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Abstract—Connected Autonomous Vehicles (CAVs) have
achieved significant improvements in recent years. The CAVs can
share sensor data to improve autonomous driving performance
and enhance road safety. CAV architecture depends on roadside
edge servers for latency-sensitive applications. The roadside edge
servers are equipped with high-performance embedded edge
computing devices that perform calculations with low power
requirements. As the number of vehicles varies over different
times of the day and vehicles can request for different CAV
applications, the computation requirements for roadside edge
computing platform can also vary. Hence, a framework for
dynamic deployment of edge computing platforms can ensure
CAV applications’ performance and proper usage of the devices.
In this paper, we propose R-CAV - a framework for drone-
based roadside edge server deployment that provides roadside
units (RSUs) based on the computation requirement. Our proof
of concept implementation for object detection algorithm using
Nvidia Jetson nano demonstrates the proposed framework’s fea-
sibility. We posit that the framework will enhance the intelligent
transport system vision by ensuring CAV applications’ quality of
service.

Index Terms—Connected Autonomous Vehicles, Edge Comput-
ing, Perception, Drones, Smart City, Unmanned Ariel Vehicles.
I. INTRODUCTION

Autonomous vehicles (AVs) are expected to play a huge role
in the urban traffic system to enhance road safety. Develop-
ment in sensing technologies, computer vision algorithms, and
high-performance edge computing devices has resulted in the
evolution of Advanced Driving Assistance Systems (ADAS),
and Autonomous Driving (AD) technologies [1]. The AVs
can to be connected for sharing sensing data to improve AD
and ADAS. This advanced vehicular environment is termed
Connected Autonomous Vehicles (CAV). The CAV platform
enables different applications such as cooperative perception
[2], intelligent traffic control [3], collision warning, creating
and updating HD maps [4], etc. CAV architecture in the
urban area requires roadside edge computing platforms for the
smooth operation of CAV applications. However, requirements
for such an edge computing platform may vary depending on
different constraints, such as different computation require-
ments for different CAV applications, a variable number of
cars present on the road, etc. Hence, a framework is required
to ensure the quality of service (QoS) of the CAV applications
and proper usage of the edge computing devices.

The CAV environment is a typical edge computing system
with three main components: vehicle, edge, and cloud [5].
Each vehicle is equipped with proper sensors and an edge
computing system that integrates different AD functions. The
CAVs can communicate with the cloud, roadside units (RSUs),
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and other CAVs to share information that enables various la-
tency constraint applications. Sending sensor data to the cloud
for calculation is not feasible due to the bandwidth requirement
and incurred unacceptable latency. The roadside edge servers
provide low-powered and high-performance edge computing
devices that can efficiently process shared sensor data from
different vehicles to extract more critical information, which
is usually beyond the area visible to any single vehicle.
Such advanced information can be beneficial for different AD
functionalities such as path planning and trajectory gener-
ation. However, adaptability with computation requirements
depending on variable latency constraints, applications, and the
number of vehicles is crucial. A fixed roadside infrastructure
may not provide the required QoS when the computation
requirement is high. Additionally, the devices may remain
idle when there are not enough computation requirements.
Hence, a framework is essential to provide roadside edge
computing devices based on the computation requirements.
Considering the importance of roadside edge servers in the
CAV applications, a drone-based RSU deployment framework
can provide roadside edge servers. Moreover, the dynamic
deployment of the RSUs can ensure the appropriate usage of
the devices.

In this paper, we propose a drone-based on-demand RSU
deployment framework named R-CAYV that provides edge com-
puting devices based on computation requirements. Drones
are unmanned aerial vehicles (UAV) that are easy-to-deploy,
re-programmable from anywhere, and excellent for carrying
small payloads [6]. In the R-CAV framework, the drones are
equipped with proper edge computing hardware and commu-
nication devices. The drones fly to the assigned intersection
and land on a specific place close to the intersection. The
framework considers the drone’s low flight time and optimizes
energy consumption and time for a particular service. The
battery level is also monitored to ensure the safe return of
the drone. The R-CAV framework offers several features that
provide efficient computation offloading from the vehicles. It
can adopt variable latency constraints and application require-
ments from different vehicles. Moreover, R-CAV also supports
scalability by assigning new devices or removing existing
unused devices based on current computation requirements.
Contribution: The contributions of this paper are as follows:

1) We propose R-CAV - a framework that provides on-

demand edge computing devices in RSUs using drones
to enable different latency constraint CAV applications.
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2) We analyze the performance of the framework in terms
of scalability and resource requirements to demonstrate
the feasibility.

Organization: The rest of the paper is organized as follows:
Section II explains the related background and motivation
behind the proposed framework. Section III contains the
framework details. Section IV provides the experiment and
evaluation of the proposed framework. Section V contains the
related works and we conclude in section VI.

II. BACKGROUND AND MOTIVATION
This section provides the background regarding autonomous
vehicular edge computing architecture where the vehicles can
communicate and share sensor data. Moreover, we also explain
the motivation behind the framework.

A. Autonomous vehicular edge computing

Connected autonomous vehicles form a typical edge com-
puting system that provides different context aware services
in close proximity. The are three components of autonomous
vehicular edge computing or CAV architecture: the AV, road-
side edge server or roadside units (RSUs), and the cloud.
Typically, all the AVs are equipped with specialized hardware
such as Nvidia Drive PX2, which is capable of analyzing
the sensor data to make real-time driving decisions. The road
side edge servers or roadside units (RSUs) also contain edge
computing device such as Intel fog node reference based CPU-
FPGA cluster, Tensor Processing Unit (TPU) based cluster,
and Nvidia GPU [7]. AVs can communicate with each other
and roadside edge servers through vehicle-to-everything (V2X)
communication using Dedicated Short Range Communication
(DSRC) [8]. Federal Communications Commission (FCC) has
reserved 5.850 to 5.925 GHz frequency band for Vehicle-to-
Everything (V2X) communications [9]. The US Department
of Transportation is developing rules for vehicle to vehicle
(V2V) and vehicle to infrastructure (V2I) communication. The
AVs and the RSUs can also communicate with the cloud
using 4G/LTE. Figure 1 gives an overview of the autonomous
vehicular edge computing architecture.
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Fig. 1. Autonomous vehicular edge computing architecture

B. Motivation o ) o
Autonomous driving technology has achieved significant

improvement in recent years. More than 40 companies are cur-
rently working on AD, and ADAS technologies [10]. Around
200 million cars are expected to be connected within 2025 to
share sensor data and enable intelligent vehicular applications
[11]. Edge-assisted RSUs are required for these heterogeneous
CAV applications to ensure QoS. However, ensuring proper
computation capability in RSUs is essential for the smooth
operation of these applications. The CAV applications that can
be highly benefited from the proposed framework are:
Cooperative perception: Cooperative perception is one of
the killer applications of CAV environment. AV’s vision area
can be extremely limited due to obstacles and other vehicles
on the road. The LiDAR data from multiple vehicles can be
merged by high-level feature fusion using the edge comput-
ing devices in RSUs [2]. Such high-level feature fusion for
cooperative perception enhances the perception capability of
the AVs. Camera data from multiple vehicles can also enable
cooperative perception application.
Smart traffic controller: In CAV environment, connected
vehicles can broadcast basic safety messages (BSMs) that con-
tain location, speed, heading, and acceleration. The intelligent
traffic control system takes a snapshot of trajectories from the
BSMs received from all the vehicles and calculates estimated
time to arrive (ETA) [3]. The roadside edge servers can use
the data to run a machine learning model to reduce the overall
wait time in the intersection.
Enhancing security: The sensors of an AV can be the victim
of different attacks. For example, the GPS spoofing attack
can move the vehicle off the road when the spoofed GPS
signal dominates the Extended Kalman Filter (EKF) output
[12]. Spoofed objects created by fake LiDAR point clouds [13]
can reduce object detection algorithms’ accuracy. Sensor data
from other vehicles can help the AV to detect spoofed objects
or other ongoing attacks. Moreover, shared sensor data can
reduce object detection failure [14].
HD mapping: AVs require HD maps to determine the precise
location on the road. However, the road scenario can change
rapidly due to different reasons (e.g., road closure), requiring
the HD map to be updated and disseminated to all the AVs.
Edge-assisted RSUs can perform necessary updates in HD
maps using the sensor data received from the AVs [4].
On-demand provisioning of computation resources can en-
sure the QoS of the applications discussed above. For this
purpose, drones are one of the most feasible mediums for
carrying the edge computing devices to the service area
considering the small payload carrying capability. They are
already being used for various purposes, such as package
delivery [15] and power line monitoring [16]. Drones can
be controlled remotely to provide updated instructions and
interactive services. Nowadays, edge computing devices are
becoming smaller and possess excellent computation capa-
bilities with very low power requirement. Such properties of
edge computing devices have made the drones one of the most
prominent mediums for carrying and deploying them as RSUs.

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on March 05,2023 at 04:45:15 UTC from IEEE Xplore. Restrictions apply.



1II. PROPOSED FRAMEWORK

In this section, we explain the details of the R-CAV
framework. The framework explanation contains the details
of hardware setup inside a drone, R-CAV service framework,
optimized drone selection, and task assignment mechanism.
A. Hardware setup

A roadside unit consists of different hardware to operate
correctly, such as an edge computing device that serves as an
edge server, control board, 4G/LTE cellular communication
device, battery for power supply, a V2X communication
module, and a GPS device. Here we explain all the hardware
components of a drone-based RSU.
Edge server (edge computing platform): Edge computing
devices are continuously improving with enhanced computa-
tion capability. Nvidia is one of the leading manufacturers
of embedded edge accelerator devices. Their popular Al
platforms include Jetson TX1, Jetson TX2, Jetson Nano, Jetson
Xavier, etc. Google has an edge computing device named
Coral tensor processing unit (TPU) that uses TensorFlow lite
and provides high-speed neural network performance at a
low power cost. Besides these, Intel has some other high-
performance edge devices such as integrated graphics process-
ing unit (eGPU), vision processing unit (VPU), and field pro-
grammable gate array (FPGA). Considering different aspects,
such as power requirement, weight, calculation capability, and
price, we choose Jetson Nano as the edge computing device to
mount in the drone. Jetson nano is a power-efficient embedded
Al computing device powered by NVIDIA Maxwell GPU
architecture with 128 CUDA cores. The device has a quad-
core ARM A57 CPU with 4 GB memory and 16 GB eMMC.
The CPU-GPU architecture in Jetson nano is suitable for
accelerating deep learning calculations, which is an integral
part of the CAV applications. The other edge computing
devices discussed above can also be mounted in the drone,
which can provide different computation capabilities.
Control board: Raspberry Pi is an excellent component that
can work as the control board for controlling the roadside edge
servers. The controller device can communicate with the vehi-
cles to send and receive data, update the instructions received
from the central cloud, send back the service summary, and
control the drone trajectory.
V2X communication kit: V2X communication is required
for communication among the vehicles (V2V) and commu-
nication between vehicle and roadside infrastructures (V2I)
such as roadside edge servers. Such V2X communication kits
include UBX-P3, Qualcomm C-V2X, Qualcomm AG15 , NXP
SAF5400, etc. The drone is also equipped with a 4G/LTE
modem to communicate with the cloud.
Power source: A 5V power supply is required to run the
control board and edge computing device. In our framework,
a LiPo 2S battery works as the power source for the devices
to operate properly.
B. R-CAV framework

R-CAV framework consists of three separate modules: cloud
resource management module, task management module, and
the drone reporting module. Figure 3 provides the detailed
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Fig. 2. Hardware setup inside a drone
architecture of the R-CAV framework. The components are
explained below:

1) Cloud resource management module: The module is
responsible for managing all the drones in different drone
centers and assign new drones based on the request received
from the task management module. The module runs as a
service in the cloud. It has two components:

Resource requirement analyzer: The component is respon-
sible for analyzing the requirements of received resource
requests and figuring out the drones with the best suitable
devices from the Resource Database. This component also
considers the constraints for optimizing service time and
energy consumption during drone selection.

Resource pool manager: The resource pool manager main-
tains the details of all the drones and installed devices in
them, such as the control board, communication devices, edge
computing devices, etc. in the resource database. It also keeps
tract of the drones which are currently providing service.

2) Task management module: The task management mod-
ule works in a specific intersection on the road and responsible
for assigning and monitoring tasks to the drones based on
the service requests received from the vehicles. The task
management module has the following components:
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Fig. 3. System Framework of R-CAV
Task Manager: The task manager is a program that runs in
a device in a fixed infrastructure at each intersection. The
component is responsible for assigning tasks that are received
from the vehicles to compatible drone-based RSUs. Moreover,
task manager also keeps track of the tasks’ status, and updates
the available resource list.
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Performance monitor: The performance monitor component
tracks the resource utilization in terms of power consumption,
memory, bandwidth, and CPU utilization of the edge com-
puting devices in RSUs and also ensures satisfactory QoS for
all the running applications. It can send new resource request
to the cloud resource management module if the number of
available drones drops below a threshold. For example, if more
than 80% of the drones become busy in providing service, then
the component may send new resource request. Moreover, the
component can send back the drones to the drone center which
remain idle for a specific period of time, do not work properly,
or have low battery status.

3) Drone Reporting Module: The drone reporting module
is responsible for reporting the current status of the services
periodically to the task management module. The control
board executes the drone reporting module components.
CPU Utilization Reporter: CPU utilization refers to different
utilization metrics of edge computing devices such as memory
bandwidth, cache, CPU cycles, etc. CPU utilization reporter
periodically checks these metrics and sends the report task
management module.

Power Consumption Reporter: This component is responsi-
ble for keeping track of consumed energy by the control board
and edge computing device for executing CAV applications.
Battery Status Reporter: The battery status reporter compo-
nent monitors and reports the drone battery status to determine
the drone’s return time. Drones are expected to maintain at
least 20% battery after returning at the end of the service.
Memory Footprint Reporter: In R-CAV architecture, differ-
ent CAV applications may take different amounts of memory
for calculation. The memory footprint reporter tracks and
reports the edge computing device’s memory usage.

C. Optimizing drone selection

Optimizing the drone selection refers to the optimization of
power consumption by the drone and total service time. The
cloud resource management module selects the drones based
on these optimization constraints and resource requirements to
satisfy the QoS. If there are n available drones and m resource
requests, we can define an optimization problem as follows:

Z{Ej X T; —i—jjj X yl} X aij

mim’mizez (1)
j=11i=1
such that Vjen : Ej X 5 < FE; 2)
Vjen : Tj X Q4 < Tl (3)
Vijen : Zaij <1 )
i=1
aij€e{0,1} %)

Here, x; and y; denotes the optimization weights of energy
consumption and time for a specific service ¢ where 0 <
zi,y; < 1 and x + y = 1. The weights influence the drone
selection and service strategy. More weight on y; optimizes
the service latency by selecting more drones with higher
computation and bandwidth capability, such as Nvidia Jetson
TX2 or Nvidia Jetson Xavier NX, which incurs more energy
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consumption. Conversely, a higher value in x; optimizes
total energy consumption by selecting fewer drones that may
result in a higher latency in service. For example, cooperative
perception requires low latency, while creating or updating an
HD map allows more time. However, irrespective of the value
of x; and y;, each drone j is required to maintain a threshold
of energy consumption and time for providing a service 7. The
thresholds are denoted by FE; and T;, respectively (explained
by constraints 2 and 3). The constraints ensure that the time
and energy consumption maintains the quality of service by
not crossing the threshold. Constraint 4 ensures that each drone
is assigned to provide service at one intersection. Finally,
constraint 5 denotes the decision variable a;; that decides
whether the drone j is selected to provide service <.
D. Task management in R-CAV

In the R-CAV framework, a vehicle can send a task request,
and the task manager assigns an RSU to perform the task.
Figure 4 shows the task management process in R-CAV. The
task management steps are as follows: Step 1: A vehicle sends
a request to perform a task to the task manager with application
details and required throughput. Step 2: The task manager
figures out appropriate RSU based on the task’s requirement,
such as application type, latency requirements, available RSUs,
computation capability requirement to run the application, etc.
If no drone is found among the drones providing service
currently, a new drone boots up and is assigned for that
service. Algorithm 1 provides the algorithm for generic task
assignment. Step 3: The task manager creates a token for
the assigned drone and sends it to the vehicle. Step 4 & 5:
The vehicle connects with the RSU using the token and starts
sending the sensor data and receive results. The RSU adds
the sensor data inside a queue and performs the calculation
by extracting the data from the queue. Step 6: The token
becomes invalid once the service ends, and the RSU informs
the task manager about the end of the service.

Algorithm 1: Generic Task Assignment Algorithm

Input: Vehicle ID ¢dychicie, Task task, Throughput
requirement reg¢np, Application application
Output: Chosen drone D for the task task
1: List < Drone > activeDrones =
getActive Drones(application, regihp)

2: for D in activeDrones do

3: if D.canOperate(reqinp, task) then
4: D.assign(task)

5: return D

6: end if

7: end for

8

: List < Drone > available Drones =
getInactive Drones(application, reqinp)

9: for D in available Drones do

10:  if D.canOperate(reginy, task) then
11: boot Drone(D, application)

12: D.assign(task)

13: return D

14:  end if

15: end for

16: Drop task and return null
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IV. EXPERIMENT AND EVALUATION

In this section, we explain the experiments to evaluate the
proposed framework. Initially, we used a simulator to analyze
the mobility pattern of vehicles in an urban environment.
Later, we implemented an R-CAV framework prototype and
evaluated using an object detection algorithm based on the
vehicle mobility pattern. Through our experiments, we tried
to answer the following questions:

1) What can be the potential resource requirements for a
particular intersection in an urban area?

2) Can the framework provide the output of a task within
the required timeframe for varying demand of resources,
i.e., is the framework scalable?

A. Mobility pattern of vehicles
To predict the arrival of tasks rate, we need to understand

vehicles” mobility patterns in urban areas. For this purpose, we
used Carla, an unreal engine-based AD simulator. We selected
TownO1 for the experiment, which was an urban simulation
area. We picked an intersection in TownO1 and assumed that
one or more drone-based RSU are deployed at the intersection.
We varied the total number of vehicles to generate different
driving scenarios and calculated the number of vehicles present
inside the communication range of the RSU at a timestamp.
The communication range was set according to the DSRC
standards. For each scenario, the simulation was run for around
25 minutes. Figure 5 shows the number of vehicles present

inside the communication range of an RSU.
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Fig. 5. Number of cars present inside the communication range of
one RSU with varying total number of cars present in simulation area
B. Number of drones
We implemented a prototype of the R-CAV framework
in python. The framework booted new virtual drones when
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required that contained computation capability similar to a
Jetson Nano device. As different CAV applications required
different computation capabilities, we used the TinyYOLO
object detection algorithm as our experiment’s standard. Dif-
ferent benchmark study shows that jetson nano can operate
at around 25 frames per second (FPS) for TinyYOLO [17].
We also observed a similar result in our empirical study
where the device provided around 23 to 26 FPS for the same
algorithm. Different vehicles could send service requests for
object detection tasks with varying throughput constraints in
our implemented prototype. Initially, the task manager checked
whether it was possible to assign the task to an active drone.
Otherwise, the task manager booted a new virtual drone
assuming the drone had computation capability similar to the
jetson nano device. We calculated the total number of booted
drones for a different number of vehicles. We also varied
the throughput requirements and observed the total number
of drones booted. Figure 6 shows the number of required
drones concerning the number of vehicles present inside the

communication range of an RSU.
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Fig. 6. Number of drones required for different number of vehicles
with variable QoS requirements

C. Scalability
To test the framework’s scalability, we calculated latency

probability distribution for image processing tasks using
TinyYOLO with varying resource requirements. In the ex-
periment, we used three Jetson Nano devices where each
device had an external memory of 64 GB. In our empirical
study, the Jetson nano device took around 0.04 seconds to
perform the object detection task for one image. We used
KITTI benchmark dataset for our experiment to calculate the
object detection latency. The number of vehicles was varied
where each vehicle sent a request with a fixed throughput
requirement to the R-CAV framework. The throughput re-
quirement was set to 7 FPS. Figure 7 shows the CDF of
image processing latency. The R-CAV framework successfully
fulfilled the throughput requirements as the CDF went to 1
within acceptable latency. However, the framework dropped
tasks after accepting requests from 10 vehicles as no more
device was available. The framework also incurred a slight
overhead that increased the latency when more vehicles sent
service requests. Our experiment result indicated that the
framework was successfully able to scale the service with an
increased number of vehicles. Hence, the result showed the
scalability of the R-CAV framework.

20 25
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V. RELATED WORKS

We observe the usage of drones for different connected
vehicle applications in the literature. VESPER [18] is a
real-time data processing framework for connected vehicles
capable of adapting different algorithms based on link quality.
However, the framework compromises with the accuracy to
reduce latency. R-CAV overcomes the shortcoming through
on-demand provisioning of RSUs. Besides data-intensive CAV
applications, different research works proposed efficient RSU
placement methods for VANETSs. Seliem et al. [19] proposed
a drone-based packet delivery service for highway VANET
architecture. Menouar et al. [20] present different UAV-enabled
intelligent transportation system applications for smart cities
such as flying accident report agent, flying police eye, etc.

Using drones for strategic cloudlet installation has been
focused on different research works. Bhatta et al. [21] pro-
posed a cost-aware cloudlet placement in an edge-computing
system that reduces the execution time. Moreover, Drones
are used for IoT-based applications to collect sensor data, re-
duce communication time and energy-cost. Such applications
include crowd surveillance [22], machine-to-machine based
drone management system for different IoT based services
[23], etc. Drones can also be used for provisioning or down-
scaling the number of IoT gateways to enhance QoS of an
ToT network [24]. Most of these research works have focused
on specific drone-based applications. However, little attention
has been focused on developing an on-demand edge computing
platform deployment framework for CAV applications using
drones. Our work focuses on this issue to ensure scalability
and QoS of CAV applications.

VI. CONCLUSION AND FUTURE WORK

Autonomous vehicles are expected to be an integral part of
the urban transportation system which can share sensor data to
enable different CAV applications. Such applications require
deployment of roadside edge servers. However, the compu-
tation capability requirement in RSUs may vary. Hence, we
propose a framework for on-demand RSU deployment using
drones. Our proof of concept implementation and evaluation
using Nvidia Jetson nano for object detection algorithm at
different throughput constraints shows the feasibility of the
proposed framework. In the future, we plan to evaluate the
framework with other CAV applications such as cooperative
perception using LiDAR data and HD mapping. We also
plan to evaluate the performance using other metrics such as
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memory bandwidth usage, cache behavior, and QoS-resource
utilization curve.
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