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Abstract

Relative relocation techniques are widely used to improve the resolution of earthquake
hypocenter positions. Here we present GrowClust3D.jl, an open-source software package written
in the programming language Julia that builds and improves upon the original GrowClust
algorithm, an established relative relocation technique based on cluster analysis instead of a more
traditional matrix inversion approach. The adoption of Julia’s modern programming environment
allows for greater flexibility in GrowClust3D.jI’s algorithm design and its computational
implementation. Notable additions to the GrowClust3D.jl package include (i) several parallel
processing options to improve efficiency in uncertainty quantification routines, (ii) incorporation
of geographic map projections and station elevations during the relocation process, and (iii) the
ability to use travel-time tables derived from 3D velocity models. We demonstrate the new
features of the software package on relocation problems of different scales in Nevada, California,
Texas, and New Zealand, where in the latter two cases the use of a 3D velocity model helps
resolve structures that remain obscure with earlier versions of GrowClust. We expect that the
new GrowClust3D.jl software package will become a valuable public resource for the earthquake

science community.

Introduction

Catalogs of the location of earthquake hypocenters are one of the most fundamental
derived-data products in seismology. Earthquake locations pervade nearly every aspect of
earthquake science, from seismic monitoring, to tomographic imaging of Earth structure and
fault networks, to detailed analyses of seismicity patterns, to development of fault-based hazard

models (e.g., Ben-Menahem, 1995; Agnew, 2002). Because of this keystone role, one of the
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primary missions of national and regional seismic monitoring networks is to provide public
databases, or catalogs, of earthquake location estimates for events in their reporting region (e.g.,
Masse and Needham, 1989; Okada et al., 2004; Hutton et al., 2010; Guy et al., 2015; Pankow et
al., 2019; Savvaidis et al., 2019; Margheriti et al., 2021). The basic methodology for determining
these location estimates from seismic data is well-established (Buland, 1976). In a typical
workflow, phase arrival times are marked by network analysts at a set of recording stations, and
automated programs use a combination of grid search or linearized single-event inversion
approaches (Geiger, 1912; Kennett and Engdahl, 1991; Klein, 2002) to determine the event
location that best matches the observed phase arrivals with the timing predicted by travel time

tables derived from a specific Earth model.

While this procedure seems straightforward at first glance, there are a number of
complications in practice that create significant uncertainty and scatter in the reported location
results (Bondar et al., 2014; Karasdzen and Karasozen, 2020). First, most earthquake location
techniques rely on the capacity to accurately predict ray-based theoretical travel times from
source to station. While this is a well-posed mathematical problem, it is made more challenging
in practice due to our imperfect knowledge of subsurface structure. Lateral and depth-dependent
variations in wavespeed that are not represented in these calculations will for example bias
location estimates. Second, the precise timing of phase arrivals can be difficult to determine,
especially for smaller earthquakes, waveforms with low signal-to-noise, or emergent phase
arrivals. Third, inadequacy in the seismic monitoring network or station coverage can hinder
location algorithms (Lomax and Savvaidis, 2019). These three forms of uncertainty — from the
subsurface earth model, the determination of arrival times, and from the network geometry —

routinely generate enough scatter in reported catalog locations to significantly hinder their utility
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for scientific purposes, especially in cases with sparse network geometry (Lomax et al., 2000;

Myers et al., 2007; Bondar and McLaughlin, 2009).

A well-tested solution to this dilemma is to refine the initial set of catalog locations using
relative relocation algorithms (Got ef al., 1994). The basic idea behind these algorithms is to
consider measurements of differential travel times from pairs of nearby earthquakes recorded at a
set of common stations. This has the advantage of canceling out much of the effect of unmodeled
subsurface structure on the ray-theoretical travel times, since the events are in close proximity
and thus share much of the same raypath from source to station (Wolfe, 2002). In addition, if
differential travel times are measured through waveform cross-correlation rather than by visual
inspection, the measurement precision can be improved by more than an order of magnitude to
the subsample level (Fremont and Malone, 1987). These concepts form the basis of publicly
available “double-difference” software packages like HypoDD (Waldhauser and Ellsworth,
2000, 2002; Waldhauser and Schaff, 2008) and later GrowClust (Trugman & Shearer, 2017) that

have become widely adopted by the seismology research community.

This article focuses on the GrowClust algorithm, which solves a differential form of the
classic earthquake location problem using cluster analysis and graph theory instead of more
traditional matrix inversion approaches. This formulation has several advantages, including
numerical stability and efficient scaling to large-scale earthquake location problems with
multiple seismicity clusters (Matoza et al., 2013; Ross, Trugman, et al., 2019; Skoumal ef al.,
2019; Trugman et al., 2020), and the ease of incorporating robust optimization routines during
the relocation process to prevent measurement noise from compromising the results (Shearer,
1997). For these reasons, or perhaps others that are less quantifiable like reported ease-of-use and

user-friendly documentation, GrowClust has become increasingly popular since its first public
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release as a Fortran90 software package in 2017, with numerous applications at local and
regional scales across the world (Chaves et al., 2017; Trugman et al., 2017; Hatch et al., 2018;
Koper et al., 2018; Pang et al., 2018; Rubinstein et al., 2018; Pang et al., 2019; Ross, Trugman,
et al., 2019; Shaddox and Schwartz, 2019; Skoumal et al., 2019; Hatch et al., 2020; Hauksson,
Olson, et al., 2020; Pang et al., 2020; Ross et al., 2020; Alongi et al., 2021; Benson et al., 2021,
Chamberlain et al., 2021; Glasgow et al., 2021; Li et al., 2021; Matoza et al., 2021; Ross and
Cochran, 2021; Beauc¢ et al., 2022; Gong et al., 2022; Hatch-Ibarra et al., 2022; Okamoto et al.,

2022).

Current popularity notwithstanding, there is always room for improvement. This article
describes a significant update and re-release of the original GrowClust algorithm in the
programming language Julia, which has seen rapid growth in user base in the scientific
computing community (Bezanson et al., 2017). As we will demonstrate in the following sections,
this choice brings about numerous advantages and opportunities for users of GrowClust3D.jl,
including (i) automated parallelization of bootstrap resampling routines, rendering uncertainty
quantification simple and efficient, (ii)) embedding within the Julia ecosystem for easy import of
powerful external packages, (iii) more efficient use of computer memory that removes the need
for fixed array sizes, and perhaps most importantly, (iv) the ability to perform relocation
problems in cases with 3D velocity models. This article is organized as follows: First, we briefly
review the core GrowClust algorithm and philosophy (which remains largely unchanged) while
highlighting differences with the new GrowClust3D.jl software. Next, we present a series of
applications in different study regions to demonstrate the use of the software in various
scenarios. Finally, we discuss the various advantages of adopting the new software package,

while outlining current limitations and opportunities for future improvements.
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Methods

Review of the GrowClust algorithm

Whether implemented in Fortran90 or Julia, the overarching goal of the program is to
take a set of input locations from an earthquake catalog and refine the hypocentral positions
(longitude, latitude, depth, and origin time) using observational constraints from waveform
cross-correlation. GrowClust’s tactic to achieve this goal is to treat the problem from a cluster
analysis and graph-theoretical perspective. For each earthquake pair, the algorithm computes a
waveform similarity coefficient in which higher values are meant to represent higher waveform
similarity and thus more reliable differential time measurements. Using these coefficients,
GrowClust undertakes agglomerative clustering (Kaufman and Rousseeuw, 2009; Frades and
Matthiesen, 2010), where each event starts out as its own cluster of one and is progressively
linked to other similar events in sequence, starting with the most similar event pair to ensure that
earthquake pairs with high-quality differential time measurements are the foundation of the
relocation set. Each time an event pair is linked, the events (and the clusters to which the event
pairs belong) are relocated with respect to one another using a nested grid search approach
designed to improve the match between the observed and ray-theoretical differential travel times.
Event pair and cluster linkages are sometimes rejected if they violate user-specified quality
control criteria. Because of this, when the relocation algorithm completes, there will still be a
number of singleton events (clusters of one) that are not relocated and thus remain at their initial

position.

GrowClust requires four main input datasets and an algorithm control file specifying

things like filepaths and run parameters. The requisite datasets include (i) an earthquake catalog
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specifying the initial locations of the event set to be relocated, (ii) a station list specifying the
positions of the stations where differential time measurements are recorded, (iii) a cross-
correlation file enumerating differential time measurements for pairs of events recorded at
common stations, and (iv) a velocity model or alternative means to generate travel-time tables of
theoretical arrival times. The control file organizes these input datasets, specifies the location of
the output files to be generated, and gives the user some flexibility on the clustering
hyperparameters and quality control criteria that suites their dataset. More details on these

choices are provided in Trugman & Shearer (2017) and the online software documentation.

Key modifications of the GrowClust3D.jl algorithm

From a user perspective, the most obvious difference between this original
implementation of GrowClust and GrowClust3D.jl is of course the driving programming
language: Julia instead of Fortran90 in the original release. While this change may present an
obstacle for some, the Julia user base is growing rapidly and the software features a diverse set of
packages that can be applied to various problems in scientific computing (Bezanson et al., 2017).
Julia presents a user-friendly and flexible interface like Python, but if written carefully it can
provide significant advantages in computational efficiency and can indeed be wall-clock
competitive with compiled languages like C and Fortran (Bezanson et al., 2017). We expect that
users familiar with another programming language will be able to re-use or modify the examples

presented in the online repository simply to suit their purposes.

The motivation behind the switch to Julia is to take advantage of several opportunities
that comprise the bulk of the modifications in algorithm design (Figure 1). Perhaps the most

notable new feature is much expanded flexibility in computing ray theoretical travel times. Just
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like in the original implementation, GrowClust3D.jl can generate its own travel-time tables given
an input 1D velocity model. The new implementation will generate a separate travel-time table
for each station location that accounts for the listed station elevation, a detail that was neglected
for the purposes of simplicity in the original Fortran90 codes. This approximation worked out in
most (but not all) cases because station-specific effects on travel time will often cancel out in
differential measurements. The more important new feature in GrowClust3D.jl is the capability
to use travel-time tables generated from fully 3D velocity models, where wavespeeds vary both
laterally and vertically. In the current version, this feature is implemented by reading in station-
specific 3D travel time grids generated by NonLinLoc (Lomax et al., 2000, 2009), which is an
open-source program that can applied to the task of absolute earthquake location. This
integration allows for the absolute and relative locations of output catalogs to be internally self-
consistent, which mitigates the potential for unwanted biases or offsets in areas with complex

velocity structures.

Another useful feature available in the Julia implementation is the ability to parallelize
the bootstrap resampling routines used for uncertainty quantification. The original Fortran90
release implemented these routines in serial, so performing 100 bootstrap resamples required a
runtime of ~100x relative to a runtime with no uncertainty quantification. In GrowClust3D.jl,
resampling can be readily accomplished through either multithreading on a single computational
core or multiprocessing on different cores. As we will demonstrate below, this parallelization can
be a significant speed boost for large-scale problems, especially on computing servers with

multiple cores.

There are several other minor differences worth discussion. While the original GrowClust

software relied on simplified geographic transformations, GrowClust3D.jl wraps around the
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PROJ cartographic library (PROJ contributors, 2022) with formal, user-selected map projections.
One common complaint with the Fortran90 implementation is that it uses fixed array sizes for
the differential time data, which caused compilation issues on machines with limited memory.
The Julia implementation determines appropriate array sizes on the fly and is thus more user-
friendly and memory efficient. The input file control parameters remain largely the same, with
the exception of new specifications for travel time grid and map projection options. The core
relocation algorithm and default hyperparameters are only slightly modified based on user
feedback and algorithm performance on new datasets since the original publication. One
important modification is that the GrowClust3D.jl software uses a different definition of
waveform similarity to rank event pairs in the clustering algorithm. The new definition mitigates
a potential issue the original algorithm had in penalizing highly similar event pairs that are

recorded at fewer stations while elevating less similar but better-recorded event pairs.

Applications

We demonstrate the new software on different benchmark problems that highlight
different features of the revised codes. Several of the datasets presented below have been studied
in some capacity in other published works; it is our intention here to simply use them as case

study examples of how GrowClust3D.jl can be applied as a scientific research tool.

Spanish Springs Sequence, Nevada

We begin with a reanalysis of the Spanish Springs earthquakes, a sequence of events
occurring beneath the Reno suburb in 2012-2015. This spatially compact sequence included a
M4.2 mainshock and more than a thousand smaller earthquakes detected by the Nevada
Seismological Laboratory (NSL) and has become the canonical GrowClust example since its

9
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inclusion the online tutorial with the initial software release (Trugman & Shearer, 2017). Here
we use the same input datasets to demonstrate that GrowClust3D.jl produces similar results as
the initial release when applied in a comparable way with the same 1D velocity model. To
quantify similarity, we measure the location offset between relocated hypocenters from the
original GrowClust software and GrowClust3D.jl. For relocated events, the median horizontal
and vertical offsets of 12.5 and 38.0 m are comparable to the relative location uncertainty
obtained through bootstrap resampling (11.0 and 51.0 m). The slight differences in location arise
due to fact that the ray-tracing algorithm in the GrowClust3D.jl explicitly accounts for variations
in station elevation (which is neglected in the original GrowClust) and the choice of map

projection in GrowClust3D.jl, another feature that is not an option in the original GrowClust.

Due in part to its proximity to Reno, the Spanish Springs sequence was well-recorded by
stations operated by the NSL and includes 1616 events reviewed by NSL analysts over the study
period. Many of the recorded events are quite small (< M1) and difficult to manually locate and
determine phase arrivals, which produces considerable scatter of the input catalog (Figure 2a).
Application of GrowClust3D jl to this sequence significantly refines the hypocentral positions
(Figure 2b), revealing clear and vertically dipping fault structures. There is a section along the
mainshock fault plane that is relatively devoid of aftershock activity; this may be the section of
peak slip with stress concentrations around its periphery. The results presented here are quite
similar to those reported in the original GrowClust manuscript (Trugman & Shearer, 2017), and
are largely independent of new features employed (choice of map projection, ray tracing solver,

etc.). In all cases, the major structural features and pattern of relocated seismicity are visually

10
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identical. The sequence thus remains a useful benchmark and can be used a simple test case for

GrowClust users interesting in exploring the new software.

Ridgecrest Sequence, California

If the Spanish Springs sequence represents a useful, small-scale test case for
GrowClust3D.jl, the July 2019 Ridgecrest sequence (e.g., Barnhart et al., 2019; Ross, Idini, et
al., 2019; Lin, 2020; Lomax, 2020; Shelly, 2020) represents an opposite end-member case of a
large-scale relocation problem with hundreds of discrete clusters and structural features to
resolve over a ~100 km length scale. Here we apply GrowClust3D.jl to the input catalog and
waveform cross-correlation dataset described in Trugman (2020) and Trugman et al. (2020) as a
demonstration test case to gain insight and performance benchmarks of the new codes when
applied on a large-scale relocation problem. We use the same local 1D velocity model as the
original studies (Hauksson and Unruh, 2007) and GrowClust3D.jI’s internal ray-tracing solver to
generate the needed travel time tables, which are now station-specific to explicitly account for
each station’s elevation above mean sea level. Relocations are done using a Transverse Mercator

map projection but otherwise use the same algorithm control parameters as the prior studies.

The GrowClust3D jl relocations (Figure 3) are visually much more tightly constrained to
clusters or linear features than the input catalog from the Southern California Earthquake Data
Center. These locations highlight the remarkable structural complexity and fault architecture of
the Ridgecrest sequence, which features hundreds of cross-cutting faults and branches off of the
northwest-trending mainshock rupture plane (Liu ef al., 2019; Ross, Idini, et al., 2019; Goldberg
et al., 2020; Lin, 2020; Lomax, 2020; Shelly, 2020). These structures, as well as the detailed

relative depth-distribution of seismicity, are clearly better resolved in the relocated hypocenters

11
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(Figure 4). Despite the challenging operational environment with high levels of noise that hinder
traditional approaches to earthquake location (Hauksson, Yoon, et al., 2020), the dense seismicity
and high-quality cross-correlation measurements allow us to relocate the large majority

(38278/43742 = 87.5%) of the events in the catalog.

Because of the large problem size, the Ridgecrest sequence also forms an instructive
benchmark of the computational performance of the algorithm. Of particular interest here are the
speedups in runtime observed when employing the new parallel processing tools in
GrowClust3D.jl, which are designed to accelerate uncertainty quantification through parallelized
bootstrap resampling. In the GrowClust3D Julia implementation, there are two distinct ways to
do this: by multithreading — parallel computational threads on a single processor with shared
memory, and multiprocessing — parallelization of multiple processors or computational cores
without shared memory. This capability for non-expert users to readily incorporate parallel
processing tools directly in their programs is a notable strength of the Julia language (Edelman,
2015; Besard et al., 2019; Gao et al., 2020) that GrowClust3D.jl leverages in its algorithm

design.

Here we perform computational experiments on a mid-scale computing server with a 32-
core, 64-thread chip (AMD EPYC-7532) where each computing core has a base 2.4 GHz
clockspeed. In one set of experiments, we parallelize 100 bootstrap resampling runs using Julia’s
multithreading capabilities with different numbers of threads requested, tracking the total
runtime of each experiment. In another, we perform an analogous set of experiments via
(hyperthreaded) multiprocessing rather than multithreading on a single core. A comparison of
these two experiments is presented in Figure 5. As expected, in multiprocessing mode there is a
linear improvement in runtime with the number of cores employed. In multithreading mode,

12
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runtime improvement is limited by computer memory and threading constraints, and thus
saturates after threading resources are expended. While the precise saturation point depends on
the platform and problem size, the basic concept does not. Multithreading provides a simple way
of accelerating runtimes by a modest amount (2-4x), further gains require multiprocessing on

discrete cores and scales linearly with the number of cores available.

Coyanosa, West Texas

By design, GrowClust3D.jl performs relative relocation, keeping the mean hypocentral
position of earthquakes in each cluster fixed. Thus, while the method can be used to refine
hypocentral positions, the absolute locations are intrinsically tied to the original input catalog.
When using GrowClust3D.jl, it is therefore important to be as consistent as possible with the
method used to obtain the original, absolute locations of the events of interest. The new software
facilitates this consistency with its capability to directly read the travel time grids associated with
1D or 3D velocity models that are generated by NonLinLoc (Lomax et al., 2000, 2009), an open-
source earthquake location and analysis package that can be used to constrain hypocentral

positions and uncertainties from phase arrival data and an assumed velocity model.

Here we demonstrate the capability to use 3D travel time grids on a small test case in the
Delaware Basin of West Texas, where seismicity rates have risen sharply in tandem with
increased hydrocarbon production (e.g., Frohlich et al., 2020; Savvaidis ef al., 2020; Skoumal et
al., 2020; Skoumal and Trugman, 2021; Trugman and Savvaidis, 2021). Our study region for this
exercise centers on clusters of seismicity near Coyanosa, Texas in the southern portion of the

Basin. We begin with an event set of 901 earthquakes occurring from January 2017 through May

2022, taken from the TexNet earthquake catalog (https://catalog.texnet.beg.utexas.edu/), which
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assumes a regional 1D velocity model. We then attempt to relocate all earthquakes in this dataset
which have 4 or more arrivals using NonLinLoc, assuming an Azimuthal Equidistant projection
(an appropriate choice in that the projection aims to accurately preserve distances from the center
of the study region) and using a 3D velocity model derived from local geologic, active seismic,
and well-based constraints. A subset of the initial NonLinLoc solutions are not viable, with
depths that are artificially pinned to the surface. This artifact can occur for small events with
limited and poorly resolved phase arrivals, combined ray path and travel-time complexity due to
a shallow, high-velocity evaporite layer characteristic of the Permian Basin (Savvaidis ef al.,
2022). To avoid compromising our final depth estimates, we remove these outlier events from
our analysis and further refine the position of the remaining, 794, quality-controlled events using
available differential travel time measurements and GrowClust3D.jl, assuming the same velocity

model and projection, resulting in a final relocated catalog contains 364 events.

The results of this analysis workflow are presented in Figure 6. In this case, use of a
location-specific 3D velocity model improves the lateral and depth resolution of the absolute
locations, which are noticeably shallower than the initial TexNet catalog, in line with other recent
findings (Savvaidis et al., 2021; Sheng et al., 2022). GrowClust3D.jl builds on this improvement
by further resolving the relative positions, revealing hidden linear features which correspond to
known, northwest-trending shallow normal faults and graben structures in the Delaware Basin
(Staniewicz et al., 2020; Hennings et al., 2021; Horne et al., 2021). The GrowClust3D.jl depth
distribution is concentrated in the 0-3.5 km range and peaks near 2 km depth, perhaps a
signature of triggering from anthropogenic stressing. The improved resolution of hypocentral

depths provided by techniques like GrowClust3D.jl may be key to understanding causal factors
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driving seismicity in this region (Savvaidis et al., 2020; Skoumal et al., 2020; Zhai et al., 2021;

Sheng et al., 2022).

Kaikoura Aftershocks, New Zealand

The most notable new feature of the software is the capability to perform relocation tasks
that require 3D velocity models with strong lateral variations in Earth structure. This need is
perhaps most pronounced in subduction zone settings, where the dipping interface of the
subducting slab and overriding plate creates a baseline geometric feature upon which additional
structural complexity is nearly always present. Here we consider a relocation problem of the
earthquakes surrounding the rupture of the 2016 M7.8 Kaikoura, New Zealand earthquake,
which triggered tens of thousands of aftershocks dominantly on crustal faults above the
Hikurangi Subduction Zone (Holden et al., 2017; Ulrich et al., 2019; Chamberlain et al., 2021).
Perhaps even more so than Ridgecrest, the Kaikoura rupture is remarkable for its complexity,
stitching together at least 21 faults across the South Island of New Zealand (Cesca et al., 2017;
Hamling et al., 2017; Holden et al., 2017; Kaiser et al., 2017; Zhang et al., 2017) and potentially

involving rupture of the underlying subduction interface (e.g., Mouslopoulou ef al., 2019).

Chamberlain et al. (2021) performed a template-matching exercise to detect small
earthquakes and applied the original GrowClust algorithm with a 1D cross-section of the 3D
tomographic model of Eberhart-Phillips and Bannister (2015). Due to the limitations of the
original template-matching catalog, especially the sparse station coverage and limitations in the
relocation technique (which assumed a single 1D velocity model for the entire study region),
resolution of the sequence could certainly be improved. Here we build on the results of

Chamberlain (2021) by using the same input catalog and differential time measurements, but
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now taking advantage of the new capabilities of the GrowClust3D.jl software to directly use
travel time grids derived from a 3D earth model — NZ3D version 2.2 (Eberhart-Phillips and
Bannister, 2015; Henrys ef al., 2020) — during the relocation process. The input, absolute
locations are the same in both cases and were obtained with NonLinLoc (Lomax et al., 2000,
2009). Relocations are performed in a Transverse Mercator projection rotated 140 degrees along

the strike of the New Zealand islands, following Eberhart-Phillips and Bannister (2015).

Relocation results for the Kaikdura sequence are summarized in Figure 7, with select
cross-section comparisons to original GrowClust results of Chamberlain et al. (2021) in Figure 8.
Most of the detected aftershocks are crustal events, well above the Hikurangi megathrust
interface depth determined by Williams et al. (2013). Very few events appear to locate on the
interface itself. Comparing the original and new relocations, we observe a notable sharpening in
the seismicity in certain areas, likely in relation to the strength of the lateral variations in
wavespeed. For example, the activation of splay faults above the megathrust interface can be
seen in cross-sections C and D (Figure 8) using the GrowClust3D.jl locations, but these
structural features are not readily visible in identical cross-sections from the original 1D
relocation results. These promising results for Kaikoura suggest promise for future applications
of the new software in subduction zone settings, even when station coverage is limited (Figure

7).

Outlook and Future Directions

In this article we present GrowClust3D.jl, a significant advancement over the original
GrowClust software for the relative relocation of earthquake hypocenters. Now rewritten in the

programming language Julia, the open-source software package follows the same conceptual
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paradigm of the original release but contains a number of new features and options we hope will
prove useful to the scientific community. The most notable of these is the capability to use 3D
velocity models and travel time grids produced by NonLinLoc, ensuring the absolute and relative
hypocenters are self-consistent and allowing for improved precision in regions with strong lateral
heterogeneity in wavespeed. The new relocation codes also make it simple to parallelize
bootstrap uncertainty quantification using multithreading or multiprocessing, resulting in
improvements in speed of a factor of 20 or more on large-scale problems, depending on available
resources. The new Julia implementation can also make more efficient use of available computer
memory because it does not require the user to compile fixed array sizes prior to runtime. Other
minor improvements include the incorporation of standardized map projection routines and the
explicit accounting of station elevations, factors that were neglected in the original release of the

program.

Having GrowClust3D as part of the broader Julia ecosystem makes it easier to update the
package based on user feedback while opening up new opportunities for additional user
flexibility and creativity. The codes already leverage widely used Julia packages, notably ones
for statistical and array calculations, interpolations, map projections, and tabular datasets. The
codes are deliberately modular in design, which makes it simple for users to modify short
sections of codes to suit their scientific objectives. A good example of this is the metric used to
define event pair similarity. In the original Fortran implementation of GrowClust, this was a
simple summation of cross-correlation coefficients across all stations recording an event pair.
This definition, while functional and straightforward, had the tendency to overweight event pairs
with more cross-correlation measurements at the expense of highly similar pairs with fewer

recordings. The new Julia implementation modifies this definition by considering only a fixed
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number of stations for all event pairs, the specifics of which can be modified by the user. In Julia,
one could easily implement customized metrics to achieve different goals, for example by

differentiating template matching pairs from pairs of analyst-reviewed events.

The current implementation of GrowClust3D.jl described here has several limitations to
be aware of, some of which could be addressed in future releases pending user interest and
feedback. In the current version, GrowClust3D.jl can perform simple 1D ray tracing tasks but
does not include a full eikonal equation solver for 3D problems, instead relying on external
programs like NonLinLoc to facilitate these calculations. This approach has the advantage of
consistency with the input catalog and removes the computationally expensive step of 3D ray
tracing but does limit user capabilities for certain problems. Future implementations could
feature an internal eikonal equation solver or integrate with other location packages beyond
NonLinLoc. Note, GrowClust3D.jl itself only performs relative relocation and not the initial,
absolute location. This choice is deliberate because it allows the user to select their own suitable
method based on their data and preferences, but it does limit the software in some ways.
Likewise, the software requires the user to pre-compute differential travel times from waveform
cross-correlation, using any technique they deem sufficient. It may be possible in future to
integrate with Julia waveform processing tools like SeisIO (Jones et al., 2020) to help facilitate
this step more directly. In addition, relocation packages like HypoDD (Waldhauser and
Ellsworth, 2000) have long used catalog differential times in complement to those derived from
waveform cross-correlation. This option could be considered if warranted from a value-added

standpoint. There are many more possibilities consider; the beauty of an open-source tool like
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GrowClust3D.jl is that the potential for improvement is bounded only by user imagination and

energy.

Data and Resources

The software described in this study is documented and publicly available in the repository:

https://github.com/dttrugman/GrowClust3D. The original GrowClust software is still available

at: https://github.com/dttrugman/GrowClust. We thank developers of Julia (Bezanson et al.,

2017), NonLinLoc (Lomax et al., 2000), PROJ (PROJ contributors, 2022), and the Generic
Mapping Toolbox (Wessel et al., 2019) for publicly available software tools used in the
implementation and presentation of this study. Earthquake catalog and waveform data from the
Nevada Seismological Laboratory (http://www.seismo.unr.edu/), Southern California Earthquake
Data Center (https://scedc.caltech.edu/index.html), TexNet (https://www.beg.utexas.edu/texnet-
cisr/texnet), and GeoNet (https://www.geonet.org.nz/) were used to derive inputs for the
relocation algorithm. The 3D compressional wave model and its travel time grids (assuming a
constant Vp/Vs of 1.7) for the Coyanosa case study are available on the Texas Data Repository

(https://doi.org/10.18738/T8/RQGQID), where we have made the relocated catalogs produced in

this study publicly available (https://doi.org/10.18738/T8/44T2X8). The 3D velocity model used

for the New Zealand case study are archived on Zenodo

(https://zenodo.org/record/3779523#.YzsAi-zMJoM).
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NonLinLoc travel time grids
(for 1D or 3D models)
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log / run statistics (updated)
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precomputed options)
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Compute event-pair
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(new/improved definition)

{
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observed and predicted
differential travel times
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Assemble relocated event
list (invert map projection)
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multiprocessing)

J

Figure 1. Schematic overview of the GrowClust3D.jl workflow, with newly available features

italicized for emphasis.
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710  Figure 2. Relocation of the Spanish Springs, Nevada earthquake sequence. Panels (a) and (b)
711  compare the input catalog reported by the Nevada Seismological Laboratory and to the
712 GrowClust3D jl-relocated relocated catalog in map view. Panels (c¢) and (d) compare input and

713 relocated catalogs in cross section.
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716  Figure 3. Map view of the Ridgecrest, California sequence comparing (a) the input catalog from
717  the Southern California Earthquake Data Center and (b) the GrowClust3D.jl-relocated catalog.
718  Station locations are marked with triangles. Note the definition of cross sections A-A’ and B-B’

719  that are used in Figure 4.
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722 Figure 4. Depth cross-sections for the relocation of the Ridgecrest, California sequence. Panels
723 (a) and (c) show cross-sections of the input catalog from the Southern California Earthquake
724  Data Center, while panels (b) and (d) show cross-sections of GrowClust3D.jl-relocated

725  seismicity. Cross sections A-A’ and B-B’ are defined in Figure 3.
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729  Figure 5. Parallelization experiments. Comparison of multithreading (square symbols) and
730  multiprocessing (triangle symbols) runtime for 100 bootstrap resampling runs of the Ridgecrest

731 sequence. Note log-log scale, where the x-axis refers to the number of threads or cores requested.
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733 Figure 6. Relocation of seismicity near Coyanosa, Texas (USA). (a) TexNet catalog locations

734 shown in map view. (b) Refined absolute locations of these events using NonLinLoc and a 3D
735  velocity model. (c) Refined relative relocations of these events using GrowClust3D.jl. (d)

736 Comparison of the depth distributions of seismicity for the TexNet catalog (1D model),

737  NonLinLoc (3D model), and GrowClust3D.jl (3D model). In each panel, only the 364 events that
738 are relocated by GrowClust3D.jl are shown. Station locations are marked with triangles for

739  reference in panels (a) through (c).
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Figure 7. GrowClust3D.jl relocations of the Kaikoura earthquake sequence in map view (panel
a) and select cross-sections (panels bcd). Station locations are marked in triangles, with the

position of the subduction interface from Williams et al. (2013) marked with a solid line.
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Figure 8. Comparison of the GrowClust relocations of Chamberlain et al. (2021) in panels (a)

and (b) with GrowClust3D.jl relocation (this study) in panels (c) and (d). Cross-sections C-C’

and D-D’ are defined in Figure 7. While both datasets are waveform-relocated, the

GrowClust3D.jl solution more clearly resolves the details and dip of possible linear splay

faulting structures in cross-section C-C’.
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