize MD momentum vectors and MD−1 binary switches.
It directly follows that the total number of realizations is
|R|MD × 2MD−1. For example, if MD = 10 and L′ = 5,
we can choose to design the decoder among ≈ 1020 diversity
realizations. Note also that in [14] the momentum values were
optimized through exhaustive search over a discretized set of
values; however, in our decoder, due to increased number of
diversity configurations, such search was not feasible.

3

III. DECODER SELECTION STRATEGY

The goal is to optimize the diversity set D, for a total
number of iterations L and the BSC crossover probability α, in
order to minimize frame error rate (FER), denoted by Φ(D, α),

min
D

Φ(D, α)

s.t.
MD∑
t=1

Lt = L. (4)

We propose that the optimization parameters are quantized
to finite p recision, i n o rder t o s implify t he o ptimization pro-
cess, as well as the actual realization of the decoder. For
each optimization parameter, prior to optimization, we define
a set of possible values. In the rest of the manuscript a set
of possible values of a parameter x is denoted as L(x);
specially, L(mt) = R. Then, each optimization parameter can
be encoded in a binary form, and the optimization problem (4)
can be solved by the standard genetic algorithm (GA) [17].

The first step of the optimization procedure is to collect error
patterns, that will be used to train the decoder D. We simply use
the GDBF decoder with a = 1, b = 1 and m = 0 (denoted by
Dec0) for L0 iterations and perform Monte-Carlo simulation to
obtain a set of uncorrectable error patterns E(0). The cardinality
of E(0) is proportional to discrepancy between performance of
Dec0 and desired FER, which may be several orders of
magnitude large and lead to training sets with sizes measured in
tens of thousands patterns, in which case training all the
component decoders jointly is computationally hungry. Instead,
we propose to conduct training in several rounds. We denote
the decoder, designed after the k-th training round, by D(k) =
{Dec1, . . . , Deck}, and a pattern set correctable by this
decoder ED(k) . Then, a set of uncorrectable patterns, used in the
(k + 1)-th training round, is E(k) = E(k−1) \ ED(k) . When, after
a training round k, the number of uncorrectable patterns is
below a predefined threshold Nup, i.e, |E(k)| < Nup, in the (k +
1)-th training round, all the remaining component decoders
{Dk+1, . . . , DMD } are jointly optimized. Given the fact that
the initial set E(0) contains limited portion of patterns
uncorrectable with the GDBF decoder, there is a strong pos-
sibility that learning to decode all patterns from E(0) leads to
overfitting, and consequently the decoder designed in such way
may not be optimal. This means that a relatively high positive
number Nlow needs to be chosen and only if |E(k)| ≥ Nlow the
decoder D(k) represents the solution. If |E(k)| < Nlow, the set of
uncorrectable patterns E(k−1) needs to be expanded by
performing Monte-Carlo simulation on the decoder D(k−1).
The optimization strategy is expressed in Algorithm 1.

We next design the AD-GDBF decoder for a famous quasi-
cyclic code with length N = 155 and code rate R = 0.4, called
the Tanner code. We collected 11250 error patterns,
uncorrectable for the GDBF decoder, for α = 0.02 and
obtained Φ(Dec0, 0.02) ≈ 0.0045. Then, by using the GA, we
jointly trained MD = 10 component decoders, with Lt = 30,
∀t. We randomly chose 20 binary chromosomes, with lengths
calculated in Algorithm 1, to represent the initial population.
In each iteration of the GA, called a generation, the number
of corrected patterns from the training set is calculated and

Algorithm 1 Decoder selection strategy

Input: MD, R, L(at) L(bt), Lt, Nup, Nlow, α
Dec0 ← (y, L0, a0 = 1, b0 = 1, m0 = 0)
Monte-Carlo simulation on Dec0 and α to obtain E(0) k ←
0, δ ← 1
while k < MD do

i← k
if |E(i)| > Nup then
k ← i+ 1

else
k ←MD

end if
∆ = (k − i)(⌈log2 |R|⌉+ 1)− δ, δ ← 0
Number of binary genes in a chromosome:
Nb = ∆+

∑k
j=i

[
⌈log2 |L(aj)|⌉+ ⌈log2 |L(bj)|⌉

]
GA fitness function: maximize |ED(k) |
Perform GA to obtain {Deci+1, . . . ,Deck}
E(k) = E(t) \ ED(k)

if |E(k)| < Nlow then
Monte-Carlo simulation on D(i) and α to obtain Eadd
E(i) ← E(i) ∪ Eadd, k ← i

end if
end while
Output: D(MD) = {Dec1, . . . ,DecMD

}

used as fitness associated with an individual chromosome. In
Fig. 1 (a) we show how FER changes after each generation.
Interestingly, even among randomly chosen decoders (that cor-
respond to the initial population), good decoders can be found
and FER before the optimization is approximately 6.5×10−5.
We observed that by increasing the diversity size MD with
randomly chosen component decoders, FER is reduced. It
follows that frequent parameter changes manifest as random
perturbations of the inverse energy, and our decoder behaves
similarly as probabilistic decoders, without employment of
random generators. The GA reduces the number of iterations
required to achieve the desired FER or, in the above example,
reduces FER (approximately three times) for the same number
of iterations. We achieved the same FER with random decoder
selection only if 600 iterations were allowed. In Fig. 1 (b) we
show the performance of the AD-GDBF decoders, designed
for different numbers of iterations.

It is beyond the scope of this letter to provide proof that
the performance of the AD-GDBF decoder approaches the ML
decoding bound, but experimental evidence and our numerical
results reveal that, after a sufficiently large number of itera-
tions, the decoder always converges to a valid codeword - an
observation that warrants further investigation. We strengthen
our claim with an example, in which we show that the
AD-GDBF decoder can be used to provide guaranteed error
correction on the Tanner code. From [2] it is known that
the best FAID can correct all weight-5 error patterns on the
Tanner code, but fails on 29294 specific weight-6 patterns.
We have trained our decoder to correct all weight-6 patterns,
uncorrectable by the FAID, with only 210 iterations, as shown
in Fig. 1 (c). The BP decoder, on the other hand, even with

4

0 10 20 30 40 50 60 70 80 90

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7
10

-5

(a) The GA optimization

0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

(b) Frame error rate

0 100 200 300 400 500 600 700 800 900 1000

0

0.5

1

1.5

2

2.5

3
10

4

(c) Uncorrectable weight-6 error patterns

Fig. 1: Performance of the AD-GDBF on the Tanner code.

0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

(a) iRISC code (R = 0.5, γ = 4)

5 6 7 8 9 10 11 12

10
-3

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

(b) IEEE 802.3an (R = 0.84, γ = 6)

10
-3

10
-2

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

(c) 5GNR irregular code (R = 0.75)

Fig. 2: Performance of the AD-GDBF decoder on various LDPC codes.

1000 iterations, cannot correct the majority of patterns.

IV. NUMERICAL RESULTS

In this section, we present numerical results obtained by
Monte-Carlo simulation. For each considered LDPC code and
the maximum number of iterations L, we choose relatively low
BSC crossover probability α and design the AD-GDBF
decoder, assuming Nlow = 50, Nup = 1000 and L0 = 30. For
regular codes, we have L(at) = L(bt) = {1, 2, 3, 4}, L′ = 4
and I = 5, while the number of iterations Lt is code dependent,
and chosen empirically, with the constraint L1 ≥ L0, to ensure
that with high probability Dec1 corrects all the error patterns
correctable with Dec0. Typically, we adapt momentum and
scaling values after every 30 to 50 iterations. For the irregular
code, the scaling values are rational numbers, in a range
between 1 and 7, chosen from a set with 64 different values.
Due to space limitations, we here do not give exact learned
momentum and scaling parameter values. Instead, they are
publicly available together with parity check matrices in [18].
We run flooding scheduled BP decoders for 100 iterations,
given the fact that further increasing the number of iterations
will not significantly affect FER.

In Fig. 2 (a) we examine performance of the AD-GDBF
decoder on a quasi-cyclic (QC) code, called the iRISC code,
with γ = 4, code rate R = 0.5 and length N = 1296. We show
superiority of the AD-GDBF decoder compared to (P)GDBF-
w/M and ISBF decoders, for the same number of decoding
iterations considered in [13] and [14] (L = 300). For the case of
L = 300 iterations, the presented AD-GDBF performance
curve is obtained by combining two decoders, one designed for
the crossover probability α = 0.03 and another for other
operational points, marked as black circles in Fig. 2 (a).

In Fig. 2 (b) we show the AD-GDBF decoder performance
on the code proposed in IEEE 802.3an standard (R = 0.84,
N = 2048) and again illustrate its superiority compared to
the PGDBF-w/M decoders and its possibility to surpass the
BP decoder. To show adaptability of our framework to certain
error-patterns, we have also designed a different AD-GDBF
decoder, which is employed only when the BP decoder fails
to correct an error pattern. We witness that applying the AD-
GDBF decoder as the post-processor for L = 1000 iterations
can lower the error-floor o f t he B P d ecoder b y a n o rder of
magnitude. Finally, in Fig. 2 (c), we show the performance
of the 5GNR code with N = 1276 and R = 0.75 and validate
the proposed framework on an irregular code.

5

TABLE I: Complexities of different decoders.

AD-GDBF OMS ISBF
Additions (2 + β)NL (2γN + ρM)L > NL

MC (N − 1)L M(2ρ− 3)L > NL
EC NL MρL > NL

XOR (N +M(ρ− 1))L M(2ρ− 1)L (N +M(ρ− 1))L

V. CONCLUSION

In this letter we proposed a decoding framework, capable
of surpassing the BP decoder in the error-floor r egion. We
verified the performance of our decoder on numerous examples
and showed its effectiveness, especially on codes with higher
code rates. The main feature of the proposed solution is the
possibility to adapt to error patterns specific to a certain LDPC
code. Thus, quality of the decoder is mostly influenced by error
pattern sets, used to train the decoder.

APPENDIX (A NOTE ON COMPLEXITY)
Here we give an estimate of the complexity of the AD-

GDBF decoder, when applied to regular codes, and compare
it with the fixed p oint O ffset M in-Sum (OMS) a nd t he ISBF
decoders (Table I). The AD-GDBF decoder employs integer
adders, integer comparators and 2-input XORs. Note that
calculating the inverse energy requires two integer additions
per code bit, while the energy threshold can be obtained by
using N − 1 magnitude comparators (MC). Finally, selecting
bits for flipping c an b e d one w ith N e quality comparators
(EC). It is worth noting that multiplications are unnecessary,
because scaling with 2 and 4 can be accomplished through
decimal point shifting, whereas multiplication of an integer x
by 3 can be accomplished through the use of an adder (x+2x).
We denote by β, 0 ≤ β ≤ 2, the number of such adders per
decoding iteration. We neglect i) operations required to
calculate the values ℓi, 1 ≤ i ≤ N , defined in Section II-A, and
ii) counters of unsatisfied checks, as the majority of variables
will have all satisfied checks. We estimate the complexity of
the OMS decoder by counting operations listed in [19].

A single AD-GDBF decoder iteration requires approxi-
mately 3(ρ − 1)M/N times fewer comparators and (2γ + ρM/
N)/(2 + β) times fewer adders, than an OMS decoding
iteration. For the Tanner code, we designed the AD-GDBF
decoder that, if performs 300 iterations (with β = 0.9), requires
the same number of adders, as the OMS decoder that performs
97 iterations, and the same number of comparators, as the OMS
decoder that performs only 83 iterations. We also see that the
AD-GDBF decoder, designed for the IEEE 802.3an code, that
performs 1000 iterations (with β = 0.35), is superior in the
error-floor region compared to the BP (performs 100
iterations), while at the same time has the complexity of the
OMS decoder with approximately 140 iterations.

The complexity of the AD-GDBF decoder designed for the
code given in Fig. 2 (a) is the same as the complexity of the
GDBF-w/M decoder, as scaling is performed without using
additional adders [18]. Furthermore, the PGDBF-w/M decoder
requires additional random number generators (RNGs), which
means that it is more complex than the AD-GDBF decoder.
The ISBF decoder requires fewer additions, compared to
the AD-GDBF decoder, but more comparators and additional
RNGs.

ACKNOWLEDGEMENT

Srdan Brkic and Predrag Ivaniš acknowledge the support of
the Science Fund of the Republic of Serbia, grant No 7750284,
Hybrid Integrated Satellite and Terrestrial Access Network
- hi-STAR. Bane Vasić acknowledges the support of NSF
under grants CCF-1855879, CCF-2106189, CCSS-2027844,
CCSS-2052751 and CCF-2100013 and NASA through the
Strategic University Research Partnerships (SURP) program.
Bane Vasić has disclosed an outside interest in Codelucida to
the University of Arizona.

REFERENCES

[1] N. Raveendran, D. Declercq, and B. Vasić, “A sub-graph expansion-
contraction method for error floor computation,” IEEE Trans. Commun.,
vol. 68, no. 7, pp. 3984–3995, July 2020.

[2] D. Declercq, B. Vasić, S. Planjery, and E. Li, “Finite alphabet iterative
decoders–part II: Towards guaranteed error correction of LDPC codes
via iterative decoder diversity,” IEEE Trans. Commun., vol. 61, no. 10,
pp. 4046–4057, Oct. 2013.

[3] E. Nachmani, Y. Be’ery, and D. Burshtein, “Learning to decode linear
codes using deep learning,” in Proc. 54th Annu. Allerton Conf. Commun.,
Control, Comput. (Allerton), Sep. 2016.

[4] L. Lugosch and W. J. Gross, “Neural offset min-sum decoding,” in Proc.
IEEE Int. Symp. Inf. Theory (ISIT), June 2017.

[5] X. Xiao, B. Vasić, R. Tandon, and S. Lin, “Designing finite alphabet iter-
ative decoders of LDPC codes via recurrent quantized neural networks,”
IEEE Trans. Commun., vol. 68, no. 7, pp. 3963–3974, July 2020.

[6] X. Xiao, N. Raveendran, B. Vasić, S. Lin, and R. Tandon, “FAID
diversity via neural networks,” in Proc. 2021 11th Inter. Symp. on Topics
in Coding (ISTC), Aug. 2021.

[7] A. Buchberger, C. Hager, H. Pfistery, L. Schmalenz, and A. G. Amat,
“Learned decimation for neural belief propagation decoders,” in Proc.
ICASSP 2021 - 2021 IEEE Inter. Conf. on Acoustics, Speech and Sig.
Process. (ICASSP), June 2021.

[8] F. Liang, C. Shen, and F. Wu, “An iterative BP-CNN architecture for
channel decoding,” IEEE Journal of Select. Topics in Sig. Process.,
vol. 12, no. 1, pp. 144–159, Feb. 2018.

[9] J. He, “A deep learning-aided post-processing scheme to lower the error
floor of LDPC codes,” in Proc. 2020 IEEE 20th Inter. Conf. on Commun.
Technology (ICCT), Oct. 2020.

[10] O. A. Rasheed, P. Ivanis, and B. Vasić, “Fault-tolerant probabilistic
gradient-descent bit flipping decoder,” IEEE Commun. Letters, vol. 18,
no. 9, pp. 1487–1490, Sep. 2014.

[11] T. Tithi, C. Winstead, and G. Sundararajan, “Decoding LDPC codes
via noisy gradient descent bit-flipping with redecoding,” 2015, [Online].
Available: http://arxiv.org/abs/1503.08913.

[12] H. Cui, J. Lin, and Z. Wang, “An improved gradient descent bit-flipping
decoder for LDPC codes,” IEEE Trans. Circuits and Systems I: Regular
Papers, vol. 66, no. 8, pp. 3188–3200, Aug. 2019.

[13] ——, “Information storage bit-flipping decoder for LDPC codes,” IEEE
Trans. Very Large Scale Integ. Syst., vol. 28, no. 11, pp. 2464–2468,
Nov. 2020.

[14] V. Savin, “Gradient descent bit-flipping decoding with momentum,” in
Proc. 2021 11th Inter. Symp. on Topics in Coding (ISTC), Aug. 2021.

[15] T. Wadayama, K. Nakamura, M. Yagita, Y. Funahashi, S. Usami, and
I. Takumi, “Gradient descent bit flipping algorithms for decoding LDPC
codes,” IEEE Trans. Commun., vol. 58, no. 6, pp. 1610–1614, June 2010.

[16] B. Vasić, P. Ivanis, D. Declercq, and K. LeTrung, “Approaching maxi-
mum likelihood performance of LDPC codes by stochastic resonance in
noisy iterative decoders,” in Proc. 2016 Inform. Theory and Applications
Workshop (ITA 2016), Feb. 2016.

[17] M. Melanie, An Introduction to Genetic Algorithms. Cambridge,
Massachusetts: The MIT Pres, 1996.

[18] “Database of codes and decoders for analysis of AD-GDBF,”
https://github.com/brka05/AD-GDBF-decoders.

[19] V. Petrovic, M. Markovic, D. E. Mezeni, L. Saranovac, and A. Radose-
vic, “Flexible high throughput QC-LDPC decoder with perfect pipeline
conflicts resolution and efficient hardware utilization,” IEEE Trans.
Circuits and Systems–I: Regular papers, vol. 67, no. 12, pp. 5454–5467,
Dec. 2020.

