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ABSTRACT  

This paper quantifies a significant error source that limits the accuracy of LIDAR scan matching.  LIDAR scan matching, 
which is used in dead reckoning (aka LIDAR odometry) and in mapping, computes the rotation and translation that best align a 
pair of point clouds.  Perspective errors occur when a scene is viewed from different angles, with different surfaces becoming 
visible or occluded from each point of view.  Specifically, this paper models perspective errors for two objects representative 
of the urban landscapes in which LIDAR frequently operates: a cylindrical column and a dual-wall corner.  For each object, 
we provide an analytical model of the perspective error for voxel-based LIDAR scan matching.  We then analyze how 
perspective errors accumulate as a LIDAR-equipped vehicle moves past these objects. 

1 INTRODUCTION  

LIDAR systems are data-rich perception sensors, which cast optical beams in known directions and compute the time of flight 
for the reflected signal. Time of flight can be converted to distance, so each return corresponds to a vector (range and direction) 
describing a point on some surface in the surrounding environment (or scene).  By scanning over a set of directions, the LIDAR 
creates an image, called a point cloud, which represents the scene’s geometry.  It is often useful to align (or register or scan 
match) more than one point cloud.  Applications of this scan matching process include creating a map, inferring relative motion 
over time, or doing both via Simultaneous Localization and Mapping (SLAM), as described in Thrun (2005). 

Perspective errors, sometimes referred to as self-occlusions (Xu et al., 2022), arise in LIDAR scan matching when comparing 
two views, each capturing the same three-dimensional surface from a different location. When moving past a static three-
dimensional object, previously hidden patches of the object may become hidden or visible due to the object’s shape.  Though 
related to shadowing, which occurs when one object occludes a second (Hassani & Joerger 2021, McDermott & Rife 2022a), 
perspective errors refer specifically to an object occluding itself. While shadowing and perspective errors have a common root 
cause, different strategies may be employed to mitigate each, as long shadows cut through many voxels, whereas perspective 
errors are grid-resolution problems confined within one voxel. 

Existing scan matching algorithms can generally be classified into one of three categories:  feature-based methods, voxel-based 
methods, and direct machine-learning (ML) methods.  Feature-based methods seek to correspond recognizable features from a 
pair of point clouds, either individual points (as in the well-known Iterative Closest Point or ICP algorithm) or extracted features 
like planes (Besl & McKay, 1992; Shan & Englot, 2018; Zhang & Singh, 2014).  Hybrid feature-based methods also exist, 
which combine ML-based strategies with feature extraction, such as the recent work by Plachetka et al. (2021), which applies 
ML to create bounding boxes for objects identified in a scene. Voxel-based methods, such as the Normal Distribution Transform 





These examples demonstrate that even a smoothly curved, convex surface (like a cylindrical column) can occlude the LIDAR’s 
view and corrupt the resulting point cloud with missing data.  Even more dramatic occlusions occur for more complex objects, 
such as those involving sharp corners or outcroppings.  In this paper, we do not consider signal-miss effects due to reflective 
surfaces (Xu et al., 2022).  

Interestingly, perspective errors are driven not only by missing-data regions (red arcs from Figure 1), but also by a secondary 
effect:  the density of points within the cloud.  As an example of this, consider the flat wall that is visualized from above in 
Figure 2a and Figure 2b.  For a flat wall of finite length, there is no missing data, because the LIDAR sees the entire face of 
the wall from any viewing location (unless it moves behind the wall).  However, even though the full surface of the wall is 
visible, there may still be minor variations in the mean location of the point-cloud as caused by changes in the density of the 
LIDAR samples.  Consider the difference in the distribution of samples moving from a viewing location on the left of the wall 
(Figure 2a) to a more central viewing axis (Figure 2b).  When viewing from the left, the point density is much higher on the 
left than the right.  When viewing from the middle, the point density is highest in the middle.  Where the point density is 
highest, the interval between samples is shortest (as shown in Figure 2c).  In this particular case, the high density of samples 
on the left side of the wall in Figure 2a will shift the point-cloud mean slightly to the left as compared to Figure 2b. 

FIGURE 2  
Point density along a planar surface is a function of LIDAR location: A short wall is shown visualized from two locations, 
indicated with cross markers.  When the LIDAR is located at the left cross, points are sampled as shown in (a), and when the 
LIDAR is located on the right cross, points are sampled as shown in (b).  Distances between sequential points as a function of 
point index (counting from left to right) are plotted in (c).  

For typical urban scenes, perspective effects are only significant for a small number of objects (or voxels) viewed in the scene.  
Given the number of voxels in the scene, systematic perspective errors on a few voxels might not have a significant impact if 
the perspective errors were aligned in random directions; however, as we will show in the next section, perspective effects 
result in significant and persistent errors that tend to align with the direction of motion.  Thus, they may accumulate and be 
significant even if they impact a relatively small fraction of voxels. 

As a final note, it is significant to note that in this paper we do not consider limits on the LIDAR field of view.  As a 
consequence, our models of perspective error consider only LIDAR translation.  In the absence of a field of view restriction, 
LIDAR rotation does not cause perspective error.  Consider the point clouds in Figure 1 and Figure 2; these point clouds would 
have essentially the same shape, regardless of the yaw orientation of the LIDAR, at least assuming a rotating LIDAR that scans 
in all azimuth directions.  The situation would be somewhat different when driving the rotating LIDAR unit past a tall building 
or under a highway sign or bridge, because parts of the scene would pass above the upper limit of the rotating LIDAR’s field 
of view, noting that the elevation angle limit for a typical scanning LIDAR is about 15° (Velodyne, 2019).  Studying the impact 
of field of view on perspective error, as might be significant for airborne applications, is left as a topic for future work. 
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3 ANALYTICAL MODELS FOR POINT-CLOUD MEAN 
This section develops analytical models to quantify perspective errors associated with two types of objects, cylindrical columns 
and dual-wall corners. These objects are representative of features common in urban environments.  Because we focus on 
voxel-based algorithms that perform scan matching by attempting to align the point distributions within each voxel, we assess 
the systematic bias as equal to the shift in the point cloud’s mean location.  We assume dense, effectively continuous, sampling 
and assume the point cloud covers the entire surface of the object that is visible from the LIDAR’s instantaneous location.  As 
a further simplification, we assume the object is located entirely inside a single voxel.  This is not an unreasonable assumption, 
as scan-matching algorithms often use voxels with a span of a meter or more. 

3.1 Perspective Error for a Cylinder 
A top-view schematic for analyzing LIDAR scans of a cylindrical column is shown in Figure 3.  In the schematic, the LIDAR 
is located at point L (cross marker) and the centerline of the cylinder passes through point O.  The sample point S lies on the 
surface of the cylinder, which has a radius R.  The point cloud is the locus of all visible points S along the cylinder’s surface 
(green highlighted arc in figure).   

FIGURE 3  
Top view of the cylindrical column 

Our approach to compute the mean location of the point cloud will be to integrate the coordinates x and y along the appropriate 
cylindrical arc (between the brown-dashed lines in the figure).  The x and y Cartesian coordinate pair are defined in by the unit 
vectors :�s and :�t in the diagram.  Although the cylinder and point cloud are defined in 3D, we can compute the mean location 

for the point cloud using a 2D analysis, because the cylinder has a constant cross-section out of the plane.  (Assuming points 
are evenly distributed in the vertical direction, the vertical component of the point-cloud mean lies at half the height of the 
cylinder.)  Our primary goal is to compute the change in the observed point-cloud mean when viewing the cylinder from two 
different points L. 

In computing the shift in the mean location of the point cloud, we consider not only missing data (as shown in Figure 1), but 
also point-density effects (as shown in Figure 2).  To that end, we model the point cloud density K as uniform in the angular 
coordinate I about the Lidar location L. The decision to model the density as a function I (rather than, say, of the Cartesian 
coordinates x and y) automatically accounts for point-density variations along object surfaces as shown in Figure 2.  

The number of points N sampled across the cylinder arc can be obtained by integrating the density.  Defining the point L as the 
origin of a cylindrical coordinate system, the point O lies at �FP- IP).  The upper and lower bounds (brown dashed lines in 
Figure 3) are displaced from IP by counterclockwise-positive angles Ig and Ia, noting Ia � �Ig due the symmetry of the 
cylinder.  Without loss of generality, we can redefine the circumferential angle relative to IP (i.e., set IP = 0), and so 

= � � K�I�@I
u�

u}
. (1) 

Noting the density is uniform, or constant, in the angular coordinate, we can factor out density and evaluate the integral to give 

= � K(Ig � Ia). (2) 



The mean location over all the points in the point cloud, sampled at angles Im, is 

;� �
Q

b
� ;e�Im)m
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If the points are sampled with sufficient density, we can replace the summation with an integral: 

;� �
/ ;~�u�w�u�
��
�}

hu

b
. (4) 

Substituting (2) into (4) and noting that the density can again be factored out of the integral, we can simplify to obtain 

;� �
/ ;~�u�
��
�}

hu

u�Vu}
. (5) 

The next step is to evaluate the integral in the numerator.  Equation (5) uses a 2D vector notation, which will be important for 
the dual-wall corner; however, we can use a simpler scalar analysis for the cylinder, noting the geometry is symmetric about 
the axis LO����. To locate the point-cloud mean for the cylinder, we need only solve for the component in the direction of LO���� (the 
x-direction for IP = 0).  Using the coordinate system aligned with LO����, we thus have ;� � [G8 0]f. Substituting this expression 
and invoking symmetry, we convert the general vector equation (5) into a scalar equation for the cylinder: 

G8 �
Q

u�
� Gq�I�@I
u�

P
. (6) 

Using geometry and noting that edge LO���� and OS���� have lengths FP and ?, respectively, we can obtain  

(1 + tanR(I)) Gq
R � 2FPGq + (FP

R � ?R) = 0. (7) 

Solving for x and invoking standard trigonometric identities, this expression can be solved for Gq to give 

Gq(I) � FP cosR(I) 1 "%&(I)�?R 1 &#$R(I) FP
R. (8) 

Only the negative root of the quadratic equation is considered here, because the positive root corresponds to the far (hidden) 
side of the cylinder.  The analytical solution for (6), eliminating Gq using (8), is 

G8 �
pz

R
+

Q

Tu�
�FP sin(2Ig) 1 &#$(Ig)�2FP

R cos(2Ig)� 2FP
R � 3?R  �

d|

Ru�pz
tanVQ ¥

,R ]Z[(u�)

�Y\](Ru�)VQURd|/pz
|
¦. (9) 

Drawing a right triangle connecting LO���� to the tangent point from L, it is possible to show that the limit angle Ig � "*&(�?/FP).

Using the geometry of that right triangle, R and FP can largely be eliminated from equation (9) to give: 

G8 �
pz

R
£1 �

]Z[(u�)

u�
�#)*(Ig) 1 �

|
sin(Ig)�¤. (10) 

This value describes the distance from point L to the mean along the direction of LO����.  Subtracting (10) from the length of LO����, 
which is FP, and normalizing by the cylinder radius R, we can plot the point-cloud mean location relative to O, as shown in 
Figure 4.  When the distance from the LIDAR to the cylinder center is at its minimum (e.g., when the LIDAR touches the 
cylinder, with FP � ?), the LIDAR only sees one point on the cylinder, so the point-cloud mean is located one radial unit from 
the center (as shown on the far left of Figure 4).  As the LIDAR moves increasingly away from the cylinder (moving right on 
the horizontal axis of Figure 4), the distance from the cylinder center to G8 shrinks, with the distance eventually reaching an 

asymptote (equal 
v

T
 or approximately 0.79 radial units) as the LIDAR distance grows toward infinity. It is worth noting, 

however, that due to the finite sample density of real-world scanning lidar units, experimental performance at longer distances 
will not precisely match theoretical performance, as we have assumed dense sampling at all distances.       



FIGURE 4  
Distance from point O to point-cloud mean in the direction of  <>����

If two LIDAR positions are considered, then we can compute the distance between the point-cloud mean vectors in each case.  
If a scan-matching algorithm aligns the two mean values, then this would be the systematic position-estimation bias for the voxel 
containing the cylinder.  In differencing the point-cloud mean vectors, we must account for the different pointing direction of 
the vector (or equivalently, the distinct IP value) for each location.  Using the index j to distinguish the two LIDAR locations, 
we can write the vector from the point-cloud mean to the cylinder enter as: 

;c � ;
(n)

q � � F
(n)

P � G8
(n)

  �#)* I
(n)

P *&( I
(n)

P�
f
. (11) 

Using the cylinder center as a common reference, we can difference (11) for the two viewpoints j to get: 

;
(R)

q � ;
(Q)

q � � F
(Q)

P � G8
(Q)

��#)* I
(Q)

P *&( I
(Q)

P�
f
� � F

(R)
P � G8

(R)
��#)* I

(R)
P *&( I

(R)
P�
f
. (12) 

The false movement inferred will be opposite the change in the point-cloud mean location, so the perspective error for the 

inferred LIDAR translation is  O � �� ;
(R)

q � ;
(Q)

q�. 

3.2 Perspective Error for a Dual-Wall Corner 
For comparison with the smooth cylindrical column, we also consider a second object with a sharp bend:  the dual-wall corner 
shown from above in Figure 5.  The corner consists of two thin walls of length R that meet at vertex O.  The LIDAR location 
is again labeled L.  Each wall is oriented at a specified angle as viewed from above.  Relative to LO����, the first wall is oriented 
at an angle LQ and the second at LR.  Both angles are positive counterclockwise (so LQ is negative as drawn). 

The LIDAR detects points along the dual-wall corner, through a range of angles between a lower and an upper bound (Ia and 
Ig, respectively).  The point cloud is generated from the entire visible surface, along both wall segments, each labeled with a 
subscript i. To determine the mean location for the point cloud, the first step is to write the location of an arbitrary point S on 
one of the segments.  We use a coordinate system where the corner’s vertex O lies on the x-axis (IP = 0 for integration), at a 
distance of FP from L.  In this configuration the locus of points S on one wall segment can be described by the following vector, 
where R is the segment length, identical for both segments, and Am . 5*'+6 is a fractional distance of S along segment i. 

;q � ;W � �
FP � Am? #)*(Lm)

Am? *&((Lm)
� (13) 

FP 1 G-

?

FP
?



FIGURE 5  
Top view of the dual-wall corner 

The point-cloud mean ;� can be computed from (5), where ;q is defined by (13).  Before performing the integral, however, it is 
first necessary to rewrite (13) in terms of the angle I. The angle I describes the direction of the vector ;q, so 

tan(I) =
j�d ]Z[(x�)

pzUj�d Y\](x�)
. (14) 

Solving (14) for the fractional length Am and substituting the result into (13) gives 

;q � ;W � FP
^X[(u�)

]Z[(x�)VY\](x�) ^X[(u�)
:m. (15) 

Here we define the vector ;W to describe the position of O relative to L and the unit vector :m to describe the direction from O 
to S (along the segment).  The integral of ;q along wall i depends only on the factor multiplying :m.  For wall i, define this 
integral, over the set of angles Im . )m , to be  

Bm � FP�
^X[(u�)

]Z[(x�)VY\](x�) ^X[(u�)`�

@I. (16)  

We can now use (5) to obtain the mean for the point cloud associated with the visible surface of the corner, by substituting (15) 
and (16) into (5).  Considering both wall segments and modeling the walls as thin, so there is no additional contribution from the 
wall ends, the integral (5) can be written as follows: 

;� �
k{Uk|

u�Vu}
� ;W. (17) 

In order to compare the shift in mean as viewed from two LIDAR locations, we need to introduce an index j to distinguish 
between the two LIDAR viewing locations.  Introducing the location index via a leading superscript j, we can rewrite (17) as: 

;�
�n�

=
k{

(�)
:{

(�)
U k| :|

(�)(�)

u�
(�)

V u}
(�) � ;W. (18) 

The change in the location of the point-cloud mean as viewed from the two lidar positions can be expressed by differencing (18) 

for each of the two viewing locations j.  In computing this difference, it is important, to express the wall-tangent vectors :
�n�

m in 

a common coordinate system.  To this end, we rotate from <>����-aligned coordinates back to the unit vectors :�s and :�t as shown 

in Figure 5.  Using the latter set of basis vectors, we have  

:
�n�

m � §
#)* � L

�n�
m � I

(n)
P 

*&( � L
�n�

m � I
(n)

P 
¨ (19) 



With this definition, we can express the change in the point-cloud mean location as 

;
(R)

q � ;
(Q)

q =
k{

�|�
:{

�|�
U k| :|

�|��|�

u�
�|�

V u}
�|� 1

k{
�{�
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V u}
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Again, assuming the corner feature is fixed in space, the perspective error O will be opposite the apparent object motion, with  

O � �� ;
(R)

q � ;
(Q)

q�. 

In order to compute (20), we need to evaluate integral (16) for Bm
�n�

.  Before jumping to evaluating the integral with arbitrary 

units, let us first evaluate (16) on the range that includes point O, with )m
(n)

� ¡I 9 �0- Im
�(n)
�¢. For that case (16) gives the 

following result Bm
�n�

2 0m � Im
�(n)
 

(n)
, with: 

0m � Im
�(n)
 

(n)
� �

� FP
(n)

£© Im
�(n)
© #)* � Lm

(n)
  � *&( �© Lm

(n)
©  '( £

]Z[� x�
(�)

V u�
�(�)
 

]Z[� x�
(�)

 
¤¤ Lm

(n)
3 *

0 Lm
(n)

= 0

. (21) 

The absolute value notation in (21) is redundant when Lm
(n)

 and Im
�(n)
 are positive; for the case when these variables (which 

always have matched sign) are negative, then introducing the absolute values signs gives the correct integral over the range of 

angles )m
(n)

� ¡I 9 � Im
�(n)
- 0�¢.  With the absolute value signs, (21) describes the desired integral over a single wall.  If only 

one of the two walls is visible, then Bm
�n�

2 0m � Im
�(n)
 

(n)
 for that wall, where Im

�(n)
 is obtained from (14), by setting Am

(n)
= 1.  

We will refer to this angle associated with the wall endpoint as Iri-m
(n)

:

Iri-m
(n)

� "+"(£
d ]Z[� x�

(�)
 

pz
(�)

Ud Y\]� x�
(�)

 
¤. (22) 

Additional consideration must be given to cases when both walls are visible or when one of the walls is partly visible behind 
the other.  To cover these cases, additional logic must be introduced, as summarized by The logic in the table describes three 

possible outcomes.  In the first case, if the two angles LQ
(n)

 and LR
(n)

 do not have the same sign, then both walls are fully 

visible, and Bm
�n�

2 0m � Im
�(n)
 

(n)
 for each wall.  In the last two cases, the walls are on the same side, which causes the rear wall 

(index 2) to be fully or partially blocked from view by the nearer wall (index 1). In both cases the nearer wall analysis is 

straightforward, with BQ
�n�

= !(D)! 9$DI$8# %1 5-* (&4* 2+ +600 '02(/&,*" 5-* 4*(21) 7&00 )2*4 125 (2153.'65*

to the integral: !�D)B2=0.  In the case of a partial blockage, the integral must be computed over just the visible section of 

+%$ ,"''- ,&+% BR
�n�

=  (D)!0R � Iri-R
(n)

 ! 1 0R � Iri-Q
(n)

 
(n)

. 

4 NUMERICAL RESULTS 

To study the perspective-error models derived in the previous section, it is helpful to evaluate the equations for a representative 
scenario.  Let’s consider the case of a LIDAR mounted on a mobile platform (e.g. a vehicle or robot) that moves in a straight 
line past a fixed object.   

Table 1. In order to construct the table, we defined the wall angles Lm
(n)

 as confined to the range Lm
(n)

9 ��EC- EC�, where the 

zero angle is aligned with line segment LO���� between the Lidar and the vertex O.  Also, we assume the wall indices are ordered 
such that the wall nearer to the viewer (on either side) is indexed as 1 and the farther wall is indexed as 2. That is: 

© LQ
(n)

© � © LR
(n)

©. (23) 



The logic in the table describes three possible outcomes.  In the first case, if the two angles LQ
(n)

 and LR
(n)

 do not have the 

same sign, then both walls are fully visible, and Bm
�n�

2 0m � Im
�(n)
 

(n)
 for each wall.  In the last two cases, the walls are on the 

same side, which causes the rear wall (index 2) to be fully or partially blocked from view by the nearer wall (index 1). In both 

cases the nearer wall analysis is straightforward, with BQ
�n�

2 0Q � IQ
�(n)
 

(n)
.  In the case of full blockage, the second wall does 

not contribute to the integral: BR
�n�

= 0.  In the case of a partial blockage, the integral must be computed over just the visible 

section of the wall, with BR
�n�

2 0R � Iri-R
(n)

 
(n)

1 0R � Iri-Q
(n)

 
(n)

. 

5 NUMERICAL RESULTS 

To study the perspective-error models derived in the previous section, it is helpful to evaluate the equations for a representative 
scenario.  Let’s consider the case of a LIDAR mounted on a mobile platform (e.g. a vehicle or robot) that moves in a straight 
line past a fixed object.   

TABLE 1 
Defining integral for double-wall corner, for the case where the wall indexed 1 is closer than the wall indexed 2 

Case Condition Integral for this condition 

No blockage sign( LQ
(n)

) 3 sign( LR
(n)

) BQ
(n)

= 0Q � Iri,Q
(n)

 
(n)

BR
�n�

= 0R � Iri-R
(n)

 
(n)

Ig
(n)

1 Ia
(n)

= © Iri,Q
(n)

1 Iri,R
(n)

©

Blockage sign( LQ
(n)

) = sign( LR
(n)

)

"  Full blockage Blockage and © Iri,Q
(n)

© 4 © Iri,R
(n)

© BQ
(n)

= 0Q � Iri,Q
(n)

 
(n)

BR
�n�

= 0

Ig
(n)

1 Ia
(n)

= © Iri,Q
(n)

©

"  Partial blockage Blockage and © Iri,Q
(n)

© < © Iri,R
(n)

© BQ
(n)

= 0Q � Iri,Q
(n)

 
(n)

BR
�n�

= 0R � Iri-R
(n)

 
(n)

1 0R � Iri-Q
(n)

 
(n)

Ig
(n)

1 Ia
(n)

= © Iri,R
(n)

©

First, let’s consider motion past the cylindrical column.  We define the along-track coordinate to be zero when the LIDAR is 
closest to the object.  Also, we assume that the LIDAR first detects the object when it is at an along-track distance of -15R
(noting that our simulations express all distances in a nondimensional form, normalized by the column radius R).  The 
systematic perspective error O, associated with apparent motion of the point cloud generated from the cylinder, was computed 
as the negative of (12) and plotted in Figure 6.  Errors were computed as changes in the perceived cylinder location, relative to 
its initial location at time zero. The starting point is on the left side of plots shown in Figure 6.  When the LIDAR is closest to 
the object (at an along-track distance of G/? � 0), the distance from the cylinder center in the cross-track direction is set to 
one of three values: H/? � �1-2-3�.  The first case, with H � ?- is the limiting case where the LIDAR just touches the surface 
of the cylinder.  In the subsequent two cases, the cylinder moves progressively farther off the LIDAR’s track.   

The figure plots along-track error Ms and cross-track error Mt as a function of the LIDAR’s along-track position x. A circular 

cross-section is shown in the lower plot, as a reminder that the plot describes a cylinder shifted to the left (positive y direction) 
of the LIDAR.  In all cases, the along-track error Ms becomes increasingly negative as the LIDAR moves from left to right. The 
reason for this is that the point cloud rotates around the cylinder from its left (more negative) side to its right (more positive) 



side.  Because the point-cloud position moves to the right (positive), the vehicle measures less than the true distance of travel 
(a negative error in the along-track direction) if the cylindrical column is assumed stationary.  The accumulated error Ms/? is 
approximately J/2 (which follows since the point-cloud center moves from approximately J/3 initially to �J/3 in the end, 

as expected for the limit case shown in Figure 4). 

In contrast with the along-track error Ms, whose magnitude grows in time, the cross-track error Mt grows to a maximum 

at the moment that the object is viewed laterally (at G/? � 0). As the LIDAR travels past the object, the error fades back 

to zero.  This trend makes sense. Initially, when viewed from the side, the cross-track position of the point cloud is near 

the cross-track position of the cylinder’s center.  As the LIDAR moves past the object, the point cloud shifts around the 

circular cross-section until it is centered on the side closest to the LIDAR at G/? � 0. This represents a negative 

apparent motion for the point cloud, so the vehicle appears to move positive (Mt > 0).  Later, as the LIDAR moves 

increasing to the right, the point cloud continues to rotate around the circular cross section, toward the column’s right 

side.  This represents a positive change in the point cloud’s  coordinate, back toward its original value (with the lateral 

error Mt also returning to zero as the LIDAR moves off the right edge of Figure 6). 

FIGURE 6  
Perspective-error that results when a LIDAR moves on a straight trajectory past a cylindrical column  

As the LIDAR trajectory is shifted increasingly far from the object (going from H � ? to H � 3?�, the changes are more 

gradual.  For instance, greater lateral spacing  causes the along-track error Ms to accumulate sooner and the slope to 

be more gradual (but still resulting in roughly the same level of total error Ms, as seen on the right side of Figure 6).  As 

for the cross-track error, the error curve is wider (with error triggering sooner) and shorter (lower maximum lateral 

error) for higher values of 

The trends observed when passing the dual-wall corner in the convex configuration are similar to the trends for the column (see 
left column of Figure 7, marked with “v-shaped” corner).  In this configuration, the wall segments are each canted 45 degrees 
back from the LIDAR’s line of travel. Only the outer faces of the wall segments are seen as the LIDAR passes. The along-track 
error Ms increases in magnitude monotonically, as the point-cloud mean moves from the negative wall to the positive wall.  The 
cross-track error Mt increases and decreases, with a peak lateral error when the LIDAR is closest to the vertex (at G/? � 0).  

The only detail that is notably different between the cylinder and the convex dual-wall corner is the peak error-magnitude, 
noting that the objects have cross-sections of similar size (cylindrical column of radius R and dual-wall corner where each edge 
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is length R).  For the convex corner in the left column of Figure 7, the largest along-track error is approximately ?/,2 in 
magnitude (the distance between the midpoints of the two walls); the largest cross-track error is a very small fraction of R (less 
than 0.1R), since both walls are entirely visible at G/? � 0.  As the location of the walls shift farther laterally (vertex y/R going 
from 1 to 4), the trends again become more gradual. 

The error profile looks somewhat different for other orientations of the dual-wall corner.  Whereas the convex corner was a 
reasonable approximation of the cylinder, the L-shaped corner (middle column of Figure 7) and the concave corner (right 
column of Figure 7) exhibit curious properties related to occlusions of one wall by the other.  All visible wall segments are 
considered in our analysis here; however, we acknowledge that the more distant wall segment might be excluded in a practical 
implementation, due to shadow-mitigation (McDermott & Rife 2022a). 

FIGURE 7  
Perspective-error relative to starting position (at x/R = -15), as LIDAR moves in a straight line past a corner.  Each column 
above shows a corner with a different orientation (as depicted in the lower row).  In the left column, the corner opens away 
from the LIDAR (convex when viewed from x=0); in the middle column, the corner opens to the positive x and y directions (flat 
when viewed from x=0); in the right column, the corner opens toward the LIDAR (concave when viewed from x=0). 

Consider the L-shaped corner (middle column of Figure 7).  In this case, the corner has one wall aligned with the y-direction 
and the other aligned with the x-direction, with the vertex on the side closest to the LIDAR as it passes.  Initially, the LIDAR 
primarily sees only the outside y-aligned wall.  This wall disappears when the LIDAR reaches G/? � 0- at which point only 
the x-aligned wall is visible.  Eventually the inside of the y-aligned wall becomes visible again and by the time the LIDAR 
reaches its final location (G/? � 14), this y-aligned wall dominates the point cloud.  Since the LIDAR starts and finishes 
primarily seeing opposite sides of the y-aligned wall, which has no thickness, the net Ms is nearly zero.  As for Mt , this error 

climbs to as high as 0.45R (for vertex at y/R = 1) when the LIDAR passes the corner. This makes sense since the LIDAR sees 
only the x-aligned wall at this point, which is closer than the y-aligned wall by a distance of 0.5R. 

Now consider the concave corner (left column of Figure 7).  In this case, the corner opens toward the LIDAR, such that both 
walls are canted 45 degrees toward the LIDAR’s track.  As the LIDAR translates, it nearly always sees at least a fraction of 
both walls.  Due to a combination of point density effects (see Figure 2) and switching between viewing the inner and outer 
faces of each wall, the point-cloud mean moves back and forth as the LIDAR progresses.  As a result, the error  Ms and Mt
increases and decreases several times. Though a substantial Ms error accumulates, the Mt error generally remains in a small 

band near zero (smaller in magnitude than about 0.1R). Interestingly, the sign of the net Ms error is positive in the region where 
only the interior faces of the convex corner are visible. (Exterior faces are not visible between the dot markers, shown in the 
upper right plot of Figure 7). The positive net  Ms indicates overprediction of distance traveled.  Thus, when only interior walls 
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This trend continues as the voxels grow even smaller.  When there are three voxels across the diameter of the cylinder (edge 

width of  
R

S
?) the worst case error is (y =

R,R

S
? � 0.63?.  This case is shown in Figure 8c. When there are four voxels across 

the diameter of the cylinder (edge width of  
Q

R
?) the worst case error is (y =

,R

R
? � 0.51?.  This case is shown in Figure 8d.  

A secondary benefit of using smaller voxels is that fewer voxels align in the worst-case configuration as the voxels get smaller.  
In Figure 8b, it is possible for all four voxels to align in the worst case configuration.  In Figure 8c, it is possible for only one 
of nine voxels shown to align in the worst-case configuration.  In Figure 8d, it is possible for only one of sixteen voxels shown 
to align in the worst-case configuration.  In short, smaller voxel size always decreases the magnitude of the worst-case error 
and, at least in the case shown, also decreases the number of voxels that experience the worst-case error. Although higher voxel 
count can mitigate perspective error, the extra voxels increase computational complexity; as such, adaptive resolution methods 
may offer benefits in balancing accuracy and computational cost (Eckart, 2018). 

6.2 Exclusion of Lateral Features 

Another possible mitigation is to avoid using nearby voxels orthogonal to the LIDAR velocity, at least if they contain a compact 
feature. This heuristic approach is driven by the observation that perspective errors accumulate most rapidly when a feature is 
located more-or-less orthogonal to the direction of motion (near x/R=0 as shown in Figure 6 and in Figure 7).  As the figures 
show, perspective error is most pronounced when the feature is near to the LIDAR (when y/R is low).   

In large part, the reason why perspective error accumulates rapidly is that the viewing angle, from a moving observer to a point 
O, changes quickly when the point is positioned orthogonal to the motion direction at a relatively short distance.  We can see 

this by defining two position vectors, ;
�Q�

o and ;
�R�

o, which describe the vector to a point O from two viewing locations, 

labeled 1 and 2.  The change in viewing angle N is the angle between these vectors, which we can compute with the dot product: 

N � "#)* £
;

�|�
�7 ;
�{�

�

ª ;
�|�

�ªª ;
�{�

�ª
¤. (24) 

Let us assume that the motion carries the viewer a distance d is the direction aligned with the x-axis.  Then the two vectors are 

related by ;
�R�

o � :�_@ � ;
�Q�

o .  We can now use (24) to compute the viewing angle N for points located at any position (x,y) 

relative to the midpoint of the two viewing locations.  A contour plot of the viewing angle for objects at various locations is 
plotted in Figure 9, where the horizontal (x-axis) and vertical (y-axis) correspond to the position of the point O, and where the 
isocontours describe the angle shift (in degrees) for a small horizontal movement d.  Note that the figure describes the location 
of point O in distances normalized by d, such that the figure axes are nondimensional.   

The isocontours show that the largest changes in viewing angle (in degrees) are along the vertical axis through G/? � 0
(orthogonal to the motion) and nearer to the observer.  The trends of large changes in viewing angle in Figure 9 are consistent 
with the trends of high perspective error observed in Figure 6 and Figure 7, supporting the correlation between the two.   

FIGURE 9  
Change in viewing angle (deg) as a function of object location, for a movement in the x-direction of distance d
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An important caveat is that perspective-errors only accumulate rapidly for surfaces that contain significant curvature within a 
cell.  Changes in viewing angle allow the viewer to “see around the bend” for compact objects like cylinders and dual-wall 
corners, with motion revealing a new region of the object’s surface.  For flat planes, the full surface remains in view as long as 
the viewer stays in front of the plane; the result is that perspective errors can result only from density changes (see Figure 2), a 
relatively minor effect.  Even for mildly curved surfaces, the error perpendicular to the surface is small (noting, for example, that 
the low values of the perpendicular error (d/? shown for short circular arcs, as shown in Figure 8c and Figure 8d). By contrast, 
for corners and objects with large curvature within a voxel, the change in viewing angle reveals new portions of the object surface 
as the LIDAR moves. 

The distinction between compact and extended surfaces is a major feature of the ICET algorithm, developed by McDermott 
(2022b). It may be useful to leverage this algorithm’s ability to distinguish compact and extended features in order to develop a 
future strategy for mitigating perspective errors. 

6.3 Monitoring for Perspective Change 

Another possible mitigation for perspective errors is to introduce a monitor to check for significant changes to the distribution 
of LIDAR points within a given voxel.  If the shape of the distribution changes, that might be a good indicator that a new region 
of a surface has appeared in view, a condition which is necessary for large perspective errors.  The design of such a monitor is 
outside the scope of this paper. 

6.4 Object Reconstruction 

The basic tenet of scan matching is that commonality should be identified between two LIDAR scans, so that the scans can be 
aligned.  In concept, it may be possible to extract even more information from a scan by classifying objects.  If an object can 
be identified as the same feature in two scans, even if it is viewed from a radically different angle, then that feature could be 
used as a landmark for localization.  There are two challenging problems here: reliably identifying landmarks and estimating 
their associated boundaries to register different views of the landmark (Zhou & Tuzel 2018; Li & Wang 2020; Xu et al. 2020).  
These problems are being studied in the machine-learning community, but developing a rigorous assurance case for ML-based 
algorithms remains a hurdle for safety-of-life applications. 

CONCLUSION 
The main goal of this paper was to characterize LIDAR perspective errors, a significant source of systematic error in LIDAR 
scan matching and odometry.  In particular, we introduce an analytic model of perspective errors for voxel-based scan matching 
algorithms, like NDT and ICET, which attempt to match the mean of the point distribution within a voxel.  We showed that the 
systematic effect of the perspective error can accumulate to a significant value, as large as the diameter of a cylindrical column, 
for instance.  For convex objects (like columns, poles or outer corners) the perspective error underpredicts the LIDAR’s forward 
motion.  For concave objects (like inner corners), overprediction of forward motion is possible.  Both convex and concave 
objects may result in the false inference of lateral motion, but these effects are transient and disappear as the LIDAR continues 
on its path.  Concepts were discussed for mitigation of perspective errors, including the use of smaller voxels, lateral-feature 
exclusion, monitoring and object reconstruction. 
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