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Abstract

Metal-organic  frameworks  (MOFS)

highly tunable, extended-network, crystalline,
nanoporous materials with applications in gas
storage, separations, and sensing. We review
how molecular models and simulations of gas
adsorption in MOFs have lucidly impacted the
discovery of performant MOFs for methane,
hydrogen, and oxygen storage, xenon, carbon
dioxide, and chemical warfare agent capture,
and xylene enrichment. Particularly, we high-
light how large, open databases of MOF crystal
structures, post-processed for molecular simu-
lations, are a platform for computational ma-
terials discovery. We pontificate how to orient

research efforts to routinize the computational
discovery of MOFs for adsorption-based engi-

neering applications.
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everywhere we say a MOF name, we shld make it bold. MOF-5 not J
MOF-5

1 Introduction

I can’t see exactly what would
happen, but I can hardly doubt that
when we have some control of the
arrangement of things on a small
scale, we will get an enormously
greater range of possible properties
that substances can have and of
different things that we can do.

Richard Feynman, American Physical
Society Meeting, 1959

Metal-organic frameworks (MOFs)! are solid-
state materials that commonly harbor nano-
sized pores and enormous internal surface ar-
eas (> 7000 m?/g).? Their consequent gas ad-
sorption properties lend them applications in
storing,® separating,? and sensing® gases. Since
the first MOF was reported by Omar Yaghi
in 1999, a few MOF-based products have
appeared on the market,” including for safe
sub-atmospheric storage of toxic gases (NuMat
Technologies) and carbon dioxide capture in
submarines (Mosaic Materials).

MOFs, heralded as designer materials,®
are synthesized modularly by linking organic
molecules, serving as struts, to metals or
metal clusters, serving as nodes, to form pre-
determined, extended-network structures.! See
Fig. 1. Owing to their synthetic adjustability,
over 80000 MOFs displaying diverse pore ge-
ometries and surface chemistries — and thus,
adsorption properties — have been experimen-
tally reported.®!® MOFs have garnered much
attention because of this ability to exert con-
trol over the self-assembly of linkers and metal
nodes/clusters at the nano-scale; judiciously
choosing the molecular building blocks and
(sometimes arduously!!) finding the synthetic
conditions to yield a pre-determined, extended

network structure is coined as reticular chem-

istry. 1213
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Figure 1: The chemistry of metal-organic
frameworks (MOF's) is modular and highly tun-
able, affording a vast chemical space of crystal
structures in which to search for materials ex-
hibiting an optimal adsorption property. (top)
MOFs are composed of metal nodes or clusters
coordinated to organic linker molecules to form
a crystalline, porous framework. By chang-
ing the linkers and metal clusters, we can ob-
tain millions of possible materials. (middle) As
examples, shown are crystal structures of Ni-
MOF-74,"* HKUST-1,' IRMOF-1."? (bottom)
As an illustration of what a MOF looks like in
practice, shown is HKUST-1'® from Ref. 16.

For adsorption-based engineering applica-
tions, a coveted aim beyond reticular chemistry
is to specify a desired (optimal) adsorption
property, then synthesize the MOF that ex-
hibits it. For example, consider the search for a
MOF to densify and store natural gas onboard
a passenger vehicle and deliver it to the engine



for fuel.!” The driving distance of a vehicle
equipped with an adsorbed natural gas fuel
tank of a given volume is determined primarily
by the usable capacity of the material;'® oper-
ating at room temperature via a pressure swing
between 65 bar and 5 bar, the usable capacity is
the equilibrium methane adsorption after fill-
ing up at the fuel station (65bar) minus that
retained when the tank sustains insufficient
pressure to drive flow to the engine (5bar)’.
For the near-term deployment of a MOF' in an
adsorbed natural gas fuel tank, a coveted aim
is to reliably identify, among the 80000 experi-
mentally synthesized, which MOF exhibits the
maximal methane usable capacity. Notable,
it is impractically time- and resource-intensive
to synthesize, characterize, and measure the
high-pressure methane adsorption isotherm in
every MOF, despite underway efforts for high-
throughput robotic synthesis. 192!

The topic of this review is the role of molecu-
lar modeling and simulation in enabling, to an
increasing extent, the identification of an exist-
ing MOF? to exhibit a desired (optimal) adsorp-
tion property (e.g. maximal methane usable
capacity) through high-throughput computa-
tional screenings. The simple idea, encapsu-
lated in the Materials Project,?? is to computa-
tionally predict adsorption performance of each
existing MOF structure to shortlist materials
for experimental synthesis and testing. We take
a unique angle from previous reviews? ?° by
highlighting how large, open data sets of MOF
crystal structures provide a platform for the
computational identification of existing MOF's
for gas storage, separation, and sensing.

We begin in Sec. 2 by briefly describing

'In addition to thermal and chemical stability and
the cost of the MOF, several other material properties
influence the performance of a MOF in adsorbed natu-
ral gas storage, such as heat of adsorption, specific heat,
thermal heat conductivity, diffusion coefficients, and ad-
sorption of impurities that can “poison” adsorption sites
(note we approximated natural gas as methane).

2We specify the MOF to be existing as opposed
to hypothetical or conceived for the sake of near-term
as opposed to long-term deployment; the synthesis
protocols— and, perhaps, activation procedures and in-
formation about stability— of existing MOF's already re-
ported in the literature can expedite deployment.

methodologies to computationally screen MOF
structures for gas adsorption applications. We
then discuss in Sec. 3 how MOF crystal struc-
tures are determined experimentally from X-
ray diffraction (XRD) studies. In Sec. 4, we
describe how, owing to artifacts of XRD stud-
ies, many MOF structures deposited in the
Cambridge Structural Database (CSD) typi-
cally contain solvent and/or are chemically in-
valid, precluding their direct use for compu-
tational screenings. In Sec. 5, we sketch how
these structures are processed to curate an open
database of computation-ready, experimental
(CoRE) MOF crystal structures that resemble
the structure used in gas adsorption studies.
Finally, in Sec. 6, we survey high-throughput
computational screenings of MOF crystal struc-
tures for gas adsorption and separation applica-
tions that have directly and lucidly motivated
the experimental synthesis and characterization
of a performant MOF. In line with the theme
of how the open CoRE MOF database spurred
the computational identification of performant
materials, in Sec. 7 we review efforts by NIST to
curate open databases of adsorption isotherms
in MOFs. Interspersed, we draw analogies with
the impacts of open data in molecular biology
and machine learning.

2 Molecular models and

methods

Accurately and efficiently predicting the ad-
sorption properties of a given MOF structure
via computation remains a formidable challenge
and is still an active, progressing area of re-
search.

2.1 Energetic modeling

As a mathematical description of the poten-
tial energy of the many-body system consist-
ing of the MOF structure and its adsorbed gas
molecules, ab initio quantum chemical calcula-
tions are accurate but require significant com-
putational resources. On the other hand, clas-
sical force fields, whose interatomic potential
parameters are fit to experimental data or ab



initio calculations, are more computationally
efficient than ab initio calculations but often
less accurate when transferred to systems differ-
ent to which they were fit. For the former rea-
son, classical force fields such as the Universal
Force Field?® and DREIDING?" are typically
used to describe interactions of gas molecules
with the MOF in high-throughput screenings.
The interatomic potentials in DREIDING, for
example, were tuned to reproduce crystal struc-
tures and sublimation energies of a large set
of compounds. For gas-gas interactions, the
Transferable Potentials for Phase Equilibria
(TraPPE)? cover many adsorbate molecules
and were tuned to reproduce vapor-liquid equi-
libria of the fluids. Gas-MOF interactions are
typically obtained by mixing rules that de-
termine interatomic potential parameters for
cross-species interactions from pure-species pa-
rameters. Electrostatic interactions are usu-
ally modeled (with Coulomb’s law) by assign-
ing point charges to the atoms of the MOFs
and, if appropriate, the adsorbate molecule (e.g.
TraPPE assigns charges to the atoms of polar
CO,? but not nonpolar CH,?®). There ex-
ists a hierarchy of methods for assigning point
charges to MOFs to model their electrostatic
interaction with a polar adsorbate molecule3°
(see Sec. 9.3), and a database of experimen-
tal MOF crystal structures with high-quality
point charges assigned can be downloaded (see
Sec. 5.1.1).

The many-body potential energy description
is then used as input to Monte Carlo (MC)
or Molecular Dynamics (MD) simulations®! to
predict properties of the MOF crystal, such as
adsorption isotherms and diffusion coefficients,
respectively.

2.2 Structural modeling

To simulate adsorption of gas in a given MOF,
its crystal structure must be known. Typically
in high-throughput computational screenings,
the MOF' structure is, as an approximation of
varying severity (see Sec. 9.1), taken as rigid for
two reasons. First, the computational expense
to sample and compute the intrahost energy of
the possible configurations of the host in addi-

tion to the gas (under the osmotic ensemble??)
is prohibitive for a large number of structures.
Second, an (accurate) intrahost force field to
model the potential energy of different MOF
conformations may not be available for coor-
dination environments encountered in MOFs.
However, progress is underway in the devel-
opment of accurate intrahost force fields for
MOFs333 and of efficient algorithms to sim-
ulate their flexibility. 6

Therefore, clearly, databases of crystal struc-
tures of MOF's are a prerequisite for the high-
throughput computational screening of MOFs
for adsorption-based applications. The accu-
racy of the crystal structure is imperative, as
simulated gas adsorption can be sensitive to the
crystal structure assumed.®” Generally, the ex-
perimentally determined crystal structure of a
MOF is regarded as the gold standard, with the
following caveats. First, if the crystal struc-
ture was experimentally determined directly
after synthesis, with solvent in its pores, it
could change upon the evacuation of solvent
(activation).?® Second, there can be variation
in the experimentally determined lattice con-
stants of a given MOF among different research
groups, perhaps due to different synthesis con-
ditions.? In the absence of an experimentally
determined crystal structure, we note that one
could computationally place the appropriate
linker molecules and metal nodes into the ap-
propriate network topology to build a predicted
MOF structural model,“® then refine this crude
geometrical approximation by minimizing the
potential energy of the assembled structure over
the atomic positions using a classical force field
or electronic structure calculations.

2.3 Molecular simulation

Consider a MOF crystal immersed in a bath of
(mixed) gas at temperature T and chemical po-
tential p (linked to pressure P via an equation
of state for the mixed gas). At thermodynamic
equilibrium, the grand-canonical statistical me-
chanical ensemble*! governs the probability of
every possible configuration of gas inside a
MOF crystal of fixed volume; the probability
of each microstate depends on its potential en-



ergy and particle number of each species. The
osmotic ensemble?? governs the case where the
unit cell is flexible and allows decoupling of the
chemical potential of the gas from the mechan-
ical stress imposed on the crystal. Equipped
with a force field and a MOF crystal structure,
therefore, we can conduct Markov Chain Monte
Carlo simulations?® of a statistical ensemble to
simulate equilibrium gas adsorption in MOFs.
Properties such as the expected number of ad-
sorbed particles of each species (at the given
condition) are easily computed from the simu-
lation. On the other hand, Molecular dynam-
ics (MD) simulations calculate dynamic prop-
erties such as diffusion coefficients of gases in-
side MOFs. In an MD simulation, Newton’s
equations of motion govern the propagation of
the system forward in time. See reviews from
the group of Coudert3?44% on computational
methods for predicting many different prop-
erties of nanoporous materials and Smit and
Frenkel for a textbook on molecular simula-
tions. 3!

2.4 High-throughput
tional screening

computa-

Equipped with a force field, a set of MOF
crystal structures, and software to conduct a
grand-canonical Monte Carlo simulation,648
the brute-force computational screening strateqgy
is to loop over all material candidates and sim-
ulate gas adsorption in each material:

for material in materials
simulate_adsorption(material)
end

After all simulations have finished, we sort the
materials by the desired property obtained by
the simulation and, voila, shortlist the top few
for experimental testing®. This is the obvious
value of high-throughput computational screen-
ings, and it is predicated on sufficiently accu-
rate molecular models and simulations (i.e., suf-
ficient sampling?5%) to rank the materials by

3Typically, as illustrated in our survey in Sec. 6, some
human judgment on e.g. ease of synthesis is also exer-
cised in further shortlisting materials.

their desired adsorption property with high sta-
tistical confidence.

A less obvious value of high-throughput com-
putational screenings, which negates their triv-
ialization as a for loop, is to extract relation-
ships between the structure of the MOF and the
(simulated) adsorption property to reveal in-
sights for rational design. For example, Wilmer
et al.®! found that MOFs exhibiting the high-
est COy /Ny selectivities for flue gas separations
harbor pore sizes no larger than ~ 5A to 6 A.
Often, experimental data is too sparse to rec-
ognize such structure-property relationships.

Finally, another value of simulating adsorp-
tion in thousands of MOFs is to set expec-
tations of performance limitations. For ex-
ample, by simulating methane adsorption in
650000 nanoporous materials, we suggested
that the usable capacity targets set for vehicu-
lar methane storage and delivery were likely too
high because all materials fell short of the tar-
get.®? Again, validity of conclusions of this na-
ture are predicated on the accuracy of the force
field and assumptions built into the molecular
models. For example, our work®? held MOFs
rigid during the simulation and neglected the
case where a flexible MOF can collapse and ex-
pel residual gas at the discharge pressure, as
MOF Co(bdp),% which currently boasts the
highest methane usable capacity.

A brute-force screening strategy (the for loop
above) for thousands of structures may en-
tail an infeasible computational expense, espe-
cially for complicated adsorbates (e.g. insert-
ing chain molecules such as hexane during a
MC simulation via a configurational bias al-
gorithm,®® modeling polarizability of carbon
dioxide by open-metal sites in MOFs,?> model-
ing water adsorption in MOFs, which requires
many MC samples®®), high pressures (where
many molecules are typically present in the sys-
tem), and treatment of structural flexibility |].
Two methods have emerged to circumvent con-
ducting simulations in all material candidates
in a brute-force screening, thereby saving com-
putational expense. The first method is to
use statistical machine learning® to build a re-
gression or classification model of an adsorp-
tion property with structural®® and/or chem-



ical® descriptors as input. The key idea is
that the dependent variable in the model— the
adsorption property— is expensive to compute,
whereas the independent variables— the struc-
tural descriptors— are cheap to compute; so a
trained model can be used to cheaply predict
adsorption on the basis of structural descrip-
tors. Simulated properties in only a (diverse)
subset of material candidates can be used to
train the model (i.e. to identify the parameters
of the statistical model). For the remaining
materials where simulations were forgone, the
trained statistical model is then used to pre-
dict their adsorption properties on the basis of
their (cheaply computed) structural/chemical
descriptors.  For example, chemical, struc-
tural (surface area, void fraction, largest cav-
ity diameter, etc.), and/or potential energy-
based descriptors were used to train statisti-
cal models to screen MOFs for CO, adsorp-
tion,% Xe/Kr selectivity,®® hydrogen adsorp-
tion, %2 and methane adsorption,® conducting
simulations on only a subset of training MOF's.
See Ref. 64 for a review on Quantitative Struc-
ture Property Relationship (QSPR) modeling
in materials science in general. The second
method to avert a brute-force screening is to
employ an evolutionary algorithm to search for
and explore regions of chemical space where
the most performant MOFs lie. Such an evo-
lutionary algorithm evolves in stages (genera-
tions). The simulated performance of MOFs
in the first generation is used to select (evolve)
the next generation of MOF's in which to simu-
late gas adsorption, with the aim of reaching a
summit of adsorption performance. For exam-
ple, Bao et al.% used an evolutionary algorithm
to mutate the chemistry of MOF linkers to ar-
rive at MOFs with high methane usable capac-
ity. Chung et al.% used a genetic algorithm to
search for MOFs for CO, capture.

A lesson from molecular biology

CRISPR-Cas9 technology%” is revolu-
tionizing molecular biology by enabling the
facile, precise, and cost-effective editing of
genomes. 57 Impacts include accelerating and
enabling more systematic experiments to

probe gene function and regulation and,
potentially, genetic-engineering disease- and
stress-resistant crops and correcting genetic
and epigenetic human disease, such as can-
cer.%® The CRISPR-Cas9 technology origi-
nates from an adaptive immune system dis-
covered in bacteria.% The fascinating story
by which CRISPR was recognized as a bac-
terial immune system, outlined by Lander, ™
bestows useful lessons on materials science,
including the importance of “hypothesis-free
science”.

By 2000, Mojica et al.”! cataloged the
presence of peculiar sequence patterns in
the genomes of 20 different microbes us-
ing a computer program to analyze pub-
lished genomes. Particularly, they found
clusters of multiple copies of roughly palin-
dromic sequence pairs, &~ 24 bp to 40 bp
in length, flanking both sides of a unique
spacer sequence of roughly consistent length
(20 bp to 58 bp). These were descriptively
coined clustered regularly interspaced short
palindromic repeats (CRISPR).™ Mysteri-
ously, the biological role (or lack thereof)
of evolutionary conserved (within species”?)
CRISPRs was unknown.

Five years later, Mojica et al. > published
evidence that CRISPR is related to a micro-
bial immune system, conferring resistance
to e.g. bacteriophages. The link was made
by searching databases of DNA molecules
for matches of =~ 4500 known spacer se-
quences between CRISPRs; 47 of the spacer
sequences matched bacteriophage DNA se-
quences. As further evidence, a microbe
strain carrying the CRISPR spacer sequence
of a particular virus was found to be im-
mune to infection by that virus, whereas
other strains lacking that spacer sequence
were susceptible.

Lander ™ credits the role of “hypothesis-
free” research in the discovery of CRISPR:
“The discovery of the CRISPR loci and their
biological function ... all emerged not from
wet-bench experiments but from open-ended
bioinformatic exploration of large-scale, of-
ten public, genomic datasets.” Similarly,
we claim here that hypothesis-free science—
the curation of databases of computation-
ready nanoporous crystal structures and ad-
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sorption data— can accelerate the pace of
nanoporous materials discovery and deploy-
ment in un-conceived ways. Of course,
mindlessly gathering data is unlikely to be
the best allocation of resources; "* there must
be an implicit hypothesis that the data will
enable further developments, albeit in an ill-
defined or un-conceived context. Our sur-
vey of computation-inspired MOF discov-
eries in Sec. 6, however, lucidly demon-
strates the impact of open, computation-
ready databases of MOF structures.

3 Determining crystal struc-
tures of MOF's

We now discuss how the crystal structure of a
newly synthesized metal-organic framework is
experimentally determined.

Single crystal X-ray diffraction (SC-XRD) is
the most utilized and powerful technique to
quantitatively determine the detailed crystal
structure of a MOF, although sometimes neu-
tron diffraction is used.”™ Structural informa-

tion can be extracted from the XRD pattern by
careful analysis. Take a one-dimensional XRD
pattern (e.g., X-ray intensity vs. the diffraction
angle) as an example. The position of the peak,
according to Braggs law, is related to the d-
spacing of the unit cell of the material, which
is defined by the lattice parameters and sym-
metry. The area of the peak— the integral of
the intensity— is a result of the types and rela-
tive positions of atoms in the unit cell; the peak
width and shape are affected by the crystallite
size and defects. 7677

The crystal structure of a MOF can be deter-
mined from XRD data through a process called
Rietveld refinement. First, we start by build-
ing a crystal unit cell structure model (or use
an existing one) as an initial guess. Then, we
refine the unit cell structural model- i.e., ad-
just the atomic positions, unit cell parameters,
and atomic occupancy (but not symmetry)- to
minimize the difference between the experimen-
tal and the simulated (in the structural model)
SC-XRD pattern.” Clearly, building a crystal

unit cell requires prior information (i.e, atom
types, possible chemical formula, crystal sym-
metry) about the MOF. The crystallographic
R-factor describes the difference between the
refined crystallographic structure model and
the experimental X-ray diffraction pattern:

R — Z |Iexp - ]sim|
> [ exp

where Io, is the experimentally measured X-
ray intensity and Iy, is the simulated intensity;
the sum is over all diffraction angles in the data.
A trustable structure is achieved when the crys-
tallographic R-factor is less than 10 %;® a high
quality structure usually has R < 5%.

Several difficulties are encountered in SC-
XRD analysis that complicate or prevent defini-
tive structural solutions. (1) As X-rays interact
with electrons of matter, light elements such
as carbon, oxygen, and hydrogen weakly scat-
ter X-rays compared to heavy metals. Conse-
quently, the refinement of such light elements
is extremely difficult or sometimes impossible,
resulting in e.g., commonly missing hydrogen
atoms in Rietveld-refined crystal structure files.
(2) As extended-network structures, MOFs can
be deconstructed into their underlying topolog-
ical nets by treating the points of extension on
the secondary building units and linkers, re-
spectively, as nodes and edges of a network.™
During MOF synthesis, high temperature and
pressure could introduce network disorder such
as twinning® and pseudo-symmetry.®' Relat-
edly, interpenetration of nets in MOFs®? intro-
duce complexity in the XRD pattern. (3) If
the building blocks do not assemble into the
anticipated net, Rietveld refinement will be un-
successful, and the crystallographer must brain-
storm other possible nets with which to com-
pare with the XRD pattern; a degree of ex-
perience, intuition, and prior knowledge is re-
quired; (4) Since most MOFs are synthesized
using solvent-based methods, solvent molecules
are present in the pores. Strongly coordinat-
ing solvents (e.g., water, nitrobenzene) may as-
sume a structure or pseudo structure and in-
troduce foreign diffraction peaks that compli-
cate XRD analysis.®® Even if the solvent can

(1)



be evacuated, the MOF may still adsorb mois-
ture rapidly from the air; keeping the MOF in
an inert (dry) atmosphere during experiments
may be beneficial. Solvent masking (typically
by software such as SQUEEZE®!) is an effective
way to remove the contribution by the solvent
from the XRD pattern. (5) Because XRD is
an ensemble measurement, the specific tilt of
certain ligands in the MOF structure could be
averaged out and thus undetermined by refine-
ment. 3586

In addition to SC-XRD, powder X-ray diffrac-
tion (PXRD) is used to obtain MOF structural
information. This is because it is sometimes
difficult to synthesize large single crystals c.a.
100 nm, as required for SC-XRD. The relation-
ship between the crystal structure and XRD
peak positions and intensities is the same as
in SC-XRD, however, unlike SC-XRD, PXRD
is the average of the diffraction of all small
MOF crystals in different orientations. Thus,
unlike SC-XRD, PXRD is often used to check
the phase, crystallinity, and purity of the sam-
ple instead of determining the detailed atomic
positions. However, it has become possible to
obtain crystal structures from powder diffrac-
tion data using various refinement and simula-
tion methods. 76-87:88

Finally, in situ XRD has become popular
during the synthesis process®>? to study the
growth kinetics and mechanism? and dur-
ing gas adsorption experiments to determine
which adsorption sites are populated at differ-
ent pressures®* and investigate gas-induced
structural changes. %97

4 The
tural Database

Cambridge Struc-

The Cambridge Structural Database (CSD)%
is a widely-used repository of crystal structures
of organic, metal-organic, and organometallic
compounds that are mostly determined by X-
ray diffraction. Anyone can initiate the deposi-
tion of a structure in the Cambridge Crystallo-
graphic Data Center (CCDC), a nonprofit or-
ganization. Before entering the database, these
structures are processed both computationally

and by expert structural chemistry editors.?

Each crystal structure in the database is as-
signed a unique six-letter identifier (a “refcode”,
sometimes also including two digits appended
at the end corresponding to different structure
determinations). Anyone can access and down-
load CSD data freely via the online search en-
gine of the CSD, the ConQuest program, !°° and
a Python APIL% For each crystal structure en-
try, the CCDC website has a chemical diagram,
3D viewer, and link to the associated publica-
tion. The data from CCDC, downloadable as
a .cif file, contains basic structure parameters
(e.g., space group, lattice constants, unit cell
angles, fractional coordinates of atoms, etc.).
More than 50000 new structures are entered
and updated each year,'® and 900000 entries
were recorded in 2018, according to the CSD
website (https://www.ccde.cam.ac.uk/). The
number of MOF's estimated to be in the CSD
is 70 000.1°

There are a few issues with MOF structures
in the CSD that preclude computational scien-
tists from simply downloading all MOF crys-
tal structures from the CSD, then conduct-
ing molecular simulations in a high-throughput
computational screening. That is, not all MOF
structures in the CSD are computation-ready.

4.1 Problem O0:
which crystal structures
within the CSD are MOFs

Because each CSD entry is not labeled accord-
ing to the class of material (e.g., MOF ver-
sus covalent organic framework), goal zero is
to compile a list of entries in the CSD that can
be classified as MOFs via an automatic rou-
tine. The most common method to search for
MOFs in the CSD is to use a chemical bond
criteria; 191927104 MOFs usually have a metal
atom connected to specific atoms and/or lig-
ands, which can be searched for in the database.
For example, carboxylate-based linkers coordi-
nated to metals can be found using the CSD
Python API or ConQuest.!% Beginning 2016,
the Cambridge Crystallographic Data Centre
(CCDC) maintains a subset of all structures in

Identifying



their database that they classify as a MOF !9 us-
ing seven different chemical bond criteria (see
Fig. 3), narrowing 850000 structures in the
CSD down to 69699 MOFs;!° 1D, 2D, and 3D
network structures were included. The CSD
subset reports 8,388 structures (out of approx-
imately 70000 structures) with a pore limit-
ing diameter greater than 3.7 A. On the other
hand, the CoRE MOF dataset contains only
structures with 3-D connected frameworks.?
The TUPAC provisional recommendation for
the definition of a MOF is “... is a Coordi-
nation Polymer (or alternatively Coordination
Network) with an open framework containing
potential voids.”, % but this definition is not
universally accepted. 105106

4.2 Problem 1:
pores

solvent in the

The first problem with MOF structures in the
CSD is that solvent molecules are often in-
cluded in their pores. This is an artifact of XRD
studies conducted after solvent-based synthe-
sis.'! However, before MOFs are deployed for
use as adsorbents, heat and/or vacuum is ap-
plied to drive off residual solvent in the pores,
a process known as activation,'°” thereby allo-
cating space for gas molecules to adsorb. Thus,
the solvent molecules must be computation-
ally removed from each structure, mimicking
the experimental activation process, before sim-
ulating gas adsorption in it. An underlying
assumption here is that removing the solvent
does not change the MOF structure or cause it
to collapse, which sometimes occurs;3%1% also,
the structure of the MOF could differ depend-
ing on the solvent in its pores.'% Almost 90 %
of MOF's in the CSD contain solvent in their
pores; water is most common.

4.3 Problem 2: structural dis-
order and missing hydrogen
atoms

The second problem with many MOF struc-

tures in the CSD is an artifact of XRD; many

structures are incomplete (e.g., missing hydro-

gen atoms) and chemically invalid (e.g., exhibit
disorder). As Sec. 3 describes, (1) it is diffi-
cult to refine from XRD patterns the atoms,
such as hydrogen, that only weakly scatter X-
rays. Therefore, often, hydrogen atoms are
omitted entirely from the .cif file. (2) Be-
cause XRD is an ensemble measurement, lig-
ands that adopt multiple e.g. rotational confor-
mations will appear disordered, resulting in a
chemically invalid crystal structure. See Fig. 2
for examples. The disorder must be repaired
and missing atoms must be added in appro-
priate orientations to render a MOF structure
computation-ready.

5 Computation-ready crys-
tal structures

We now review efforts to compile a database
of computation-ready MOF structures— by cor-
recting the problems above— to facilitate vir-
tual screenings. We declare a crystal struc-
ture model (unit cell information, list of atoms
and their coordinates) to be computation-ready
if and only if the crystal comprises chemically
valid building blocks and resembles the ex-
perimentally activated crystal structure used
for gas adsorption measurements. For ex-
ample, a MOF is not computation-ready if
hydrogen atoms are missing from its tereph-
thalic acid linker, residual dimethylformamide
(DMF) solvent (which ideally is removed dur-
ing activation) remains in its pores, or aro-
matic rings appear in two different rotational
conformations owing to disorder. The cura-
tion of a computation-ready database of ex-
perimental MOFs requires (a) sifting through
the CSD to pick out the MOFs, (b) remov-
ing solvent molecules to mimic the experimen-
tal activation procedure, and (c¢) correcting ar-
tifacts of XRD that result in chemically invalid
structures, such as by adding missing hydrogen
atoms and choosing one conformation of a dis-
ordered ligand.

Manually inspecting each structure in the
CSD, removing solvent, adding missing hydro-
gen atoms, and repairing disorder — i.e., render-
ing it computation-ready— would be extremely



time-consuming. Therefore, several authors
have developed automatic routines using com-
puter programs to curate a computation-ready
set of MOFs. However, early databases prior to
Chung et al.? remained private and thus could
not serve as a platform for materials discovery
for the community as a whole. We briefly re-
view them here regardless.

In 2005, Ockwig et al.'? identified a set of
1127 MOFs from the CSD wusing structural
queries— searching for crystals with metals co-
ordinated to organic linkers to form 3D struc-
tures. The motivation of Ockwig et al. to com-
pile these MOF's was to analyze and rationalize
the distribution of net topologies among MOF's
synthesized to date and shed light on how to
design structures and predict the topology in
which building blocks will assemble. While
these MOFs were not rendered computation-
ready, the authors made available as supple-
mentary material a list of the CSD refcodes of
these 3D MOF's along with their net. Haldoupis
et al.1'0 leveraged this early list of experimen-
tally synthesized MOF's in the CSD to demon-
strate a high-throughput screening of MOFs
for kinetic-based separations (estimating per-
meability) of small, approximately spherical ad-
sorbates. The authors manually repaired disor-
der in several of the structures listed by Ockwig
et al. to render them computation-ready. In
2012, Van Heest et al.''! extended the database
of Haldoupis et al.''? to 3432 MOFs and com-
putationally screened them for kinetic-based
noble gas separations. The authors mentioned
that they excluded materials with a “significant
degree of disorder” and removed solvent from
the pores, but do not provide details, nor pub-
licly release the database of MOFs.

In 2013, Goldsmith et al.'®® compiled a
database of 22700 computation-ready MOFs
using an automated routine and divulged de-
tails of their procedure. First, they specified
criteria to classify a structure as a MOF (“struc-
tures that contain carbon, a metal, a ligand,
and a metal-ligand bond; and structures labeled
as an extended structure” '%%) and scanned the
CSD for MOFs. They then detected symmetry-
related disorder, ionic species, and missing hy-
drogen atoms in these structures and excluded
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them. Finally, they developed an algorithm
to remove residual, free-floating (as opposed to
bound) solvents from the pores to mimic the
experimental activation process. The authors
removed solvent by first constructing a periodic
graph model of a MOF, where the nodes rep-
resent atoms and edges represent bonds. The
atoms that were not a member of the largest
connected graph that included the metal were
assumed solvent and removed. Goldsmith et
al. used the Chahine rule,'? a linear relation-
ship between the gravimetric surface area and
excess hydrogen uptake, to estimate the hydro-
gen uptake capacity in these MOFs. In addition
to shortlisting top candidates for experimen-
tal testing, the authors revealed a trade-off be-
tween gravimetric and volumetric capacity and
indicated that targeting MOFs with the high-
est surface areas is not coincident with targeting
MOFs with the highest hydrogen capacity.

The curation of these early databases
of computation-ready MOFs enabled high-
throughput computation screenings of experi-
mental MOF's for adsorption-based engineering
applications and the generation of consider-
able insights. 103110111113 However, the fruits of
these private computation-ready crystal struc-
tures were available only to the authors that
were in possession of them. We now highlight
the development of open computation-ready,
experimental MOF databases®!? and review
their lucid impact on the computation-informed
discovery of MOF's for adsorption-based engi-
neering applications.

5.1 The (open) CoRE MOF

database

In 2014, Chung et al. released a free and
open computation-ready, experimental (CoRE)
MOF database®®. The workflow to construct
the CoRE MOF database is shown in Fig. 2(a).
The authors first searched the CSD for poten-
tial MOF crystal structures using the CCDC

4The term “CoRE MOF” was coined by Prof. David
Sholl, who wrote down a number of different com-
bination of words on a piece of napkin during the

Nanoporous Materials Genome Center Meeting in 2013
at Berkeley, CA.



Conquest program; the search was for struc-
tures with more than one bond between metals
and the elements O, N, B, P, S, and C. Ad-
ditionally, we required the structures to form
any kind of bond from these six elements
to C, N, P, or S atoms. Then, the frame-
work structures were analyzed using the rou-
tine implemented in Zeo++14115 to identify
3-dimensional MOFs. The procedure led to
20000 3D MOF structures. Several automated
in-house scripts were developed to further mod-
ify the framework structures to make them
computation-ready crystals. This includes the
removal of bound and unbound solvents (see
Fig. 2(b)) by constructing an adjacency matrix
of the crystal structure atoms. There are two
types of solvents: 1) free solvents, and 2) bound
solvents. Free solvents (i.e., unbound solvents)
are molecules that are “touching” the frame-
work atoms, and bound solvents (i.e., coordi-
nated solvents) are molecules that are part of
the framework atoms as determined by the van
der Waals radii of atoms plus a skin distance of
0.4 A. Bound solvents are usually coordinated
to the open metal sites in MOFs, such as the
copper site in HKUST-1. Fig. 2(b)) illustrates
the removal of free and bound solvents from a
MOF. To remove bound solvents from the open
metal sites, the algorithm first constructs an
adjacency matrix of an input structure. The
adjacency matrix represents the connectivity of
atoms (bonds) in the structure as an undirected
graph (nodes: atoms, edges: bonds). Entry
(,7) of the adjacency matrix is one if atom i
and j are bonded and zero otherwise. Then,
for each atom connected to a metal atom in the
structure, the atom-metal bond is temporarily
removed from the adjacency matrix by modify-
ing the corresponding elements to be zero. Fol-
lowing the modification, the adjacency matrix
was passed to the SciPy connected components
module to check the changes in the bonding of
the structure with respect to the modification.
If the number of the clusters changes, then the
matrix element is left modified. If the number
of clusters did not change, then the matrix com-
ponent is changed back to one (i.e., the bond
is reintroduced). This process is repeated for
all atoms connected to a metal atoms in the
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structure. Also, the symmetry-related copies of
atoms arising from disorder (see Fig. 2(c)) were
deleted by removing the lines from the files that
contains the coordinates with asterisks or ques-
tion marks. Lastly, the charge-balancing ions
in the structures were kept on the basis of the
chemical formula provided by the CSD and the
adjacency matrix. For instance, if the chemical
formula of an ion, which can be distinguished
on the basis of (+) or (-) mark, provided by
the CSD, matches the chemical formula derived
using the connected component algorithm ap-
plied to the adjacency matrix, the ion is kept as
part of the framework. Some chemically invalid
structures were manually edited using Materi-
als Studio to add missing hydrogen atoms (that
were not resolved from XRD) and repair other
related disorders, such as overlapping atoms.
Following these fixes, solvent molecules (which
are sometimes critical in maintaining the struc-
tural integrity of the MOF) were removed to
mimic the experimental activation condition. A
set of 4,764 computation-ready structures were
made available to the public via Github. !

As evidence that the CoRE MOF database
has had a significant impact on high-
throughput computational MOF screening and
discovery, it has collected over 187 citations
on Google Scholar (as of March 5, 2019) since
its publication in 2014 and has enabled several
computation-inspired MOF discoveries, as out-
lined in our survey in Sec. 6. Its impact was
predicated on making the structures freely and
easily accessible via Github.

Still, there are several criticisms related to
the methods employed in the construction of
computation-ready MOF databases. (1) The
method used for the removal of solvent is too
aggressive, in that the structural integrity of the
framework without solvent may become ques-
tionable for some structures.'!” The newly up-
dated CoRE MOF database!® contains struc-
tures with and without bound solvents. (2) Re-
dundant duplicate structures are present. 18 (3)
The MOF structure could change upon activa-
tion, relaxing to a different state when solvent is
removed;? this is particularly a concern for soft
porous crystals.'® (4) As the solvent-removal
is automatic and disorder-flagging is imperfect,
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Figure 2: Curating the computation-ready, experimental (CoRE) database of MOFs.

(a) The

workflow of the development of CoORE MOF Database 2014. (b) Automatically removing solvent
from MOF's deposited in the CSD. Left to right, as-is structure, free solvent removed, free and bound
solvent removed (CSD refcode: VICDOC). (c¢) Before and after disorder removed (CSD refcode:
PIDNEX). Reprinted with permission from Chem. Mater. 2014, 26, 21, 6185-6192. Copyright

2019 American Chemical Society.

several structures in the CoRE MOF database
are not chemically accurate. A recommended
way to report such structures is to send a pull
request on the CoRE MOF database website.”
(5) When repairing disorder, one must choose a

*http://dx.doi.org/10.11578/1118280
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certain conformation of the ligand. The choice
of ligand comformation could significantly influ-
ence the adsorption properties. This has been
demonstrated in the case of Xe adsorption in
SIFSIX-3-Ni structure, where the tilts of the
pyrazine ligands are disordered in the XRD-


http://dx.doi.org/10.11578/1118280

determined structure.®® (6) Several MOF's are
missing from the CoRE MOF database, and it

is not automatically updated when a new MOF
is deposited in the CSD.!°

5.1.1 CoRE MOF charge assignment

Electrostatic interactions are an important
component of the potential energy of adsorption
of polar molecules such as carbon dioxide. 120:12
The electrostatic potential inside the MOF is
typically modeled by assigning a point charge
to each MOF atom; point charges are assigned
on the molecular model for the adsorbate as
well (as is the case for CO,?), thereby com-
pleting the description of the electrostatic inter-
action of the adsorbate with the MOF. While
quick/cheap methods such as charge equili-
bration'?? are commonly used to assign point
charges to MOF atoms, point charges derived
from electronic structure calculations are gener-
ally considered more reliable.? Density derived
electrostatic and chemical (DDEC) charges!'?
is one such method to associate chemically
meaningful charges with atoms in MOFs from
a calculated electronic density. Nazarian et al.
computed DDEC charges for > 2000 CoRE
MOFs from the electronic density calculated
with the PBE DFT functional and made these
charges openly available.'?* As the electrostatic
potential inside a MOF is assumed to be inde-
pendent of the adsorbate studied, with the view
of the MOF as ‘hosting’ an electrostatic po-
tential field in which the ‘guest’ adsorbate sits,
these adsorbate-agnostic DDEC charges will fa-
cilitate high-throughput computational screen-
ings of the CoRE MOFs when electrostatic in-
teractions are involved.

5.1.2 DFT-energy-minimized CoRE

MOFs

The crystal structure of a newly synthesized
MOF is often determined from XRD preced-
ing activation, therefore with its pores still
filled with solvent molecules.?® Upon activa-
tion (evacuation of solvent) for gas adsorption,
the structure of the MOF could change sig-
nificantly.?® Some MOFs may be destabilized

13

by removing solvent, causing the framework
to collapse. " Therefore, simply deleting sol-
vent molecules from crystal structure files ob-
tained via XRD studies, as in the generation
of the CoRE MOF database, may not repre-
sent the structure upon activation. In addition,
as Nazarian et al.?® demonstrate for HKUST-1,
MOF structures determined by XRD are sub-
ject to variation among research groups. To
address these issues, Nazarian et al.?® used
DFT to relax the structures of 879 CoRE
MOF structures to minimize their potential en-
ergy. Indeed, several DFT-optimized CoRE
MOF's showed significant changes in the struc-
ture and simulated adsorption compared to
cognate unoptimized structure.?® These DFT-
optimized structures are likely more reliable
then the vanilla CoRE MOF structures® be-
cause (a) they maintained their structure in-
tegrity (i.e., still have a void) after DFT-
optimization, (b) the DFT-optimization ac-
counted for any change in structure that would
result from the solvent removal, and (c) the
DFT-optimized structures serve as a standard
for a given MOF as opposed to (perhaps) arbi-
trarily choosing from the multiple structures of
the same MOF deposited into the CSD by dif-
ferent research groups. Notably, the DFT cal-
culations of only 879 of the 2612 optimization-
attempted, lanthanide- and actinide-free CoRE
MOF structures converged within the 30000
CPU hours ceiling dedicated to each struc-
ture;? reasons for lack of convergence in the
allotted time include a large number of atoms
and a poor initial geometry.

5.2 CSD-maintained structures

In 2017, Moghadam et al.'? reported a CCDC-
maintained MOF subset of the CSD integrated
into the CSD to allow for searches and auto-
matic updates when new MOF structures are
deposited. They used seven chemical bonding
criteria (see Fig. 3) to sift through the CSD and
identify which structures are MOF's, resulting
in 69666 MOF structures. Then, to mimic the
experimental activation process, the authors
wrote and released a Python script to remove
bound and unbound solvent from the struc-



tures; 88 % of the MOF's were found to have sol-
vent, of which 52 % is unbound and 48 % bound.
The authors employed a complicated filtering
process to find disorder present in the MOF
structures, resulting in a non-disordered sub-
set, within the MOF subset, containing 54 808
structures. Next, the authors computed geo-
metric properties of the non-disordered subset,
such as surface area and pore size. The authors
found that a large portion of the structures in
the non-disordered subset (85 %) exhibit negli-
gible internal surface areas, while the remain-
ing 8388 structures had notable pores, with a
pore limiting diameter of at least 3.7 A and a
gravimetric surface area between 500 m?/g and
2000 m?/g.

The CSD-maintained MOF database by
Moghadam et al.!? offers several advantages
over the CoRE MOF database: it is more com-
prehensive (including 1D, 2D, and 3D struc-
tures), automatically updated when new MOFs
are deposited in the CSD, allows for bond-type
or cluster-type searches using the CSD tools,
releases the Python scripts used for cleaning,
and, during solvent removal, gives the user
more granularity by allowing the removal of
bound and unbound solvent separately. Two
major shortcomings of the CSD MOF subset 1©
compared to the CoRE MOF database,? how-
ever, are (a) many structures are still invalid
and not computation-ready because crystallo-
graphic disorder was not repaired and missing
hydrogen atoms were not added and (b) DFT-
optimized structures and DFT-assigned point
charges are not available for the CSD MOF sub-
set (unlike for the CoRE MOF database3%124).

5.3 Computation-ready crystal
structures for other classes
of materials

Despite our focus on MOF's, open databases
of computation-ready covalent organic frame-
works (COFs)!?° and porous organic cage
molecules?¢ have emerged as well. Tong et
al. 127128 prepared a database of 280 disorder-

and solvent-free, experimentally synthesized
COF structures (both 2D and 3D) ready for
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molecular simulations. Miklitz et al.'* com-
piled a database of 41 intrinsically porous
cage molecules from the CSD. Our recent
exploratory work on applying an unsuper-
vised machine learning algorithm to encode the
shapes of cavities of porous cage molecules into
latent vector representations®® was built upon
the porous cage database of Miklitz et al.!?*
We duly mention the open International Zeo-
lite Association (IZA) database of zeolite struc-
tures, 13! which is widely used for computational
studies of gas adsorption in zeolites.

6 Survey of high-throughput

computational screen-

ings with experimental

confirmation

We now survey high-throughput computational
screenings of MOFs for gas storage and separa-
tion that directly motivated the synthesis and
testing of a MOF in the bona fide (as opposed
to in silico) laboratory. These computation-
driven MOF discoveries lucidly demonstrate
the practical impact of computational materi-
als science. However, we do not discount the
many high-throughput computational screen-
ings lacking an experimental component, as (i)
these computational predictions could be fol-
lowed up in the future and (ii) insights into
structure-property relationships from computa-
tional studies can (albeit perhaps indirectly)
prompt the experimental discovery of new, per-
formant MOFs.

6.1 Gas storage and delivery

For applications of MOFs in storing gases, we
exploit the van der Waals and electrostatic in-
teractions of a gas molecule with the surface
of the MOF to achieve a greater density of ad-
sorbed gas than in the corresponding bulk gas
phase at the same temperature and pressure.
In practice, deploying a MOF for gas storage
entails packing a pressure vessel with a MOF
adsorbent.
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Figure 3: The seven chemical bond criteria used by Moghadam and co-workers!® to search for
MOFs in the CSD. Here A = O, N, P, C, B, S, QB = N, P, B, S, C, ME = methyl group. The
superscripts ¢ and a denote cyclic and acyclic, respectively. Reprinted with permission from Chem.
Mater. 2017, 29, 7, 2618-2625. Copyright 2019 American Chemical Society.

6.1.1 Natural gas storage and delivery

Natural gas, composed of mostly methane, is
regarded as a transition fuel from petroleum-
based to renewable and clean fuels (i.e., renew-
ably produced hydrogen).!” First, natural gas is
abundant and cheap. Second, compared to e.g.,
gasoline, natural gas emits 25% less carbon
dioxide per energy harvested from its combus-
tion, 132 as well as less VOCs, CO, PM10, and
SO, (but more NO,).'* However, the green-
house effects of fugitive emissions (methane is
a potent greenhouse gas itself)!3* and ground-
water contamination by hydraulic fracturing 3®
may diminish these environmental benefits if
not controlled. Third, the pipeline infrastruc-
ture for natural gas delivery is already in place
in the US. In the US, the transportation sector
accounts for 28 % of US energy consumption,
and petroleum-based fuels comprise 93 % of
transportation fuels.!?® The widespread adop-
tion of natural gas as a transportation fuel
could therefore reduce transportation costs and
emissions.

A technical barrier to the widespread adop-
tion of natural gas as a fuel for passenger ve-
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hicles is that, as a gas, compared to (liquid)
gasoline, its volumetric energy density is low.
Therefore, to obtain a reasonable driving range
under the constraint of limited space for an
onboard fuel tank, natural gas must be densi-
fied.'® Two incumbent methods to densify nat-
ural gas are liquefaction at low temperature
(111.7K, 1atm) and compression to high pres-
sures (=~ 200bar, 298 K). These methods re-
quire bulky, heavy, expensive fuel tanks and ex-
pensive infrastructure at refueling stations; fur-
ther, boil-off losses from liquefied natural gas
are an environmental concern. 37 Alternatively,
MOFs have demonstrated the ability to den-
sify natural gas for onboard vehicular storage
at room temperature and significantly lower
pressures (35bar to 65bar) than compressed
natural gas.!"18138 So far, no MOF has met
the most recent usable capacity target of 12.5
MJ methane/L MOF set by ARPA-E to com-
pete with compressed natural gas,'®® using a
pressure swing between 65bar (storage pres-
sure) and 5.8 bar (minimum engine inlet pres-
sure needed).5?

Note that in the high-throughput screenings
below, natural gas is approximated as methane.



As a caveat, a computational study by Zhang et
al. noted that, when considering the influence
of larger hydrocarbons contained in natural gas,
the ranking of MOFs for natural gas storage
could differ from when approximating natural
gas as pure methane, '

NOTT-107 and NU-125 Wilmer et al.!4!
developed a computational approach to gener-
ate MOF structural models from a chemical li-
brary of building blocks, then screened them to
identify candidate materials for methane stor-
age at 35 bar and 298 K. This study considered
only the absolute volumetric methane loading
at 35bar as opposed to other studies, which
consider a usable capacity, defined as the dif-
ference in absolute volumetric methane load-
ings at 3bbar and 5bar. To generate hypo-
thetical MOFs, Wilmer et al. curated a library
of 102 building blocks derived from crystallo-
graphic data of already synthesized MOFs. The
building blocks varied substantially in their ge-
ometry, number of connection sites, and chem-
ical composition. These building blocks could
be divided into three categories: inorganic, or-
ganic, and functional groups. The algorithm
constructed crystals with at most one kind of
inorganic building block, two kinds of organic
building blocks, and one functional group (see
Fig. 4). Building blocks could combine if the ge-
ometry and chemical composition at the point
of connection was the same as in the synthesiz-
able structure. Connections between building
blocks were determined solely based on geomet-
ric rules; that is, the structures were not energy-
minimized. “The approach is very much like
snapping Tinkertoys or Lego bricks together,”
said Wilmer et al. 4! The combinations of build-
ing blocks were exhaustively explored, resulting
in 137,953 hypothetical MOF structures.

The generated structures were validated by
comparing a set of generated structures to their
energetically relaxed counterparts.  Choos-
ing the appropriate building blocks, struc-
tures were generated resembling HKUST-1,1°
IRMOF-1,5 PCN-14, 42 and MIL-47.'4% Allow-
ing each “pseudo-MOF” to relax energetically
using the Universal Force Field,?® Wilmer et
al. found that every atom within the pseudo-
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Real MOFs —

Building blocks — Hypothetical MOFs

Figure 4: The algorithm used by Wilmer et
al. ™! to construct hypothetical MOF structures
first extracts building blocks from previously-
known MOF structures. These building blocks
are then combined according to their geometry
to create hypothetical MOF structures.

MOF structures was typically < 0.8 A distance
from the crystallographically measured posi-
tion. Further, simulated methane adsorption
isotherms at 298 K in the pseudo-MOFs agreed
with both simulated adsorption in the crystal-
lographic structure as well as with experimental
adsorption data.

After validation of the structure genera-
tion algorithm, each hypothetical MOF was
screened for methane storage at 35bar and
298 K. The screening of the 137,953 structures
was conducted in three successive stages of in-
creasing Monte Carlo cycles in the GCMC sim-
ulations. Of these top performers, a structural
analogue to PCN-14 (PCN-14 had a predicted
methane storage capacity of 197 L(STP)/L)
was predicted to have a record-breaking
methane storage capacity of 213 L(STP)/L. 4!
This structure, unbeknownst at the time of syn-
thesis as having been the previously-reported
MOF NOTT-107,** was synthesized and found
to have an experimentally measured methane
capacity ~ 8 % lower than the prediction.!4!

In addition to identifying promising candidate
structures for synthesis, this library of hypo-
thetical structures provided insights into rela-
tionships between the structure of the MOF and
high-pressure methane storage. In addition to
simulating methane adsorption in each hypo-



248 bar?
why that
compari-
son?

thetical MOF', geometric properties such as sur-
face area, void fraction, and pore size distribu-
tion were computed. Though maximizing gravi-
metric surface area had been a common strat-
egy for designing methane adsorbents, exceed-
ing the optimal surface area (~ 2500 m?/g to
3000 m?/g) was found to diminish the methane
storage capacity. The best adsorbents were
found within a narrow range of void fractions
~ 0.8, and the majority of these contained
methyl, ethyl, or propyl functional groups, with
pore sizes between 4 and 8 A. These insights
led to the discovery of MOF NU-125,4% which
was designed to have a void fraction of 0.8 and
demonstrated promise as an adsorbent with an
exceptionally high methane uptake (see Fig. 5)
and a usable capacity (58 bar to 5.8 bar) that is
67 % that of a compressed natural gas tank at
248 bar.

NU-800 Gomez-Gualdron et al.'6 con-

structed a set of 204 zirconium-based, hypo-
thetical MOF structures to search for optimal
and stable MOF's for storage and delivery of
methane. The authors constructed the MOF
structural models by computationally arrang-
ing a highly stable inorganic secondary building
unit, (Zr;0,)(OH),(CO,),, with various build-
ing blocks (see Fig 6a) to form MOFs in four
network topologies, fcu, ftw, scu and csq.
Several of the MOF's featured isomeric building
blocks (see Fig. 6b) to shed light on possible dif-
ferences in the adsorption properties of MOFs
with the same chemical formula and similar
pore volume. The structures were optimized
by using the UFF2?¢ to describe the intrahost
energetics.

In each hypothetical MOF, the authors con-
ducted grand canonical Monte Carlo simula-
tions of methane adsorption at 65bar and
5.8 bar to compute the usable capacity. Of the
204 Zr-based hypothetical MOF's, the one based
on the tetratopic building unit T'TP in Fig. 6b
was predicted to exhibit the highest methane
usable capacity (197 L(STP)/L) and was coined
NU-8000. See Fig. 6d. As a consequence, NU-
800 was synthesized, and its methane (also ni-
trogen, carbon dioxide and hydrogen) adsorp-
tion isotherms were measured and compared to
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the simulation (see Fig 6d) with overall good
agreement. Repeated adsorption and desorp-
tion cycles indicated that NU-800 was highly
stable. The measured experimental methane
usable capacity of NU-800 is 167L(STP)/L
(10 % lower than the simulated value), which is
the best among Zr-based MOFs and better than
many previously reported MOFs for methane
storage, such as Ni-MOF-74 (121 L(STP) /L) %"
and PCN-14 (149 L(STP) /L), *® yet 15 % lower
than MOF-519 (203 L(STP)/L), ' the record-
holder at the time of publication.

6.1.2 Hydrogen storage and delivery

Hydrogen (H,) is an ideally clean transporta-
tion fuel since it emits only water when it com-
bines with oxygen in a fuel cell. If hydrogen is
produced renewably, such as via electrolysis of
water with electricity generated from wind tur-
bines!®® as opposed to via the (currently widely-
used) steam reforming of natural gas, its adop-
tion as a fuel could significantly reduce the rate
of greenhouse gas emissions associated with the
transportation sector. Moreover, hydrogen is
abundant (though bonded with oxygen in wa-
ter or with carbon in hydrocarbons). Though
hydrogen possesses a larger gravimetric energy
density than any fossil fuel, as a gas at ambi-
ent conditions, hydrogen suffers from a very low
volumetric energy density compared to (liquid)
gasoline. Therefore, for a passenger vehicle to
drive an acceptable distance on a single, rea-
sonably sized tank of hydrogen fuel, the hydro-
gen must be densified. Incumbent densification
schemes include room-temperature storage by
compression up to 700 bar and cryogenic stor-
age (liquefaction at 20.4K at 1 bar). Both re-
quire significant energy input, heavy and bulky
fuel tanks, and costly infrastructure at refill-
ing stations; hydrogen compressed to 700 bar
is a safety concern. Another well-researched
densification strategy is to react hydrogen with
metals to form metal hydrides,!®! but these
metal hydrides often require high temperatures
to release the hydrogen and are very heavy.!%?
For an ultimate hydrogen storage goal, the US
DOE set 50g/L and 6.5 weight percent stor-
age targets for an onboard vehicular hydrogen
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storage system operating at temperatures rang-
ing from -40 °C to 60°C'% and pressures below
100 bar.'?* To meet this target and densify hy-
drogen at 100 bar for onboard vehicle storage—
significantly lower than compressed hydrogen
storage at 350 bar to 700 bar— much current re-
search is focused on exploiting physical adsorp-
tion on MOFs.'* Thus far, no MOF has met
the DOE storage target in the specified tem-
perature range because the van der Waals in-

teractions of hydrogen with a MOF are too
weal 17,152,154

IRMOF-20 Ahmed and  co-workers!®®

sought to find MOFs with both high gravimet-
ric and volumetric usable hydrogen capacity.
To do so, they simulated hydrogen adsorption
at 77 K in a pressure range from 1 bar to 100 bar
in each MOF in the CoRE MOF database? and
the (privatized) database from Goldsmith et
al.1% On the basis of the simulated usable ca-
pacity of hydrogen at 77K using a pressure
swing between 100 bar and 5 bar, the authors
targeted the synthesis of a MOF exhibiting
gravimetric and volumetric usable capacities
that surpass those measured in MOF-5 (4.5
wt% and 31.1 g Hy/L), considered a bench-
mark material for hydrogen storage.'®® Among
the 90 MOFs predicted to surpass the perfor-
mance of MOF-5, they targeted IRMOF-20, %7
with a 6.1 wt% and 35.5 g Hy L' predicted
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usable capacity, for synthesis and measured
its hydrogen adsorption isotherm at 77 K and
up to 100 bar. The simulated and experimen-
tal gravimetric and volumetric hydrogen ad-
sorption isotherms agreed very well. Notably,
the authors quantified the degree to which the
Chahine rule,'? an empirical correlation that
relates gravimetric excess hydrogen uptake to
the surface area of a material, can predict sim-
ulated hydrogen adsorption at 77 K and 35
bar using two different molecular models for
hydrogen; the correlation is reasonable in both
cases. IRMOF-20 has a greater surface area
than MOF-5 (measured BET surface areas of
4073 m?/g vs. 3512 m?/g), rationalizing its
greater gravimetric hydrogen usable capacity
under the Chahine rule.

MFU-4/ Bucior et al.%? screened the CSD
MOF subset? of c.a. 8000 MOFs for hydrogen
storage at 77 K and 100 bar using a combination
of machine learning and molecular simulations.
First, they trained an L1-regularized linear re-
gression model to predict simulated usable ca-
pacity of hydrogen between 100 and 2bar at
77K. To engineer a feature vector represent-
ing a MOF, they binned into a histogram the
computed van der Waals potential energy of in-
teraction between hydrogen and the MOF at a
grid of points overlaid the unit cell. To serve
as training data for the regression model, they
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Figure 6: Gomez-Gualdron et a constructed a set of 204 zirconium-based hypothetical MOF's
and screened them for storing and delivering methane, leading to the synthesis of NOTT-800. (a)
The basic building blocks used to construct the hypothetical MOFs (connection points highlighted).
The ditopic linkers and Zr-SBU are combined in an fcu net. The central and peripheral building
blocks are combined to form tetratopic building units (e.g., see (b)), which are then assembled with
the Zr-SBU in the ftw, csq, and scu nets. (b) Examples of tetratopic building units obtained by
combining one central and four peripheral building blocks (see (a)). These particular building units
are isomers. (c¢) Comparison of experimental (solid lines) and simulated (dashed lines) isotherms for
methane adsorption in NU-800 at various temperatures. (d) The crystal structure of NU-800 has
fcu topology and is constructed from the TPT linker in (b) (cyan: Zr, red: O, grey: C, white: H).
Reprinted with permission from Chem. Mater. 2014, 26, 19, 5632-5639. Copyright 2019 American
Chemical Society.

simulated hydrogen adsorption in a diverse set tions by the regression model, they conducted
of hypothetical MOFs. After ensuring their GCMC simulations in the 1000 MOF's predicted
trained regression model was sufficiently accu- by the regression model to have the highest us-

rate on test data, Bucior et al. then, on the able capacity. MFU-4£'® (refcode UPOZAB)
basis of computed potential energy histograms, was among the top 25 3D MOF candidates ac-
applied the model to predict the hydrogen us- cording to these targeted GCMC simulations;
able capacity of the 55000 MOFs in the CCDC its hydrogen adsorption isotherms were mea-
subset.!? To refine the usable capacity predic-  sured before but only up to 20bar.!%® Bucior
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et al. then experimentally synthesized MFU-
41(Zn) and measured its high-pressure hydrogen
adsorption isotherms at 77 K, 160 K, and 296 K,
with which the simulated adsorption isotherms
agreed very (160K and 296 K) or reasonably
(77K) well. See Fig. 7. MFU-4I(Zn) exhib-

ited a usable capacity of 29 g/L (77K, between
100 bar and 5bar), which ranks it among the

top reported MOFs for hydrogen storage at
159

these conditions.
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Figure 7: A machine-learning accelerated high-
throughput screening®? led to the identification
of MFU-4! for hydrogen storage. (a) Crystal
structure of MFU-4{. (b) Simulated and exper-
imental Hy adsorption isotherms of MFU-4[ at
different temperatures. Reproduced from Ref.
62 with permission from The Royal Society of
Chemistry.

she-MOF-1 Gémez-Gualdrén  and
workers'% constructed a set of 13000 hypo-
thetical MOF structures falling in 41 different
topologies and screened them for cryogenic hy-
drogen storage. The hydrogen usable capacities
in each hypothetical MOF were predicted from
the difference in simulated hydrogen adsorp-

CO-
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tion at 77K and 100bar and at 160K and
5bar (using a combination of a pressure- and
temperature-swing for hydrogen storage and
delivery). To generate the hypothetical struc-
tures, the authors took a “top-down” approach
that first specifies the topology of the extended
network based on the points of connection em-
anating from the building blocks, then places
building blocks in the topological net, spatially
scaled to accommodate them. The building
blocks were selected from those seen in ex-
isting MOFs. The authors then synthesized,
activated, and measured hydrogen adsorption
isotherms of a hypothetical MOF in the rare
she topology, she-MOF-1. While she-MOF-
1 showed moderate thermal stability up to
548K, its pore volume reduced by 30% (ac-
cording to nitrogen adsorption isotherms) after
shipping it off for hydrogen adsorption measure-
ments, indicating a lack of long-term stability
after activation. To confirm the adsorption
prediction, though, simulated and experimen-
tal hydrogen adsorption isotherms match very
well at 160K after scaling the experimental
data by 1.3 to account for the loss in pore vol-
ume after shipment. This study demonstrates
the need for the ability to predict the stability
of hypothetical MOFss.

6.1.3 Oxygen storage and delivery

Oxygen (O3) gas is used in healthcare to
treat a variety of respiratory illnesses including
chronic obstructive pulmonary disease and pul-
monary fibrosis. 191162 Pure Oy is also necessary
for industrial processes such as Linz-Donawitz-
steelmaking which uses O, to reduce the car-
bon content of molten carbon-rich pig-iron to
create steel; this process comprises 60 % of all
steel production. %14 Another use of pure oxy-
gen is to increase the efficiency of the regenera-
tion of catalyst in fluid catalytic cracking — an

essential process in petroleum refinement. '6°To | i this a
ignificant
store oxygen gas, it is typically densified via ¢

compression to high-pressures of around 200 bar
and stored at room temperature. MOFs are
a novel alternative for O, storage,®® enabling,
compared to standard compressed oxygen stor-
age, (a) an increased oxygen storage density



at comparable pressures and/or (b) a compa-
rable stored oxygen density but at a reduced
storage pressure, thereby alleviating safety con-
cerns and the need for heavy storage tanks.

this is missing mention of liquid oxygen stor-
age

UMCM-152 Moghadam et al.'®” conducted
a high-throughput computational screening of
2392 previously synthesized MOFs from a sub-
set of the CoRE database chosen because of
the high-quality partial charges assigned to the
MOF atoms. *1?* The authors performed grand-
canonical Monte Carlo simulations of oxygen
adsorption at 298 K and at pressures between
1bar and 200 bar in each MOF. The volumet-
ric oxygen usable capacity at 140 bar storage
and 5 bar was then computed. High volumetric
oxygen usable capacities were correlated with
largest cavity diameters above 8 A, void frac-
tions larger than 0.7, and geometric surface ar-
eas larger than 2600m?/g. See Fig 8. The
most promising MOF for oxygen delivery was
UMCM-152 (CSD refcode: ANUGIA), with
a predicted usable capacity of 249 L(STP)/L,
and thus UMCM-152 was targeted for synthe-
sis and oxygen adsorption isotherm measure-
ment. UMCM-152 displayed the highest volu-
metric O, delivery for any material reported,
249 L(STP)/L, 22.5% higher than the previ-
ously best reported material, NU-125.156 At
room temperature, the density of oxygen in
a UMCM-152-packed tank at 140 bar is 96 %
higher than in a traditional Oy gas tank storage
at the same pressure; to achieve the same den-
sity in a UMCM-152-packed tank at 140 bar,
a compressed cyclinder would have to be up to
300 bar. Notably, the simulated and experi-
mental oxygen adsorption isotherms at 298 K
agreed very well. In summary, computational
screening was used to identify UMCM-152 as
exhibiting a large volumetric oxygen usable ca-
pacity to enable safer (low-pressure) and com-
pacter adsorption-based oxygen storage.

6.2 (Gas separations

For applications of MOFs in gas separations, we
exploit differences among gas species in their
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Figure 8: Computational identification of
UMCM-125 (CSD refcode ANUGIA) for oxy-
gen storage and delivery.1” (a) Computational
screening data; each point represents a MOF.
The volumetric oxygen deliverable (usable) ca-
pacity is largest for MOFs with a void frac-
tion (V) above 0.7 and a largest cavity di-
ameter (LCD) above 7.5A to 8 A. Common
MOFs are highlighted, including the MOF pre-
dicted to have the largest O usable capac-
ity, UMCM-152. (b) The crystal structure of
UMCM-125, with pore space for oxygen adsorp-
tion shown in purple. Figure from Ref. 167 un-
der Creative Commons Attribution 4.0 Inter-
national License https://creativecommons.
org/licenses/by/4.0/.
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(i) affinity for the surface, an energetic effect,
(ii) packing into the pores, an entropic effect, 168
and/or (iii) rate of transport through the ma-
terial. Chemical separations account for 10 %
to 15% of the world’s energy consumption. 6?
Therefore, improving the efficiency of incum-
bent separation processes, e.g. distillation in
the petroleum industry, could reduce pollution
and make goods cheaper to produce. More-
over, the highly tunable pore shapes and sur-
face chemistries of MOF's could enable molecu-
lar separations that were once impossible. ™ In
practice, deploying a MOF for gas separations
entails (a) packing a column with a MOF adsor-
bent, then passing the gaseous mixture through
the column or (b) embedding the MOF ad-
sorbent within a membrane, both allowing the
MOF to selective capture certain gas species.

6.2.1 Xenon/krypton separations

Life-cycle analysis indicates that generating
electricity by nuclear fission emits less green-
house gases than by fossil fuels, with emis-
sions on par with solar photovoltaics. '™ Repro-
cessing used nuclear fuel recovers unused ura-
nium for further electricity generation, thereby
maximally utilizing our uranium reserves, and
reduces the volume of nuclear waste to se-
quester. '™ During the aqueous reprocessing of
used nuclear fuel, volatile, radioactive nuclides
of xenon and krypton evolve into the off-gases
in parts-per-million concentrations.!™ MOFs
could potentially be used in an adsorption-
based process at ambient conditions to capture
the xenon and krypton from the off-gases to
prevent their uncontrolled release into the envi-
ronment. ™ Using two adsorption processes in
series, one to remove xenon, and the next to
remove krypton, is one strategy, where a ma-
terial with a high Xe/Kr selectivity is desired
for the first process. ™ The radioactive krypton
from the second process (3°Kr, half-life ca. 10.7
years) can be sequestered, while the xenon from
the first process, which has a much shorter half-
life (longest-lived 12"Xe, half-life 36.4 days'™)
could be sold in the market for use in medicine,
ion propulsion, lighting, and insulation. ™
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SBMOF-1 Searching for a MOF harboring a
high Xe/Kr selectivity, Banerjee et al.'™" calcu-
lated the Henry coefficients of xenon and kryp-
ton at 298K in the set of CoRE and hypo-
thetical MOFs, relevant to the dilute condi-
tions encountered in the off-gases of used nu-
clear fuel reprocessing. The MOF that exhib-
ited the highest Xe/Kr selectivity, SBMOF-1,
was a member of the CoRE MOF database
and thus has already been synthesized, '™ but
not characterized for Xe/Kr separations. Moti-
vated by the computational prediction, Baner-
jee et al.'™" synthesized SBMOF-1, measured
its pure-component adsorption isotherms, and
conducted column breakthrough experiments
using a surrogate used nuclear fuel reprocess-
ing off-gas mixture as the inlet. SBMOF-1
was found to exhibit the highest experimen-
tally reported equilibrium Xe/Kr selectivity at
dilute conditions (on the basis of experimen-
tal Henry coefficients) and to show good break-
through performance, even in the presence of
humidity. See Fig. 9. We duly note that
several computational screenings of MOF's for
xenon/krypton separations have been carried

out at different conditions prior to release of
the CoRE MOFs. 61,179,180

6.2.2 Chemical warfare agent capture

Nerve agents, such as sarin and soman, are
among the most lethal chemical warfare agents
due to their high levels of neurotoxicity. These
synthetically produced toxins are readily ab-
sorbed through dermal contact, inhalation, and
ingestion.®! The primary mechanism of nerve
agent function is by disrupting nerve signals to
the organs in the body, resulting in symptoms
such as seizures, cardiac arrest, and potentially
death by asphyxiation. 82183 Acute exposure to
nerve agents can lead to long-term cognitive
and behavioral deficits.'® The adsorption ca-
pabilities of MOFs can potentially be exploited
to capture chemical warfare agents from the
air,’® e.g., as a filter in a gas mask.'®® Using
molecular simulations to rank MOFs according
to their ability to capture CWAs underlines a
classic role of computer simulations: reducing
the need to conduct dangerous experiments.
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Figure 9: SBMOF-1 for Xe/Kr separations.!”” (a) Simulated Xe/Kr selectivity against pore size;
each point represents a CoRE MOF; SBMOF-1 is marked. (b) The crystal structure of SBMOF-1
(CSD refcode KAXQIL) exhibits 1D channels that form well-defined pockets in which xenon can
adsorb commensurately with the structure. (green: Ca, yellow: S, red: O, gray: C, white: H)
(c¢) Experimentally measured pure-component Xe and Kr adsorption isotherms in SBMOF-1 at
298 K. Horizontal, dashed line shows one adsorbate per unit cell, indicating commensurate xenon
adsorption. Henry coefficients fit to the low-pressure data imply SBMOF-1 harbors an equilibrium
Xe/Kr selectivity of 16. Inset shows metal and organic ligand used to synthesize SBMOF-1. (d)
Comparison of Xe/Kr separation performance among MOFs, at dilute conditions; Henry coeffi-
cients were extracted from experimental pure-component adsorption isotherms in the literature.
Reproduced and adapted from Ref. 177 under Creative Commons Attribution 4.0 International
License https://creativecommons.org/licenses/by/4.0/.

Due to the lethality of chemical warfare isopropyl fluorophosphate (DFP), and dimethyl
agents, surrogate molecules that share key char- p-nitrophenyl phosphate (DMNP)]. Judging
acteristics are used in research to avoid expo- from the correlation of the simulated heats of
sure. For example, a commonly used surro- adsorption of the authentic nerve agents in the
gate for mustard gas is diethyl sulfide (DES). CoRE MOFs with the heats of adsorption of
See Fig. 10b. Sholl et al.'®? simulated adsorp-  surrogates, e.g. DMMP, DCP, and DFP are
tion of nerve agents [soman, sarin] at dilute poor surrogates for soman adsorption in MOF's,
conditions in the CoRE MOFs and compared with DMNP its best surrogate.
their heats of adsorption to that of four com-

mon surrogates [dimethyl methylphosphonate  Nig(BTP), Matito-Martos et al.'8” designed
(DMMP), diethyl chlorophosphate (DCP), di- 4 high-throughput screening strategy to iden-
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tify MOF's for the capture of chemical warfare
agents (CWAs) sarin, soman, mustard in humid
environments. The authors screened a subset
of 2932 MOFs from the CoRE database with
point charges assigned!?* to account for CWA-
MOF electrostatic interactions during the sim-
ulations. First, a subset of 1275 MOFs were
excluded because they exhibited pore limiting
diameters too narrow (lower than 3.72A) to
accomodate CWA molecules. Second, the au-
thors simulated adsorption of the CWAs and
their surrogates in the 1647 remaining MOFs
at dilute conditions, computing the Henry co-
efficient and isosteric heat of adsorption via
Widom insertions. The heats of adsorption of
the authentic CSW and its surrogate were rea-
sonably correlated for mustard gas and its sur-
rogate diethyl sulfide (DES), but less so for
sarin and somin and their surrogates. MOFs
displaying the highest Henry coefficients of
CWAs tended to harbor a largest cavity di-
ameter of around 5 A. Next, to account for
competitive adsorption of water from the en-
vironment, Matito-Martos et al. computed
the Henry coefficients of water in each MOF,
then shortlisted 156 hydrophobic structures dis-
playing Henry coefficients and heats of ad-
sorption lower than hydrophobic MOF ZIF-
8.188 In the shortlist of hydrophobic MOFs,
the authors ran more expensive GCMC simu-
lations of mustard gas and nerve agents sarin
and soman at 13.8 Pa and 0.6 Pa, respectively,
an estimate of the lethal concentrations. Of
eight MOFs predicted to exhibit the largest
sarin, soman, and mustard gas uptakes (the
three were strongly correlated), they selected
Niz(BTP)y (CSD refcode UTEWOG) for ex-
perimental synthesis and column breakthrough
experiments on the basis of its reported ther-
mal and chemical stability. ' The authors con-
ducted a column breakthrough experiment with
150 mg Ni3(BTP),, flowing nitrogen gas with
80% relative humidity (water) and 1 ppm di-
ethyl sulfide (DES, a mustard gas surrogate)
through the column at room temperature and
20 mL/min and measuring the composition of
DES at the exit of the column with a gas chro-
matograph. Fig 10c shows that Niz(BTP),
readily captured DES for more than 7 hours, at
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which point the MOF became saturated with
DES, and DES broke through the column. The
concentration of DES in the eluted gas (before
saturation) was only 0.05 ppm, mimicking the
mustard gas concentration that would be in-
haled if Niz(BTP), were a filter in a gas mask
within an environment of 1 ppm mustard gas
and 80% relative humidity. Further, adsorp-
tion in Niz(BTP), was reversible; thermogravi-
metric analysis and temperature programmed
desorption indicated water was desorbed at a
lower temperature than for DES, proving that
the framework is selective for DES over wa-
ter. In summary, Matito-Martos et al. compu-
tationally pinpointed Nig(BTP), as readily ad-
sorbing mustard gas in the presence of humid-
ity and demonstrated capture of its surrogate
molecule DES through column breakthrough
experiments.

6.3 Carbon dioxide capture

Fossil fuels have been one of the main energy
sources since the 20th century in the US*® and
are the main source of carbon dioxide emis-
sions worldwide. ! The increasing carbon diox-
ide concentration in the atmosphere is leading
to significant changes in the climate, and the av-
erage global temperature is projected to rise by
2.6°C to 4.8°C by the end of the 21st century
if carbon dioxide emissions are not mitigated
from their current trajectory.!®? In the United
States, roughly 40 % of COs emissions are di-
rectly tied to the burning of fossil fuels in power
plants, ' and significant effort is devoted to de-
velop efficient technologies to capture CO4 from
the flue gas of fossil fuel-fired power plants be-
fore it is released into the atmosphere. The cap-
tured CO5 can then be sequestered in a geologi-
cal reservoir.* The methods currently used to
capture carbon dioxide, such as absorbing CO,
with aqueous alkanolamine absorbents have not
proven to be energy efficient and reduce energy
output by approximately 30 % in most power
plants. !> The energy penalty is mainly due to
the high cost of separating CO, from the flue
gas after fuel combustion and regenerating the
the amine solvent used to capture the CO,. !
A more recent development sees MOF's selec-
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Figure 10: Computational identification of
Niz[BTP], for chemical warfare agent cap-
ture.'®” (a) The structure of Niz[BTP], (CSD
refcode: UTEWOG). (b) Mustard gas and its
surrogate diethyl sulfide (DES). (¢) DES break-
through curve. A Ny gas stream with 80%
relative humidity and 1 ppm DES at 298K is
passed through a column packed with 150 mg of
Ni3[BTP]y at 20 mL/min. Shown is a measure-
ment of normalized DES concentration at the
outlet of the column via gas chromatography.
Reprinted with permission from Chem. Mater.
2018, 30, 14, 4571-4579. Copyright 2019 Amer-
ican Chemical Society

tively capturing the COy gas, which could re-
duce the energy penalty significantly.1® The re-
moval of COs from the flue gas is called post-
combustion carbon capture. An alternative is
to capture COy prior to the fuel combustion—
a pre-combustion strategy. Instead of directly
burning natural gas to produce electricity, natu-
ral gas and steam are converted, in the presence
of a catalyst, to Hy and CO. The CO is then re-
acted with water, in a water-gas shift reaction,
to produce CO, and H,. Carbon dioxide can
then be separated from H, rather than from ex-
haust gases, and the pure Hy can be burned to
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produce electricity. An advantage to employ-
ing MOF's for pre-combustion carbon capture
is that the COy/Hy mixture is at high pressure
already, and a pressure swing down to atmo-
spheric pressure can readily push CO, out and
regenerate the MOF.

NOTT-101/OEt Chung et al.% used a
genetic algorithm to find a MOF for pre-
combustion carbon dioxide capture. To ap-
ply genetic algorithms to search for MOF's with
good selectivity for CO5 over Hy and a high CO»
usable capacity, Chung et al. explored the hy-
pothetical MOF (hMOF) database by Wilmer
et al.'4! The database contains some duplicate
“twin” structures, so the database was reduced
from 130k to 55k structures. Every hMOF was
described with six digit integers, representing
the maximum and actual degree of interpene-
tration and the species of the inorganic nodes,
functional group, primary organic linker, and
secondary organic linker (see Fig 1la). In a
genetic algorithm, this representation and each
digit integer is called a chromosome and a gene,
respectively. A genetic algorithm compares fit-
ness between different chromosomes, where the
fitness is a property of the chromosomes that we
seek to optimize. The chromosomes with bet-
ter fitness are allowed to advance to the next
generation and are then allowed to undergo
genetic changes, such as a random change in
one of their genes (mutation) or a gene swap
between two chromosomes (crossover). This
process is allowed to repeat itself, allowing
the chromosomes to “evolve” and eventually
the fitness converges to a local minima.!'%¢ All
hMOFs were described by a chromosome and
a subset of 100 diverse hMOF chromosomes
were chosen for the initial generation. Three
genetic algorithms were initiated, each with a
different adsorption property serving as the fit-
ness: CO, usable capacity, selectivity for COq
over Hy, and an adsorbent performance score
(APS), which is a product of the two previously
mentioned properties. The genetic algorithms
were run for 10 generations, at which point
Chung et al. analyzed the MOFSs in the last
generations and found that only a few organic
linker genes and inorganic node genes were



represented (see Fig 11b), meaning that those
genes led to higher fitness throughout the evolu-
tionary stages of the genetic algorithm. These
genes were used to obtain a preliminary list
of MOFs that exhibited both good selectivity
for CO5 over Hy, a high CO, usable capacity,
and APS (see Fig 11c¢). Governed by previous
experiences in MOF synthesis and its fitness in
the genetic algorithms, Chung et al. synthe-
sized and tested NOTT-101/OEt experimen-
tally. Both CO5 and Hs adsorption isotherms
were measured (see Fig 11d) and showed a good
agreement with simulated isotherms. NOTT-
101/OEt had a usable capacity of 3.8 mmol/g
and a COy/Hy selectivity of 60. Other no-
table MOFs studied for COy/H, separations
in pre-combustion are Mg-MOF-74, with a 2.6
mmol/g usable capacity and a 365 CO5/H, se-
lectivity,'” and Cu-BTTri, with a 3.7 mmol/g
usable capacity and a 20 CO,/H, selectivity. 1%

Selectivity and usable capacity, however, are
based on the equilibrium adsorption isotherms
and do not consider process objectives, such
as required purity and recovery.To check if
there exists a certain “threshold” selectivity
to achieve the hydrogen purity requirement of
99.999% for combustion reaction, Chung et al.
carried out a series of pressure-swing adsorp-
tion (PSA) simulations to find the lower limit of
CO4/Hj, selectivity. They found that the mate-
rials to be used for the precombustion COq/Hs
separation, the COy/Hy selectivity needs to be
greater than 30 to meet the process objective
of 99.999% H, purity. On the basis of the
process modeling, Chung et al concluded that
while NOTT-101/OEth meets the process re-
quirement, another porous material, Cu-BT'Tri,
cannot be used for precombustion carbon cap-
ture application because the COy/Hj selectivity
is not high enough to generate the high purity
Hy stream required for subsequent energy gen-
eration.

doesn’t
purity fol-
low from
selectiv-
ity? I am
naive.

6.3.1 Xylene enrichment

Mixtures of Cg aromatics— ortho-, para-,
and meta-xylene and ethylbenzene— are ob-
tained from the catalytic reforming of crude
0il. 199200 The p-xylene isomer is the most
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valuable component of the Cg aromatic mix-
ture. It is oxidized to yield terephthalic acid
or dimethyl terephthalate, both feedstocks for
the production of polyethylene terephthalate
(PET), which is widely used for synthetic
fibers (polyester) and bottles. % Pure o-xylene
is also valuable to synthesize phthalic anhy-
dride, a precursor to produce plasticizers. %
However, mixtures of Cg aromatics are very
challenging to separate because of their similar
shapes, boiling points, and polarities.?”! The
two incumbent industrial processes to separate
Cg aromatic mixtures are crystallization and,
more often, selective adsorption onto a solid-
state material. 199209202 N[OFs are promising
adsorbent materials for separating Cg aromat-
ics more effectively than zeolites, which are
currently used in a simulated moving bed pro-
cess to obtain high-purity p-xylene. 23

MOF-48 Gee et al.?* conducted multi-
component grand-canonical Monte Carlo sim-
ulations of adsorption in the CoRE MOFs im-
mersed in a 0.33:1:2:1 ethylbenzene/o-X/m-
X/p-X (X=xylene) mixture at 9 bar and 50°C
(conditions for liquid phase). Among the CoRE
MOFs with the highest predicted selectivity for
and capacity of p-xylene, Gee et al. selected
MIL-140B, MOF-48, MIL-47, and MIL-125-
NH, to target for experimental investigation
after also considering chemical and thermal
stability and the commercial availability of
their linkers and metals. Liquid-phase break-
through adsorption measurements then tested
the capability of each MIL-140B, MOF-48, and
MIL-125-NH, to separate p-xylene. Of these,
MIL-140B exhibited the highest breakthrough
p-xylene selectivities (1.8 over o-xylene, 1.6 over
m-xylene, and 2.1 over ethylbenzene). The au-
thors claim that their column breakthrough
experiments indicated MIL-140B exhibits a
higher p-xylene selectivity than zeolite BaX
currently used in industry, but their break-
through experiment for BaX was conducted at
180°C compared to 50°C for MIL-140B. In-
terestingly, though MOF-48 and MIL-47 differ
only by a dimethyl-functionalization, MOF-
48 exhibits p-xylene selectivity while MIL-47
exhibits o-xylene selectivity, emphasizing that
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Figure 11: The discovery of NOTT-101/OEt was guided using a genetic algorithm, leading to a good
comparison with experimental data.® (a) A chromosome describes a MOF structure with 6 integers
(called genes), each representing a different property of the MOF. The genes form a chemical space
that will be explored in the genetic algorithm. (b) A visualization of the evolution of the primary
organic linker gene throughout the genetic algorithm using the adsorption performance score as
the fitness. After 10 generations, only 3 genes are predominantly described by the chromosomes,
hinting that these linkers are optimal for CO5 capture. (¢) The adsorption properties of the MOFs
be more specific than vague “results” from the genetic algorithm search. Each point represents a
hypothetical MOF generated in the genetic algorithm. (d) A comparison between simulated and
experimental isotherms for NOTT-101/OEt. The experimental isotherms were multiplied with a
correction factor for this figure, to take into account the 92 % pore activation of the synthesized
NOTT-101/OEt. The structure of NOTT-101/OEt can be seen in the inset, where pores are
represented by dark spheres.

subtle distinctions in pore features can lead to . . .
ample, instead of explicitly programming a

selectivity switching for these similarly-shaped
Cg aromatic isomers.

A lesson from machine learning

The field of machine learning aims to
leverage data to train mathematical models
or algorithms to perform a task. For ex-
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computer to translate speech, identify and
classify traffic signs, detect fraudulent fi-
nancial transactions, and recommend mu-
sic, a machine learning algorithm /statistical
model is tuned to perform these tasks af-
ter taking in many examples (data) as in-
put. As more data is used to train the ma-




chine learning model, it generally performs
the task more effectively, though with di-
minishing returns. The development of the
field of machine learning has benefited dra-
matically from large, open data sets that
serve as arenas for machine learning mod-
els and methods. These open data sets (i)
standardize benchmarking and comparison
of models, (ii) reveal insights into the inner-
workings and deficiencies of different learn-
ing algorithms based on their mistakes while
performing intuitive tasks, (iii) foster com-
petition, and (iv) stimulate the development
of better-performing methods.

As an example, the open MNIST data set
of handwritten digits?%® contains c.a. 70 000
labeled, binary images of handwritten dig-
its 0,1,...,9. The MNIST data set is par-
titioned into training and testing sets to
provide a widely-used, standard benchmark
for classification algorithms. Developments
in machine learning algorithms have led to
highly accurate handwritten digit classifiers
(0.21% error?%%). As a more challenging
arena, CIFAR-10 and -1002°7 data sets each
consist of 60 000 colored, labeled images and
contain more complicated classes such as
frogs, dogs, airplanes, etc.

To directly generate interest and de-
velop new supervised machine learning mod-
els and methods, open challenges are held
(sometimes prized), whereby publicly re-
leased are (1) a labeled data set for train-
ing a model and (ii) a data set where la-
bels are withheld for testing/evaluating the
model (i.e. only independent variables are
released). Teams submit the test set la-
bels predicted by their trained model, and
a leaderboard ranks teams according to an
evaluation metric e.g. accuracy.

For example, Netflix in 2006 released rat-
ings by c.a. 480 000 subscribers on c.a. 18 000
movies, comprising c.a. 100 million movie
ratings from 1 to 5.2% Three million ratings
(by the same set of subscribers, on the same
set of movies) were withheld as test data.
In 2009, a $1 million prize was awarded to
the team that improved upon the incum-
bent algorithm of Netflix, Cinematch, by
decreasing the root mean square error be-
tween predicted and actual ratings on the
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test set by 10 %. Both the release of the rat-
ings data and the competition generated in-
terest in recommendation systems, spurred
the sharing of ideas between groups, and led
to advances in recommendation algorithms
(which were disseminated).20%219 Koren,2!!
a member of the team that won the Netflix
Prize, noted “a clear spike in related publi-
cations, and the Netflix dataset is the direct
catalyst to developing some of the better al-
gorithms known in the field”. He noted that
the teams exhibited a collaborative spirit:
“the feeling was of a big community pro-
gressing together”.

As another example, the ImageNet Large
Scale Visual Recognition Challenge is an an-
nual, ongoing challenge since 2010, and it
has spurred innovation in object recognition
and detection in images.?'? ImageNET is a
crowdsource-annotated database of millions
of images with hundreds of object categories.
An annual workshop is held at the end of the
year to disseminate and discuss the most in-
novative and successful approaches. 22

Within the realm of materials science,
to spur developments and track progress in
crystal structure prediction,?!® the CCDC
holds a challenge to predict crystal struc-
tures of molecules.?'* To spur force field de-
velopment, an open challenge could be held
to predict the adsorption isotherms of dif-
ferent gases in MOF structures (holding the
experimental MOF adsorption data secret).

7 NIST Resources for Ad-
sorption Measurements

In 2014, the National Institute of Standards
and Technology (NIST) officially launched a
program devoted to adsorption science, with
two main aspects: a measurement laboratory
named the NIST Facility for Adsorbent Char-
acterization and Testing (FACT)?'® and an ad-
sorption data repository. The purpose of the
FACT laboratory is to support programs re-
lated to research, development, and engineer-
ing of adsorbent materials by developing test-
ing procedures, disseminating reference mea-



surements, and providing impartial testing and
characterization of adsorbent materials. A no-
table accomplishment of the FACT is the dis-
semination of a reference carbon dioxide ad-
sorption isotherm on a the NIST Reference Ma-
terial, NIST RM-8852 (an Ammonium ZSM-5
zeolite), which was developed via an interlab-
oratory study.?'® With an emphasis on devel-
opment and dissemination of standard methods
and measurements, measurement outputs of the
FACT may prove useful as reference points for
validation of laboratory measurements or as ref-
erence properties for future modeling efforts.
The data component of NIST’s efforts
was released in 2014 as a free, web-based
database of adsorption experiments, including
measured adsorption isotherms, entitled the
NIST/ARPA-E Database of Novel and Emerg-
ing Adsorbent Materials*'” (NIST-ISODB)S.
The initial iteration of the database included
a list of previously-published journal articles
that describe adsorption experiments (with a
broad definition of “experiments,” including
molecular simulations, ab initio simulations,
model-based approaches, etc.) with tagged
metadata describing experimental parameters
such as the adsorbent material, adsorptive gas,
measurement temperatures, and pressure range
among other descriptors. The data contents
of NIST-ISODB were to be from two ma-
jor sources: the open scientific literature and
measurements from the FACT laboratory it-
self. The initial contents of the database tar-
geted materials in the MOF family, though it
also included carbon materials, zeolites, and
other common porous adsorbents. Adsorp-
tion isotherms present in the journal articles
that compose database entries were converted
from the source graphical or tabular form in
the article to a format compatible with NIST-
ISODB, which could then be accessed either
by displaying the isotherm graphically in the
NIST-ISODB web application (cf. Fig. 12) or
by downloading a structured data file from
NIST-ISODB. Furthermore, the NIST-ISODB
web application was and is capable of plotting
multiple isotherms, from the same or differ-

Shttps://adsorption.nist.gov/isodb
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ent source articles, simultaneously, allowing
for online comparison of isotherms; simultane-
ous plotting of isotherms for the same adsor-
bent/adsorptive/temperature combination en-
ables a sort-of “virtual interlaboratory study”
of the particular adsorption experiment. The
NIST-ISODB has steadily grown to over 3500
articles and more than 30000 isotherms as of
publication of the present manuscript. Data ad-
ditions to the database are chosen either from
the results of string-based searches of the extant
literature or by direct submission of data by
outside laboratories. Other additions to NIST-
ISODB since its 2014 launch include improved
database vocabulary for adsorptive species (via
the InChIKey scheme?®) and adsorbent mate-
rials (see following paragraph), an application
programming interface (API) for accessing the
database contents (in particularly, the library
of adsorption isotherms), isotherm fitting tools
inside the online isotherm plotting utility, an
[AST calculator that integrates with the API
to estimate multicomponent adsorption equi-
librium, and a simple adsorption column simu-
lator that also uses TAST in conjunction with
the isotherm API functions.

One challenge identified early in the NIST-
ISODB project was that of the naming
scheme(s) for adsorbent materials and MOFs
in particular. In short, there is no stan-
dard method for naming MOFs and, per-
haps more critically, a specific MOF may go
by multiple names, easily leading to confu-
sion for novices and experts alike. For ex-
ample, the material named HKUST-1 in the
disclosure of its initial synthesis!'® is now more
commonly known as CuBTC (short for Cop-
per Benzene-1,3,5-tricarbolyxate), but is also
known as MOF-199% and is sold by BASF
under the name Basolite™ €300.22° Multi-
plicity of names, such as for CuBTC, hinders
effective searches in NIST-ISODB. To solve
this problem, the NIST Registry of Adsorbent
Materials??! (NIST-MATDB)" was released in
2017 as a companion to NIST-ISODB. The
overarching purpose of NIST-MATDB is to
identify adsorbent materials via unique iden-

"https://adsorption.nist.gov/matdb
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tifiers (based on SHA-256 cryptographic hash
digests) that cross-references the names that
have been or will be applied to those materials.
Additionally, the NIST-MATDB provides for
association of external resources to the unique
identifiers, allowing, for example, association
of a CSD entry with an adsorbent material in
the NIST-MATDB. As for the NIST-ISODB,
the contents of NIST-MATDB are accessible
via both a web application and an API. Ad-
ditionally, the NIST-ISODB was reconfigured
to rely on NIST-MATDB for resolution of ad-
sorbent material names. Lastly, the NIST-
MATDB web application includes a feedback
tool by which the user community can provide
corrections, metadata improvements, and ad-
ditions to the registry. The intention is that,
via crowd-sourcing and followup auditing by
subject matter experts, the registry will be im-
proved using the collective knowledge of the
adsorbent materials, synthetic chemistry, and
crystallography communities.

The availability of both the NIST-ISODB
and NIST-MATDB provide a large quantity
of freely-accessible data on adsorbents and ad-
sorption experiments that can be leveraged for
computationally-driven approaches to material
development and refinement, e.g., through val-
idation of molecular simulations and bench-
marking of force fields.  Additionally, the
APIs of both databases provide platforms for
automated exploitation of the open datasets
through either straightforward data mining
or more opaque machine-learning approaches.
For example, Park et al. used the NIST-
ISODB API to investigate the reproducibility of
experimentally-measured adsorption isotherms
and reported the — perhaps not surprising,
but certainly concerning — conclusion that
few experimental adsorption isotherm experi-
ments (e.g., for carbon dioxide adsorptive, per-
haps only 15 MOFs out of thousands) can be
clearly identified as reproducible based on lit-
erature data in the NIST-ISODB.?*? For ex-
ample, Fig. 13 shows the authors’ compila-
tion of isotherms of carbon dioxide adsorp-
tion in HKUST-1 near 298 K from the NIST-
ISODB, which provides graphical indication of
the variability present in reported experimental

31

isotherms. Additionally, Fig. 14 graphically
summarizes their results, relating reproducibil-
ity of experimental isotherms to consistency
while also indicating the number of indepen-
dent isotherms available and the outlier types.
One can envision other relatively straightfor-
ward uses for the NIST-ISODB dataset by iden-
tifying specific materials or families of materials
that could then be reevaluated or evolved via
computational approaches to achieve specific
performance objectives. As one example, the
NIST-ISODB isotherms could be data mined
to search for candidate adsorbents for chemical
separations by applying a theory such as IAST
to suitable isotherms in the database. (Such a
use is already envisioned via example tools in
the NIST-ISODB application that integrate its
isotherm API functions with the pyIAST soft-
ware package.??>?21) Similarly, integration of
NIST-ISODB and NIST-MATDB with chemi-
cal insight into adsorbents (e.g., via the CSD)
could be leveraged to identify families of MOF's
that could be the starting point for computa-
tional material evolution toward specific per-
formance metrics via genetic algorithm-driven
mutation of those MOF coupled with compu-
tational evaluation of the offspring materials
for various material properties and adsorption
characteristics. Such approaches are similar in
principal to the computational screening of the
hMOFs set by Snurr and co-workers, 141,225,226
though with experimental adsorption isotherm
data as a starting point.

Another opportunity for computation-driven
materials development based on the NIST-
ISODB is in force field tuning and develop-
ment, an ongoing need that we discuss fur-
ther in Sec. 9.2. The isotherm dataset of
NIST-ISODB could serve as a massive training
set for the development of force fields specif-
ically for adsorptive fluids confined in MOFs
and other adsorbent materials. In fact, one
can argue that there is a strong analogy with
the machine learning competitions mentioned
earlier: the large, freely available datasets
can promote the development of standards for
benchmarking force fields (e.g., resultant force
fields must satisfy essential performance met-
rics) and then open competitions can drive
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Figure 13: On the reproducibility of COy adsorption isotherms in HKUST-1.%2? (a) Experimental
isotherms of carbon dioxide adsorption in HKUST-1 at temperatures of 298 K 4+ 5K, as collected
and organized by Park et al.??? from the NIST-ISODB, to show the variability of laboratory mea-
surements for that particular adsorption experiment. (b) Box-and-whisker plot created from 13
(out of 18) non-outlier isotherms in panel (a). Boxes represent the upper and lower quartile, the
median is indicated by the straight line, and the small square is the mean. Whiskers represent
1.5 times the interquartile range. Reprinted with permission from Chem. Mater. 2017, 29, 24,
10487-10495. Copyright 2017 American Chemical Society.

progress in molecular modeling. Such com-
petitions could be based on the provision of
limited training data from the NIST-ISODB
and requirements to predict isotherms for spe-
cific adsorptive/adsorbent /temperature combi-
nations. In fact, a competition along these lines
could be ongoing, with a regularly or contin-
uously updated leaderboard ranking the sub-
mitted isotherms. Competitions of this type
would be similar to the Industrial Fluid Proper-
ties Simulation Challenge (IFPSC)?*7 (nine edi-
tions to date), in which challenge entrants are
computationally predict some thermophysical
property based on limited experimental mea-
surements on which to tune their simulations or
other predictive method. For example, the 2012
and 2014 IFPSC competitions?2* 23! involved
prediction of adsorption isotherms for perflu-
orohexane adsorption on zeolite and activated
carbon adsorbents, respectively, with only sim-
ple isotherms (Nitrogen and/or Argon), pore-
size distribution, and other structural charac-
teristics as training data. Lastly, force field
development and competitions based on open
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data resources like those from NIST may also
adopt workflow practices similar to “continuous
integration” (CI) that is widely used in software
engineering. Given some guiding parameters
(e.g., training force fields for a particular mate-
rial class against a specified set of adsorbates),
a CI workflow could monitor a database of ad-
sorption isotherms, retrain a force field when-
ever new data that fits the training specification
is available, and then re-run simulations to pre-
dict material and adsorption characteristics for
cases outside the training set.

The introduction of open data resources for
adsorption has also revealed opportunities and
challenges that stem from a lack of standard-
ization among researchers of adsorption and
material scientists beyond that of naming ad-
sorbent materials. (We note that one of the
FACT laboratory at NIST is to develop and
disseminate best practices for adsorption mea-
surements, which addresses this point in part.)
One specific issue is the difficulty encountered
in comparing isotherms from different labora-
tories when the adsorption measurand is pre-
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sented in different units. NIST-ISODB reports
more than 60 unique, non-reducible types of ad-
sorption units, including mmol /g (millimoles of
adsorbate per gram of adsorbent) to the volu-
metric units cm®(STP)/g (cubic centimeters of
adsorbate gas at standard temperature and pres-
sure (STP) conditions per gram of adsorbent),
fractional units such as weight-percent, units
normalized by surface area, or mass or mole
units per unit cell, to name only a few.?'") Each
type of units has its own advantages and par-
ticular uses, but conversion to a different unit
type often requires extra information that may
not be present in a manuscript describing an
adsorption experiment or simulation (e.g., unit
cell dimensions, bulk density, etc.). A broader
issue in the area of standardization involves de-
scription of adsorption experiments, the quan-
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tities that are actually measured, and the clear
presentation of both. For example, experimen-
tal isotherms are typically presented as excess
isotherms, 232 but rarely described explicitly as
such.  Conversely, isotherms obtained from
molecular simulations are usually of the abso-
lute type. Other examples of lack of description
of adsorption experiments include poor identi-
fication of the adsorbent material and, in the
case of multicomponent adsorption, poor or in-
complete description of the adsorptive gas com-
position. To address some of these concerns,
NIST developed a isotherm data file based on
the JavaScript Object Notation (JSON) stan-
dard to contain both the isotherm data and
experimental metadata, and the NIST-ISODB
APIT serves isotherm data in this format (cf. Ref.
233). It is similar in principle to the Crys-



tallographic Information File (CIF) developed
and promoted by the International Crystal-
lography Union?*%%3% for representing periodic
crystal structures. For the sake of experimen-
tal/simulation reproducibility and ease of data
re-use, we strongly encourage the MOF and
adsorption modeling communities to firstly de-
scribe their experimental /simulation setup with
sufficient detail to enable reproduction by other
groups, to adopt conventions that provide clar-
ity in data representation and interpretation,
and perhaps utilize common data formats like
the JSON isotherm file.

8 Discussion

In Sec. 6, we surveyed instances of the compu-
tational identification of performant MOFs for
hydrogen, methane, and oxygen storage, carbon
dioxide, xenon, and nerve agent capture, and
xylene enrichment. The computational iden-
tifications of many of these near-term MOFs
for adsorption-based engineering applications
were often predicated on a database of open,
computation-ready, experimental MOF crystal
structures. 1 There are striking parallels here
with molecular biology and machine learning—
the “hypothesis-free science” that enabled the
discovery of CRISPR™ and large, open datasets
that spurred developments in recommendation
algorithms?* and computer vision.?!'2 We an-
ticipate the open NIST databases of adsorp-
tion isotherm measurements will spur further
advances in force field development, by taking
advantage of the large sets of isotherms avail-
able as training data and through the devel-
opment of standard benchmarking targets and
common data formats that facilitate compari-
son between groups worldwide.

High-throughput computational screening
techniques are also applied in other domains
to discover e.g. organic light-emitting diodes?3°
and Li battery materials.?®*” The field of drug
discovery has long adopted principles of high-
throughput computational screening and chem-
informatics. 238239

In addition to open databases of crystal struc-
tures, open data on (even failed) MOF synthesis
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experiments could also help the MOF commu-
nity. Finding the optimal synthesis conditions
(solvent, temperature, reaction time) to yield
a high-quality (e.g. high surface area) MOF
crystal can be difficult and time-consuming.!*
Moosavi et al. showed that machines can learn
from failed attempts to synthesize a MOF to
identify better synthesis conditions that yield a
higher-quality crystal.

While we focus on computation-driven MOF
discovery, we do not discount the chemical intu-
ition of experimental MOF chemists that often
results in successful, rational design of a MOF
selective for a particular gas. First, one can
graft functional groups onto the surface or use
metals that are known to attract (e.g. amine
functionalization to target CO,,%!° open tran-
sition metal sites to target ethylene?!!) or ex-
clude (e.g. functionalization with hydrophobic
alkyl chains to exclude water?!?) certain adsor-
bates. Second, one can gauge the length of the
linker required to manifest in a pore size ac-
commodating of and commensurate with the
target adsorbate.'? However, MOFs often ex-
hibit complicated pore geometries, which, from
the perspective of a configurational integral in
a partition function,*' dictate the ensemble of
configurations of the adsorbate(s) within the
pores and the energetics of its interactions with
the pore walls; subtle differences in pore geom-
etry can have large effects when the pore size
is commensurate with the molecule [|. Also, in-
teractions with e.g. coordinatively unsaturated
metal sites in MOFs are difficult to predict.?43
Moreover, some MOFs harbor flexible back-
bones or rotating/wobbling constituents ' and
undergo structural changes upon adsorption of
gas,?** sometimes involving delicate competi-
tion between entropy and energy.?*> Thus, the
rational design of a MOF to exhibit a desired
adsorption property is very challenging, war-
ranting the use of molecular models and sim-
ulations to carry out high-throughput compu-
tational screenings to account for these subtle
factors through molecular models.

Finally, in addition to open databases of crys-
tal structures, we reinforce that releasing com-
puter codes and/or input files in the computa-
tional MOF community is imperative for repro-



ducibility and efficient progress. See the review
of Coudert,?*® who predicts that the phrase
“data available upon request” will become ob-
solete.

9 Orienting the field

We now opine the most important future re-
search directions to routinely identify a set
of MOFs with optimal adsorption proper-
ties for an engineering application via high-
throughput computational screening; the list
of computationally-identified MOFs in Sec. 6
could be longer. Rigorously, the survey in Sec. 6
only indicates a degree of statistical signal in
the rankings predicted in high-throughput com-
putational screenings; there could be many false
negatives in the studies in Sec. 6. Moreover,
there could be under-reporting of experimen-
tal followups to computational predictions that
failed to agree.

In a computational MOF utopia, all MOF's
are rigid, perfect crystals lacking defects, and
the molecular models accurately and cheaply
describe potential energies. Future research di-
rections are based on leaving behind the pre-
sumption of a computational MOF' utopia.

9.1 Treating MOF flexibility

MOFs are typically treated as rigid in high-
throughput computational screenings owing to
(a) the exorbitant cost to sample configura-
tions of the MOF and compute intrahost en-
ergies and (b) the lack of an accurate force
field that covers all coordination environments
found in MOFs. Often, treating the MOF as a
rigid “host” is an adequate approximation. 24
Some MOFs however, are known to have flex-
ible backbones?*® or constituents (e.g. rotating
ligands?49:259) that adopt different ensembles of
configurations depending on temperature, the
amount of adsorbed gas, and the mechanical
stress imposed on the framework; the flexible
modes of a MOF can dramatically influence
adsorption. '??** Even small pore size fluctua-
tions can be important to account for when the
(average) pore size is commensurate with the
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size of the adsorbate.?®® Therefore, we opine
that accounting for MOF flexibility in high-
throughput computational screenings is a sig-
nificant next step to more accurately predict
gas adsorption properties. This requires the de-
velopment of (i) accurate intrahost force fields
for MOFs, which is underway, 3435117 (ii) effi-
cient algorithms to sample MOF configurations,
also underway, ¢ and (iii) increasing computing
power.

9.2 Developing more accurate

force fields

Arguably, the most important future research
direction lies in classical force field (molecu-
lar model) development. Given an accurate
many-body potential energy description of the
MOF and adsorbed gas system, the equilib-
rium adsorption properties follow from Monte
Carlo simulations of a statistical mechanical en-
semble.?* Owing to the exorbitant computa-
tion required for ab initio methods to compute
the potential energy of a single MOF-gas con-
figuration, it is impractical to e.g. conduct a
grand-canonical Monte Carlo simulation of gas
adsorption in a MOF using an ab initio de-

scription of the potential energy®.As a conse- (72 )

quence, classical interatomic potentials are used
for an energetic description, whose parameters
are tuned to reproduce experimental data or
ab 1nitio calculations. These cheaply-computed
potentials enable the simulation of gas in a large
number of MOFs but incur a loss in accuracy
compared to ab initio methods. Off-the-shelf,
generic force fields such as the Universal Force
Field,?® DREIDING,?” AMBER,?*3 OPLS,?*
etc. are typically employed to describe van der
Waals interactions for high-throughput screen-
ing, but especially often suffer from low accu-
racy because these force fields were not tuned
specifically for chemical environments found in
MOFs, e.g. coordinatively unsaturated metal
sites. 25

8Though, notably, density functional theory (DFT)
calculations were used as an energetic description of
small gas molecules in MOF-74 to compute Henry coef-
ficients via Widom insertions?®? by biasing the samples
towards low-energy regions.



McDaniel et al.?% systematically compared
predictions of CO, and CH, adsorption in 424
MOFs among UFF and an ab initio force field
(based on symmetry-adapted perturbation the-
ory (SAPT)?"); predicted adsorption often dif-
fered significantly between the generic and ab
initio force field, but the statistics of the rank-
ing of the MOFs according to adsorption was
good (Spearman’s rank correlation coefficient
squared for CH; and COs ranges from 0.81
to 0.98, considering uptake at both 1bar and
30bar and 298 K). The later finding, though
specific to CO, and CHy, emphasizes that
high-throughput computational screenings (us-
ing generic force fields) may rank materials with
sufficient statistics but not qualitatively predict
adsorption in each MOF satisfactorily. To an
extent reducing the importance of which generic
force field to employ in a screening, Dokur et
al.?®® showed that simulated CO,, Hy, Ny, and
CH4 uptakes in 100 MOFs with UFF are well-
correlated with those using Dreiding (binary
gas mixtures at 1bar, 2908 K).

Still, the adsorption predictions using these
off-the-shelf force fields are not quantitatively
accurate. Using our own work as an example,
though SBMOF-1 was correctly predicted by
the simulations to be a highly-ranked material
for Xe/Kr separations, the predicted Xe and Kr
adsorption isotherms deviate significantly from
the experiment (Supplementary Figure 22 in
Ref. 177). Furthermore, accurately modeling
interactions of adsorbates with coordinatively
unsaturated metal sites in MOF's is notoriously
difficult with classical force fields. 2%

Notably, assessing the accuracy of a force field
by comparing to an experimental adsorption
measurement is complicated because attribut-
ing deviations between simulation and exper-
iment to causal factors is extremely difficult.
First, there is significant variation in the exper-
imental adsorption isotherm measurements, 222
perhaps owing to varying synthesis and activa-
tion protocols. Second, under the assumption
of quality experimental data, several factors
(e.g. neglect of flexibility, poor guest-host van
der Waals interatomic potential parameters, in-
appropriate functional forms of the guest-host
van der Waals interatomic potential polarizabil-
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ity of the adsorbate, etc.) could contribute to
poor agreement with the simulation, and it is
often difficult to definitively attribute error to
any one of these factors. Ideally, one could
compare force field predictions to several mea-
sured properties (adsorption isotherms at dif-
ferent temperatures, heat of adsorption, vapor-
liquid equilibria of the bulk gas phase, com-
pressibility and thermal expansion coefficient of
the MOF, etc.) when assessing force field pre-
dictiveness and tuning a new force field. A sen-
sitivity analysis of how force field parameters
affect the predictions could shed light on the
most important effects to describe in a particul
MOF-adsorbate system. A standard and com-
prehensive methodology to benchmark both in-
teratomic potentials for van der Waals interac-
tions and electrostatic potential modeling could
propel force field development. Dan, anything
to say here?

One idea is to cede efforts to develop a
generic, transferable force field and instead fine-
tune/tailor a force field to each MOF in an au-
tomated manner. Considerable effort is cur-
rently spent on force field development for a
single adsorbate in a single MOF.?*> However,
automatic routines that judiciously sample po-
sitions of adsorbates in the MOF for ab ini-
tio calculations could then be used to correct
a prior assumption about the force field, e.g.
a generic force field description. Development
of such automatic force field tuners would re-
sult in more accurate high-throughput compu-
tational screenings of MOFs with minimal com-
putational expense.

Another important and related direction in
force field development is to leverage machine
learning models as force fields, trained on data
obtained from ab initio calculations, e.g. neu-
ral network force fields. 2?7262 Typically in force
field development, a strict functional form for
the interatomic potential is chosen, at least par-
tially motivated by physics (e.g. Lennard Jones,
Buckingham potentials). If the imposed func-
tional form does not adequately allow the im-
portant physics to be captured, the tuned force
field will be inaccurate. In contrast, deep neural
networks are highly adaptable and capable of
representing highly non-linear potential energy



surfaces?%® with minimal human intervention.

Therefore, in principle, neural networks can ac-
curately reproduce the potential energy surface
governed by ab initio theory but at a drastically
lower computational cost. The disadvantage of
a neural network force field is that much more
data (ab initio calculations) is needed to train
it than for a traditional force field where a phys-
ically motivated function form is imposed. The
reason is that the neural network must learn
the shape of the potential energy surface in ad-
dition to the quantitative details261?.
this section needs help

9.3 Developing more accurate
models of electrostatics

The electrostatic potential field within a MOF
is typically described by assigning point charges
to the MOFs. See Ongari et al.? for a sum-
mary and comparative assessment of the hier-
archy of methods to assign these point charges
to MOF atoms. There is signficant variance
among the charges predicted by the different
methods, and predicted adsorption can be sen-
sitive to the charges assigned to the MOF. 120

A daunting challenge is to account for the
change in the electrostatic potential within the
MOF as it flexes or as gas molecules adsorb on
it, transferring charge between the adsorbate
and the MOF.

Ideally, one could use raw the electrostatic po-
tential grid as output from electronic structure
calculations.

this section needs help

9The following thought experimental clarifies why
more data is needed to fit a neural network to the PES
surface than to fit a traditional force field with an in-
teratomic potential imposed. Consider if the Lennard-
Jones potential is the ground truth for an interaction
between two atoms of A. Then, two independent data
points, i.e., the potential energy at two distances, is
enough to determine the 12-6 Lennard-Jones o and e.
In contrast, the neural network would need many more
data points to learn the 12-6 scaling with interatomic
distance.
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9.4 Treating MOF defects

Molecular simulations of adsorption in MOFs
apply periodic boundary conditions to mimic
a perfect, defect-free, infinite crystal. In prac-
tice, MOF's can exhibit a significant degree of
defects and disorder (i.e. non-crystallinity) that
affect their adsorption properties. 264265 A flag-
ship example is UiO-66,2% whose inorganic Zr-
based node is coordinated to 12 benzene-1,4-
dicarboxylate (BDC) ligands to afford a highly
stable structure. UiO-66 can possess a signif-
icant amount of linker vacancies that can be
systematically tuned by varying the synthesis
conditions.?%” Both experimental®®” and com-
putational?®® studies have elucidated how the
linker defects significantly influence adsorption
of CO4 in UiO-66. Through molecular model-
ing, Bristow et al.?%’ investigated the mecha-
nism by which linker vacancies form in UiO-66.

A means to predict which MOFs in a high-
throughput screening are most susceptible to
forming defects that significantly influence ad-
sorption would be useful for flagging computa-
tional predictions of adsorption predicated on
the perfect crystal assumption. That said, ar-
guably, synthetic conditions could be tuned to
eliminate defects, placing this problem in the
hands of experimental MOF chemists.

9.5 Predicting MOF stability

Stability is a prerequisite for deploying a MOF
for most practical applications. An important
area of research is predicting a priori which hy-
pothetical MOF's can be experimentally synthe-
sized and their thermal, chemical, and mechan-
ical stability.

For example, Gomez-Gualdron et a on-
structed a set of hypothetical MOFs by compu-
tationally assembling molecular building blocks
into topological nets and computationally iden-
tified she-MOF-1 for hydrogen storage; how-
ever, upon synthesis and after shipment for ad-
sorption measurements, she-MOF-1 lost 30%
of its pore volume (i.e. it was not stable). In ad-
dition to predicting their adsorption properties,
a means to predict the stability of hypothetical
MOFs would further accelerate the deployment

1.160 c



nice. can
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concrete
example of
multi-scale
model-
ing? like
modeling
the break-
through
curve?

of MOFs for adsorption-based engineering ap-
plications.

In a rare study of MOF stability in the pres-
ence of water, Greathouse and Allendorf?™ con-
ducted molecular dynamics simulations of wa-
ter in MOF-5, treating the flexibility of MOF-5
and modeling the ZnO coordination with a non-
bonded potential. They showed distortion of
the MOF structure at low water concentrations
and the collapse of the framework at higher wa-
ter concentrations as the water molecules attack
the ZnO, polyhedra.

[know of other studies of MOF stability? ]

9.6 Multi-scale modeling

So far, the majority of computational high-
throughput screening relied on the computation
of performance metrics based on equilibrium
properties, such as usable capacity and selectiv-
ity. Although these properties are important in-
dicator of the performance of these materials for
adsorption applications, improving these met-
rics do not guarantee improvements in the pro-
cess objectives. For instance, the usable capac-
ity and selectivity of COy are commonly used
performance metrics for COy capture applica-
tions, while the overall “process” objectives are
the cost of CO5 and the product purity and re-
covery. Since the improvements in adsorption
selectivity and usable capacity do not necessar-
ily translate into process performance, we en-
visage the development of more accurate perfor-
mance metrics that ties the properties obtained
from molecular simulations and the process ob-
jectives will be important in the future.
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