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Fetal Electrocardiogram Extraction Using
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Non-Invasive Abdominal Recordings
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Abstract—Objective: The development of a method for
non-invasive monitoring of fetal electrocardiogram (FECG)
signals from single-channel abdominal recordings. Meth-
ods: The dual-path source separation (DPSS) architecture
is introduced for the simultaneous separation of fetal and
maternal ECG signals from abdominal ECG recordings.
DPSS initially denoises abdominal ECG (AECG) recordings
using a generative dual-path long short-term memory (DP-
LSTM) network. An inception module along with a series of
DP-LSTM blocks is then employed to extract the mask-ing
maps associated with fetal and maternal components.
Finally, these masking maps are weighted by the AECG
recording to separate maternal and fetal ECG signals. The
performance of this network is evaluated on 10 pregnan-
cies from the fetal ECG synthetic database (FECGSYNDB),
22 cases of labor and pregnancy from the abdominal and
direct fetal ECG database (ADFECGDB), and 69 pregnan-
cies from set A of non-invasive FECG challenge (NIFECGC)
datasets. Results: F1-scores of 99.03%, 97.7%, and 95.3%
are reported for the detection of fetal QRS complexes in
FECGSYNDB, ADFECGDB, and NIFECGC respectively.
DPSS technique is also evaluated in terms of separability
of fetal and maternal clusters. According to the clustering-
based analyses, the average purity index of 0.9750, Jaccard
index of 0.9705, and Davies-Bouldin index of 0.7429 demon-
strate the high source separation capability of DPSS. Con-
clusion: The achieved performance suggests that DPSS en-
ables accurate single-channel FECG extraction, and can re-
place state-of-the-art source separation techniques for this
purpose. Significance: This study signifies a fundamental
step towards non-invasive fetal ECG monitoring systems,
which favors at-home prenatal care.

Index Terms—Fetal ECG monitoring, neural networks,
non-invasive recordings, single-channel monitoring,
source separation.
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I. INTRODUCTION

TILLBIRTH, defined as the death of a fetus after 24 weeks
of gestational age [1], affects 2.5 million babies globally ev-

ery year [2]. Stillbirth is often accompanied by a decrease in fetal
heart rate (FHR) [1], provoking the need for proactive fetal mon-
itoring to reduce fetal mortality. Current fetal heart rate moni-
toring predominantly relies on clinical cardiotocography (CTG)
systems which are equipped with an ultrasound transducer [3].
Alternatively, handheld 1D Doppler ultrasound devices are used
to monitor fetal heart rate during pregnancy [4]. The ultrasound
probe is placed on the abdominal region, which emits 1–3 MHz
sound waves towards the fetus. The fetal heart rate is estimated
based on the Doppler frequency shift in the back-scattered signal
due to the moving tissues of the fetal cardiac muscles.

Prenatal complications such as stillbirth may arise in between
clinical visits when timely medical interventions could alleviate
the risk of adverse outcomes. This requires continuous tracking
of the fetal heart rate which serves expectant mothers to be
informed of the wellbeing of the fetus. Although ultrasound is
the most common technology for measuring fetal heart rate, it is
technically limited by frequent periods of signal loss in the
cases of premature deliveries and high body-mass-index (BMI)
mothers [5], [6]. Therefore, it is not suitable for ubiquitous fetal
monitoring. Furthermore, the food and drug administration
(FDA) recommends against the use of home-based ultrasound
technology due to its potential harm to the fetus and eventually
the mother [7].

In the past few years, the advent of wearable sensors has
allowed for the dissemination of wearable health monitoring de-
vices [8]. In parallel, a variety of technologies including electro-
cardiogram (ECG) [9], phonocardiogram (PCG) [10], seismo-
cardiogram (SCG) [11], and gyro-cardiogram (GCG) [12] have
been proposed for FHR monitoring. Non-invasive fetal ECG
(NIFECG) has recently shown promise for FHR monitor-
ing [13]. This technology incorporates ECG electrodes placed on
the mother’s abdomen to acquire abdominal ECG signals [14].
However, these recordings consist of several components in-
cluding maternal ECG, fetal ECG, uterine contractions, fetal
movements, and noise components which complicate FHR es-
timation [15].

Blind source separation (BSS) techniques such as principal
component analysis (PCA) [16], periodic component analysis
(πCA) [17], and independent component analysis (ICA) [18]
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were used to separate fetal ECG components from abdominal
recordings. BSS methods aim to decompose abdominal ECG
signals into statistically independent sources including FECG,
MECG, and noise. Despite promising results, BSS methods
require the number of ECG sensors to be equal to or greater
than the number of independent sources [19].

Adaptive filters signify another means of fetal ECG
extraction. Thesefilters leverage a transfer function with variable
coefficients trained to remove maternal ECG from abdominal
recordings. The least mean squares (LMS) filter and recursive
least squares (RLS) filter represent two types of adaptive
filtering applicable to fetal ECG extraction [20]–[23]. Authors
in [24] adopted an echo state neural network (ESN) to project
chest-recorded MECG signals onto a set of non-orthogonal
basis functions, where an RLS algorithm was used to update
the weights of the network and estimate the fetal ECG signal
with an F1-score of 90.2%. The LMS and RLS filters require
either a reference maternal ECG channel that morphologically
resembles the abdominal recordings, or several linearly
independent channels to reconstruct abdominal recordings. The
need for reference sensors limits the use of adaptive filters [25].
Alternatively, Kalman filtering approaches require only an
arbitrary maternal ECG reference for fetal ECG enhancement.
The performance of this method, however, is limited when fetal
and maternal QRS peaks coincide [26]. This drawback was
addressed by the extended-state Kalman filters which enable
separating coincided maternal and fetal peaks at the expense of
high computational complexities [27].

Template subtraction (TS) strategies aim to enhance fetal ECG
by mitigating the impact of maternal ECG cycles in abdominal
recordings. To this end, a maternal ECG template is obtained
by averaging the preceding maternal ECG cycles, which is
often followed by one or more of the following techniques for
fetal ECG extraction: subspace reconstruction by singular value
decomposition (SVD) [28], ICA [29], or PCA [16], temporal
subtraction of the maternal template [30], and filtering [31]. TS
methods can be applied to both single-channel and multiple-
channel recordings. In order to use template subtraction methods
however, a few assumptions including independence of fetal and
maternal components and the consistency of heartbeat cycles in
fetal and maternal ECG signals, are made which do not necessar-
ily hold true for abdominal recordings [32]. Having analyzed the
traditional methods, we revisit the estimation of fetal ECG and
consider it as an under-determined problem aiming to extract
fetal ECG signals from single-channel abdominal recordings.

The structure of the paper is organized as follows: In
Section II, previous studies on single-channel fetal ECG
extraction are reviewed. Section III details the proposed
methodology for single-channel fetal ECG extraction. In
Section IV, experimental results on real and synthetic datasets
are discussed. The paper is concluded in Section VI, where
future directions are also discussed.

II. SINGLE-CHANNEL STATE-OF-THE-ART

Adaptive filters have recently been proposed for fetal
ECG extraction from single-channel recordings [33]–[39]. The
authors in [39] introduced a convolution layer which aims to find

the maternal ECG signal as a reference for an RLS adaptivefilter.
As such, fetal ECG QRS peaks were obtained with an F1-score
of 96.0% by subtracting MECG components from abdominal
recordings.

Increasing the number of channels using signal decomposition
methods is another strategy proposed for fetal ECG extraction.
The authors in [40]–[42] use empirical mode decomposition
(EMD) or SVD to decompose the signal or its spectrogram
into multiple channels, which is then followed by independent
component analysis (ICA) or non-negative matrix factorization
(NMF) for fetal ECG separation. These methods are limited to
the assumption that the generated channels are statistically
independent. Furthermore. some works use decomposition tech-
niques in conjunction with peak detection and coherent averag-
ing to cancel maternal ECG [43], [44]. Recently, [45] proposed
to factorize the STFT of the AECG signals using NMF, and
extract FECG and MECG by setting threshold levels on the ac-
tivation matrix for maternal and fetal components. As reported,
average F1-scores of 94.80% and 84.0% were achieved for
the ADFECGDB and NIFECGC datasets, respectively. In [46],
the Shannon energy of abdominal time-frequency represen-
tation is used to localize maternal ECG peaks for template
subtraction, achieving F1-scores of 98.67% and 99.27% on
NIFECGC and ADFECGDB, respectively. The performance of
threshold-based methods, however, can be affected if fetal and
maternal QRS-peaks coincide, or the abdominal segment length
is not long enough to accurately estimate the maternal ECG
template.

In recent years, the use of machine learning techniques has
attracted extensive attention for fetal ECG monitoring [47]–
[50]. Authors in [47] leveraged a clustering method to clas-
sify singularities from abdominal ECG recordings into noise,
fetal QRS, and maternal QRS peaks. This method reported F1-
scores of 98.04% and 98.63% for ADFECGDB and NIFECGC
datasets, respectively. Furthermore, a residual convolutional
encoder-decoder network (RCED-Net) was introduced in [48]
to separate fetal ECG components from abdominal recordings,
where F1-scores of 94.10% and 93.62% were achieved for
ADFECGDB and NIFECGC, respectively. Recently in [49], a
domain adaptation method was proposed to map the abdominal
ECG recordings to their FECG counterparts using a cycle gen-
erative adversarial network (CycleGAN). The authors reported
an F1-score of 94.7% for the NIFECGC database. A combi-
nation of STFT and generative adversarial networks (GANs)
was employed in [50] to directly map abdominal recordings to
their fetal ECG counterparts. The performance of this method is
limited to F1-scores of 93.02% on NIFECGC and 90.05% on
ADFECGDB.

In this study, we introduce a single-channel source separa-
tion approach based on the dual-path modeling of abdominal
ECG signals. This method is coined dual-path source separation
(DPSS) architecture, and leverages long short-term memory
(LSTM) cells to discriminate the components of FECG and
MECG from each other. In our work, the dual-path recurrent
neural network (DPRNN), initially introduced in speech pro-
cessing [52], is utilized to model temporal information of the
abdominal ECG signal to denoise and separate fetal ECG com-
ponents from those of maternal ECG. The effectiveness of the
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Fig. 1.     The distribution of ECG sensors on the abdominal region in
FECGSYNDB dataset [51].

proposed framework is assessed on real and synthetic datasets
as explained in the following section.

III. METHODOLOGY

A. Experimental Setup & Datasets

Our experimental setup incorporates non-invasive abdominal
ECG recordings along with corresponding reference annota-
tion of QRS complexes. To develop our experimental setup,
three publicly available datasets including the fetal ECG syn-
thetic database [51], [53], the abdominal and direct fetal ECG
database [54]–[56], and the non-invasive fetal ECG challenge
database [57], [58] from PhysioNet [59] were used, as described
in the following sub-sections.

1) Fetal ECG Synthetic Database (FECGSYNDB): The
fetal ECG synthetic database (FECGGSYNDB) includes 32-
channel artificial non-invasive abdominal ECG (AECG) record-
ings of 10 subjects, amounting to 145.8 hours of data. Along
with AECG, the ground-truth maternal ECG (MECG) and fetal
ECG (FECG) signals are also provided separately. A distinc-
tive characteristic of FECGSYNDB is the inclusion of non-
stationary events including fetal movements, uterine contrac-
tions, heart rate acceleration/deceleration, and ectopic heart-
beats. These non-stationary events ensure simulating the dy-
namics of realistic pregnancies. Each recording consists of 5
minutes of data sampled at 250 Hz. In this study, we used the
data of all 32 channels distributed over the abdominal region
as shown in Fig. 1. In order to simulate realistic sce-narios,
pregnancy-specific noise components corresponding to fetal
movement, uterine contractions, thermal interference, and
maternal heartbeat from [51] are mixed with the fetal ECG
signals to generate signal-to-noise ratios (SNR) within the range
of (−9, +2) dB. Fetal and maternal acceleration/deceleration
scenarios are also incorporated to simulate abnormal
scenarios.

2) Abdominal and Direct Fetal ECG Database (AD-
FECGDB): This dataset comprises 4-channel abdominal ECG
recordings sampled at 500 Hz from 10 pregnancy and 12 la-
bor cases between the 38 and 42 weeks of gestation at the
Medical University of Silesia. Each labor signal consists of 5

minutes of ECG data acquired from maternal abdomen around
the umbilicus (AECG). Additionally, a direct fetal electro-
cardiogram recorded from the scalp of the fetus (FECG) is
provided as the reference signal. Each pregnancy recording
includes twenty minutes of abdominal ECG in which fetal
QRS peaks were annotated by an automated fetal QRS de-
tector. Annotations of fetal QRS complexes for both labor
and pregnancy datasets were validated by medical experts
and provided in the dataset. While the whole dataset is rep-
resented by ADFECGDB, labor and pregnancy datasets are
shown by ADFECGDB(L) and ADFECGDB(P) in this work,
respectively.

3) Non-Invasive Fetal ECG Challenge (NIFECGC): Set
A of the non-invasive FECG database from the Phys-
ioNet/computing challenge is the largest publicly available
dataset for non-invasive fetal monitoring. This collection con-
sists of 75 4-channel abdominal ECG recordings sampled at
1 kHz with a signal duration of 1 minute. A team of expert
clinicians have manually annotated the QRS complexes on the
acquired signals. A few recordings (a33, a38, a47, a52, a54, a71,
and a74) are excluded from the dataset due to inaccurate QRS
annotations as suggested by [9] and [60].

In this study, only the channel with the most evident fetal
ECG components was selected per subject in the NIFECGC
and ADFECGDB datasets, as summarized in Tables I and II of
the supplementary material respectively. In single-channel fetal
ECG extraction, a signal quality index (SQI) such as that
calculated by the naive Bayes classifier in [61] can be
computed for the extracted fetal ECG signal to confirm the
optimality of the ECG lead position. This mechanism also
assists with adjusting the ECG electrodes on the abdomi-nal
region in case the signal quality degrades due to fetal
movement.

B. Data Preparation

For the sake of uniformity, the NIFECGC and FECGSYNDB
datasets were initially resampled to 500 Hz using fast Fourier
transform (FFT). Abdominal recordings are often accompanied
by baseline wander and power-line noise which should be re-
moved [13]. To remove baseline wander, abdominal ECG signals
were high-passfiltered using a zero-phase Butterworthfilter with
a cut-off frequency of 2 Hz. To attenuate power-line interference,
a second-order infinite impulse response (IIR) notch filter cen-
tered at 50 Hz or 60 Hz with a quality factor of 25 was applied to
the filtered AECG signals in forward and backward directions.
Finally, each abdominal signal was segmented into 4-second
overlapping windows with 90% overlap between consecutive
windows. As such, each segment represents 2000 samples (4
seconds at 500 Hz) of data processed for fetal ECG separation.
The resulting segments are then normalized into a standard
distribution (zero-mean and unit variance) to ensure a stable
convergence when training the network.

C. Fetal ECG Extraction

In this section, we describe the proposed approach based on
the network illustrated in Fig. 2. This network consists of two
main blocks, namely denoising and source separation blocks.
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Fig. 2.     Dual-path source separation (DPSS) framework including (a) a
generative network for denoising abdominal ECG, and (b) a dual-path
LSTM (DP-LSTM) network for the separation of fetal and maternal ECG
signals.

Initially, the abdominal ECG signal is denoised using a genera-
tive network as shown in Fig. 2(a). The denoised abdominal ECG
then undergoes a masking-based source separation network as
shown in Fig. 2(b). This network extracts the fetal ECG signal
by masking maternal components and the maternal ECG signal
by masking fetal components. As the dual-path long short-term
memory mechanism is used in many parts of the architecture,
we first describe this module, and then explain the denoising and
source separation networks.

1) Dual-Path LSTM Architecture: Long short-term mem-
ory (LSTM) networks have been useful for learning sequential
data such as speech signals, text, and time series [62]. How-
ever, they fail to model long sequences due to vanishing gradi-
ents [63]. To address this issue in this work, the dual-path LSTM
(DP-LSTM) network is proposed for modeling abdominal ECG
signals as shown in Fig. 3. The intuition behind the DP-LSTM is
modeling shorter segments (local modeling), rather than the
whole signal, and then aggregating the information across all
segments (global modeling). For this purpose, a sequential input
I l  � R M × T  with M and T representing the number of input
channels and timesteps respectively, is segmented into K  seg-
ments of length L  (T =  K  ×  L).  As such, a segmented feature
map S l  � R M × K × L  is obtained. Fig. 3(a) illustrates the local
modeling path. In this path, a bi-directional LSTM (Bi-LSTM)
module is employed to model each sequence forward and back-
ward to capture past and future information, respectively. The
output of this layer represents a matrix with a different number
of channels, i.e., B l  � R H × K × L .  This difference occurs as the
input and output vectors in an LSTM block are not necessarily
of the same dimensions. To restore the original dimensions
(M ×  K  ×  L),  a fully-connected (FC) layer is then applied to
B l ,  which results in F l  � R M × K × L .  In order to accelerate the
learning process and enhance the generalizability of the model
[64], a normalization layer is used as below:

N l  =  p
Va r { F l }  +   

 γ +  β, (1)

where N l  � R M × K × L ,  γ � R M × 1 ,  β � R M × 1 ,  and  represent
the normalized matrix, normalization scaler, normalization bias,

Fig. 3.     Dual-path LSTM architecture for sequential modeling. The net-
work includes two modeling paths, (a) intra-segment (local: path 1) and
(b) inter-segment (global: path 2).

and numerical stability value respectively. In (1), E { . } ,  Var { . } ,
and  denote expectation value, variance, and the Hadamard
product operator respectively. The input feature map is trans-
ferred to the output layer through a skip connection, allowing
for information flow from the initial layer to the last layer. As
such, the output of the local modeling path, shown by O l ,  is a
summation of the normalized matrix and input feature map (N l

and S l  respectively), which serves as the input to the global
modeling path.

Fig. 3(b) illustrates the global modeling path in the DP-LSTM
network. The structure of this path is similar to that of the
local modeling path except for the direction of the Bi-LSTM
module which is applied to each of the L  sequences separately.
The output of the Bi-LSTM, fully-connected, and normalization
layers are shown by Bg ,  Fg ,  and N g  respectively. The output of
this layer is a summation of the input feature and the normalized
matrix (Ng  and Sg  respectively). As a result of the local and
global modeling paths, the information of the input signal is
extracted for further processing.

2) Abdominal ECG Denoising: As mentioned earlier, ab-
dominal recordings are contaminated by noise components.
Generative adversarial networks (GAN), initially proposed by
Ian Goodfellow et al. [65], have been widely used in a variety of
applications, an instance of which is ECG signal denoising [66],
biomedical image synthesis [67], and speech synthesis [68].
Fig. 4 shows the developed conditional least-square generative
adversarial network (LSCGAN) for noise mitigation. This net-
work is composed of two sub-modules, a DP-LSTM generator
and a discriminator based on residual blocks, as illustrated in
Fig. 4(a) and described below:

Generator: As shown in Fig. 4(a), the generator consists of
a 1-D convolutional layer with 16 filters, a DP-LSTM module,
and a depth-wise convolution. The 1-D convolutional layer takes
a single-channel noisy abdominal ECG signal x c  � R 1 × T  , and
transforms it into x c  � R M × T  , where M =16 and T shows the
length of the signal. The DP-LSTM block then segments the sig-
nal and extracts its temporal features (O l  � R M × K × L ) ,  which
are then expanded back to their original dimensions ( R M × T  ).
The resulting M channels are transformed to a denoised AECG
signal, i.e., G(xc), using a depth-wise convolution (Conv3, 1).
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Fig. 4.     (a) The CGAN-based denoising network consisting of a dual-path LSTM (DP-LSTM) generator and a discriminator based upon residual
blocks. (b) A residual block structure.

Discriminator: The discriminator consists of m 1-D residual
blocks (ResBlocks). Each residual block incorporates three con-
volutional layers accompanied by a skip connection as shown in
Fig. 4(b), where the rectified linear unit (ReLU) and batch nor-
malization (BN) are employed to add non-linearity and stabilize
the training procedure, respectively. The ResBlocks are followed
by a fully-connected (FC) layer to discriminate between real (x)
and synthetic data (G(xc)).

Training: In GAN architectures, the generator and discrimina-
tor networks are trained simultaneously. Given that xc  and x  are
sampled from the noisy abdominal ECG distribution (pdata(xc))
and the clean abdominal ECG distribution (pdata(x)), the gen-
erator aims to map x c  to x  through adversarial training. On the
other hand, the discriminator is supposed to classify samples
from pdata(x) as real and samples from pdata(xc), i.e., G(xc), as
fake. As such, the generator tries to imitate the training data and
deceive the discriminator, whereas the discriminator is trained
to distinguish fake data. The training procedure is conducted in
two steps. In the first step, the discriminator is trained to
classify x as real data (pdata(x)). In the second step, the generator
learns to imitate pdata(x) such that the discriminator classifies
G(xc ) as real data. Hence, two loss terms corresponding to the
discriminator and generator networks are defined as (2) and (3),
respectively.

h i

min L L S C G A N  (D) =  
2

E x�p d a t a ( x )      (D(x) −  1)
h i

+  
2

E x c �p d a t a ( x c )      D  (G(xc)) ,
(2)

h i
min L L S C G A N  (G) =  

2
E x c �p d a t a ( x c )      (D (G (xc)) −  1)

+  λkG (xc) −  xk1. (3)

In (3), the term λkG(xc) −  xk1 is used to minimize the distance
(L1-norm) between G(xc ) and x. This term is fused with the
adversarial loss term with a coefficient of λ which was found to
be 0.01 based on our empirical results. The whole process of
training repeats until the generator learns the distribution of
clean abdominal ECG signals. Therefore, the generator would
be capable of denoising abdominal ECG signals.

3) Mask-Based Source Separation: Mask-based source
separation is illustrated in Fig. 5. This step receives the denoised
abdominal ECG signal from the denoising network, extracts
features, and eventually separates fetal and maternal components
from each other.

Sparse Feature Extraction: ECG signals hold sparse nature
composed of regular activities (P, QRS, and T waveforms) as
well as periods of inactivity [69]. To assure accurate source
separation, we need to extract fine and coarse features of abdom-
inal ECG signals. To this end, we utilize an inception module
with dimensionality reduction as codenamed by [70] for the
GoogleNet architecture and depicted in Fig. 5(a). As such, the
denoised abdominal ECG of length T is segmented into a matrix
of dimensions K  ×  1 ×  L .  This matrix undergoes the inception
module with four paths. These paths leverage convolutional
layers with filter sizes of 1, 3, and 5 as well as a pooling layer
used to reinforce invariance to signal distortion. The number of
paths (the limitation on filter sizes) will be investigated in
Section IV. The outputs of all paths are then concatenated to
build a feature map of dimensions K  ×  M ×  L .  The logic
behind such feature extraction is to transfer the abdominal ECG
signal into a higher level of abstraction to simplify the separation
procedure. The output of the inception module serves as the input
to the dual-path masking block as illustrated in Fig. 5(b).

Dual-path Masking: To separate fetal and maternal features
from each other, their respective features are masked in high
levels of abstraction. To this end, a series of DP-LSTM modules
are cascaded to extract masking functions from the sparse feature
map as shown in Fig. 5(b). The output of the DP-LSTM blocks is
a matrix with dimension K  ×  M ×  L .  To extract maternal and
fetal components, two masking functions are required to be
multiplied by the sparse feature map which is of dimension K  ×
M ×  L. These masking functions are built from the output of
DP-LSTM series using a 2D convolutional layer with 2 M
filters followed by a sigmoid function. As a result, a mask-ing
function with a size of K  ×  2M ×  L  is obtained which is then
split into two masking maps of sizes K  ×  M ×  L .  Next, each
masking function is multiplied by the sparse feature map
separately to discriminate features representing fetal and
maternal components. Each of the acquired FECG and MECG
components consist of M features along the second dimension.
To transform the features back into the time-domain, the M
features should be consolidated into a single feature. As such,
two 2-D depth-wise convolutional layers using a single feature
map are utilized to generate FECG and MECG signal segments.
Finally, the segments are assembled to build the original FECG
and MECG signals.

Training: The objective of training the source separation
network is to maximize the signal-to-noise ratio (SNR). As the
temporal variation of the signal, rather than its order of magni-
tude, holds information about the cardiac cycles, we optimize
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Fig. 5.     Source separation network including (a) sparse feature extraction and (b) dual-path masking blocks. The input to the network is a denoised
abdominal ECG which undergoes feature extraction and masking. The fetal and maternal ECG signals constitute the output of the network.

the scale-invariant SNR (SI-SNR) function which is robust to the
magnitude scales of the estimated signal [71]. For a ground-truth
signal x  and its estimated counterpart x̂,  SI-SNR is defined as
follows:

SI-SNR =  10 log 
kxtargetk2 

, (4)
noise

where

xtarget =  
hx̂, xix

, enoise =  x̂  −  xtarget, (5)

and k.k and h.i denote the Euclidean norm and scalar product
respectively. As such, the loss function for training the source
separation network is defined as the negative value of the SI-
SNR, as mentioned below:

min LSI-SNR =  −10 log 
kxtargetk2 

. (6)
noise

During training, the error between fetal ECG (sFECG) and ma-
ternal ECG (sMECG) signals and their estimated counterparts
[ŝFECG, ŝMECG] are achieved using the LSI-SNR loss function.
However, since the model estimates the masking maps si-
multaneously using the same input abdominal ECG, the or-
der of the output signals is unknown in advance. As such, the
output can have either [ŝFECG, ŝMECG] or [ŝMECG, ŝFECG]
arrangements. This issue causes training failure. To address
this problem, we employ the permutation invariant training
(PIT) strategy [72], where the two possible permutations for
FECG and MECG are considered. As such, at every train-ing
iteration, the average errors for both orders are evalu-ated,
and the order with the least average loss is selected to back-
propagate the error and update the weights of the network.

D. Data Augmentation

Neural networks tend to suffer from overfitting due to the
limited amount of training data [73]. This phenomenon leads
the network to excessively fit the training data, restraining the
generalizability of the network to unseen data [74]. On the
other hand, neural networks can benefit from data augmentation
which aims at generating synthetic data by transforming existing
samples into their modified versions [75]. The augmented data
space enforces stability in training by reducing the variance [75].
In this study, we employ three techniques, namely jittering,

Fig. 6.     Data augmentation techniques applied on (a) abdominal ECG
(AECG) from FECGSYNDB. (b) jittered AECG, (c) cropped AECG, (d)
STFT of AECG, (e) masked STFT of AECG, and (f) masked ECG.

cropping, and time-frequency masking, to augment the training
dataset. Fig. 6 shows the ground-truth signal and the augmented
samples.

1) Jittering: An effective data augmentation method is jit-
tering wherein zero-mean white Gaussian noise, i.e., N (0, σ2),
is added to training samples. Furthermore, pregnancy-specific
noise such as uterine contractions and fetal movement are
combined with abdominal signals to simulate realistic scenar-
ios. An example of jittering is illustrated in Fig. 6(b), where an
abdominal ECG from FECGSYNDB is contaminated by noise
components. This practice helps mitigate the time se-ries drift
caused by unseen data [76]. In this study, the stan-dard
deviation of the normal distribution is selected such that the
noise power falls 3 dB below the energy of FECG QRS
complexes.

2) Cropping: Random cropping aims to create a random
subset of original abdominal ECG recordings by cropping a
random section of the signal. QRS complexes in an abdominal
recording are not always wholly visible in the signal segment
which might hinder the network to learn such cases. Random
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cropping deals with these cases, helping the network to learn
the data distribution more comprehensively, and enhance gen-
eralizability. Hence, the Beta distribution whose superiority
for data augmentation over the uniform distribution has been
demonstrated [77], was utilized to specify the cropping width,
w. This value is selected as below:

w =  bw0Tc, w0 � Beta(β , β), (7)

where β � (0, +∞), and b.c and T denote the floor function
and the original segment length, respectively. As such, a window
of length w centered in the middle of the original segment is
cropped and the held-out samples are padded using a zero-mean
normal distribution with SNR=10 dB. An example of a 50%
random cropping is presented in Fig. 6(c), where a fetal QRS
peak is located on the boundary.

3) Time-Frequency Masking: In this technique, the time-
frequency representation of each segment is obtained through
the short-time Fourier transform (STFT) as shown in Fig. 6(d).
Then, a number of randomly selected bins are set to zero, which
builds a new time-frequency representation as illustrated in
Fig. 6(e). Finally, the inverse STFT (ISTFT) is applied to the
generated time-frequency representation to transform it back
into the time domain. This technique can attenuate certain spec-
tral features in ECG (such as T-waves as shown in Fig. 6(f)) as
well as the temporal evolution of the signal (e.g., around 2.9 s in
Fig. 6(f)). As such, time-frequency masking reinforces the
network with learning a more general distribution. It should be
noted that random bins are chosen from frequency bins below
50 Hz due to the concentration of ECG information in this
region [78].

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, training procedures and experimental results
are discussed. Moreover, an ablation study is presented to inves-
tigate the network configuration.

A. Training Procedure

The dual-path source separation (DPSS) represents a super-
vised learning configuration. It thus demands access to noisy
abdominal ECG, clean abdominal ECG, fetal ECG, and maternal
ECG signals. The only dataset which provides all the required
signals is FECGSYNDB, from which the data of ten different
pregnancies were used for training. The training procedure was
conducted based on leave-subject-out cross-validation. As such,
the data of 9 subjects were used for training and the performance
was evaluated on the held-out subject. For the sake of computa-
tional simplicity, the denoising and source separation networks
were trained separately. To further evaluate the performance of
the method, the trained model for FECGSYNDB was tested on
ADFECGDB(P), ADFECGDB(L), and NIFECGC datasets as
well.

We trained our model for 200 epochs on abdominal ECG
segments. The Adam optimization algorithm [79] was used with
an initial learning rate of 0.001, which was reduced by a factor of
0.98 for every five epochs without performance improvement.

Fig. 7.     An 8-second test segment reconstructed by overlapping the
segments of a02 from the NIFECGC dataset. (a) Noisy abdominal
recording, (b) de-noised abdominal ECG, (c) extracted maternal ECG,
(d) extracted fetal ECG, and (e) estimated fetal heart rate.

The model was implemented on an NVIDIA GeForce RTX 2070
with a batch size of 32.

Fig. 7(a) illustrates an 8-second noisy abdominal ECG seg-
ment of recording a02 from NIFECGC. This signal was seg-
mented into overlapping 4-second chunks, denoised, source-
separaed, and eventually reconstructed by merging the segments.
As such, Fig. 7(b), (c), (d), and (e) depict the merged output of
the denoiser network, maternal ECG, fetal ECG, and estimated
FHR, respectively. These figures visually demonstrate the ef-
fectiveness of DPSS in fetal ECG extraction. As observed in
Fig. 7(d), the peaks corresponding to maternal QRS waveforms
have been majorly attenuated, allowing for the detection of the
FECG R-peaks. In parallel, Fig. 7(e) illustrates high consistency
between the estimated FHR values by DPSS with their respective
ground-truth values. Further results on the performance of DPSS
are provided in supplementary materials. In Section IV-C, the
performance is analyzed numerically.

B. Evaluation Metrics

1) Statistical Analyses of Fetal QRS Detection: Statisti-
cal analyses were conducted to evaluate the performance of the
DPSS network and compare it with the state-of-the-art methods
of single-channel fetal ECG extraction. In order to compare the
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extracted fetal ECG segments with their ground-truth counter-
parts, the modified version of the Pan-Tompkins method for fetal
QRS detection was employed [51]. Following the detection of
R-peaks in both reference and extracted FECG signals, sensitiv-
ity (Sen), positive predictive value (PPV), accuracy (Acc), and
F1-score (F1) were obtained as follows:

Sen =  100 ×  
T P +  F N  

, (8)

PPV =  100 ×  
T P +  F P  

, (9)

Acc =  100 ×  
T P +  F P  +  F N  

, (10)

2 ×  P P  ×  Sen
P P  +  Sen

where TP, FP, and FN represent true positives (correctly de-
tected FECG QRS complexes), false positives (falsely de-
tected non-existent FECG QRS complexes), and false negatives
(falsely missed existent FECG QRS complexes), respectively.
According to [14], a detected QRS is considered a true positive if
it is within 50 ms from the reference R-peak. Additionally,
extracted FECG segments are assessed by the FHR precision,
which is defined as the percentage of segments wherein the
extracted FHR is within ± 5  beats-per-minute (BPM) of the
reference FHR.

2) Clustering-Based Source Separation Analyses: As
mentioned in Section III, DPSS generates two K  ×  M ×  L
masking maps to separate fetal and maternal ECG signals. These
masking maps are obtained by learning the distributions of
MECG and FECG signals from the input AECG signals. A well-
trained network is meant to acquire two separable distributions in
the embedding space, corresponding to fetal and maternal ECG
components. In this work, we quantify the quality of separation
by the Davies-Bouldin index defined below:

DB =  
2d(cM , cF )

, (12)

where cM  and cF  represent the centroids of the maternal and
fetal clusters, respectively, and σM  and σF  show the average
distance of all maps in maternal and fetal clusters to their
respective centroids respectively. Also, d(cM , cF  ) represent the
distance between the centroids of maternal and fetal clusters.
This metric implies the ratio of intra-cluster distances to those
of inter-clusters. As such, lower values of DB indicate better
clustering. In this work, we conduct a two-class K-means algo-
rithm to cluster masking maps. We then find the Davies-Bouldin
index using the ground-truth labels (fetal or maternal).

Furthermore, we compute the Jaccard index to assess the
similarity between the clustered group and its corresponding
labels (either maternal or fetal). The Jaccard index is defined as
follows: 0

Jaccard (A, A ) =  
A  � A0  =  

tp +
 
f p  +

 
f n

, (13)

where tp, f p, and f n signify the numbers of truly-included ele-
ments, falsely-included elements, and falsely-excluded elements
in a cluster, respectively. To compute the Jaccard metric, each

cluster is assigned to either maternal or fetal based on the labels
of the majority of the samples. The Jaccard metric is the average
of the Jaccard values of the maternal and fetal clusters.

The last parameter is the purity index. This parameter de-
scribes the extent to which clusters contain their dominant
elements. For each cluster, the dominant elements are counted
and summed over all clusters. The sum value is then divided by
the total number of elements.

C. Model Performance

Table I summarizes the statistical analysis of the performance
of the dual-path source separation (DPSS) framework on the
FECGSYNDB dataset. The results in Table I correspond to a
DPSS architecture with three dual-path LSTMs and six feature
extraction filters with lengths 1, 3, 5, 7, 9, and 11. The length of
the sub-segments was set to L =  100 ms for temporal modeling
in DPSS. Per each held-out subject, the model is trained on the
augmented data of 9 other subjects, which includes 3,432,960
4-second segments of AECG signals. The performance is then
reported by the sensitivity (Sen), positive predictive value (PPV),
accuracy (Acc), F1-score (F1), and the maximum SI-SNR
achieved during the training for the 190,720 test segments. As
mentioned in the table, the best performance is achieved for
subject 8 with sensitivity, positive predictive value, accuracy,
F1-score, and SI-SNR of 99.09%, 99.61%, 98.71%, 99.35%,
and +15.94 dB respectively. The weakest source separation
performance belongs to subject 2 with 98.24% and +13.35 dB
F1-score and SI-SNR respectively. However, the average ( ±
standard deviation) F1-score and SI-SNR suggest 99.03% ( ±
0.39) agreement with the reference QRS complexes and +14.92
( ±  1.02) dB signal-to-noise ratio in the output, respectively.
Such a decent performance is expected as the test set is sampled
from the same dataset and thus the same data distribution as the
training set.

To further evaluate the generalizability of DPSS, the trained
model is tested on the ADFECGDB(P), ADFECGDB(G), and
NIFECGC datasets with 2,999, 749, and 149 segments per chan-
nel respectively to reconstruct FECG signals, and their statistical
results are summarized in Table II. According to Table II, the
labor dataset achieves the highest F1-score (98.08%) and FHR
precision (89.22%), while NIFECGC obtains the weakest per-
formance with 83.86% of FHR precision and 95.3% of F1-score.
ADFECGDB, which denotes the average result of labor and
pregnancy dataset, suggests 97.7% and 88.61% F1-score and
FHR precision, respectively. The slight difference of statistical
results of ADFECGDB and NIFECGC can be explained by
stronger fetal QRS peaks in ADFECGDB dataset. The last
row of Table II signifies the average performance of DPSS on
real datasets, i.e., NIFECGC and ADFECGDB, with sensitivity
of 86.23%, positive predictive value of 95.75%, accuracy of
97.29%, and F1-score of 93.43%, demonstrating the robustness
of the method.

D. Clustering-Based Evaluation

As introduced in Section IV-C, the purity, Jaccard, and
Davies-Bouldin indices are used to quantify and evaluate the
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TABLE I
CROSS-VALIDATION PERFORMANCE FOR FECGSYNDB DATASET

TABLE II
PERFORMANCE EVALUATION OF DPSS ON THE ADFECGDB AND

NIFECGC DATASETS

TABLE III
ABLATION STUDY BASED ON THE PERFORMANCE FOR FETAL ECG

EXTRACTION FOR FECGSYNDB

DP: Dual-path LSTM, DN: denoising, SF: sparse feature extraction, and DA: data
augmentation.

a purity index of 0.9846 ( ±  0.0072) was achieved for AD-
FECGDB, implying high concentration of the dominant samples
(either maternal or fetal) in their respective cluster. Similarly,
the Jaccard values of 0.9984 ( ±  0.0194), 0.0.9779 ( ±  0.0453),
and 0.9352 ( ±  0.0388) respectively suggest high similarities
between FECGSYNDB, ADFECGDB, and NIFECGC datasets
and their respective ground-truth labels. Moreover, the Davies-
Bouldin (DB) values signify the separability of the clusters
for FECGSYND, ADFECGDB, and NIFECGC by 0.7156 ( ±
0.0721), 0.7318 (± 0.0611), and 0.7813 (± 0.0851) respectively.
It is to be noted that the lower the Davies-Bouldin metric, the
higher the separability. According to the achieved Davies-
Bouldin values, the intra-cluster distances are smaller than their
respective inter-cluster distances, suggesting separable fetal and
maternal masking maps.

Fig. 8.     Clustering performance for FECGSYNDB, ADFECGDB, and
NIFECGC datasets based on the purity, Jaccard, and Davies-Bouldin
indices.

quality of source separation in DPSS. As shown in Fig. 5,
two masking maps (each of size K  ×  M ×  L )  are produced
to separate the fetal and maternal components of a 4-second
mixture AECG signal. For ideal source separation, we expect
the maternal and fetal masking maps of all segments to form
two separate clusters in the R K × M × L  space. To investigate this
phenomenon, the aforementioned metrics can be leveraged pro-
vided that each K ×  M ×  L masking map represents a sample in
the R K × M × L  space. However, the computation of these metrics
is a computationally intensive task, motivating the need for di-
mensionality reduction in advance. For this purpose, we use the t-
distributed stochastic neighbor embedding (t-SNE) [81]. As
such, clustering-based analyses were conducted on the reduced-
dimensionality samples, and the results are summarized in Fig. 8.
As described in this figure, the highest and lowest clustering per-
formances were achieved for the FECGSYNDB and NIFECGC
datasets with average ( ±  standard deviation) purity indices of
0.9992 ( ±  0.0005) and 0.9412 ( ±  0.0279) respectively, whereas

E. Ablation Study

A common practice to better generalize a neural network to
unseen data (real datasets) is by an ablation study on the
constituent parts of the training procedure. In this study, we
investigate the impacts of the denoising module (DN), the
number of dual-path LSTM modules (DP), the sparse feature
extraction mechanism (SF), the data augmentation (DA), and the
the lengths of segments and sub-segments on the performance of
the DPSS network. The ablation study is conducted for each fold
of FECGSYNDB and avergaed over all 10 subjects to maximize
the network F1-score.

Comparing architectures 1 and 2 in Table III illustrates the
impact of the denoising network on the F1-score (61.76% vs.
84.21%), suggesting a 22.45% improvement as a result of incor-
porating the denoising network. According to architectures 1-5,
including 3 dual-path LSTM (DP) modules leads to the superior
performance among all similar architectures with 1, 2, 3, and 4
DP module(s). An F1-score of 85.13% demonstrates the supe-
riority over the runner-up architecture with 1 DP module and
F1-score of 84.21%. The weaker performance in architecture 5
compared to Baseline (1 DP) + DN can be related to the higher
complexity of the model, which causes the network to overfit
the data.
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Fig. 9.     Impacts of (a) segment duration and (b) sub-segment duration
on the F1-score obtained for the detection of fetal QRS complexes in
FECGSYNDB.

A comparison conducted among architectures 6-11 implies
that the model with 6-filter sparse feature extraction, which
is referred to as SF6, offers the highest F1-score (94.68%). It
should be noted that architecture Baseline (3 DP + SF6) + DN
leverages filters with sizes of 1, 3, 5, 7, 9, and 13. Intuitively,
employing filters with different sizes allows for extracting both
fine and coarse features which help the neural network learn the
distribution mode deeply. Nevertheless, increasing the number
of filters results in more complex architectures that might overfit
the distribution of the data. Two examples of overfitting are ob-
served in Table III for architecture 10 with SF7 and architecture
11 with SF8 with F1-scores of 92.43% and 91.77%, respectively.

A comparison between architectures 9 and 12 signifies the
importance of data augmentation (DA). For this part, the dataset
is augmented to achieve a twice larger dataset than the orig-
inal size (3,432,960 vs. 1,716,480 segments). As reported in
Table III, the Baseline (3 DP + SF6) + DN + DA outperforms
the model without data augmentation (Baseline (3 DP + SF6) +
DN) by 4.35% F1-score.

Finally, the impacts of the segment length (T ) and sub-
segment length (L) are investigated in Figs. 9(a) and (b) respec-
tively. According to Fig. 9(a), the model is trained for segment
lengths within the range of 1–10 seconds, where the highest
average F1-score of 98.37 % is achieved for a segment length of
4 seconds. As can be seen in this figure, the average F1-score
decreases from 98.37% to 90.39% when moving from 4 seconds
to 10 seconds. Fig. 9(b) depicts the average F1-score in terms of
sub-segment duration, where 100 ms suggests a higher F1-score
compared to other durations (99.03% vs. 97.11%, 98.03%,
97.91%, and 94.65% for 50 ms, 150 ms, 200 ms, and 250 ms
respectively).

F. Comparative Study on Fetal QRS Detection and
FHR Estimation

In Table IV, DPSS is compared with state-of-the-art
single-channel fetal ECG extraction methods. As summarized
in Table IV, an F1-score of 95.3% on the NIFECGC dataset
suggests the superiority of DPSS over the previous works ex-
cept [9], [18], [46], and [47]. Authors in [9] and [18] have used
all 4 abdominal channels, whereas DPSS requires only a sin-
gle channel to reconstruct FECG signal. Performance achieved
in [46] and [47] represent 17 and 27 subjects, respectively,
whereas our work is evaluated on all 69 subjects with correct

Fig. 10.     Examples of false detection of fetal QRS, successful detection of
coincided fetal and maternal QRS peaks, and missed fetal QRS. (a)
abdominal signal of a16 from NIFECG, (b) de-noised abdominal
signal, and (c) extracted fetal ECG signal.

signal annotations. In terms of FHR precision, DPSS suggests
88.61% and 83.86% for ADFECGDB and NIFECGC, respec-
tively, outperforming all previous works which have reported
on FHR precision values. In addition, DPSS shows promising
results on the ADFECGDB dataset with an F1-score of 97.7% on
22 signals, which is a superior estimation to those conventional
methods except [49], [47], [46], and [33] with 99.7%, 98.04%,
99.27%, and 99.44% respectively. Although DPSS provides
slightly weaker performance, it should be noted that we have
used the extended version of ADFECGDB (labor and preg-
nancy) in contrast to the literature. In general, DPSS suggests
quite an acceptable performance in comparison to literature
despite its low computational demands, which will be indicated
in the following section.

V. DISCUSSION

As demonstrated in Section IV, DPSS is capable of fetal ECG
extraction from abdominal recordings. A distinctive characteris-
tic of DPSS is its robustness against coincided fetal and maternal
QRS peaks, which often inhibits conventional methods from
detecting fetal peaks. This is explained by a GAN-based denoiser
which cancels noise components by learning the distribution of
the abdominal signals. Furthermore, the results of this study
demonstrate that masking functions, directly extracted from the
abdominal signal, allow for accurately separating fetal compo-
nents in time domain. Fig. 10 provides a 10-second example of
recording a016 from the NIFECGC dataset. As can be observed
in Fig. 10(c), the green rectangle signifies an example of fetal and
maternal QRS peaks, where masking functions have success-
fully separated the sources. Additionally, a significant finding of
this study is fetal QRS amplification by denoiser. A comparison
between fetal QRS peaks in Figs 10(a) and (b) indicates that
fetal QRS peaks are amplified in terms of amplitude as a result of
the denoising stage.
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TABLE IV
COMPARATIVE EVALUATION FOR THE DETECTION OF FETAL QRS COMPLEXES AND FHR ESTIMATION VS. STATE-OF-THE-ART METHODS

TS: template subtraction, PCA: principal component analysis, LMS: least mean-square, RLS: recursive mean-square, ESN: echo state network, SVD: singular value
decomposition, SW: smooth window, STFT: short-time Fourier transform, NMF: non-negative matrix factorization, TF: time-frequency, RCED-NET: residual convolutional
encoder-decoder network, GAN: generative adversarial network, and DPSS: dual-path source separation.

Despite the promising results achieved on real datasets, the
performance of DPSS is limited when the GAN-based denoiser
enhances artifacts that resemble fetal QRS peaks. As demon-
strated in the red panels of Fig. 10, DPSS might detect noise
components as fetal QRS peaks, leading to false positive cases.
Fetal QRS peaks might also be missed by the denoiser as a
result of high-energy noise, an example of which is illustrated
in the brown panel of Fig. 10(a). According to its counterpart in
Fig. 10(b), the whole segment is smoothed, eliminating fetal
QRS waveform and increasing false negatives. Another finding
about the extracted fetal ECG signals is the oscillatory
behavior in between consecutive QRS peaks which contaminates
fetal QRS P and T peaks. According to our observation, this
phenomenon further degrades the quality of fetal ECG sig-
nals when it is accompanied by the remnant of maternal QRS
peaks.

To have a real-time algorithm, the processing time of a signal
segment should be less than the segment length. In order to
investigate the real-time practicality of DPSS, we transferred the
trained DPSS network to an Intel processing unit of a computer
with a 3.6 GHz clock speed. It was observed that the processing
unit for a 4-second abdominal signal was 0.52 s, as illustrated in
Fig. 11. As demonstrated in this figure, the processing time was
also calculated for off-the-shelf processors, such as Broadcom
BCM2711 (in Raspberry Pi), Qualcomm Snapdragon S1 (in
smartphones), and Apple S7 (in Apple Watch), the processing
times of which are 1.2 s, 1.8 s, and 1 s respectively. These
intervals, which are less than 4 seconds, indicate that DPSS

Fig. 11.     Processing time of a 4-second abdominal ECG segment on
different processors.

holds low computational complexity which makes it a suitable
candidate for real-time fetal monitoring systems.

VI. CONCLUSION AND FUTURE WORKS

This study introduces DPSS, a novel method for fetal
ECG (FECG) extraction from single-channel abdominal ECG
(AECG) recordings. Benefiting from the dual-path long short-
term memory (DP-LSTM) mechanism, the DPSS framework
estimates FECG and MECG signals by masking raw AECG
recordings.

We evaluate the performance of DPSS on the detection of
fetal QRS complexes, and demonstrate the F1-scores of 99.03%,
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95.3%, and 97.7% on FECGSYNDB with 10 simulated pregnan-
cies, NIFECGC with 69 actual pregnancies, and ADFECGDB
with 22 actual labor and pregnancies, respectively. The separa-
bility of maternal and fetal masking maps is shown by average
purity index of 0.975, Jaccard index of 0.9705, and Davies-
Bouldin index of 0.7429 respectively. According to the ablation
study on the network configuration, the architecture with the
denoising module, three dual-path LSTM’s, and 6 feature ex-
traction filters, along with data augmentation is found to offer
the best performance (F1-score of 99.03%). Additionally, this
study demonstrates that the optimum time durations of signal
segments and sub-segments for DPSS are 4 seconds and 100 ms
respectively.

The proposed source separation framework indicates excel-
lent performance on fetal ECG monitoring for sedentary preg-
nant women. Nevertheless, part of real-life scenarios involves
the pregnant subject moving around such as in walking. These
movements affect the signal morphology by introducing addi-
tional noise components [82], causing the fetal ECG components
to deteriorate. Our future work includes establishing a domain
adaptation framework by leveraging generative models such as
DicoGAN [83] to mitigate the effects of ambulatory noise. Fur-
thermore, we will consider the separation of maternal and fetal
ECG signals when they share the same peak-to-peak intervals
over a long period. This phenomenon primarily occurs due to
maternal heart rate acceleration or fetal heart rate deceleration,
which could potentially degrade the separation capability of the
model.
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