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Abstract— This study develops a wearable monitoring
platform for the detection of abnormal left ventricular
ejection fraction (LVEF) using a fusion of an accelerometer
contact microphone (ACM) and an electrocardiogram (ECG)
sensor. Two signal processing chains are designed to annotate
ACM and ECG recordings. Afterwards, the pre-ejection
period (PEP) and left ventricular ejection time (LVET) are
estimated as the time difference between the first heart sound
(S7) and the R-peak in ECG signals, and the time difference
between the first and second heart sounds (S: and S3),
respectively. The ratio of PEP to LVET is then utilized to
differentiate between healthy and abnormal-LVEF groups.
The model is evaluated on 15 subjects (8 healthy subjects and
7 subjects with LVEF abnormality) where the ground truth
values are the LVEF parameter acquired by the
echocardiography machine. An average (£ standard
deviation) accuracy of 84.47% (+ 17.58%) is obtained for the
detection of LVEF abnormality for a total of 5989 heartbeats.
It is demonstrated that the proposed method is capable of
LVEF abnormality detection with accuracies within the range
of 54.35% - 100%.
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I. INTRODUCTION

Heart failure (HF), defined as a condition in which the
cardiac muscle fails to pump adequate blood to meet the
needs of the body, affects 6.2 million in the US annually
[1]. HF is primarily accompanied by gradual decreases in
the volumetric fraction of the blood ejected from the left
ventricle per heartbeat [2]. This fraction is referred to as
left ventricular ejection fraction (LVEF) which normally
falls within the range of 52%-72% [3]. Lower percentages
of LVEF suggest cardiovascular abnormalities such as
cardiomyopathy, heart valve problems, and chronic
hypertension [4], which require timely medical
intervention. As such, continuous monitoring of LVEF in
patients with cardiovascular diseases is critical,
contributing to timely risk management. This motivates the
need for round-the-clock monitoring devices.

LVEF is predominantly monitored by echocardiogram
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(echo) machines in the clinic. Echo utilizes ultrasound
technology to produce images of the heart, and accurately
quantify the blood volume ejected from the left ventricle at
each heartbeat. Nevertheless, the bulky nature of echo
monitors inhibits their use as ubiquitous monitoring
devices. Several studies have addressed cardiovascular
monitoring using phonocardiogram recorded by a
stethoscope [5]-[7]. While stethoscopes provide useful
information about mechanical activities of the cardiac
system, their use for real-world continuous monitoring is
limited due to susceptibility to ambient noise. On the other
hand as demonstrated in [8] and [9], accelerometer contact

microphones are  capable of monitoring the
cardiopulmonary system and pulmonary disorders
respectively.

The authors in [10] have demonstrated that LVEF is
proportional to cardiac time intervals extracted from heart
sounds. In this paper, we revisit the detection of left
ventricular ejection fraction, and adapt it to wearable
settings. To this end, we establish a monitoring platform
based on the fusion of acoustic and biopotential
characteristics of the precordium recorded by the recently-
developed accelerometer contact microphone (ACM) in [9]
and an electrocardiogram (ECQG) sensor respectively. This
framework is comprehensively discussed in the following
sections.

A

Fig. 1. The experimental setup including an accelerometer
contact microphone (ACM from StethX Microsystems) on the
chest connected to a data acquistion (DAQ) module, and a
single lead of an electrocardiogram (ECG) sensor node
(Shimmer3 ECG Development Kit) strapped around the torso.
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Fig. 2. The signal processing chain including pre-filtering,
signal annotation, and decision-making stages for noise
cancellation, time intervals estimation, and LVEF
abnormality detection, respectively.

II. EXPERIMENTAL SETUP & METHODOLOGY
A. Data Collection

This study includes seven cardiovascular patients (5
males and 2 females) with average (+ standard deviation)
LVEF of 27.85% (£ 12.86%). The average (+ standard
deviation) age, height, and weight of the patients are 72 (+
13.97) years, 170.18 (+ 12.44) cm, and 73.03 (+ 20.79) kg,
respectively. Additionally, eight subjects (3 males and 5
females) with average (+ standard deviation) LVEF of
58.75% (£ 2.31%) constitute the healthy cohort whose
average (+ standard deviation) age, height, and weight are
60 (£ 18.05) years, 169.22 (+ 11.83) cm, and 85.21 (=
18.02) kg, respectively. All subjects are studied at the
cardiac care unit of Sorin Medical P.C. under measurement
protocols approved by the Institutional Review Board
(IRB) of Stevens Institute of Technology with protocol
number 2022-044 (N).

Fig. 1 describes the experimental setup designed for
LVEF abnormality detection. A +4g sensitive
accelerometer contact microphone (ACM) with micro-g
resolution and a small form-factor of 27 mm x 15 mm x
2.5 mm from StethX Microsystems is attached to the
pulmonary region of the subjects using medical-grade
adhesive tape. This device is a low-noise accelerometer
with a wide operational bandwidth of 0-10 kHz, allowing
for recording heartbeat-induced sounds and vibrations on
the chest wall. The ACM is not sensitive to airborne
emission sounds, making it a robust phonocardiogram
sensor against acoustic ambient noise. The subjects were
seated at rest on a chair for a period of five minutes,
followed by five minutes of ACM measurements at a
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Fig. 3. ACM (top) and ECG (bottom) annotations and time
intervals, including pre-ejection period (PEP) and left
ventricular ejection time (LVET) corresponding to time
difference of O-S; and S;-S2, respectively.

sampling rate of 22.33 kHz, still at a seated position.
Simultaneously, the left arm-right arm (LA-RA) lead of a
four-lead ECG sensor (Shimmer3 ECG Development Kit;
Shimmer, Dublin, Ireland) was used to record the electrical
activities of the cardiac system at a sampling rate of 512
Hz. The patients’ LVEF values were also measured by an
ultrasound echocardiography machine as the reference
modality. The collected data were transferred to a
computer and processed in a Python framework.

B. Signal Processing for PEP/LVET Estimation

Fig. 2 represents the signal processing chain for LVEF
abnormality detection. A zero-phase, 3"-order Butterworth
filter over the frequency range of 10 Hz - 2 kHz is initially
applied to ACM recordings to mitigate noise, respiration
artifacts, and baseline wander. The filtered signals are then
downsampled to a sampling rate of 4 kHz to accelerate the
processing steps. In order to determine the first and second
heart sounds (S; and S: respectively), the envelope of the
signal is calculated using a homomorphic filter [11]. This
results in the appearance of peaks corresponding to the
main heart sounds (S; and S2) as well as murmurs and the
remnant noise in the envelope. To extract S; and S> from
ACM recordings, a peak detector algorithm is employed to
filter out the peaks corresponding to noise and heart
murmurs. This algorithm considers a peak as a heart sound
only if its amplitude is greater than 0.2 times the maximum
value of the envelope, and its distance from the previous
heart sound is at least 100 ms. Finally, the detected peaks
are labeled as S; and S». This is performed by comparing
the time differences of a peak with its preceding and
following peaks. If the time difference of a peak with its
following peak exceeds the time difference of that peak
with its preceding peak, the peak is labeled as Sy
otherwise, it is considered S;.

As shown in Fig. 2, the simultaneously-recorded ECG
signal is band-pass filtered retaining the frequency
components within the range of 1-50 Hz. Furthermore, to
attenuate the power-line interference, a second-order
infinite impulse response (IIR) notch filter centered at 60
Hz with a quality factor of 25 is applied to the filtered ECG
signal in forward and backward directions. The R-peaks in
the ECG signal are detected by the Pan-Tompkin algorithm
[12]. The Q-peaks are then annotated by finding the
minimum value of the signal within 50 ms backward of the
corresponding R-peaks.

After annotation of ACM and ECG signals, the left
ventricular ejection time (LVET), which is defined as the
time interval between aortic valve opening (S; in ACM
signals) and its closure (S, in ACM signals), is estimated
per heartbeat as shown in Fig. 3. Additionally, the pre-
ejection period (PEP), which signifies the time elapsed
between the electrical depolarization of the left ventricle
(Q peak in ECG) and the beginning of the ventricular
gjection (S; in ACM), is estimated. It has been
demonstrated that LVEF is inversely proportional to
PEP/LVET [10]. In this study, we leverage a fusion of
ACM and ECG sensory data to detect LVEF abnormality.
The use of ACM in this study is significant. The aortic
closure point in accelerometric data is often contaminated
by noise, hindering the accurate estimation of LVET.
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TABLE 1. PERFORMANCE EVALUATION OF ABNORMALITY
DETECTION (0.3 <PEP/LVET < 0.4)

Subject #Beats iTe;l:: #bizltsse Ac?;: )a <y
1 (H) 467 467 0 100
2 (H) 531 426 105 80.22
3H) 510 496 14 97.25
4 (H) 317 181 136 57.09
5 (H) 473 449 24 94.92
6 (H) 335 329 6 98.21
7 (H) 553 406 147 73.41
8 (H) 557 398 159 71.45
9 (P) 424 422 2 99.52
10 (P) 364 364 0 100
11 (P) 425 231 194 54.35
12 (P) 371 371 0 100
13 (P) 328 271 57 82.62
14 (P) 334 334 0 100
15(P) 409 237 172 57.94
Average 426.53 358.8 67.73 84.47
(+ std.) (+ 84.79) (+ 93.77) (£ 75.05) (+17.58)

Owing to its state-of-the-art sensitivity and low noise, the
ACM on the other hand provides S, sounds which
correspond to the aortic closure, but with more evident
patterns in the signal. This helps estimate LVET periods
with much higher confidence. As shown in Fig. 3, heart
sounds are represented by evident peaks resulting from the
absolute robustness of the ACM against the ambient noise.
This allows for wearable monitoring of LVEF, which
traditionally was not feasible with hand-held stethoscopes
due to their susceptibility to background noise and low
signal-to-noise ratios (SNRs).

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. LVEF Abnormality Detection Performance

Table I summarizes the performance of the proposed
method for LVEF abnormality detection for 8 healthy
subjects and 7 abnormal LVEF patients who are labeled by
H and P respectively. Per subject, the estimated PEP/LVET
value for each beat is compared with the standard range
(i.e. 0.3-0.4 as defined by [13]) for healthy subjects to
separate healthy and abnormal subjects. If the estimated
PEP/LVET value falls within 0.3-0.4, it is concluded that
the subject is healthy; otherwise, the subject is classified
with abnormal LVEF. If the label of the subject is
consistent with the predicted class, the beat is called a true
beat; otherwise, it is called a false beat. As such, the
number of true and false beats in Table I respectively
represent truly and falsely classified heartbeats with
respect to the ground-truth labels (H or P). An average (+
standard deviation) accuracy of 84.47% (+ 17.58%) is
achieved for 5,989 heartbeats corresponding to all subjects
together, suggesting the accurate performance of the
proposed method. An average (+ standard deviation)
accuracy of 84.06% (£ 15.86%) is obtained for healthy
subjects where the highest and lowest classification
accuracies among healthy subjects are reported for subject
1 with 100% and subject 4 with 57.09%, respectively. It
seems that the ACM recording associated with subject 4 is

distorted in a considerable number of segments due to
subject movements, resulting in a low SNR and 136 false
beats. On the other hand, no distortion or motion artifacts
are observed in the ACM recordings of subject 1, leading
all 467 beats to be correctly classified.

As reported for subjects with abnormal LVEF values
(subjects 9-15 in Table I), accuracies of 100% are achieved
for subjects 10, 12, and 14, whereas the largest
classification error is reported for subject 11 with accuracy
and falsely classified number of beats of 54.35% and 194
respectively. An average (+ standard deviation) accuracy
of 84.91% (= 20.66%) signifies the classification
performance for subjects with abnormal LVEF. Comparing
the average accuracies obtained for the healthy cohort and
abnormal subjects (84.06% vs. 84.91%), no statistically
significant difference is observed between the two groups
(p < 0.05), implying a robust performance for a variety of
LVEEF values.

B. Limitations

Although the proposed method is capable of an
adequate level abnormal LVEF detection (84.47%), it still
misses almost 15% of abnormalities. This limitation can be
addressed by extracting additional time intervals rather
than relying merely on LVET and PEP, similar to our
previous studies on valvular heart diseases (VHDs) [14],
[15]. In this study, a decision-making algorithm based on
the normal range of PEP/LVET is used. However, LVEF
abnormality detection can benefit from machine learning
techniques encouraging data-driven modeling for
abnormality identification.

Another limitation of this work is the small number of
subjects participating in the study. The larger the number
of subjects, the more the number of left ventricular ejection
fraction values, resulting in more generalizable models.
Furthermore, the average age of the subject population is
around 65 years which is not representative of LVEF
abnormalities at younger ages. As such, extensive data
collection could benefit our modeling.

IV. CONCLUSION AND FUTURE WORKS

This paper reports on the design of a novel method for
the detection of left ventricular abnormalities. A recently
designed accelerometer contact microphone (ACM) is fused
with a single-lead electrocardiogram (ECG) sensor to
estimate the pre-ejection period (PEP) as well as the left
ventricular ejection time (LVET). Following previous
studies, PEP/LVET is used to classify between healthy
subjects and patients diagnosed with LVEF abnormalities.
The proposed method is evaluated on 8 healthy subjects and
7 cardiovascular (CVD) patients with abnormal LVEF
values. It is demonstrated that the model can detect LVEF
abnormalities with an accuracy of 84.47%, a highly
promising value for wearable settings. In our future studies,
we will investigate additional time intervals and their
relationships with abnormal LVEF values. Furthermore, we
will take advantage of machine learning techniques which
are capable of extracting the signal patterns existent in the
ACM recordings. These models can be used for more
robust decision-making systems for the identification of
LVEF abnormalities and their respective severity levels.
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