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Research on plant-pollinator interactions requires a diversity of perspectives 

and approaches, and documenting changing pollinator-plant interactions due 

to declining insect diversity and climate change is especially challenging. 

Natural history collections are increasingly important for such research and 

can provide ecological information across broad spatial and temporal scales. 

Here, we describe novel approaches that integrate museum specimens from 

insect and plant collections with field observations to quantify pollen networks 

over large spatial and temporal gradients. We present methodological 

strategies for evaluating insect-pollen network parameters based on pollen 

collected from museum insect specimens. These methods provide insight into 

spatial and temporal variation in pollen-insect interactions and complement 

other approaches to studying pollination, such as pollinator observation 

networks and flower enclosure experiments. We present example data from 

butterfly pollen networks over the past century in the Great Basin Desert and 

Sierra Nevada Mountains, United States. Complementary to these approaches, 

we describe rapid pollen identification methods that can increase speed and 

accuracy of taxonomic determinations, using pollen grains collected from 

herbarium specimens. As an example, we describe a convolutional neural 

network (CNN) to automate identification of pollen. We extracted images of 

pollen grains from 21 common species from herbarium specimens at the 

University of Nevada Reno (RENO). The CNN model achieved exceptional 

accuracy of identification, with a correct classification rate of 98.8%. These 

and similar approaches can transform the way we estimate pollination 

network parameters and greatly change inferences from existing networks, 

which have exploded over the past few decades. These techniques also allow 

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://doi.org/10.3389/fevo.2022.924941
mailto:bbalmaki@unr.edu
https://doi.org/10.3389/fevo.2022.924941
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fevo.2022.924941/full
https://www.frontiersin.org/articles/10.3389/fevo.2022.924941/full
https://www.frontiersin.org/articles/10.3389/fevo.2022.924941/full
https://www.frontiersin.org/articles/10.3389/fevo.2022.924941/full
https://www.frontiersin.org/articles/10.3389/fevo.2022.924941/full
http://crossmark.crossref.org/dialog/?doi=10.3389/fevo.2022.924941&domain=pdf&date_stamp=2022-08-30
https://www.frontiersin.org/journals/ecology-and-evolution


Balmaki et al. 10.3389/fevo.2022.924941 

Frontiers in Ecology and Evolution 02 frontiersin.org 

 

 

 
 
 

us to address critical ecological questions related to mutualistic networks, 

community ecology, and conservation biology. Museum collections remain 

a bountiful source of data for biodiversity science and understanding 

global change. 
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convolutional neural network 

 
 
 
 

Introduction 

Global change is one of the most pressing issues for 
modern ecologists, and increases in habitat loss, fragmentation, 
climate change, invasive species, and pollutants are leading to 
unprecedented losses of biological diversity and less reticulate 
ecological networks (Alarcon et al., 2008; Ferrarini et al., 2017; 
Harrison et al., 2020; Salcido et al., 2020; Wagner et al., 
2021). Pollination is one of the essential ecosystem services 
impacted by global change, but it is difficult to document these 
impacts without thorough natural history observations of plant- 
pollinator associations and estimates of network relationships 
(Seltmann et al., 2017; Balmaki et al., 2022). 

Entomopalynology, the study of pollen grains associated 
with insects, is a relatively new approach developed to track 
pollination ecology through time and space (Jones and Jones, 
2001). This approach has recently received greater attention 
and has provided more demand for museum specimens because 
insects collected across different temporal or spatial gradients 
provide invaluable data for reconstructing networks of insect- 
pollen interactions. A limited number of studies have used 
this method to estimate parameters related to bee pollination 
biology (Silberbauer et al., 2004; Wood et al., 2019). Expanding 
this approach to other insects that are important pollinators, 
such as Lepidoptera, can reveal unique aspects of pollen-insect 
interaction networks, and their sensitivity or resilience to change 
(Balmaki et al., 2022). 

Pollen grains are the common currency of pollination 
ecology. Insects may consume, passively carry, or actively 
transport pollen (to a stigma or other plant parts), and pollen 
grains can cover an insect’s body, either passively through the 
air column, or actively while an insect is feeding on nectar or 
pollen (Jones, 2012a,b, 2014). Analysis of pollen grains on the 
body of a pollinator can reveal dietary associations and patterns 
of floral visitation. Examining pollen grains on pollinators 
approximates a measure of pollen availability, and with repeated 
sampling can illustrate changes in plant-pollinator interactions 
over time. Tracking these changes is key to understanding the 
effects of environmental change on pollination ecology. Precise 
and quantitative descriptions of plant-pollinator interactions 
are required to make inferences about changing interaction 

networks, and pollination ecosystem services through time, and 
analysis of pollen on insect specimens is a powerful approach to 
address this need (Burkle et al., 2013). 

Traditional palynology, the study of pollen grains and 
spores, depends on morphological characters of pollen 
grains to identify pollen taxa. Typical morphological traits 
used to distinguish pollen include general shape, polarity, 
symmetry, apertures, size, and ornamentation. Nevertheless, 
the morphological similarities of pollen grains make it difficult 
to effectively use these features to identify pollen species quickly 
and accurately. In addition, identifying pollen grains under 
the microscope is time-consuming and expensive, and the 
results are typically dependent on partly-subjective criteria 
for identifications that are associated with a relatively high 
error rate (Gonçalves et al., 2016; Sevillano et al., 2020). 
Alternatively, pollen metabarcoding is a high-throughput 
approach that can characterize multiple taxa in a mixed sample, 
but is frequently unable to resolve lower taxonomic levels, 
and is not an effective method for estimating abundance (Bell 
et al., 2017). While some studies using pollen identification 
only warrant a coarse level of taxonomic resolution (family), 
most approaches to insect-pollen networks benefit from finer 
taxonomic resolution, at the level of species. An effective 
method for pollen identification should be efficient, precise, 
and accurate, and machine learning approaches are well suited 
for this goal. Here, we provide an example using convolutional 
neural networks (CNN) which is a deep learning algorithm 
that can be part of an integrated approach to collections-based 
research. The approach should be especially useful for museums 
with large herbaria and entomological collections, because 
pollen can be collected from herbarium specimens as well as 
insects (Daood et al., 2016; Carranza-Rojas et al., 2017; Romero 
et al., 2020; Polling et al., 2021). 

We analyzed a plant-pollinator interaction network using 
museum specimens collected in the Great Basin Desert and 
Sierra Nevada Mountains and stored at the University of 
Nevada, and our goal here is to present these methods and 
analytical tools to encourage adoption in other collections. The 
main objectives of these methodological innovations are to 
quantify historic and contemporary pollen-butterfly interaction 
networks, and to use this information for hypothesis testing 
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about changes in pollination networks in response to extreme 
weather events and other commonly measured parameters of 
global change. This approach will transform the way we quantify 
pollinator networks and present an efficient alternative to pollen 
identification that provides reliable species-level accuracy. 

With this integrative approach to studying plant-pollinator 
interactions using museum specimens, it is possible to address 
important questions in ecology and conservation biology, such 
as: How have plant-pollinator interaction networks changed 
over time? Is climate change associated with changes in 
interaction networks? How do habitat loss, fragmentation, 
biological invasions, and other disturbances affect these 
networks? Can we improve accuracy and decrease the time- 
consuming methods of pollen grain identifications using deep 
learning? 

 

General methodological approach 

Data collection and pollen analysis 
 

The best methods for documenting plant-pollinator species 
interactions are likely to combine quantitative approaches with 
well-informed natural history descriptions. Historically, these 
approaches include flower bagging experiments, observations of 
floral visitation, and pollen identification from insect specimens 
as described above. These approaches are rarely combined, and 
pollination studies are dominated by observational methods and 
quantitative literature reviews, typically with a focus on flower 
visitation observations for estimating network parameters 
(Yamaji and Ohsawa, 2016; Colom et al., 2021; Mendes et al., 
2022). Visitation network studies typically consist of observation 
periods in which the researcher observes and records the visitors 
to a particular plant in an allotted time period. On its own, this 
approach falls shorts because it disregards the effectiveness of 
particular pollinators and treats all floral visitors as pollinators, 
when some are not (Ballantyne et al., 2015). Additionally, 
many observation hours over relatively long temporal scales 
may be required to accurately and adequately characterize 
these interaction networks (Kaiser-Bunbury et al., 2009). Flower 
bagging experiments involve isolating inflorescences with bags 
to assess the effects of pollinator exclusions, and pollination 
events can be closely monitored upon removal of the bag 
(Yamaji and Ohsawa, 2016; Aslan et al., 2019). This method is 
valuable for assessing the effectiveness of individual pollinators, 
but can be time-consuming, and may be inefficient and 
impractical for community-level studies. 

In recent decades, ecologists have used pollen analysis to 
study the effects of habitat loss and alteration on pollinators 
and plants (Silberbauer et al., 2004; Bosch et al., 2009; 
Jones, 2014; Wood et al., 2019; Balmaki et al., 2022). Pollen 
collections have typically focused on pollen from sediment 
or soil cores, but collecting pollen grains directly from the 

bodies of pollinators is a more recent approach to estimating 
changes in plant-pollinator interactions (Bosch et al., 2009). In 
addition, collecting historical ecological data associated with 
museum specimens can increase the accuracy of pollinator-plant 
interactions and expand our knowledge of pollination networks 
through space and time (Kleijn and Raemakers, 2008; Colla 
et al., 2012; Bartomeus et al., 2013; Balmaki et al., 2022). Natural 
history museums are underutilized repositories of historical 
interaction diversity and rapidly declining biodiversity (Johnson 
et al., 2011; Castillo-Figueroa, 2018; Jones and Daeler, 2018). 
Data from pollen associated with pollinators stored in museums 
can be used for the estimation of interaction networks between 
plants and flower visitors through time and space. 

Collecting data from historical museum specimens, 
especially butterflies, presents a unique set of challenges, 
particularly with older specimens. Using museum samples 
precludes us from using the acetolysis technique, in which 
organic materials, in this case insect tissue, are dissolved to 
recover pollen from insects and reveal diagnostic characters 
of pollen grains (Jones, 2014). In order to preserve museum 
specimens, we use entomological pins under a binocular 
microscope to manually collect pollen grains from the external 
surface of pollinators, which can be exacting and delicate 
work. On Lepidoptera, pollen grains typically aggregate on the 
proboscis, legs, and compound eyes (Figure 1). Pollen grains 
can be mounted on glass slides by adding two drops of 2000 
cs silicone oil volume. Suspension in silicon oil allows for 
the rotation of pollen grains under a microscope to examine 
the dimensions and shape of pollen in different orientations 
(Cushing, 2011). The next step is sealing the slide with a cover 
slip and nail polish to protect the slides from damage. This 
method is prevalent among quaternary researchers who make 
pollen slides from sediment samples in cores for palynology 
purposes (Cushing, 2011; Balmaki et al., 2019; Riding, 2021). 
Once pollen slides are prepared, they can serve as reference 
slides for identification of pollen grains to the genus or 
species level. Having pollen reference slides from all plant 
taxa in our study region increases the accuracy of pollen grain 
identification. A high-resolution light microscope and camera 
can create detailed images for pollen morphology, which can 
illustrate the number of apertures, exine sculpture, and internal 
texture, to analyze and identify pollen grains. In addition, 
electron microscopes (SEM) can examine the surface structures 
for pollen identification. Figure 2 indicates the summary of the 
procedure, from collecting pollen to analyzing the data. 

 
 
Network analysis and parameters 

 
It is useful to quantify species interaction networks because 

of the importance of biotic interactions for ecosystem functions, 
from primary productivity to community stability, especially in 
the context of environmental change (Tylianakis et al., 2010; 
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Losapio et al., 2018; Aslan et al., 2019). The documented 
relationships between interaction diversity and stability of 
ecological communities are partly a consequence of the number 
of network links, their relative strength, nestedness, and degree 
of specialization (Pawar, 2014; Metelmann et al., 2020). Large 
disturbances, extreme weather events, and continued global 
change can decrease the number of potential and realized 
interactions in mutualistic networks (Balmaki et al., 2022). 
Extending analyses to examine interaction diversity at multiple 
scales may provide mechanistic insights into the community 
and ecosystem-level consequences of climate change. Including 
interaction diversity and network approaches should contribute 
to predicting how species interactions will change over time 
in response to global change as well as across different 
environmental and disturbance gradients, especially if they are 
used to construct and validate predictive or forecasting models 
(Strydom et al., 2021). 

Typically, plant-pollinator interaction networks are 
considered as bipartite, or two-sided networks, in which 
the nodes indicate plant and pollinator taxa, and the edges 
represent their interactions. Commonly, the width of the edges 
represents the frequency of interactions, with wider edges 
representing higher frequencies of interaction. Dozens of 
network parameters can be used to summarize bipartite and 
more complex networks; for example, some useful network 
metrics for community ecology are connectance, nestedness, 
and network specialization (H2) (Dormann et al., 2009). 
Connectance represents the number of links between nodes, 
and it summarizes the number of realized possible connections 
(Martinez, 1992). Nestedness describes the degree of subsetting 
that occurs compared to a random network; in other words, 

nestedness describes the extent to which more specialized 
interactions form subsets within more generalized interactions 
(Bascompte et al., 2003; Pawar, 2014). H2 is an index that 
quantifies the degree of specialization and is useful for 
comparisons across multiple networks (Blüthgen et al., 2006). 

 

Automation of pollen grain 
classification 

 
Deep learning as a subset of artificial intelligence is not a new 

approach, but it has become more popular in the past decade 
with the advance of technology, including computational power 
and the availability of large datasets (Wäldchen and Mader, 
2018). Deep learning algorithms are computationally expensive, 
but for researchers who do not have access to appropriate 
computational resources and high-speed internet to handle large 
datasets with many parameters, there are platforms such as 
Colaboratory by Google (Google Colab), which is a Jupyter 
notebook-based runtime environment that allows running code 
entirely on the cloud, that can help train large-scale deep 
learning models using a standard computer. The main purpose 
of neural networks in deep learning is to receive a set of 
inputs, perform complex linear and non-linear calculations on 
them, and provide output to aid classification or provide classic 
regression parameter estimates. Deep learning is a technique 
that enables us to train huge and complex datasets, and applies 
to many fields, including crop or weed detection (Buddha et al., 
2019; Afonso et al., 2020), leaf detection (Younis et al., 2020), 
detection and classification of plant diseases (Geetharamani 
and Pandian, 2019; Albattah et al., 2022), species identification 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 1 

Scanning electron microscope images of pollen grains on the legs and eyes of a skipper (Hesperopsis libya, Hesperiidae) from the 
entomological collections of the University of Nevada Reno Museum of Natural History (UNRMNH). (A) Pinaceae pollen grains adhered to the 
butterfly’s eye. (B) Asteraceae pollen grains on the butterfly leg. 
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(Galanty et al., 2021), and animal counts using camera traps 
(Norouzzadeh et al., 2018, 2021; Wäldchen and Mader, 2018). 

Convolutional neural networks (CNN) are utilized for deep 
learning (e.g., Norouzzadeh et al., 2018; Astolfi et al., 2020; 
Polling et al., 2021). A CNN model contains multiple layers, 
including convolutional layers, pooling, and fully connected 
(FC) layers (Figure 3). For example, utilizing a pollen image as 
input, the first layer would include dimensions such as height, 
width, and color channels (Red, Green, Blue). The neuron in 
the first convolutional layer transforms this information into a 
three-dimensional output, yielding non-linear combinations of 
the input layer or feature extraction. These learned features are 
utilized as inputs for the next layer, allowing for pooling and 
data reduction, and at each step, the next node reclassifies the 
previous node. Learned features become inputs for statistical 
models, taking advantage of the hierarchical nature of the 
input data, and summarizing complex patterns using nested 
patterns that are smaller and simpler. These approaches have 
rarely been used for pollen identification (Daood et al., 2016; 

Khanzhina et al., 2018; Sevillano and Aznarte, 2018; Gallardo- 
Caballero et al., 2019; Astolfi et al., 2020; Romero et al., 2020; 
Sevillano et al., 2020; Polling et al., 2021), whether the goal is for 
identifying allergens in the air column or monitoring change in 
pollinator-plant interactions through time. Whatever the goal, 
CNN models are ideal for image classification and will be useful 
for species-level determinations. 

Convolutional neural networks models often achieve 
prediction capabilities not seen by any other modeling approach 
(Flagel et al., 2019; Sevillano et al., 2020; Polling et al., 2021). 
This is because CNN models contain many filters and neural 
network layers that can extract low and high-level features from 
images or data matrices. In fact, the CNN method develops 
algorithms that automatically extract discriminant features from 
images without human involvement, in contrast to standard 
statistical approaches, such as ordination (PCA, NMDS) and 
Support Vector Machine (SVM) analyses, with extraction 
and preprocessing steps that require user iterations and are 
time-consuming (O’Mahony et al., 2019; Alzubaidi et al., 2021). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 2 

Summary of pollen analysis method for plant-pollinator studies. Pollen grains are manually extracted from the insect specimen using an 
entomology pin under a microscope. The grains are then oriented and slide mounted for pollen identification via machine learning methods. 
The direct associations between insect and pollen are then combined with similar data from several specimens or several species collected at 
various spatial or temporal scales for examination via network analysis (or other downstream analyses). 
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FIGURE 4 

Flowchart showing the pollen image classification process across several steps, including: (A) creating the image dataset; (B) training the model; 
(C) testing the model. 

 
 
 

 
 

 
There are several advantages of CNN compared to traditional 
supervised machine learning methods. The CNN method often 
achieves a higher accuracy score in tasks such as image 
classification and object detection (Viertel and Konig, 2022). 
The CNN can be re-trained which allows us to utilize it in 
different custom datasets (O’Mahony et al., 2019). 

In the example presented here for identification of pollen 
from the Great Basin Desert and Sierra Nevada Mountains, 
two popular transfer learning (pertained models) approaches 
have been used, including AlexNet and VGG19, to create 
and train our models and extract the critical features 
automatically from the pollen images (Krizhevsky et al., 2012; 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 3 

Basic convolutional neural network (CNN) architecture, including an input image, convolutional layers (convolution and pooling), fully 
connected layers, and output classes. 
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Simonyan and Zisserman, 2014). AlexNet was initially created 
to classify millions of images in 1000 categories in ImageNet 
datasets (Krizhevsky et al., 2012). It takes input images by size 
224 × 224 RGB. This method includes five convolutional layers 
and three fully connected (FC) layers with around 60 million 
parameters. Through different layers of the CNN network, the 
first layer extracts the basic features such as color and edges; 
then, in the deeper layers, the model learns more convoluted 
features such as spines and pores in pollen grains. After the 
convolutional layers and extracting the features, AlexNet has 
three FC layers with 1000 neurons for each category. The output 
layer in the AlexNet model is interpreted as the probability of 
an image belonging to each pollen species category. The VGG 
(Visual Geometry Group) model takes input images with the 
size of 224 × 224 RGB. This model has five convolutional blocks 
with a filter size of 3 × 3, a fixed stride size of 1, and each of 
these convolutional blocks followed by max-pooling with size 
2 × 2 with a stride of 2. Also, the VGG has three FC layers, 
including Rectified Linear Unit (ReLU) and softmax function 
in the final layer. The main VGG transfer-learning models are 
VGG16 and VGG19, and the critical difference between them 
is the number of convolutional layers which are 16 and 19, 
respectively (Simonyan and Zisserman, 2014). Here, we used 
VGG19 for our case study. 

The pollen image datasets are divided into training and 
validation sets to evaluate the training error and prevent 
overfitting, compromising 80% training set and 20% validation 
sets. There are several regularization approaches to avoid 
overfitting, including early stopping, batch normalization, 
dropout, L1 and L2 regularization, increasing the number of 
training datasets, and data augmentation. For our approach, 
we used dropout, increasing the number of training datasets, 
and data augmentation. Dropout is a regularization strategy 
that involves randomly excluding some number of layer outputs 
during the training of the CNN model. It helps to force 
nodes within a layer to probabilistically take on more or 
less responsibility for the inputs, decreasing the complexity 
of the model. The data augmentation method was also used 
on the training dataset after separating the dataset into two 
training and validation datasets to prevent overfitting and 
increase the accuracy of the model. The deep learning models 
need enormous datasets, and it is one of the most significant 
challenges that researchers face in the case of collecting 
a large number of samples (e.g., Najafabadi et al., 2015; 
Polling et al., 2021). 

Data augmentation is an approach commonly used in 
computer vision to increase the amount of training data by 
adding slightly modified copies of already existing data, only 
using information from the training data (Perez and Wang, 
2017). This method can act as a regularization strategy, and the 
model is not able to overfit all the image samples, which allows 
for greater model generalizations (Perez and Wang, 2017). 
For the data augmentation, we used several transformation 

methods, such as resizing the images (all of which were the same 
size), rotating the images across multiple angles, and horizontal 
flips. All these transformations generate new images from the 
original. This approach balances the sample sizes for images of 
different species, it delivers a wider variety of features found 
in images of the pollen grains, and it increases the number of 
images in the training datasets (Figure 4). 

To evaluate our CNN algorithm, we used the accuracy 
metric. The accuracy metric equation includes the terms TP 
(True Positive), TN (True Negative), FP (False Positive), and 
FN (False Negative) and provides an estimate of how the model 
performs through all the classes. It calculates the ratio between 
the number of correct predictions and the total number of 
predictions. 

Accuracy =  TP + TN 
 

TP + TN + FP + FN 

 
Case study: Pollen analysis of 
historic Lepidoptera in Great Basin 
Desert and Sierra Nevada 
Mountains 

Great Basin Desert and Sierra Nevada 
Mountains pollen-butterfly networks 

 
Our pollen analysis included pollen grains collected from 

lepidopteran specimens from the UNR Museum of Natural 
History (UNRMNH) from historic collections dating back to 
1910 in the Great Basin and Sierra Nevada Mountains near 
Reno, NV. Beginning in 2020, we started regular collections 
of butterflies from three sites to supplement and expand the 
UNR collections and to improve the resolution of plant- 
pollinator networks from museum specimens. We selected 266 
specimens, including 20 locally abundant native butterfly species 
from five families in the Great Basin and the Sierra Nevada, 
for pollen analysis for this study (Supplementary Table 1). 
Part of the dataset was published recently to reconstruct the 
butterfly-pollen interaction network in the Great Basin and 
Sierra Nevada Mountains over the past century (Balmaki et al., 
2022); that study used the methods described here, and more 
specific methods for data collection and statistical analyses are 
described in that paper. While Balmaki et al. (2022) focused 
on characterizing changes in pollen-butterfly networks over the 
past century and comparing these networks to contemporary 
visitation networks, the current paper focuses more generally 
on pollinator network methodology with an expanded pollen- 
butterfly network from the UNRMNH collections. 

We prepared more than 400 pollen reference slides from 
native flowers found in the Reno herbarium (RENO) for cross- 
validation of pollen identifications. We used a ZEISS, Axiolab 
5 light microscope, and Axiocam 208 color microscope camera 
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for pollen identification and photography of pollen grains, 
and the images were captured using 40× objective lenses and 
10× ocular lenses. Z-stack images show the vertical details of 
pollen grains at various focus levels. To train the model for 
automating the identification of pollen grains, we cropped all 
the images using Adobe Photoshop (CS6, 13.0.1.3). We removed 
images with high levels of noise due to debris, air bubbles, and 
aggregated pollen. 

We then estimated the richness and frequency of butterfly- 
plant interactions over time and space by bipartite interaction 
networks, and estimated network parameters using network 
methods outlined by Dormann et al. (2009). This network 
provided a summary of butterfly-plant interactions over the last 
century in the Great Basin Desert and Sierra Nevada Mountains 
(Figure 5). Using temporal subsets of these networks from 
1910 to 2021, Balmaki et al. (2022) demonstrated that there 
have been shifts in plant species associated with butterflies, 

with strong shifts in network structure when comparing pre- 
and post-drought time intervals. For that analysis, pollen 
species known to be from wind-pollinated plants were excluded. 
Insect-pollinated plants have spikey, sticky pollen grains that 
easily attach to butterflies’ bodies when they are foraging for 
nectar. Wind-pollinated species in the Great Basin Desert 
and Sierra Nevada Mountains butterfly-pollen network shown 
here included species in the families of Pinaceae and Poaceae, 
and insect-pollinated plants are in the Asteraceae, Lamiaceae, 
Fabaceae, Polemoniaceae, Malvaceae, and Rosaceae. We found 
pollen grains of these wind-pollinated families were attached to 
the legs and wings of butterfly specimens, which means they 
likely were picked up incidentally from the environment (e.g., 
as butterflies visit or perch on these plants). 

Results from Balmaki et al. (2022) indicated that the plant 
community associated with butterflies is shifting and that this 
shift is temporally associated with periods of extreme drought 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 5 

Bipartite pollen-butterfly networks of 20 butterfly species from museum collections of butterflies in the Great Basin Desert and Sierra Nevada 
Mountains (United States). Light green nodes are butterfly species, dark green nodes pollen species, and the size of the nodes indicate the 
frequency of those species in the dataset, while the edge thickness (gray) indicates the frequency of interactions (or strength of the association) 
between the insect and plant species. 
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in the Western United States. This study also showed that 
pollen richness associated with butterflies has declined over 
the past 100 years, which can be a consequence of lower 
local plant diversity or fewer floral resources (Balmaki et al., 
2022). Fewer floral resources could potentially lead to the 
decline of pollinator species, especially specialized butterflies 
that may depend on nectar or pollen from a limited number 
of plant species (Schowalter, 2006). These temporal changes in 
plant-pollinator interaction networks are an example of how 
anthropogenic change may be influencing biodiversity. 

Anthropogenic climate change has been characterized 
by increased drought frequency and intensity, and extreme 
temperatures in the Western United States, and has in 
some cases been linked to phenological mismatches between 
pollinators and their food plants (Stemkovski et al., 2020). 
Museum specimens are one of the best options for examining 

 
predicted changes in plant-pollinator interactions over time due 
to specific global change parameters. 

 
Convolutional neural network models 
for the Great Basin Desert and Sierra 
Nevada Mountains pollen identification 

 
We used two pretrained CNN models (AlexNet and 

VGG19) to classify the 21 most common pollen species in the 
Great Basin, including Achillea millefolium, Cirsium arvense, 
Erigeron divergens, Erigeron peregrinus, Helianthus annus, 
Taraxacum officinale, Taraxacum californicum, Ericameria 
nauseosa, Chrysothamnus viscidiflorus (Asteraceae); Erysimum 
capitatum (Brassicaceae); Astragalus purshii, Lupinus argenters 
(Fabaceae); Monardella villosa, Salvia dorrii (Lamiaceae); 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 6 

VGG19 confusion matrix for the 21 pollen species used for the training dataset pollen images from the Great Basin. Rows are species identities 
and columns are convolutional neural network (CNN) species assignments. The color bar indicates frequency, with dark green being most 
frequent. The diagonal elements are frequency of correctly classified outcomes, while misclassified outcomes are on the off diagonals. 
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Calochortus nuttallii (Liliaceae); Sphaeralcea ambigua 
(Malvaceae); Phlox diffusa, Phlox longifolia (Polemoniaceae); 
Eriogonum umbellatum, Eriogonum rosense (Polygonaceae); 
Rosa woodsii (Rosaceae). Our pollen image datasets included 
5709 images from 21 different pollen species. The number 
of images per species ranges between 200 and 650, and 
the majority of the images belong to these four species 
(E. peregrinus, S. ambigua, P. diffusa, and R. woodsii). 

To evaluate the accuracy of our model, we used the 
validation set, which was composed of unseen images by the 
model during the training process. These images did not go 
through the data augmentation, which let us get the realistic 
accuracy of our model when encountering a new observation. 
Our AlexNet model achieved the training and validation 
accuracy of 96.5 and 92.1%, respectively. On the other hand, we 
acquired higher training and validation accuracy using VGG19, 
including 98.8 and 93.1%, respectively. This is likely because 
our VGG19 model architecture, compared to the AlexNet, 
has a higher number of parameters (VGG19: 102,850,581, 
AlexNet: 9,459,733) and deeper layers (VGG19: 19, AlexNet:8 
layers) which let the VGG19 model better differentiate features 
within images. The accuracy obtained by the validation dataset 
was similar to the accuracy obtained by training datasets in 
the VGG19 model. The low deviation between training and 
validation accuracy indicates that our model is robust and 
rules out the possibility of overfitting, which occurs when a 
model is too complex. 

In addition, to see how our VGG19 model acts in different 
pollen species, we created a confusion matrix that shows just 
a few mislabeled species (Figure 6). Finally, we believe this 
accuracy in VGG19 is high enough to build a web and phone 
application to create an automatic classification system for 
pollen grains at the species level. 

 

Conclusion 

Decades of research have focused on coevolution between 
plants and insects; these coevolutionary interactions have 
generated broad-scale geographic patterns of interactions that 
can be summarized with network parameters (Olesen et al., 
2007; Tylianakis et al., 2010; Pellissier et al., 2018). This plant- 
insect interaction research is often limited by poor natural 
history data, for which museum collections can serve as 
an untapped and unparalleled resource. Current challenges 
include incorrectly inferring relationships from brief visits 
(i.e., a butterfly landing on a flower implies pollination), 
assuming interactions are present throughout the geographic 
range of a species and inferring interactions from literature 
sources. Consequently, inferences used for ecological networks, 
for understanding of plant-pollinator coevolution, and for 
pollinator conservation efforts are formed using incomplete 
data (Dyer, 2018). Despite the abundance of lepidopterans 
in collections, their importance as pollinators still lacks 

rigorous quantification for many taxa. Mining pollinator 
interaction data from museum specimens can help to fill this 
critical knowledge gap. 

In this time of well-documented declines in pollinators, 
there is a clear need for innovative methods for studying plant- 
pollinator interaction networks using museum collections (Potts 
et al., 2010; Burkle et al., 2013). Species interactions, and their 
impact on community structure, and ultimately, ecosystem 
functioning, can be explored through better-informed network 
methods, which can help us to describe spatial and temporal 
changes in these dynamics (Burkle and Alarcón, 2011; Campos- 
Moreno et al., 2021). For example, many specialist pollinators 
are more susceptible to declines as their more restricted niches 
provide less redundancy in resource availability (Weiner et al., 
2014). It is also likely that the occupancy of specialists across 
the landscape is low compared to generalists (Sudta et al., 
2022) and that more specialized pollinators are less abundant 
overall (Fort et al., 2016). In either case, there is an expectation 
of a strong positive correlation between generalization and 
abundance at some scale, which has conservation implications 
for threatened specialized plant-pollinator interactions and 
overall network complexity. It is difficult to assess such 
network responses without careful networks that are backed 
by natural history observations and that take into account 
changes across spatial and temporal gradients. In particular, 
because museum collections can provide multiple observations 
over space and time, they can be a more powerful tool for 
differentiating specialist and generalist pollinators than more 
limited field observations. Analyzing pollen grains on butterflies 
from museum collections adds valuable natural history data 
to specimens and is an efficient and accurate method for 
documenting the frequency and richness of interactions with 
plants. These methods should be used to explore how networks 
have changed over time and may help us predict further network 
change. Lastly, this approach can help us identify relationships 
that are most at risk to environmental perturbations and those 
that are robust to perturbations associated with global change. 
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