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ABSTRACT 

Recent work has constructed alert limits for autonomous vehicle lane-keeping applications, where safety criteria were 
based on the sensor readings of the navigation system. One limitation of this prior work is that measurement errors 
were compared directly to lane and vehicle geometry, with the assumption that measurement errors would map directly 
to errors in vehicle position or attitude. In fact, measurement errors pass through a dynamic system that includes many 
processes that transform the error, including natural processes that correlate sensor measurements over time and 
closed-loop vehicle dynamics. These processes reshape error distributions, such that the true position and heading 
error distributions induced by sensor noise have different forms than the original measurement error distributions. 
This paper explores these effects when the measurement error is time correlated. To this end, we abstract the dynamic 
system using a unicycle model of vehicle dynamics, a representative controller, and a first-order Gauss-Markov 
process to represent measurement correlation. Implementing this model in a Monte Carlo simulation, we investigate 
the case of a vehicle moving on a curved road when the time constant for measurement correlation is moderately long 
(10 seconds).  Simulations show that the effects of heading-measurement error are mitigated by the dynamic system. 
Meanwhile, the two-dimensional position error distribution rotates relative to the road, an effect which makes position 
errors more difficult to bound.  

INTRODUCTION 

This paper focuses on safety for automobile navigation systems, with a particular emphasis on automated lane-
keeping. We consider how time-correlated errors impact lane-keeping safety requirements. Our analysis considers two 
processes that introduce time-dynamics into the vehicle state error: namely measurement dynamics and vehicle 
dynamics. 

Our analysis builds on prior research that have analyzed the mapping between navigation system error and safety 
requirements. This paper extends the analyses of Reid [1] and Kigotho [2], which derived sensor-error bounds called 



alert limits that ensure safety for lane-keeping applications on straight and curved roads. For lane-keeping on straight 
roads, the largest tolerable lateral-positioning errors are dictated by lane and vehicle width. For curved roads, errors 
must be modeled in two dimensions, with the shape of the road coupling the tolerable error levels in the lateral and 
longitudinal direction. Both [1], which used rectangular alert limits, and [2], which used elliptical alert limits, showed 
that road curvature reduces the allowable lateral error, with less tolerance for lateral uncertainty when longitudinal 
uncertainty increases. In both [1] and [2], sensor measurement errors were considered only in an instantaneous sense, 
with no consideration for the evolution of the sensor noise and the vehicle trajectory in time. 

For safety-critical applications, the alert limit should consider time correlation of state errors.  The alert limit would 
be used in a screening process that can introduce an alarm given too high a probability of a large measurement error, 
where the measurement error is considered large if it falls outside the alert limit. This screening process ensures 
integrity, but at the expense of availability, which is the fraction of the time that the system meets its safety 
requirements and is therefore usable. Typically, error probabilities are assessed by defining a protection level, which 
is a confidence bound derived from an error model at a specified probability that reflects an acceptable level of 
integrity risk. To ensure safety, errors are commonly modeled as overbounds, models that conservatively represent 
the far distribution tails [3]o[6]. Overbounds are usually modeled as static processes, including conservative 
assumptions to cover nonstationary signals, characterized by distributions that change in time [7].  But these models 
do not generally cover cases of time-correlated errors, where bad error states at one time may imply even worse error 
states later. Time-correlation issues are known to impact navigation systems, however. For instance, GNSS multipath 
positioning errors, introduced when signals reflect off surfaces like terrain or buildings, may be correlated over times 
of several seconds or even minutes, depending on the relative motion between the GNSS receiver and the reflecting 
surface [8], [9].  

To account for time-correlation effects, our approach is to model dynamic processes including measurement and 
vehicle dynamics.  Measurement dynamics map a random signal to a navigation system error. Vehicle dynamics map 
the navigation system error to a vehicle state error, which can then be compared to the safety requirement (e.g. an alert 
limit).  Both processes can result in time correlation. 

Our primary contribution in this paper is to identify trends that characterize how these dynamic processes influence 
the state errors that must be compared to alert limits to ensure safety. Using simulations, we show that vehicle 
dynamics can mitigate heading-measurement errors, meaning that the heading state-error distribution is narrower (less 
uncertain) than the measurement-error distribution. Also, our simulations indicate that system dynamics correlate 
along-track errors and cross-track errors for vehicles traveling on curved roadways. Both effects have significant 
impact for evaluating the integrity risk associated with navigation system errors. 

The rest of the paper is organized as follows. In the next section we discuss the low-order model of system dynamics 
that we use to map measurement errors to position and attitude errors. We then detail the Monte Carlo simulations 
used to evaluate the dynamic model. The final sections of the paper present our results and discuss their significance. 

SYSTEM DYNAMICS MODEL 

In this section, our goal is to define a representative, low-order model of the dynamic system that transforms navigation 
system errors into vehicle state errors. In this paper we use the term state to collectively refer to the variables describing 
a vehiclerd RTefR] a`dZeZ`_ R_U ReeZefUV. The term state error refers to deviations of the actual vehicle position and 
attitude from the intended trajectory. 

A detailed system dynamic model would be dependent on many factors including the specific vehicle model and the 
operating environment. Relevant dynamic processes include environmental effects that correlate sensor noise over 
time (e.g. multipath for GPS [8], [9]), sensor hardware dynamics (e.g. the rotation of a spinning lidar system), sensor 
fusion that can introduce filtering lags, and dynamics associated with control algorithms, actuators, and the vehicle 
platform. A qualitative block diagram that illustrates these processes is shown in Fig. 1. Note that the feedback loop 
results in the vehicle state, which must be compared to safety requirements to assess risk. These requirements are 
represented as a block on the right side of Fig. 1. 



Although a detailed dynamic model might be required to obtain a highly accurate prediction of performance for a 
specific vehicle and operating environment, we assert that a simplified model can provide descriptive information 
about the behavior of the breadth of different autonomous vehicle systems.  For instance, whether the vehicle controller 
is designed using machine-learning methods or analytical methods, the controller will seek to reduce state error; in 
that sense, a canonical controller, such as a proportional-derivative controller, can be used to represent the typical 
behavior of such systems. Using such approximations of vehicle system dynamics, this section proposes a low-order 
model that we subsequently use for analysis. 

Our simplified vehicle model consists of two processes:  measurement and vehicle dynamics.  In effect, we transform 
Fig. 1 into a simplified form, illustrated in Fig. 2.  The simplified block diagram focuses purely on the response of the 
vehicle to sensor noise. As such, we do not consider other forcing inputs such as driver control commands or external 
disturbance forces on the vehicle (e.g. wind, potholes).  We focus instead on modeling dynamics related to the 
measurements (e.g. sensor model, noise processes, and sensor fusion) together in one block and dynamics associated 
with the vehicle itself (control and vehicle dynamics including actuation) together in a second block.  Using 
conventional block diagram manipulation [10],the feedback loop can be embedded within the vehicle dynamics block.  
The vehicle dynamics result in the state perturbations due to sensor noise; these state-errors can be compared to the 
safety requirement to assess risk. 

Though greatly simplified compared to an actual system, the system in Fig. 2 captures important processes that have 
been left out of earlier research related to mapping sensor errors to safety requirement for lane-keeping [1],[2].  Prior 
work has mapped measurement errors directly to safety requirements, as shown in Fig. 3, without considering 
measurement or vehicle dynamics. 

Fig. 1. Qualitative block diagram for system dynamics governing lane-keeping safety 

Fig. 2. Abstracted block diagram used in our analysis 

Fig. 3. Abstracted block diagram used in prior analyses [1],[2] 

The remainder of this section describes the vehicle and measurement dynamic models used to represent the related 
blocks in Fig. 2. 

Vehicle Dynamics  

To capture the dynamics of an autonomous vehicle, we assume a kinematic model, sometimes called a unicycle model, 
where the heading  and position vector  are controlled by setting velocity  and angular velocity . The position 



vector is described in Cartesian coordinates (indicated below by the leading superscript ). The time-evolution of the 
vehicle states are governed by 

(1) 

For analytical purposes, it is also useful to represent the vehicle states in path coordinates, where the coordinates are 
expressed relative to a nominal trajectory.  The nominal trajectory is defined in terms of a position vector  and a 

scalar heading , which are both functions of time.  For example, the position state associated with the vehicle 
center is the vector from the reference at point  to the actual vehicle center at point , as shown below in Fig. 4. 

In path coordinates, the position vector is described using a basis that instantaneously aligns with the reference 
trajectory at point , with the coordinate  describing the direction locally tangent to the path and the coordinate 

describing the direction locally normal to the path. These measures of longitudinal and lateral (or along-track and 
cross-track) error can be combined together into the vector   which represents the state error.  

(2) 

8j fdZ_X ;f]Vcrd cf]V W`c gVTe`c UZWWVcV_eZRtion, the unicycle position dynamics of (1) can be expressed in path 
coordinates as 

cVW
cVW cVW

cVW cVW
(3) 

The cross product is formed here using an angular velocity vector cVW, which is equal to the reference angular rate 

 multiplied by the upward-pointing unit vector. 

Fig. 4 Coordinate systems 

The baseline vehicle trajectory is achieved by controlling the vehicle speed  and turn rate . Ideally, for a feasible 
trajectory and in the absence of noise, v and  can be specified precisely to follow the desired trajectory . We 

refer to these idealized control inputs as the open-loop (or feedforward) control commands. To ensure consistency 
with the dynamic model (1), we define the reference trajectory by first choosing the reference velocity  and angular 
velocity  as functions of time.  Appealing to (1), the reference angle  can be obtained trivially by integrating 

, and the reference position  can be obtained by integrating 

(4) 



Feedforward control is insufficient, however, to reject disturbances such as sensor noise or external forces that push 
the vehicle away from the reference trajectory. Feedback control is needed to observe and reject disturbances.  

The goal of the feedback controller is to keep the vehicle on its desired trajectory. In a modern autonomous vehicle 
system, the feedback controller may be a complex architecture involving hybrid control and/or elements of machine 
learning. Despite the wide range of design implementations, the objective of lane-keeping controllers is always more-
or-less the same: to keep the vehicle on a target trajectory away from the lane boundaries.  To this end, we represent 
this basic behavior through a linear control model. The linear model captures the control objective in a manner that is 
computationally simple, to make our analysis as tractable as possible. 

Our model controller keeps the vehicle on path by applying proportional gains , , and  to eliminate 

observable state errors, which include and the relative heading . The control gains are scaled by the target 

velocity to help keep the vehicle from overshooting its path at high speeds. Including the feedforward and 
feedback terms together, the linear control law is 

cVW

cVW cVW cVW cVW

(5) 

Note that the controller can only respond to error signals that can be observed through sensing. Sensor noise, 
particularly when time-correlated, can mask true errors and result in a nonideal control signal. To account for this, we 
introduce the scalar errors , , , , and to account for sensor noise.  The modified control law has the form 

cVW

cVW cVW cVW cVW

(6) 

Measurement Dynamics 

A typical model for stochastic errors used to model navigation sensor data is the Gauss-Markov process (GMP) [11]. 
Since we do not know for certain what distribution of uncertainty the sensors would produce, a starting point would 
be to model the errors using target output Gaussian distributions for , , , , and . To model time correlation 

in these errors, we use a first order GMP. The GMP creates time-correlated errors by passing a random time-
uncorrelated signal through a low pass filter, which abstractly represents natural processes in the environment that 
correlate the signal arriving at the sensors. The first-order system has the following form. 

(7) 

Here  is the uncorrelated noise driving the measurement error, and  is each of the errors , , , , and

SIMULATION 

In this section we describe how we implemented the simulation. Our objective is to transform a distribution of sensor 
errors into a distribution of system states. This way, we were able examine the qualitative effects of the controller on 
the vehicle location distribution. 

We begin by discussing the model of the road we use. Next, we describe the control gains used in modeling the vehicle. 
Subsequently, we detail the parameters used to simulate the measurement dynamics. Finally, we describe the overall 
structure of the Monte Carlo simulation. 



Road model

To examine the behavior of the vehicle on a straight road and on a curve, we ran the simulation on a track that started 
with a 10m-long segment of straight road. Next, we defined the road to curve through a 180-degree arc with a 10m 
radius of curvature. The radius of curvature was selected in the range representative of many local roads, as described 
by [12]o[14]. Following the curved-road section, our simulated road ends with a 10m section of straight road. This 
way, we can examine both the effects of steady turns and the dynamics of leaving and entering the turns. The map is 
shown in Fig. 5 where the curved section is in red and the straight section in blue. 

Fig. 5 Nominal Vehicle Trajectory on Curved Road 

Car Model 

Controller gains for the system can be calculated based on the linear model on a straight road where . 
If the angular error   is small, a linear approximation of the system can be made such that (3) becomes 

cVW
(8) 

By plugging (6) into (8),  

cVW cVW cVW cVW
(9) 

where, for the cross-lane direction,  because the vehicle will be kept close to the target velocity.  

For the design of our controller, we intend to have a linear response close to the critically damped response so enable 
a relatively fast response while also reducing overshoot. From, (9) the damping ratio, , is given by 

(10) 

which serves as a guideline for gain tuning.



Our objective was to create reasonable responses from the vehicle control systems. We expect that a vehicle should 
respond to roughly within a second. Response times in this range are consistent with models previously used in 
representing autonomous vehicles[15], [16]. Therefore, in our simulations, we used the gains as shown in Table 1 and 
the vehicle response is shown in Fig. 6. 

Table 1. Controller Gains 

Fig. 6.Vehicle True Errors from an Impulse Response on a Straight Road 

Sensor Model 

Sensor modeling parameters must also be selected to configure the simulation. Our goal was to tune our sensor noise 
levels to represent representative GPS/INS fusion systems augmented in the lateral direction by additional perception 
sensing (e.g. vision or lidar). Since the GPS was assumed to dominate in the along-track direction, we set our one-
sigma velocity accuracy to 0.1 m/s and along-track position accuracy to 1.5 m. To account for the perception-aiding 
in the lateral direction, we set our one-sigma cross-track position accuracy to 0.2 m. To represent a moderate quality 
INS system, we set the nominal one-sigma heading accuracy to 2 degrees and the nominal angular velocity accuracy 
to 0.1 deg/s.  These standard deviations values are shown in the final row of Table 2.  

An important implementation detail involves the measurement correlation model of (7). To explore the impacts of 
time correlation, we chose  in our GMP model [11]. This time constant represents a challenging but not 
unrealistic level of GPS multipath error correlation in urban driving. The standard deviations for the input noise to the 
GPS were tuned (as described in the first row of Table 2) to give the desired output values modeling the sensor noise. 



Table 2. Standard Deviation of Sensor Errors

Standard Deviation 

GMP Input ^ ^*d ^ UVX UVX*d

GMP Output ^ ^*d ^ UVX UVX*d

Monte Carlo Simulation 

Our simulation is inherently stochastic in that the sensor noise signals are random signals. To capture statistics 
describing the vehicle position error resulting from our modeled sensor-noise inputs, we implemented a Monte Carlo 
(MC) simulation with 1000 trials, and computed our results statistically over those 1000 trials.  We set a reference 2D 
route ( , , ) defined by initial conditions as well as the reference trajectory shown in Fig. 5, with . 

For each MC trial, we loop through a series of time steps (duration 0.05 s) to a final time . At each time 
step of the trial we: 

1. Use Table 2 to generate the uncorrelated input noise signals for each first-order GMP described by equation 
(7), thereby generating the instantaneous correlated error values , , , , and 

2. Calculate the control outputs at time with (6) used to express  and . Use gains from Table 1.  

3. Use (3) to calculate the state derivatives and propagate states to the next time step, using first-order Euler 
integration. In other words, find , , cVW ). 

RESULTS  

In this section, we present the results of our investigation. One salient outcome is that the vehicle position distribution 
is rotated relative to the sensor noise distribution (and to the road).  Another notable outcome is eYRe eYV gVYZT]Vrd
dynamics significantly attenuate the measurement error associated with the heading sensor.  

To visualize the first of these phenomena, add`TZReVU hZeY eYV gVYZT]Vrd a`dZeZ`_ UZdecZSfeZ`_' T`_dZUVc Fig 7. The figure 
provides a conceptual illustration of the vehicle position distribution at two locations: along the straight section of the 
road and along the curve. As illustrated, the elliptical distribution of vehicle positions (cyan) aligns with the roadway 
(yellow) on the straight section, but not on the curved section. Considering that the vehicle is moving along the path 
from left to right, the angle of the rotation of the error ellipse lags the reference heading angle.  

Fig. 7. Orientation of Vehicle Location Probability Distribution on Curved and Straight Roads 

The conceptual illustration is useful to interpret the statistical data, which are shown in Fig. 8. The MC-generated 
position errors on the straight section (blue dots, top of Fig. 8) are distributed in a manner that aligns along the roadway.  



The MC-generated position errors on the curved section (red dots, bottom of Fig. 8) are distributed in a manner that 
does not align with the roadway. Note that the curved roadway on the bottom of Fig. 8 has been rotated so that the 
local tangent direction is horizontal at the reference point, which is centered at the coordinate (0,0). Thus, the fact that 
the red position-error distribution is not aligned in a horizontal direction indicates that it is not aligned with the 
instantaneous reference heading. 

Fig. 8. Position Errors on a Curved and Straight Road 

The second notable phenomenon involves the vehicle heading distribution. In our simulation, heading-sensor 
measurement errors are significantly attenuated by the control system and vehicle dynamics. For instance, this can be 
observed by comparing the error-distributions standard deviations for a specific time step in the MC simulation. 
Standard deviations for two specific time steps (at steady-state on the straight and at steady-state on the turn) are 
compiled in Table 3.  During steady maneuvers, the vehicle heading errors, as compared to the reference , are 
generally much smaller (with one-sigma values of 0.45� on a straight turn and 0.97� on the turn) than the heading-
sensor noise (with a one-sigma value of 2�). The exception is on the transitions between the straight and curved 
sections, where the controller transient error has not converged. Our simulation resulted in a one-sigma vehicle 
heading error of 6.45� during this transition, which was significantly larger than the measurement error of 2.0�. 

Table 3. Outputs from Monte Carlo Simulation 

Standard Deviation 

GMP Output ^ ^*d ^ UVX UVX*d

Vehicle State Straight ^ N/A UVX UVX* N/A 

Vehicle State Turn ^ N/A ^ UVX UVX* N/A 

* Taken relative to local road heading 

For safety analysis, it is relevant to characterize heading error relative to the local lane boundaries.  Consider the case 
when the vehicle is lagging the current reference point on the nominal trajectory. During the turn, the direction of the 
lane boundaries at the reference point (which is ahead of the vehicle) will be different than the direction of the lane 
boundaries nearest the vehicle. For this reason, we introduce the variable ]`T which describes the orientation of the 



road and lane boundaries, not at the reference location, but at the place along the road closest to the vehicles true 
position. The one-sigma heading errors relative to ]`T are significantly smaller than those relative to the reference 
points. In fact, the one-sigma heading errors are even smaller than the navigation system true errors. In our simulation, 
the 2.0 degrees standard deviation of the sensor model was reduced to 0.97 degrees as shown in column 5 of Table 3. 

The difference in the heading accuracy as defined relative to ]`T, as opposed to the reference point heading , can 
be interpreted in terms of Fig. 9, which shows heading error values on the straight road (blue dots) and curved road 
(red dots), plotted as a function of the longitudinal error. Note that ]`T is also plotted (yellow dash-dot line). On the 
curved road, the figure shows that the local heading error relative to  is highly correlated with ]`T, which varies 
linearly along the longitudinal coordinate.  

Fig. 9. Longitudinal and Heading Errors on a Straight Road (top) and Curved Road (bottom) 

The situation is quite different in the transition region from the straight to the curve. To understand this region, where 
turn initiation is dominated by the open loop controller, it is instructive to consider the differences between the heading 
error relative to the nominal trajectory and the heading error relative to the road. This can be seen in Fig. 10. The 
figure shows the transition region, but it is otherwise analogous to Fig. 9, plotting heading errors as a function of 
longitudinal errors.  The yellow reference line shows the sudden transition in reference heading from the straight road, 
where the reference is horizontal, to the curved section, where the reference has a positive slope. When the longitudinal 
error is positive, the vehicle has entered the curve early and the heading error is large. 



Fig. 10. Lateral Error and Local Orientation Error at the Beginning of a Turn 

It is also instructive to consider the full time-history of the statistics generated by the MC simulation, and not just the 
three points considered so far (i.e., steady-state on the straight section, steady-state on the curve, and the transition 
point between the straight and curved sections). To create a continuous picture of the errors as a function of time, we 
focus on the cross-correlation coefficient between scalar errors and specifically  (the correlation between  and 

) as well as  (the correlation between  and ). The correlation coefficients provide a compact summary 

of the previous figures. For instance, in Fig. 9 it is clear that  for the straight section (where the longitudinal 
and heading errors are uncorrelated), but that  for the curved section (where the longitudinal and heading errors 
are entirely correlated). By comparison, Fig. 10 lies somewhere in the middle, with . To analyze the full 
time-history, we plot correlation coefficients as a function of time, computed over all of the MC trials (see Fig. 11). 
In this figure, the domain where the reference is on a curved path is plotted in red, and the domain on the straight path 
is plotted in blue.  

Fig. 11 Error Covariances of Each Timestep of the Simulation on the Curved Road 

As a final analysis, we also plot the correlation coefficient , which describes the correlation between the 

longitudinal error and the local heading error  (see Fig. 12). The vehicle correlation coefficient in the curve is 



much smaller for the local-heading error of Fig. 12 as compared to the reference-heading error of Fig. 10 (bottom).
Observe that the local-heading errors are greatest at the begging and end of the turns. 

Fig. 12. Error Covariance of True Lateral Error and Local Orientation Error 

DISCUSSION 

The results presented in the prior section qualitatively describe the stochastic dynamics of the system on straight and 
curved roads. The two primary results were that (i) the vehicle position-error ellipse is not aligned with the road 
direction, at least on curved roads, and that (ii) the vehicle dynamics generally mitigate heading errors. Here, we will 
explain the causes of these results, contextualize them, and suggest their significance.  

Position Error (on Curved Roads) 

On curved roads, the, along-path and cross-path error distributions become correlated. This correlation can lead to a 
significant increase in the lateral position error of the vehicle relative to the road center as shown in Fig. 8. In this 
case, the lateral errors are nearly doubled by the rotation of the error distribution, and the chance of a lane excursion 
would likely be significantly increased. This likelihood oW R ]R_V ViTfcdZ`_ Zd aRceZTf]Rc]j acVgR]V_e ZW eYV gVYZT]Vrd
true position is ahead of its observed position as the road curves away, as can be seen by the road direction in Fig. 8.  

These effects should be considered in safety analyses, for instance in deriving protection levels and comparing them 
to alert limits, as discussed in [1], [2]. Both papers assumed protection-limits are generated directly from sensor error 
distributions and compared to alert limits generated from the geometry of the road. This approach misses a key detail, 
in that the major and minor axes of the vehicle position distributions do not necessarily align with the road or the 
sensor error distribution. Thus, our findings in this paper suggest that the existing methods of [1], [2] might need to 
be adapted to address, for instance, the rotated distributions shown in Fig. 8. 

It is interesting to think about why the position uncertainty distribution becomes rotated in a curve. From a 
mathematical point of view, the rotation is driven by the cross product in equation (3), where rotation is related to the 
size and direction of the error.  

With regards to safety analyses, we also observe a second, relatively minor effect, in that the distribution of vehicle-
position errors is slightly larger than the distribution of position-sensor errors, as shown in Table 3. We can attribute 
this discrepancy to the fact that we used a proportional controller in our model. Therefore, we expect that persistent 
(time-correlated) sensor errors in vehicle speed and orientation would generate steady-state true errors in position. It 
may be possible to mitigate these effects with control tuning (such by the addition of an integrator), but it is important 
to be cautious about over-turning the control model in this analysis, since optimizing in one context may degrade 
another.  

Heading Error (on Straights and Curved Roads) 

Our investigation observed that vehicle-heading errors were significantly smaller than sensor-heading errors, at least 
on steady straight and curved roads. We believe sensor-heading errors are reduced because they quickly accumulate 
as lateral error , which is detected by lateral sensors and countered by the controller. Therefore, any amount of 



heading error quickly becomes observable to the controller such that the heading error is quickly mitigated by the 
system. This explanation accounts for the 5-fold decrease in heading errors shown in Table 3 on a straight or curved 
road. 

For safety applications, the most important expression of heading error is the error relative to closest point on the 
reference trajectory (the local road) and not relative to the current reference point, since the vehicle may race ahead 
or fall behind the moving reference point. In defining an alert limit, for example, the size of the alert limit is influenced 
by the orientation of the vehicle relative to the local road section  [1], [2]; vehicle heading errors tend to erode safety 
margins around a vehicle. Fortunately, the orientation errors relative to the local road are quite small in the steady 
straight and curved road cases, which greatly reduces the penalty associated with uncertain heading. 

An interesting observation is that the small local-heading errors can be explained as a necessary sign that the controller 
is working effectively. An effective controller will keep the vehicle from deviating too far away from the path. From 

(3), we observe that a necessary step to achieve this is to keep the vehicle oriented in the direction of the path. 
Therefore, this observation is the result of the controller, and shows that the heading error is largely related to the road 
curvature and how far the vehicle is along the road. 

In our simulations, we see that the vehicle tends to miss the timing of the transition if there is an unobservable along 
path position error. This effect is closely related to the guidance, which we modeled using a feedforward term, which 
are key to triggering the vehicle rotation on the curved road section. If the vehicle un-observably drifts slightly ahead 
of the reference point, then the guidance system triggers too late and the vehicle continues straight past the transition 
point, as shown in Fig. 10. The shape of the distribution in Fig. 10 represents the case at the moment just before the 
transition, when the reference angular velocity has not yet changed; the distribution shape is very different shortly 
after, when the reference guidance becomes active. This behavior is expected to be less extreme on a real vehicle, as 
features at a corner might become observable and augment the navigation errors, so it would be necessary to refine 
the navigation and controller model to obtain a representative analysis of such transitions.  

Future Work

The obvious and necessary next step is to build this analysis into defining protection levels and alert limits. Whereas 
references [1], [2] directly relate sensor errors to road geometry, this paper clearly shows that the vehicle dynamics 
transform sensor errors, and so sensor errors should not be assumed to be identical to vehicle state errors when 
developing protection levels. Developing a thorough approach to bound the effects of vehicle dynamics on sensor 
errors will be challenging, requiring a generalization of the approach used in this paper, where we consider only one 
very specific scenario. One step is to consider a range of vehicle types and roadways; another is to consider a range 
of possible control laws and control parameters; a third is to consider a range of possible sensor-noise models, 
including a range of correlation times. Another important consideration is to include a look-ahead period, since the 
protection level analysis needs to be valid not just at the current time, but also for some period into the future. Such 
an analysis will require new analytical technique to project when combined errors (e.g., position and heading) create 
the largest risk of a lane excursion. 

To support future safety analyses, another important step will be to validate the use of abstracted models like the ones 
presented in this paper. Though we believe that the simplified model is generally representative of a wide range of 
real-world controllers, it is not clear how accurately our approach represents autonomous vehicles being deployed and 
tested in the field. Automated lane-keeping experiments could help address these questions, potentially for operations 
involving a range of errors sources, terrains, and environmental conditions. 

SUMMARY 

In this paper, we considered how vehicle system dynamics map measurement errors into vehicle state errors. To this 
end, we conducted a Monte Carlo simulation of an autonomous vehicle following a path with random time-correlated 
sensor errors in position and orientation. We showed that errors in the sensing of vehicle heading do not cause large 
errors in true vehicle heading, since vehicle-heading errors become observable indirectly, manifesting as cross-track 
position errors. Furthermore, we showed that, when a vehicle rounds a curve, its position error distribution may not 



align with the road, since time-correlation causes apparent lag. These results suggest that measurement errors should 
not be compared directly to alert limits generated from road and vehicle geometry, but rather that the effects of system 
dynamics on the measurement error should also be considered. 

ACKNOWLEDGMENTS 

The authors wish to acknowledge and thank the U.S. Department of Transportation Joint Program Office (ITS JPO) 
and the Office of the Assistant Secretary for Research and Technology (OST-R) for sponsorship of this work. We also 
gratefully acknowledge NSF grant CNS-1836942, which supported specific aspects of this research. Opinions 
discussed here are those of the authors and do not necessarily represent those of the DOT, NSF, or other affiliated 
agencies.  

REFERENCES 

[1] T. G. R. Reid et al.' pB`TR]ZkReZ`_ GVbfZcV^V_ed W`c 7fe`_`^`fd KVYZT]Vd'q SAE Int. J. Connect. Autom. 
Veh., vol. 2, no. 3, pp. 1o16, 2019. 

[2] O. N. Kigotho and J) GZWV' p9`^aRcZd`_ `W GVTeR_Xf]Rc R_U ;]]ZaeZTR] 7]Vce BZ^Zed W`c BR_V-Keeping 
7aa]ZTReZ`_d'q Z_ ION GNSS+, 2021. 

[3] 8) :V9]VV_V' p:VWZ_Z_X FdVfU`cR_XV ?_eVXcZej - EgVcS`f_UZ_X)q aa) ,4,1o1924, 22-Sep-2000. 
[4] @) GZWV R_U H) Ff]]V_' pIYV ?^aRTe `W CVRdfcV^V_e 8ZRdVd `_ 7gRZ]RSZ]Zej W`c 97I ??? B77H'q IEEE Trans. 

Aerosp. Electron. Syst., vol. 42, pp. 1386o1395, Jun. 2005. 
[5] @) GZWV' H) Ff]]V_' F) ;_XV' R_U 8) FVcgR_' pFRZcVU `gVcS`f_UZ_X W`c _`_ZUVR] B77H R_U L77H Vcc`c

UZdecZSfeZ`_d'q IEEE Trans. Aerosp. Electron. Syst., vol. 42, no. 4, pp. 1386o1395, 2006. 
[6] J. D. Larson, D. Gebre-;XkZRSYVc' R_U @) >) GZWV' p=RfddZR_-Pareto overbounding of DGNSS pseudoranges 

Wc`^ 9EGH'q Navig. J. Inst. Navig., vol. 66, no. 1, pp. 139o150, Mar. 2019. 
[7] @) >) GZWV' pRobust Chi-dbfRcV C`_Ze`c FVcW`c^R_TV hZeY D`ZdV 9`gRcZR_TV `W J_\_`h_ 7daVTe GReZ`'q

Navig. J. Inst. Navig., vol. 64, no. 3, pp. 377o389, Sep. 2017. 
[8] F) :) =c`gVd' O) @ZR_X' C) GfUZ' R_U F) Hec`UV' p7 a`ceW`]Z` Raac`RTY e` DBEH R_U ^f]eZaReY ^ZeZXReZ`_ in 

UV_dV fcSR_ RcVRd'q 26th Int. Tech. Meet. Satell. Div. Inst. Navig. ION GNSS 2013, vol. 4, no. September, pp. 
3231o3247, 2013. 

[9] F) MZV R_U C) =) FVe`gV]]`' pCVRdfcZ_X =DHH Cf]eZaReY :ZdecZSfeZ`_d Z_ JcSR_ 9R_j`_ ;_gZc`_^V_ed'q

IEEE Trans. Instrum. Meas., vol. 64, no. 2, pp. 366o377, 2015. 
[10] N. S. Nise, Control Systems Engineering, 7th ed. Wiley, 2015. 
[11] C) =) FVe`gV]]`' A) ErAVVWV' =) BRTYRaV]]V' R_U C) ;) 9R__`_' p9`_dZUVcReZ`_ `W eZ^V-correlated errors in a 

AR]^R_ WZ]eVc Raa]ZTRS]V e` =DHH'q J. Geod., vol. 83, no. 1, pp. 51o56, 2009. 
[12] A Policy on Geometric Design of Highways and Streets. American Association of State Highway and 

Transportation Officials, 2001. 
[13] Roundabouts: An Informational Guide, vol. FHWA-RD-00-067. US Department of Transportation Federal 

Highway Administration. 
[14] Design Manual. Washington State Department of Transportation, Olympia, WA., 2011. 
[15] @) @ZR_X R_U 7) 7de`]WZ' pBReVcR] 9`_ec`] `W R_ 7fe`_`^`fd KVYZT]V'q IEEE Trans. Intell. Veh., vol. 3, no. 2, 

pp. 228o237, Jun. 2018. 
[16] z) N) =V]SR]' H) IR^Z]RcRdR_' C) G) 9R_eR{' B) =mgV_l' R_U 8) 7\df_-=mgV_l' p7 T`__VTeVU R_U Rfe`_`^`fd

vehicle hardware-in-the-]``a dZ^f]Re`c W`c UVgV]`aZ_X Rfe`^ReVU UcZgZ_X R]X`cZeY^d'q 2017 IEEE Int. Conf. 
Syst. Man, Cybern. SMC 2017, vol. 2017-January, pp. 3397o3402, Nov. 2017. 


