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Abstract— This study develops a wearable monitoring 

platform for the detection of abnormal left ventricular 

ejection fraction (LVEF) using a fusion of an accelerometer 

contact microphone (ACM) and an electrocardiogram (ECG) 

sensor. Two signal processing chains are designed to annotate 

ACM and ECG recordings. Afterwards, the pre-ejection 

period (PEP) and left ventricular ejection time (LVET) are 

estimated as the time difference between the first heart sound 

(S1) and the R-peak in ECG signals, and the time difference 

between the first and second heart sounds (S1 and S2), 

respectively. The ratio of PEP to LVET is then utilized to 

differentiate between healthy and abnormal-LVEF groups. 

The model is evaluated on 15 subjects (8 healthy subjects and 

7 subjects with LVEF abnormality) where the ground truth 

values are the LVEF parameter acquired by the 

echocardiography machine. An average (± standard 

deviation) accuracy of 84.47% (± 17.58%) is obtained for the 

detection of LVEF abnormality for a total of 5989 heartbeats. 

It is demonstrated that the proposed method is capable of 

LVEF abnormality detection with accuracies within the range 

of 54.35% - 100%. 

Keywords—left ventricular ejection fraction (LVEF); 

wearable sensors; accelerometer contact microphone; 
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I. INTRODUCTION 

Heart failure (HF), defined as a condition in which the 

cardiac muscle fails to pump adequate blood to meet the 

needs of the body, affects 6.2 million in the US annually 

[1]. HF is primarily accompanied by gradual decreases in 

the volumetric fraction of the blood ejected from the left 

ventricle per heartbeat [2]. This fraction is referred to as 

left ventricular ejection fraction (LVEF) which normally 

falls within the range of 52%-72% [3]. Lower percentages 

of LVEF suggest cardiovascular abnormalities such as 

cardiomyopathy, heart valve problems, and chronic 

hypertension [4], which require timely medical 

intervention. As such, continuous monitoring of LVEF in 

patients with cardiovascular diseases is critical, 

contributing to timely risk management. This motivates the 

need for round-the-clock monitoring devices.  

LVEF is predominantly monitored by echocardiogram 

(echo) machines in the clinic. Echo utilizes ultrasound 

technology to produce images of the heart, and accurately 

quantify the blood volume ejected from the left ventricle at 

each heartbeat. Nevertheless, the bulky nature of echo 

monitors inhibits their use as ubiquitous monitoring 

devices. Several studies have addressed cardiovascular 

monitoring using phonocardiogram recorded by a 

stethoscope [5]–[7]. While stethoscopes provide useful 

information about mechanical activities of the cardiac 

system, their use for real-world continuous monitoring is 

limited due to susceptibility to ambient noise. On the other 

hand as demonstrated in [8] and [9], accelerometer contact 

microphones are capable of monitoring the 

cardiopulmonary system and pulmonary disorders 

respectively. 

The authors in [10] have demonstrated that LVEF is 

proportional to cardiac time intervals extracted from heart 

sounds. In this paper, we revisit the detection of left 

ventricular ejection fraction, and adapt it to wearable 

settings. To this end, we establish a monitoring platform 

based on the fusion of acoustic and biopotential 

characteristics of the precordium recorded by the recently-

developed accelerometer contact microphone (ACM) in [9] 

and an electrocardiogram (ECG) sensor respectively. This 

framework is comprehensively discussed in the following 

sections. 
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Fig. 1. The experimental setup including an accelerometer 

contact microphone (ACM from StethX Microsystems) on the 

chest connected to a data acquistion (DAQ) module, and a 

single lead of an electrocardiogram (ECG) sensor node 

(Shimmer3 ECG Development Kit) strapped around the torso.   
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II. EXPERIMENTAL SETUP & METHODOLOGY 

A. Data Collection 

This study includes seven cardiovascular patients (5 

males and 2 females) with average (± standard deviation) 

LVEF of 27.85% (± 12.86%). The average (± standard 

deviation) age, height, and weight of the patients are 72 (± 

13.97) years, 170.18 (± 12.44) cm, and 73.03 (± 20.79) kg, 

respectively. Additionally, eight subjects (3 males and 5 

females) with average (± standard deviation) LVEF of 

58.75% (± 2.31%) constitute the healthy cohort whose 

average (± standard deviation) age, height, and weight are 

60 (± 18.05) years, 169.22 (± 11.83) cm, and 85.21 (± 

18.02) kg, respectively. All subjects are studied at the 

cardiac care unit of Sorin Medical P.C. under measurement 

protocols approved by the Institutional Review Board 

(IRB) of Stevens Institute of Technology with protocol 

number 2022-044 (N). 

Fig. 1 describes the experimental setup designed for 

LVEF abnormality detection. A ±4 g  sensitive 

accelerometer contact microphone (ACM) with micro-g 

resolution and a small form-factor of 27 mm × 15 mm × 

2.5 mm from StethX Microsystems is attached to the 

pulmonary region of the subjects using medical-grade 

adhesive tape. This device is a low-noise accelerometer 

with a wide operational bandwidth of 0-10 kHz, allowing 

for recording heartbeat-induced sounds and vibrations on 

the chest wall. The ACM is not sensitive to airborne 

emission sounds, making it a robust phonocardiogram 

sensor against acoustic ambient noise. The subjects were 

seated at rest on a chair for a period of five minutes, 

followed by five minutes of ACM measurements at a 

sampling rate of 22.33 kHz, still at a seated position. 

Simultaneously, the left arm-right arm (LA-RA) lead of a 

four-lead ECG sensor (Shimmer3 ECG Development Kit; 

Shimmer, Dublin, Ireland) was used to record the electrical 

activities of the cardiac system at a sampling rate of 512 

Hz. The patients’ LVEF values were also measured by an 

ultrasound echocardiography machine as the reference 

modality. The collected data were transferred to a 

computer and processed in a Python framework. 

B. Signal Processing for PEP/LVET Estimation 

Fig. 2 represents the signal processing chain for LVEF 

abnormality detection. A zero-phase, 3rd-order Butterworth 

filter over the frequency range of 10 Hz - 2 kHz is initially 

applied to ACM recordings to mitigate noise, respiration 

artifacts, and baseline wander. The filtered signals are then 

downsampled to a sampling rate of 4 kHz to accelerate the 

processing steps. In order to determine the first and second 

heart sounds (S1 and S2 respectively), the envelope of the 

signal is calculated using a homomorphic filter [11]. This 

results in the appearance of peaks corresponding to the 

main heart sounds (S1 and S2) as well as murmurs and the 

remnant noise in the envelope. To extract S1 and S2 from 

ACM recordings, a peak detector algorithm is employed to 

filter out the peaks corresponding to noise and heart 

murmurs. This algorithm considers a peak as a heart sound 

only if its amplitude is greater than 0.2 times the maximum 

value of the envelope, and its distance from the previous 

heart sound is at least 100 ms. Finally, the detected peaks 

are labeled as S1 and S2. This is performed by comparing 

the time differences of a peak with its preceding and 

following peaks. If the time difference of a peak with its 

following peak exceeds the time difference of that peak 

with its preceding peak, the peak is labeled as S2; 

otherwise, it is considered S1. 

As shown in Fig. 2, the simultaneously-recorded ECG 

signal is band-pass filtered retaining the frequency 

components within the range of 1-50 Hz. Furthermore, to 

attenuate the power-line interference, a second-order 

infinite impulse response (IIR) notch filter centered at 60 

Hz with a quality factor of 25 is applied to the filtered ECG 

signal in forward and backward directions. The R-peaks in 

the ECG signal are detected by the Pan-Tompkin algorithm 

[12]. The Q-peaks are then annotated by finding the 

minimum value of the signal within 50 ms backward of the 

corresponding R-peaks.   

After annotation of ACM and ECG signals, the left 

ventricular ejection time (LVET), which is defined as the 

time interval between aortic valve opening (S1 in ACM 

signals) and its closure (S2 in ACM signals), is estimated 

per heartbeat as shown in Fig. 3. Additionally, the pre-

ejection period (PEP), which signifies the time elapsed 

between the electrical depolarization of the left ventricle 

(Q peak in ECG) and the beginning of the ventricular 

ejection (S1 in ACM), is estimated. It has been 

demonstrated that LVEF is inversely proportional to 

PEP/LVET [10]. In this study, we leverage a fusion of 

ACM and ECG sensory data to detect LVEF abnormality. 

The use of ACM in this study is significant. The aortic 

closure point in accelerometric data is often contaminated 

by noise, hindering the accurate estimation of LVET. 

 

Fig. 2. The signal processing chain including pre-filtering, 

signal annotation, and decision-making stages for noise 

cancellation, time intervals estimation, and LVEF 

abnormality detection, respectively.  

 
Fig. 3. ACM (top) and ECG (bottom) annotations and time 

intervals, including pre-ejection period (PEP) and left 

ventricular ejection time (LVET) corresponding to time 

difference of Q-S1 and S1-S2, respectively.  
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Owing to its state-of-the-art sensitivity and low noise, the 

ACM on the other hand provides S2 sounds which 

correspond to the aortic closure, but with more evident 

patterns in the signal. This helps estimate LVET periods 

with much higher confidence. As shown in Fig. 3, heart 

sounds are represented by evident peaks resulting from the 

absolute robustness of the ACM against the ambient noise. 

This allows for wearable monitoring of LVEF, which 

traditionally was not feasible with hand-held stethoscopes 

due to their susceptibility to background noise and low 

signal-to-noise ratios (SNRs).  

III. EXPERIMENTAL RESULTS AND DISCUSSION 

A. LVEF Abnormality Detection Performance 

Table I summarizes the performance of the proposed 

method for LVEF abnormality detection for 8 healthy 

subjects and 7 abnormal LVEF patients who are labeled by 

H and P respectively. Per subject, the estimated PEP/LVET 

value for each beat is compared with the standard range 

(i.e. 0.3-0.4 as defined by [13]) for healthy subjects to 

separate healthy and abnormal subjects. If the estimated 

PEP/LVET value falls within 0.3-0.4, it is concluded that 

the subject is healthy; otherwise, the subject is classified 

with abnormal LVEF. If the label of the subject is 

consistent with the predicted class, the beat is called a true 

beat; otherwise, it is called a false beat. As such, the 

number of true and false beats in Table I respectively 

represent truly and falsely classified heartbeats with 

respect to the ground-truth labels (H or P). An average (± 

standard deviation) accuracy of 84.47% (± 17.58%) is 

achieved for 5,989 heartbeats corresponding to all subjects 

together, suggesting the accurate performance of the 

proposed method. An average (± standard deviation) 

accuracy of 84.06% (± 15.86%) is obtained for healthy 

subjects where the highest and lowest classification 

accuracies among healthy subjects are reported for subject 

1 with 100% and subject 4 with 57.09%, respectively. It 

seems that the ACM recording associated with subject 4 is 

distorted in a considerable number of segments due to 

subject movements, resulting in a low SNR and 136 false 

beats. On the other hand, no distortion or motion artifacts 

are observed in the ACM recordings of subject 1, leading 

all 467 beats to be correctly classified. 

As reported for subjects with abnormal LVEF values 

(subjects 9-15 in Table I), accuracies of 100% are achieved 

for subjects 10, 12, and 14, whereas the largest 

classification error is reported for subject 11 with accuracy 

and falsely classified number of beats of 54.35% and 194 

respectively. An average (± standard deviation) accuracy 

of 84.91% (± 20.66%) signifies the classification 

performance for subjects with abnormal LVEF. Comparing 

the average accuracies obtained for the healthy cohort and 

abnormal subjects (84.06% vs. 84.91%), no statistically 

significant difference is observed between the two groups 

(p < 0.05), implying a robust performance for a variety of 

LVEF values.  

B. Limitations 

Although the proposed method is capable of an 

adequate level abnormal LVEF detection (84.47%), it still 

misses almost 15% of abnormalities. This limitation can be 

addressed by extracting additional time intervals rather 

than relying merely on LVET and PEP, similar to our 

previous studies on valvular heart diseases (VHDs) [14], 

[15]. In this study, a decision-making algorithm based on 

the normal range of PEP/LVET is used. However, LVEF 

abnormality detection can benefit from machine learning 

techniques encouraging data-driven modeling for 

abnormality identification. 

Another limitation of this work is the small number of 

subjects participating in the study. The larger the number 

of subjects, the more the number of left ventricular ejection 

fraction values, resulting in more generalizable models. 

Furthermore, the average age of the subject population is 

around 65 years which is not representative of LVEF 

abnormalities at younger ages. As such, extensive data 

collection could benefit our modeling.    

IV. CONCLUSION AND FUTURE WORKS 

This paper reports on the design of a novel method for 

the detection of left ventricular abnormalities. A recently 

designed accelerometer contact microphone (ACM) is fused 

with a single-lead electrocardiogram (ECG) sensor to 

estimate the pre-ejection period (PEP) as well as the left 

ventricular ejection time (LVET). Following previous 

studies, PEP/LVET is used to classify between healthy 

subjects and patients diagnosed with LVEF abnormalities. 

The proposed method is evaluated on 8 healthy subjects and 

7 cardiovascular (CVD) patients with abnormal LVEF 

values. It is demonstrated that the model can detect LVEF 

abnormalities with an accuracy of 84.47%, a highly 

promising value for wearable settings. In our future studies, 

we will investigate additional time intervals and their 

relationships with abnormal LVEF values. Furthermore, we 

will take advantage of machine learning techniques which 

are capable of extracting the signal patterns existent in the 

ACM recordings. These models can be used for more 

robust decision-making systems for the identification of 

LVEF abnormalities and their respective severity levels.   

TABLE I. PERFORMANCE EVALUATION OF ABNORMALITY 

DETECTION (0.3 < PEP/LVET < 0.4) 

Subject #Beats 
#True 

beats 

#False 

beats 

Accuracy 

(%) 

1 (H) 467 467 0 100 

2 (H) 531 426 105 80.22 

3 (H) 510 496 14 97.25 

4 (H) 317 181 136 57.09 

5 (H) 473 449 24 94.92 

6 (H) 335 329 6 98.21 

7 (H) 553 406 147 73.41 

8 (H) 557 398 159 71.45 

9 (P) 424 422 2 99.52 

10 (P) 364 364 0 100 

11 (P) 425 231 194 54.35 

12 (P) 371 371 0 100 

13 (P) 328 271 57 82.62 

14 (P) 334 334 0 100 

15 (P) 409 237 172 57.94 

Average 

(± std.) 

426.53 

(± 84.79) 

358.8 

(± 93.77) 

67.73 

(± 75.05) 

84.47  

(± 17.58) 
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