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Abstract 14 

Relative relocation techniques are widely used to improve the resolution of earthquake 15 

hypocenter positions. Here we present GrowClust3D.jl, an open-source software package written 16 

in the programming language Julia that builds and improves upon the original GrowClust 17 

algorithm, an established relative relocation technique based on cluster analysis instead of a more 18 

traditional matrix inversion approach. The adoption of Julia’s modern programming environment 19 

allows for greater flexibility in GrowClust3D.jl’s algorithm design and its computational 20 

implementation. Notable additions to the GrowClust3D.jl package include (i) several parallel 21 

processing options to improve efficiency in uncertainty quantification routines, (ii) incorporation 22 

of geographic map projections and station elevations during the relocation process, and (iii) the 23 

ability to use travel-time tables derived from 3D velocity models. We demonstrate the new 24 

features of the software package on relocation problems of different scales in Nevada, California, 25 

Texas, and New Zealand, where in the latter two cases the use of a 3D velocity model helps 26 

resolve structures that remain obscure with earlier versions of GrowClust. We expect that the 27 

new GrowClust3D.jl software package will become a valuable public resource for the earthquake 28 

science community. 29 

Introduction 30 

Catalogs of the location of earthquake hypocenters are one of the most fundamental 31 

derived-data products in seismology. Earthquake locations pervade nearly every aspect of 32 

earthquake science, from seismic monitoring, to tomographic imaging of Earth structure and 33 

fault networks, to detailed analyses of seismicity patterns, to development of fault-based hazard 34 

models (e.g., Ben-Menahem, 1995; Agnew, 2002). Because of this keystone role, one of the 35 
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primary missions of national and regional seismic monitoring networks is to provide public 36 

databases, or catalogs, of earthquake location estimates for events in their reporting region (e.g., 37 

Masse and Needham, 1989; Okada et al., 2004; Hutton et al., 2010; Guy et al., 2015; Pankow et 38 

al., 2019; Savvaidis et al., 2019; Margheriti et al., 2021). The basic methodology for determining 39 

these location estimates from seismic data is well-established (Buland, 1976). In a typical 40 

workflow, phase arrival times are marked by network analysts at a set of recording stations, and 41 

automated programs use a combination of grid search or linearized single-event inversion 42 

approaches (Geiger, 1912; Kennett and Engdahl, 1991; Klein, 2002) to determine the event 43 

location that best matches the observed phase arrivals with the timing predicted by travel time 44 

tables derived from a specific Earth model. 45 

While this procedure seems straightforward at first glance, there are a number of 46 

complications in practice that create significant uncertainty and scatter in the reported location 47 

results (Bondár et al., 2014; Karasözen and Karasözen, 2020). First, most earthquake location 48 

techniques rely on the capacity to accurately predict ray-based theoretical travel times from 49 

source to station. While this is a well-posed mathematical problem, it is made more challenging 50 

in practice due to our imperfect knowledge of subsurface structure. Lateral and depth-dependent 51 

variations in wavespeed that are not represented in these calculations will for example bias 52 

location estimates. Second, the precise timing of phase arrivals can be difficult to determine, 53 

especially for smaller earthquakes, waveforms with low signal-to-noise, or emergent phase 54 

arrivals. Third, inadequacy in the seismic monitoring network or station coverage can hinder 55 

location algorithms (Lomax and Savvaidis, 2019). These three forms of uncertainty – from the 56 

subsurface earth model, the determination of arrival times, and from the network geometry – 57 

routinely generate enough scatter in reported catalog locations to significantly hinder their utility 58 
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for scientific purposes, especially in cases with sparse network geometry (Lomax et al., 2000; 59 

Myers et al., 2007; Bondár and McLaughlin, 2009).  60 

A well-tested solution to this dilemma is to refine the initial set of catalog locations using 61 

relative relocation algorithms (Got et al., 1994). The basic idea behind these algorithms is to 62 

consider measurements of differential travel times from pairs of nearby earthquakes recorded at a 63 

set of common stations. This has the advantage of canceling out much of the effect of unmodeled 64 

subsurface structure on the ray-theoretical travel times, since the events are in close proximity 65 

and thus share much of the same raypath from source to station (Wolfe, 2002). In addition, if 66 

differential travel times are measured through waveform cross-correlation rather than by visual 67 

inspection, the measurement precision can be improved by more than an order of magnitude to 68 

the subsample level (Fremont and Malone, 1987). These concepts form the basis of publicly 69 

available “double-difference” software packages like HypoDD (Waldhauser and Ellsworth, 70 

2000, 2002; Waldhauser and Schaff, 2008) and later GrowClust (Trugman & Shearer, 2017) that 71 

have become widely adopted by the seismology research community. 72 

This article focuses on the GrowClust algorithm, which solves a differential form of the 73 

classic earthquake location problem using cluster analysis and graph theory instead of more 74 

traditional matrix inversion approaches. This formulation has several advantages, including 75 

numerical stability and efficient scaling to large-scale earthquake location problems with 76 

multiple seismicity clusters (Matoza et al., 2013; Ross, Trugman, et al., 2019; Skoumal et al., 77 

2019; Trugman et al., 2020), and the ease of incorporating robust optimization routines during 78 

the relocation process to prevent measurement noise from compromising the results (Shearer, 79 

1997). For these reasons, or perhaps others that are less quantifiable like reported ease-of-use and 80 

user-friendly documentation, GrowClust has become increasingly popular since its first public 81 
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release as a Fortran90 software package in 2017, with numerous applications at local and 82 

regional scales across the world (Chaves et al., 2017; Trugman et al., 2017; Hatch et al., 2018; 83 

Koper et al., 2018; Pang et al., 2018; Rubinstein et al., 2018; Pang et al., 2019; Ross, Trugman, 84 

et al., 2019; Shaddox and Schwartz, 2019; Skoumal et al., 2019; Hatch et al., 2020; Hauksson, 85 

Olson, et al., 2020; Pang et al., 2020; Ross et al., 2020; Alongi et al., 2021; Benson et al., 2021; 86 

Chamberlain et al., 2021; Glasgow et al., 2021; Li et al., 2021; Matoza et al., 2021; Ross and 87 

Cochran, 2021; Beaucé et al., 2022; Gong et al., 2022; Hatch‐Ibarra et al., 2022; Okamoto et al., 88 

2022). 89 

Current popularity notwithstanding, there is always room for improvement. This article 90 

describes a significant update and re-release of the original GrowClust algorithm in the 91 

programming language Julia, which has seen rapid growth in user base in the scientific 92 

computing community (Bezanson et al., 2017). As we will demonstrate in the following sections, 93 

this choice brings about numerous advantages and opportunities for users of GrowClust3D.jl, 94 

including (i) automated parallelization of bootstrap resampling routines, rendering uncertainty 95 

quantification simple and efficient, (ii) embedding within the Julia ecosystem for easy import of 96 

powerful external packages, (iii) more efficient use of computer memory that removes the need 97 

for fixed array sizes, and perhaps most importantly, (iv) the ability to perform relocation 98 

problems in cases with 3D velocity models. This article is organized as follows: First, we briefly 99 

review the core GrowClust algorithm and philosophy (which remains largely unchanged) while 100 

highlighting differences with the new GrowClust3D.jl software. Next, we present a series of 101 

applications in different study regions to demonstrate the use of the software in various 102 

scenarios. Finally, we discuss the various advantages of adopting the new software package, 103 

while outlining current limitations and opportunities for future improvements.   104 
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Methods 105 

Review of the GrowClust algorithm 106 

 Whether implemented in Fortran90 or Julia, the overarching goal of the program is to 107 

take a set of input locations from an earthquake catalog and refine the hypocentral positions 108 

(longitude, latitude, depth, and origin time) using observational constraints from waveform 109 

cross-correlation. GrowClust’s tactic to achieve this goal is to treat the problem from a cluster 110 

analysis and graph-theoretical perspective. For each earthquake pair, the algorithm computes a 111 

waveform similarity coefficient in which higher values are meant to represent higher waveform 112 

similarity and thus more reliable differential time measurements. Using these coefficients, 113 

GrowClust undertakes agglomerative clustering (Kaufman and Rousseeuw, 2009; Frades and 114 

Matthiesen, 2010), where each event starts out as its own cluster of one and is progressively 115 

linked to other similar events in sequence, starting with the most similar event pair to ensure that 116 

earthquake pairs with high-quality differential time measurements are the foundation of the 117 

relocation set. Each time an event pair is linked, the events (and the clusters to which the event 118 

pairs belong) are relocated with respect to one another using a nested grid search approach 119 

designed to improve the match between the observed and ray-theoretical differential travel times. 120 

Event pair and cluster linkages are sometimes rejected if they violate user-specified quality 121 

control criteria. Because of this, when the relocation algorithm completes, there will still be a 122 

number of singleton events (clusters of one) that are not relocated and thus remain at their initial 123 

position. 124 

 GrowClust requires four main input datasets and an algorithm control file specifying 125 

things like filepaths and run parameters. The requisite datasets include (i) an earthquake catalog 126 
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specifying the initial locations of the event set to be relocated, (ii) a station list specifying the 127 

positions of the stations where differential time measurements are recorded, (iii) a cross-128 

correlation file enumerating differential time measurements for pairs of events recorded at 129 

common stations, and (iv) a velocity model or alternative means to generate travel-time tables of 130 

theoretical arrival times. The control file organizes these input datasets, specifies the location of 131 

the output files to be generated, and gives the user some flexibility on the clustering 132 

hyperparameters and quality control criteria that suites their dataset. More details on these 133 

choices are provided in Trugman & Shearer (2017) and the online software documentation. 134 

Key modifications of the GrowClust3D.jl algorithm 135 

 From a user perspective, the most obvious difference between this original 136 

implementation of GrowClust and GrowClust3D.jl is of course the driving programming 137 

language: Julia instead of Fortran90 in the original release. While this change may present an 138 

obstacle for some, the Julia user base is growing rapidly and the software features a diverse set of 139 

packages that can be applied to various problems in scientific computing (Bezanson et al., 2017). 140 

Julia presents a user-friendly and flexible interface like Python, but if written carefully it can 141 

provide significant advantages in computational efficiency and can indeed be wall-clock 142 

competitive with compiled languages like C and Fortran (Bezanson et al., 2017). We expect that 143 

users familiar with another programming language will be able to re-use or modify the examples 144 

presented in the online repository simply to suit their purposes.  145 

 The motivation behind the switch to Julia is to take advantage of several opportunities 146 

that comprise the bulk of the modifications in algorithm design (Figure 1). Perhaps the most 147 

notable new feature is much expanded flexibility in computing ray theoretical travel times. Just 148 
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like in the original implementation, GrowClust3D.jl can generate its own travel-time tables given 149 

an input 1D velocity model. The new implementation will generate a separate travel-time table 150 

for each station location that accounts for the listed station elevation, a detail that was neglected 151 

for the purposes of simplicity in the original Fortran90 codes. This approximation worked out in 152 

most (but not all) cases because station-specific effects on travel time will often cancel out in 153 

differential measurements. The more important new feature in GrowClust3D.jl is the capability 154 

to use travel-time tables generated from fully 3D velocity models, where wavespeeds vary both 155 

laterally and vertically. In the current version, this feature is implemented by reading in station-156 

specific 3D travel time grids generated by NonLinLoc (Lomax et al., 2000, 2009), which is an 157 

open-source program that can applied to the task of absolute earthquake location. This 158 

integration allows for the absolute and relative locations of output catalogs to be internally self-159 

consistent, which mitigates the potential for unwanted biases or offsets in areas with complex 160 

velocity structures. 161 

 Another useful feature available in the Julia implementation is the ability to parallelize 162 

the bootstrap resampling routines used for uncertainty quantification. The original Fortran90 163 

release implemented these routines in serial, so performing 100 bootstrap resamples required a 164 

runtime of ~100x relative to a runtime with no uncertainty quantification. In GrowClust3D.jl, 165 

resampling can be readily accomplished through either multithreading on a single computational 166 

core or multiprocessing on different cores. As we will demonstrate below, this parallelization can 167 

be a significant speed boost for large-scale problems, especially on computing servers with 168 

multiple cores.  169 

 There are several other minor differences worth discussion. While the original GrowClust 170 

software relied on simplified geographic transformations, GrowClust3D.jl wraps around the 171 
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PROJ cartographic library (PROJ contributors, 2022) with formal, user-selected map projections. 172 

One common complaint with the Fortran90 implementation is that it uses fixed array sizes for 173 

the differential time data, which caused compilation issues on machines with limited memory. 174 

The Julia implementation determines appropriate array sizes on the fly and is thus more user-175 

friendly and memory efficient. The input file control parameters remain largely the same, with 176 

the exception of new specifications for travel time grid and map projection options. The core 177 

relocation algorithm and default hyperparameters are only slightly modified based on user 178 

feedback and algorithm performance on new datasets since the original publication. One 179 

important modification is that the GrowClust3D.jl software uses a different definition of 180 

waveform similarity to rank event pairs in the clustering algorithm. The new definition mitigates 181 

a potential issue the original algorithm had in penalizing highly similar event pairs that are 182 

recorded at fewer stations while elevating less similar but better-recorded event pairs.  183 

Applications 184 

We demonstrate the new software on different benchmark problems that highlight 185 

different features of the revised codes. Several of the datasets presented below have been studied 186 

in some capacity in other published works; it is our intention here to simply use them as case 187 

study examples of how GrowClust3D.jl can be applied as a scientific research tool.  188 

Spanish Springs Sequence, Nevada 189 

 We begin with a reanalysis of the Spanish Springs earthquakes, a sequence of events 190 

occurring beneath the Reno suburb in 2012–2015. This spatially compact sequence included a 191 

M4.2 mainshock and more than a thousand smaller earthquakes detected by the Nevada 192 

Seismological Laboratory (NSL) and has become the canonical GrowClust example since its 193 
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inclusion the online tutorial with the initial software release (Trugman & Shearer, 2017). Here 194 

we use the same input datasets to demonstrate that GrowClust3D.jl produces similar results as 195 

the initial release when applied in a comparable way with the same 1D velocity model. To 196 

quantify similarity, we measure the location offset between relocated hypocenters from the 197 

original GrowClust software and GrowClust3D.jl. For relocated events, the median horizontal 198 

and vertical offsets of 12.5 and 38.0 m are comparable to the relative location uncertainty 199 

obtained through bootstrap resampling (11.0 and 51.0 m). The slight differences in location arise 200 

due to fact that the ray-tracing algorithm in the GrowClust3D.jl explicitly accounts for variations 201 

in station elevation (which is neglected in the original GrowClust) and the choice of map 202 

projection in GrowClust3D.jl, another feature that is not an option in the original GrowClust. 203 

 Due in part to its proximity to Reno, the Spanish Springs sequence was well-recorded by 204 

stations operated by the NSL and includes 1616 events reviewed by NSL analysts over the study 205 

period. Many of the recorded events are quite small (< M1) and difficult to manually locate and 206 

determine phase arrivals, which produces considerable scatter of the input catalog (Figure 2a). 207 

Application of GrowClust3D.jl to this sequence significantly refines the hypocentral positions 208 

(Figure 2b), revealing clear and vertically dipping fault structures. There is a section along the 209 

mainshock fault plane that is relatively devoid of aftershock activity; this may be the section of 210 

peak slip with stress concentrations around its periphery. The results presented here are quite 211 

similar to those reported in the original GrowClust manuscript (Trugman & Shearer, 2017), and 212 

are largely independent of new features employed (choice of map projection, ray tracing solver, 213 

etc.). In all cases, the major structural features and pattern of relocated seismicity are visually 214 
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identical. The sequence thus remains a useful benchmark and can be used a simple test case for 215 

GrowClust users interesting in exploring the new software. 216 

Ridgecrest Sequence, California 217 

 If the Spanish Springs sequence represents a useful, small-scale test case for 218 

GrowClust3D.jl, the July 2019 Ridgecrest sequence (e.g., Barnhart et al., 2019; Ross, Idini, et 219 

al., 2019; Lin, 2020; Lomax, 2020; Shelly, 2020) represents an opposite end-member case of a 220 

large-scale relocation problem with hundreds of discrete clusters and structural features to 221 

resolve over a ~100 km length scale. Here we apply GrowClust3D.jl to the input catalog and 222 

waveform cross-correlation dataset described in Trugman (2020) and Trugman et al. (2020) as a 223 

demonstration test case to gain insight and performance benchmarks of the new codes when 224 

applied on a large-scale relocation problem. We use the same local 1D velocity model as the 225 

original studies (Hauksson and Unruh, 2007) and GrowClust3D.jl’s internal ray-tracing solver to 226 

generate the needed travel time tables, which are now station-specific to explicitly account for 227 

each station’s elevation above mean sea level. Relocations are done using a Transverse Mercator 228 

map projection but otherwise use the same algorithm control parameters as the prior studies. 229 

 The GrowClust3D.jl relocations (Figure 3) are visually much more tightly constrained to 230 

clusters or linear features than the input catalog from the Southern California Earthquake Data 231 

Center. These locations highlight the remarkable structural complexity and fault architecture of 232 

the Ridgecrest sequence, which features hundreds of cross-cutting faults and branches off of the 233 

northwest-trending mainshock rupture plane (Liu et al., 2019; Ross, Idini, et al., 2019; Goldberg 234 

et al., 2020; Lin, 2020; Lomax, 2020; Shelly, 2020). These structures, as well as the detailed 235 

relative depth-distribution of seismicity, are clearly better resolved in the relocated hypocenters 236 
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(Figure 4). Despite the challenging operational environment with high levels of noise that hinder 237 

traditional approaches to earthquake location (Hauksson, Yoon, et al., 2020), the dense seismicity 238 

and high-quality cross-correlation measurements allow us to relocate the large majority 239 

(38278/43742 = 87.5%) of the events in the catalog. 240 

 Because of the large problem size, the Ridgecrest sequence also forms an instructive 241 

benchmark of the computational performance of the algorithm. Of particular interest here are the 242 

speedups in runtime observed when employing the new parallel processing tools in 243 

GrowClust3D.jl, which are designed to accelerate uncertainty quantification through parallelized 244 

bootstrap resampling. In the GrowClust3D Julia implementation, there are two distinct ways to 245 

do this: by multithreading – parallel computational threads on a single processor with shared 246 

memory, and multiprocessing – parallelization of multiple processors or computational cores 247 

without shared memory.  This capability for non-expert users to readily incorporate parallel 248 

processing tools directly in their programs is a notable strength of the Julia language (Edelman, 249 

2015; Besard et al., 2019; Gao et al., 2020) that GrowClust3D.jl leverages in its algorithm 250 

design. 251 

Here we perform computational experiments on a mid-scale computing server with a 32-252 

core, 64-thread chip (AMD EPYC-7532) where each computing core has a base 2.4 GHz 253 

clockspeed. In one set of experiments, we parallelize 100 bootstrap resampling runs using Julia’s 254 

multithreading capabilities with different numbers of threads requested, tracking the total 255 

runtime of each experiment. In another, we perform an analogous set of experiments via 256 

(hyperthreaded) multiprocessing rather than multithreading on a single core.  A comparison of 257 

these two experiments is presented in Figure 5. As expected, in multiprocessing mode there is a 258 

linear improvement in runtime with the number of cores employed. In multithreading mode, 259 



 

13 
 

runtime improvement is limited by computer memory and threading constraints, and thus 260 

saturates after threading resources are expended. While the precise saturation point depends on 261 

the platform and problem size, the basic concept does not. Multithreading provides a simple way 262 

of accelerating runtimes by a modest amount (2-4x), further gains require multiprocessing on 263 

discrete cores and scales linearly with the number of cores available.  264 

Coyanosa, West Texas 265 

 By design, GrowClust3D.jl performs relative relocation, keeping the mean hypocentral 266 

position of earthquakes in each cluster fixed. Thus, while the method can be used to refine 267 

hypocentral positions, the absolute locations are intrinsically tied to the original input catalog. 268 

When using GrowClust3D.jl, it is therefore important to be as consistent as possible with the 269 

method used to obtain the original, absolute locations of the events of interest. The new software 270 

facilitates this consistency with its capability to directly read the travel time grids associated with 271 

1D or 3D velocity models that are generated by NonLinLoc (Lomax et al., 2000, 2009), an open-272 

source earthquake location and analysis package that can be used to constrain hypocentral 273 

positions and uncertainties from phase arrival data and an assumed velocity model. 274 

 Here we demonstrate the capability to use 3D travel time grids on a small test case in the 275 

Delaware Basin of West Texas, where seismicity rates have risen sharply in tandem with 276 

increased hydrocarbon production (e.g., Frohlich et al., 2020; Savvaidis et al., 2020; Skoumal et 277 

al., 2020; Skoumal and Trugman, 2021; Trugman and Savvaidis, 2021). Our study region for this 278 

exercise centers on clusters of seismicity near Coyanosa, Texas in the southern portion of the 279 

Basin. We begin with an event set of 901 earthquakes occurring from January 2017 through May 280 

2022, taken from the TexNet earthquake catalog (https://catalog.texnet.beg.utexas.edu/), which 281 
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assumes a regional 1D velocity model. We then attempt to relocate all earthquakes in this dataset 282 

which have 4 or more arrivals using NonLinLoc, assuming an Azimuthal Equidistant projection 283 

(an appropriate choice in that the projection aims to accurately preserve distances from the center 284 

of the study region) and using a 3D velocity model derived from local geologic, active seismic, 285 

and well-based constraints. A subset of the initial NonLinLoc solutions are not viable, with 286 

depths that are artificially pinned to the surface. This artifact can occur for small events with 287 

limited and poorly resolved phase arrivals, combined ray path and travel-time complexity due to 288 

a shallow, high-velocity evaporite layer characteristic of the Permian Basin (Savvaidis et al., 289 

2022). To avoid compromising our final depth estimates, we remove these outlier events from 290 

our analysis and further refine the position of the remaining, 794, quality-controlled events using 291 

available differential travel time measurements and GrowClust3D.jl, assuming the same velocity 292 

model and projection, resulting in a final relocated catalog contains 364 events. 293 

The results of this analysis workflow are presented in Figure 6. In this case, use of a 294 

location-specific 3D velocity model improves the lateral and depth resolution of the absolute 295 

locations, which are noticeably shallower than the initial TexNet catalog, in line with other recent 296 

findings (Savvaidis et al., 2021; Sheng et al., 2022). GrowClust3D.jl builds on this improvement 297 

by further resolving the relative positions, revealing hidden linear features which correspond to 298 

known, northwest-trending shallow normal faults and graben structures in the Delaware Basin 299 

(Staniewicz et al., 2020; Hennings et al., 2021; Horne et al., 2021). The GrowClust3D.jl depth 300 

distribution is concentrated in the 0–3.5 km range and peaks near 2 km depth, perhaps a 301 

signature of triggering from anthropogenic stressing. The improved resolution of hypocentral 302 

depths provided by techniques like GrowClust3D.jl may be key to understanding causal factors 303 
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driving seismicity in this region (Savvaidis et al., 2020; Skoumal et al., 2020; Zhai et al., 2021; 304 

Sheng et al., 2022).   305 

Kaikōura Aftershocks, New Zealand 306 

 The most notable new feature of the software is the capability to perform relocation tasks 307 

that require 3D velocity models with strong lateral variations in Earth structure. This need is 308 

perhaps most pronounced in subduction zone settings, where the dipping interface of the 309 

subducting slab and overriding plate creates a baseline geometric feature upon which additional 310 

structural complexity is nearly always present. Here we consider a relocation problem of the 311 

earthquakes surrounding the rupture of the 2016 M7.8 Kaikōura, New Zealand earthquake, 312 

which triggered tens of thousands of aftershocks dominantly on crustal faults above the 313 

Hikurangi Subduction Zone (Holden et al., 2017; Ulrich et al., 2019; Chamberlain et al., 2021). 314 

Perhaps even more so than Ridgecrest, the Kaikōura rupture is remarkable for its complexity, 315 

stitching together at least 21 faults across the South Island of New Zealand (Cesca et al., 2017; 316 

Hamling et al., 2017; Holden et al., 2017; Kaiser et al., 2017; Zhang et al., 2017) and potentially 317 

involving rupture of the underlying subduction interface (e.g., Mouslopoulou et al., 2019).  318 

Chamberlain et al. (2021) performed a template-matching exercise to detect small 319 

earthquakes and applied the original GrowClust algorithm with a 1D cross-section of the 3D 320 

tomographic model of Eberhart-Phillips and Bannister (2015). Due to the limitations of the 321 

original template-matching catalog, especially the sparse station coverage and limitations in the 322 

relocation technique (which assumed a single 1D velocity model for the entire study region), 323 

resolution of the sequence could certainly be improved. Here we build on the results of 324 

Chamberlain (2021) by using the same input catalog and differential time measurements, but 325 
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now taking advantage of the new capabilities of the GrowClust3D.jl software to directly use 326 

travel time grids derived from a 3D earth model – NZ3D version 2.2 (Eberhart-Phillips and 327 

Bannister, 2015; Henrys et al., 2020) – during the relocation process. The input, absolute 328 

locations are the same in both cases and were obtained with NonLinLoc (Lomax et al., 2000, 329 

2009). Relocations are performed in a Transverse Mercator projection rotated 140 degrees along 330 

the strike of the New Zealand islands, following Eberhart-Phillips and Bannister (2015). 331 

 Relocation results for the Kaikōura sequence are summarized in Figure 7, with select 332 

cross-section comparisons to original GrowClust results of Chamberlain et al. (2021) in Figure 8. 333 

Most of the detected aftershocks are crustal events, well above the Hikurangi megathrust 334 

interface depth determined by Williams et al. (2013). Very few events appear to locate on the 335 

interface itself. Comparing the original and new relocations, we observe a notable sharpening in 336 

the seismicity in certain areas, likely in relation to the strength of the lateral variations in 337 

wavespeed. For example, the activation of splay faults above the megathrust interface can be 338 

seen in cross-sections C and D (Figure 8) using the GrowClust3D.jl locations, but these 339 

structural features are not readily visible in identical cross-sections from the original 1D 340 

relocation results. These promising results for Kaikōura suggest promise for future applications 341 

of the new software in subduction zone settings, even when station coverage is limited (Figure 342 

7). 343 

Outlook and Future Directions 344 

 In this article we present GrowClust3D.jl, a significant advancement over the original 345 

GrowClust software for the relative relocation of earthquake hypocenters. Now rewritten in the 346 

programming language Julia, the open-source software package follows the same conceptual 347 
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paradigm of the original release but contains a number of new features and options we hope will 348 

prove useful to the scientific community. The most notable of these is the capability to use 3D 349 

velocity models and travel time grids produced by NonLinLoc, ensuring the absolute and relative 350 

hypocenters are self-consistent and allowing for improved precision in regions with strong lateral 351 

heterogeneity in wavespeed. The new relocation codes also make it simple to parallelize 352 

bootstrap uncertainty quantification using multithreading or multiprocessing, resulting in 353 

improvements in speed of a factor of 20 or more on large-scale problems, depending on available 354 

resources. The new Julia implementation can also make more efficient use of available computer 355 

memory because it does not require the user to compile fixed array sizes prior to runtime. Other 356 

minor improvements include the incorporation of standardized map projection routines and the 357 

explicit accounting of station elevations, factors that were neglected in the original release of the 358 

program.   359 

 Having GrowClust3D as part of the broader Julia ecosystem makes it easier to update the 360 

package based on user feedback while opening up new opportunities for additional user 361 

flexibility and creativity. The codes already leverage widely used Julia packages, notably ones 362 

for statistical and array calculations, interpolations, map projections, and tabular datasets. The 363 

codes are deliberately modular in design, which makes it simple for users to modify short 364 

sections of codes to suit their scientific objectives. A good example of this is the metric used to 365 

define event pair similarity. In the original Fortran implementation of GrowClust, this was a 366 

simple summation of cross-correlation coefficients across all stations recording an event pair. 367 

This definition, while functional and straightforward, had the tendency to overweight event pairs 368 

with more cross-correlation measurements at the expense of highly similar pairs with fewer 369 

recordings. The new Julia implementation modifies this definition by considering only a fixed 370 
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number of stations for all event pairs, the specifics of which can be modified by the user. In Julia, 371 

one could easily implement customized metrics to achieve different goals, for example by 372 

differentiating template matching pairs from pairs of analyst-reviewed events.  373 

 The current implementation of GrowClust3D.jl described here has several limitations to 374 

be aware of, some of which could be addressed in future releases pending user interest and 375 

feedback. In the current version, GrowClust3D.jl can perform simple 1D ray tracing tasks but 376 

does not include a full eikonal equation solver for 3D problems, instead relying on external 377 

programs like NonLinLoc to facilitate these calculations. This approach has the advantage of 378 

consistency with the input catalog and removes the computationally expensive step of 3D ray 379 

tracing but does limit user capabilities for certain problems. Future implementations could 380 

feature an internal eikonal equation solver or integrate with other location packages beyond 381 

NonLinLoc. Note, GrowClust3D.jl itself only performs relative relocation and not the initial, 382 

absolute location. This choice is deliberate because it allows the user to select their own suitable 383 

method based on their data and preferences, but it does limit the software in some ways. 384 

Likewise, the software requires the user to pre-compute differential travel times from waveform 385 

cross-correlation, using any technique they deem sufficient. It may be possible in future to 386 

integrate with Julia waveform processing tools like SeisIO (Jones et al., 2020) to help facilitate 387 

this step more directly. In addition, relocation packages like HypoDD (Waldhauser and 388 

Ellsworth, 2000) have long used catalog differential times in complement to those derived from 389 

waveform cross-correlation. This option could be considered if warranted from a value-added 390 

standpoint. There are many more possibilities consider; the beauty of an open-source tool like 391 
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GrowClust3D.jl is that the potential for improvement is bounded only by user imagination and 392 

energy. 393 

Data and Resources 394 

The software described in this study is documented and publicly available in the repository: 395 

https://github.com/dttrugman/GrowClust3D. The original GrowClust software is still available 396 

at: https://github.com/dttrugman/GrowClust. We thank developers of Julia (Bezanson et al., 397 

2017), NonLinLoc (Lomax et al., 2000), PROJ (PROJ contributors, 2022), and the Generic 398 

Mapping Toolbox (Wessel et al., 2019) for publicly available software tools used in the 399 

implementation and presentation of this study. Earthquake catalog and waveform data from the 400 

Nevada Seismological Laboratory (http://www.seismo.unr.edu/), Southern California Earthquake 401 

Data Center (https://scedc.caltech.edu/index.html), TexNet (https://www.beg.utexas.edu/texnet-402 

cisr/texnet), and GeoNet (https://www.geonet.org.nz/) were used to derive inputs for the 403 

relocation algorithm. The 3D compressional wave model and its travel time grids (assuming a 404 

constant Vp/Vs of 1.7) for the Coyanosa case study are available on the Texas Data Repository 405 

(https://doi.org/10.18738/T8/RQGQ9D), where we have made the relocated catalogs produced in 406 

this study publicly available (https://doi.org/10.18738/T8/44T2X8). The 3D velocity model used 407 

for the New Zealand case study are archived on Zenodo 408 

(https://zenodo.org/record/3779523#.YzsAi-zMJoM).   409 
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Figures 705 

706 

Figure 1. Schematic overview of the GrowClust3D.jl workflow, with newly available features 707 

italicized for emphasis. 708 
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709 

Figure 2. Relocation of the Spanish Springs, Nevada earthquake sequence. Panels (a) and (b) 710 

compare the input catalog reported by the Nevada Seismological Laboratory and to the 711 

GrowClust3D.jl-relocated relocated catalog in map view. Panels (c) and (d) compare input and 712 

relocated catalogs in cross section.  713 
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 714 

715 

Figure 3. Map view of the Ridgecrest, California sequence comparing (a) the input catalog from 716 

the Southern California Earthquake Data Center and (b) the GrowClust3D.jl-relocated catalog. 717 

Station locations are marked with triangles. Note the definition of cross sections A-A’ and B-B’ 718 

that are used in Figure 4.  719 
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 720 

721 

Figure 4. Depth cross-sections for the relocation of the Ridgecrest, California sequence. Panels 722 

(a) and (c) show cross-sections of the input catalog from the Southern California Earthquake 723 

Data Center, while panels (b) and (d) show cross-sections of GrowClust3D.jl-relocated 724 

seismicity. Cross sections A-A’ and B-B’ are defined in Figure 3. 725 

  726 
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 727 

 728 

Figure 5. Parallelization experiments. Comparison of multithreading (square symbols) and 729 

multiprocessing (triangle symbols) runtime for 100 bootstrap resampling runs of the Ridgecrest 730 

sequence. Note log-log scale, where the x-axis refers to the number of threads or cores requested.  731 
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732 

Figure 6. Relocation of seismicity near Coyanosa, Texas (USA). (a) TexNet catalog locations 733 

shown in map view. (b) Refined absolute locations of these events using NonLinLoc and a 3D 734 

velocity model. (c) Refined relative relocations of these events using GrowClust3D.jl. (d) 735 

Comparison of the depth distributions of seismicity for the TexNet catalog (1D model), 736 

NonLinLoc (3D model), and GrowClust3D.jl (3D model). In each panel, only the 364 events that 737 

are relocated by GrowClust3D.jl are shown. Station locations are marked with triangles for 738 

reference in panels (a) through (c). 739 

 740 
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 741 

742 

Figure 7. GrowClust3D.jl relocations of the Kaikōura earthquake sequence in map view (panel 743 

a) and select cross-sections (panels bcd). Station locations are marked in triangles, with the 744 

position of the subduction interface from Williams et al. (2013) marked with a solid line.  745 
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 746 

747 

Figure 8. Comparison of the GrowClust relocations of Chamberlain et al. (2021) in panels (a) 748 

and (b) with GrowClust3D.jl relocation (this study) in panels (c) and (d). Cross-sections C-C’ 749 

and D-D’ are defined in Figure 7. While both datasets are waveform-relocated, the 750 

GrowClust3D.jl solution more clearly resolves the details and dip of possible linear splay 751 

faulting structures in cross-section C-C’.  752 


