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Abstract—Objective: The development of an accurate,
non-invasive method for the diagnosis of peripheral artery
disease (PAD) from accelerometer contact microphone
(ACM) recordings of the cardiac system. Methods: Mel fre-
quency cepstral coefficients (MFCCs) are initially extracted
from ACM recordings. The extracted MFCCs are then used
to fine-tune a pre-trained ResNet50 network whose middle
layers provide streams of high-level-of-abstraction coeffi-
cients (HLACs) which could provide information on blood
pressure backflow caused by arterial obstructions in PAD
patients. A vision transformer is finally integrated with the
feature extraction layer to detect PAD, and stratify the sever-
ity level. This architecture is coined multi-stream-powered
vision transformer (MSPViT). The performance of MSPViT
is evaluated on 74 PAD and 21 healthy subjects. Results:
Sensitivity, specificity, F1 score, and area under the curve
(AUC) of 99.45%, 98.21%, 99.37%, and 0.99, respectively, are
reported for the binary classification which ensures accu-
rate detection of PAD. Furthermore, MSPViT suggests av-
erage sensitivity, specificity, F1 score, and AUC of 96.66%,
97.34%, 96.29%, and 0.96, respectively, for the classification
of subjects into healthy, mild-PAD, and severe-PAD classes.
The silhouette score is calculated to assess the separabil-
ity of clusters formed for classes in the penultimate layer of
MSPViT. An average silhouette score of 0.66 and 0.81
demonstrate excellent cluster separability in PAD detection
and severity classification, respectively. Conclusion: The
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achieved performance suggests that the proximal ACM-
driven framework can replace state-of-the-art techniques
for PAD detection. Significance: This study presents a
fundamental step towards prompt and accurate diagnosis
of PAD and stratification of its severity level.

Index Terms—Peripheral artery disease (PAD),
accelerometer contact microphone (ACM), non-invasive
recordings, multi-stream-powered, vision transformer.

I. INTRODUCTION

ERIPHERAL artery disease (PAD), defined as the narrow-
ing or obstruction of major systemic non-coronary arteries,

currently affects 8.5 million people in the US [1]. The most com-
mon cause of PAD is the deposition of plaque in the inner layer
of the arteries which is either asymptomatic, or accompanied by
intermittent cramping pain in the leg known as claudication [2].

Asymptomatic PAD constitutes 20%–50% of the whole PAD
population, inhibiting early-stage diagnosis and risk manage-
ment [3]. Hence, the disease may progress into impaired blood
flow to limbs, resulting in limb soreness, infection, and gangrene,
and eventually ends up with limb amputation [4]. On the other
hand, early detection of PAD allows for timely intervention such
as supervised exercise, medications, and revascularization to
prevent adverse outcomes [5].

The ankle/brachial index (ABI) is a commonly used non-
invasive test for the detection of PAD. ABI is the ratio of the
systolic blood pressure at the ankle to the systolic blood
pressure at the arm, suggesting the severity level of PAD [6]. A
low ABI (<0.90) is highly associated with the presence of
occluded arteries and thus a powerful indicative of PAD [7].
Despite the ABI test being a convenient clinical practice, a
reputable research conducted on 464 PAD patients in [8] re-
ported a predictive sensitivity of 79% for the ABI test, which
implies a low diagnostic performance. Angiography is the gold
standard for PAD screening which offers direct visualization of
the structure of an artery [9]. The procedure begins with injecting
a radiographic contrast dye through a narrow, flexible catheter
into the artery, which is followed by capturing X-ray images to
view obstructed arterial regions with high sensitivity of 98% as
reported by [10], [11]. The invasive nature of angiography
however, causes local pain, puncture site, and discomfort for the
patient [12]. The aforementioned shortcomings of the ABI test
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and angiography provoke the need for a reliable, yet convenient
screening method for PAD detection.

Recent advances in wearable sensors and machine learning
techniques have established the basis for the non-invasive di-
agnosis of PAD. Two primary methods which are currently
investigated at research level include oscillometry and photo-
plethysmography (PPG). In oscillometry, a blood pressure (BP)
cuff is fully inflated around the subject’s target limb [13],
[14]. The superposition of the internal arterial pressure and the
external pressure by the cuff is then measured in a gradual
deflation using a pressure transducer placed in the cuff. The
temporal evolution of the transducer recording is analyzed by a
machine learning algorithm to identify the presence of PAD.
The authors in [14] trained a multilayer perceptron model on
the oscillometry data collected from 14 PAD patients and 19
healthy subjects. They reported an accuracy of 91.4%, sen-
sitivity of 90.0%, and specificity of 92.1% for the diagnosis of
PAD. These values imply a missed rate of 10% and a false
detection rate of 7.9% for PAD detection, questioning the
prediction stability of the oscillometry method. Furthermore,
the cuff used in the oscillometry technique may cause incon-
venience and pain for PAD patients with claudication in the
calf region.

PPG is a non-invasive method of estimating blood flow vari-
ations in arteries, where an optical sensor continuously emits
light with an excitation wavelength of 680–950 nm to estimate
the instantaneous blood volume based on the reflected energy
from the artery [15]. As proven by several studies, temporal and
spectral characteristics of PPG signals recorded at toes [16],
[17], [18], [19] and fingers [17], [20] can contribute to the
diagnosis of PAD. According to the study conducted on 30
PAD patients in [17], it was demonstrated that the toe PPG
could provide sensitivity and specificity of 0.95 and 0.65 for the
diagnosis of PAD, respectively. As reported by [19], toe PPG
recordings can be used with deep neural networks to achieve a
sensitivity of 86.6% and specificity of 90.2% for PAD detection.
However, PPG morphology can be affected by environmental
lighting [16], as well as physiological characteristics such as age
and health status [21], [22]. A common characteristic among the
aforementioned methods is the use of either a BP cuff or a PPG
sensor placed on the arterial site. Both methods fail to provide
acceptable prediction power as reported by [13], [14], [16], [17],
[18], [19], [20].

In this paper, we take advantage of the dynamics of blood
pressure backflow in obstructed arteries, and establish a novel
framework for the detection of PAD. The major contributions of
this paper are as follows:

This paper introduces a novel method for the diagnosis of
PAD using cardiac cycle information collected by a high-
precision accelerometer contact microphone. To this end,
95 subjects, including 74 PAD and 21 healthy subjects,
were monitored. To the best of our knowledge, this is the
first study that addresses the detection of PAD from blood
pressure backflow patterns in cardiac cycles.
A novel feature extraction technique based on transfer
learning is introduced that extracts blood pressure back-
flow patterns and relates them to the presence of PAD
and its severity level. The feature extraction approach is

based on the use of high-level-of-abstraction feature maps
derived from the middle layers of a pre-trained deep neural
network.
A modified vision transformer, coined multi-stream-
powered vision transformer, is developed to detect PAD
and classify its severity level. This neural network lever-
ages the dynamics of ACM recordings in different fre-
quency bands to recognize patterns associated with pe-
ripheral artery disease.

This paper is organized as follows: Section II provides back-
ground on the dynamics of the arterial tree, and elaborates their
relation with PAD. In Section III, the experimental setup and
methodology are described. Experimental results are presented
in Section IV and comprehensively discussed in Section VI. The
paper is concluded in Section V.

II. BACKGROUND ON ARTERIAL TREE DYNAMICS

The arterial tree represents the branching system of arteries
which are responsible for carrying oxygen-rich blood from the
heart to other organs. According to the multi-branch transmis-
sion lines (TLs) model introduced by [23], the propagation of
blood flow in an artery can be formulated by:

( 1 − Γ )

qout =  
eγ l  −  Γe − γ l  , (1)

where qin, qout, Γ ,  γ, and l denote the inlet blood flow (mL/s),
outlet blood flow (mL/s), reflection coefficient, propagation
constant (rad/cm), and arterial length (cm), respectively. For a
fully obstructed artery, the left-hand side of (1) holds a zero value
since there is no outlet blood flow. Hence, assuming |qin| >  1,

q ( 1− Γ )  =  0, (2)

which implies either Γ  → +∞ ,  or

eγ l  −  Γe − γ l  → ±∞ . (3)

For a certain artery length of l, we can consider eγ l  and e− γ l  to
be constant positive values. Hence, (3) results in Γ  → ±∞ .  As
the reflection coefficient (Γ) holds positive values only, the term
Γ  → +∞  is acceptable. Terms (2) and (3) suggest that the
more severe the obstruction, the larger the reflection of the
bloodflow. The reflection generates a resistive power towards the
heart muscle pumping blood into the arterial tree. Consequently,
the heart has to pump harder to force the blood through the
obstructed arteries, causing the appearance of cardio-mechanical
abnormalities in cardiac cycles [24]. In this study, we hypothe-
size that vibrational patterns associated with backflow in PAD
patients emerge in the proximal recordings of cardiac cycles. To
prove our hypothesis, we devise a pattern recognition framework
to automatically differentiate healthy subjects from PAD patients
based on the vibrational characteristics of their cardiac system.

III. EXPERIMENTAL SETUP AND METHODOLOGY

A. Data Collection and Study Protocol

In this study, seventy-four peripheral artery disease (PAD)
patients including 35 males and 39 females were studied at
the cardiac care unit of Sorin Medical P.C. Two interventional
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TABLE I
DEMOGRAPHIC INFORMATION OF THE HEALTHY AND PAD ARTICIPANTS

cardiologists and a general practitioner used the resting ABI as
the screening and diagnostic test for PAD. ABI readings were
categorized as abnormal (ABI <  0.90), borderline (0.91 <  ABI
<  0.99), normal (1.00 <  ABI <  1.40), and non-compressible
(ABI >  1.40) which is associated with arterial calcification in
diabetes patients. The cardiologists categorized the pa-tients
into 3 groups, 1) healthy (asymptomatic with normal
ABI), 2) mild-PAD without intervention/revascularization (mild
to moderate symptoms with either borderline, abnormal, or
non-compressible ABI), and 3) severe-PAD with interven-
tion/revascularization (severe symptoms with abnormal ABI
when initial conservative treatments have not effectively reduced
the symptoms). The mild-PAD and severe-PAD groups have
average (±standard deviation) ages of 71.48 (±12.05) and 75.35
(±9.08) years, respectively. The control group consisting of 7
healthy males and 14 healthy females has average (±standard
deviation) age of 64.61 (±16.43) years. Further demographic
information on the subjects is summarized in Table I.

Fig. 1 illustrates the proposed framework for the detection
of PAD. As shown in Fig. 1(a), the experimental setup consists
of a ±  4 g sensitive accelerometer contact microphone (ACM)
with micro-g resolution [25], [26] (obtained from StethX Mi-
crosystems Inc., Atlanta, USA) attached to the chest wall along
the third rib using medical-grade adhesive tape. Additionally, the
epxerimental setup includes a three-lead ECG sensor node (ECG
Development Kit; Shimmer Sensing, Dublin, Ireland) with the
electrodes attached to the right arm (RA), left arm (LA), right
leg (RL), and left leg (LL), as well as a photoplethysmogra-
phy (PPG) sensor (Shimmer3 GSR; Shimmer Sensing, Dublin,
Ireland) attached to the ear-lobe using an ear clip. The ACM
sensor head has a small form factor of 27 mm ×  15 mm ×  2.5
mm which is comparable to the size of a dime as depicted in
Fig. 1(b). This device is a low-noise accelerometer with a
wide operational bandwidth of 0–10 kHz, allowing for recording
heartbeat-induced sounds and vibrations on the chest wall. This
device is not sensitive to airborne emission sounds, making it
a robust phonocardiogram sensor against acoustic ambient
noise. The data is digitized using a 24-bit analog-to-digital
converter integrated in the sensor head, and transferred to a
computer in real-time through a data transfer cable connected
to the data acquisition (DAQ) module, as shown in Fig. 1(c).
The subjects were seated at rest on a chair for a period of five
minutes, followed by five minutes of ACM measurements at a
sampling rate of 22.33 kHz, still at a seated position. The
patient experimental protocol was approved by the Institutional
Review Board of Stevens Institute of Technology under protocol
number 2022-044 (N). It is to be noted that ECG and PPG data
are not used in this specific study. In the proposed framework,

Fig. 1.     The proposed PAD detection framework. (a) The sensor ar-
rangement on the torso, (b) dimensions of the accelerometer contact
microphone, (c) the data acquisition module, (d) the ACM signal seg-
mentation, and (e) decision making based on a signal segment.

the objective is to detect peripheral artery disease using short
segments of ACM recordings as shown in Fig. 1(d) and (e).

B. Data Preparation

In order to reduce the computational complexity of the pro-
cessing chain, ACM recordings were initially down-sampled to a
sampling rate of 4 kHz. This practice did not affect the heart
sound components which fall below 1 kHz [27]. The ACM sig-
nals were then segmented into 10-second overlapping windows
with 90% overlap between consecutive windows. The choice of
the window length follows the superior results achieved for the
10-second duration compared to other segment lengths in [28].
Depending on the sensor placement and the body mass index
(BMI) of the subject, the signal-to-noise ratios (SNRs) of the
recorded signals vary within the range of [5, 15] dB. This
motivates the need for a denoising algorithm to enhance the
quality of heart sounds.

Fig. 2 depicts two examples of ACM raw recordings with
SNR values of 10.5 dB and 5.3 dB. The denoising algo-
rithm begins with zero-padding the beginning and end of each
segment by 256 points (62.5 ms) to prevent the transient effect of
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Fig. 2.     Signal denoising examples for high-SNR and low-SNR ACM segments. (a) High-SNR ACM raw recording (SNR =  10.5 dB), (b) filtered high-
SNR ACM signal segment, (c) denoised high-SNR signal segment generated by EMD, (d) low-SNR ACM raw recording (SNR =  5.3 dB), (e) filtered
low-SNR ACM signal segment, and (f) denoised low-SNR signal segment generated by EMD.

filtering conducted in the following processing steps. As shown
in Fig. 2(d), heart sound components of the low-SNR phono-
cardiogram signal are represented by small peaks modulated on
the low-frequency waveforms corresponding to respiration. A
differentiation filter was applied to the signal segment to am-
plify high-frequency components. Each segment was then high
pass-filtered by a 3rd-order zero-phase Butterworth filter with
a cut-off frequency of 10 Hz to remove respiratory components
and baseline wander while maintaining heart sound components,
which fall above 10 Hz as mentioned in [29]. A cumulative filter
was used to reconstruct the heart sound morphology, followed
by discarding the padded points at the beginning and end of
each segment. Fig. 2(b) and (e) respectively illustrate the filtered
ACM segments with SNR 10.5 dB and 5.3 dB. According
to Fig. 2(e), the remaining signal is still contaminated with
high-energy noise, hindering the full appearance of the first and
second heart sounds which are known as S1 and S2, respectively.

Several studies have demonstrated the potentials of em-
pirical mode decomposition (EMD) for phonocardiogram
denoising [30], [31]. The core idea behind EMD is to adaptively
decompose an oscillatory signal into a series of zero-mean
amplitude- and frequency-modulated signals called intrinsic
mode functions (IMFs) through an iterative procedure. EMD
begins with interpolating between local maxima and local min-
ima to obtain upper and lower envelopes, respectively. These
two envelopes are then averaged, and the resulting component
is subtracted from the original signal. The resulting signal is
called an IMF only if it holds a zero mean, and the number of
local extrema and zero crossings are equal or differ by at most 1.
The IMF is then subtracted from the original signal to produce
the residue signal which plays the role of the original signal for
the next iteration. This process repeats until the final residue
signal is a constant or monotonic function. Each filtered ACM
signal segment (x(n)) undergoes EMD which results in:

L − 1

x(n)  = hi (n) +  r L (n) , (4)
i = 1

where hi (n), L  −  1, and r L (n )  denote the i t h  IMF, number of
IMFs, and the final residue signal respectively. In this work,
we propose to denoise the signal segment by selecting the most

relevant IMFs. The selection criteria can be defined either in
the frequency domain [32] or time domain [30], where the
latter has shown promising results for heart sound denoising.
Hence, a modified version of the method presented in [30] is
designed to incorporate only relevant and smooth IMFs for SNR
enhancement. To this end, the actual energy of each IMF is
compared with the estimated energy (Vi) proposed by [30], as
mentioned below:

E i  =  
E 1  α− i ; i  =  2, 3, 4, . . . , L , (5)

where α and β denote the estimation parameters which are 2.01
and 0.719 respectively. E 1  represents the estimated energy for
the first IMF which is calculated using the median absolute
deviation (MAD) as follows:

E 1  =
med h1 −  med h1 

 ! 2  

, (6)

with med. and ρ being the median operator and 0.6745 according
to [31], respectively. Each IMF whose actual energy exceeds
its estimated energy is included for signal reconstruction. In
the original denoising method, relevant IMFs are then further
denoised using a thresholding-based method to remove suspect
noise components. In our signal processing chain however, the
desire is to preserve potential patterns corresponding to PAD. To
this end, we replace the thresholding technique with a 3rd-order
Savitzky-Golay smoothingfilter of size 50 ms to produce smooth
outputs while maintaining signal patterns [33]. As illustrated in
Fig. 2(c) and (f), the denoising algorithm has enhanced the signal
quality by 10.4 dB and 3.9 dB for high-SNR and low-SNR signal
segments respectively.

C. Feature Extraction

Blood backflow associated with obstructions in PAD patients
is expected to manifest abnormal patterns in the energy of
ACM recordings and their corresponding dynamics. Inspired
by cardiologists who use stethoscopes to inspect the rhythm and
intensity of the heart sounds, we extract energy-related features
to automatically diagnose PAD. These features are summarized
as follows:
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Fig. 3.     Heart sound feature extraction. (a) denoised ACM signal seg-
ment, (b) Mel frequency cepstral coefficients (MFCCs), (c) the first
derivative of MFCCs, and (d) the second derivative of MFCCs.

1) Mel Frequency Cepstral Coefficients (MFCCs): These co-
efficients distribute the short-term power spectrum of a signal
in accordance with the human auditory system perception in a
scale called Mel [34]. Hence, the use of MFCCs allows for
replicating auscultation monitoring performed by cardiologists
for the detection of abnormal heart sounds. Mel scale uses a filter
spaced linearly at frequencies below 1 kHz and has logarithmic
spacing above 1 kHz. MFCC computation begins with framing a
signal segment into shorter frames of 0.5 seconds (2,048
samples) with 25% overlap (512 samples) between consecutive
frames. For each frame, the periodogram is then calculated and
filtered through a Mel filter bank with 25 triangular filters. The
energy of the signal is summed per filter, thus generating 25
coefficients. Finally, the discrete cosine transform is applied to
the coefficients to obtain MFCCs. Hence, for each 10-second
signal segment, we would have a 2-D representation of size 25
×  81, representing 81 frames, each involving 25 coefficients. Fig.
3(a) and (b) depict a signal segment and its corresponding
MFCCs respectively. In order to model the dynamics of the heart
sounds, the first and second derivatives of MFCCs are calculated
by subtracting the coefficients of successive time frames once
for the first derivative and twice for the second derivative as
shown in Fig. 3(c) and (d), respectively. Time differentiation in
signal processing acts as a high-pass filter, amplifying the
patterns of abrupt changes of energy associated with heart sound
abnormalities.

2) High-Level-of-Abstraction Coefficients (HLACs): Convo-
lutional neural networks (CNNs) have shown excellent promise
for image-related tasks such as image classification [35], seg-
mentation [36], and denoising [37]. In addition, they are also
capable of extracting discriminative features from raw data at
different levels of abstraction [38]. We use this capability of
CNNs to extract features from MFCCs which can be consid-
ered as an input image to a 2-D CNN architecture. To this
end, we adopt a pre-trained residual network with 50 layers
(ResNet50) [39], and fine-tune the network on our own dataset.

Fig. 4.     Examples of high-level-of-abstraction coefficients extracted
from MFCCs and its derivatives by ResNet50. Top, middle, and bottom
rows correspond to feature maps (FM1, FM10, FM20) from layers 10,
22, and 40 respectively.

This practice, which is called transfer learning, allows us to
reuse ResNet50 pre-trained on the ImageNet dataset for the PAD
detection task. Leveraging residual layers in ResNet prevents
vanishing gradient issues which generally occur in deep net-
works. As such, ResNet50 is capable of providing features with a
variety of abstraction levels. In this work, we use the outputs of
layers 10, 22, and 40 of a ResNet50 which have 256, 512, and
1,024 feature maps (FMs), respectively. Fig. 4 depicts a few
examples of feature maps 1, 10, and 20, corresponding to layers
10, 22, and 40 which are represented by X1, X2, and X3
respectively. As can be observed from top to bottom in Fig. 4,
transfer learning-based HLACs provide both fine and coarse
features of the input, helping with decision-making about the
presence of PAD. As a result, three feature maps associated with
MFCCs and their first and second derivatives, denoted by X, are
combined with HLACs to contribute to the accurate detection
of PAD.

D. Multi-Stream-Powered Context-Aware Prediction

As mentioned in Section II, the cardiac muscle should pump
the blood harder to cope with backflow pressure waves caused
by PAD. Abnormal changes in pressure and thus energy level of
the ACM recordings are the keys to PAD detection, for which
MFCCs and HLACs are derived. The abnormality associated
with PAD may appear in any sub-band or time point. This
motivates the need for a 2-D context-aware predictive model to
characterize inter-dependencies within various sections of a
feature map.

Transformers are widely used context-aware models in natural
language processing [40], which outperform their ancestors such
as long short-term memory (LSTM) networks which were for-
merly adopted for machine translation tasks and time series mod-
eling. The advantage of transformers over conventional methods
is that sequences are modeled as a whole using self-attention
modules, whereas LSTM models a sequence on an element-wise
basis. In our application however, we cannot use the original
structure of the transformer since input features i.e., MFCCs
and HLACs, are two-dimensional features. Vision transformer
(ViT) is a recently proposed transformer which is customized
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Fig. 5.     Multi-stream-powered vision transformer (MSPViT) architecture for PAD detection network. (a) a ResNet50 for HLACs extraction followed by a
vision transformer (ViT) for PAD detection, and (b) a transformer encoder which employs a multi-head attention module for modeling inter-patch
dependencies.

for image classification [41]. In this work, we develop a network
based on ViT which is powered by a multi-stream ResNet50 for
PAD detection, as illustrated in Fig. 5.

As shown in Fig. 5(a), a pre-trained ResNet50 on the 1,000-
class ImageNet dataset is fine-tuned on the PAD dataset. For
this task, the fully-connected (FC) layer at the end of the
original ResNet50 with a length of 1,000 is replaced with a
fully-connected layer with either two neurons for PAD detection,
or three neurons for severity classification. As mentioned in
Section III-C2, three MFCCs-related feature maps (X) and the
outputs of layers 10 (X1), 22 (X2), and 40 (X3) which are HLACs
feature maps, are concatenated to build the input feature maps
to the vision transformer network. As mentioned earlier, the
dimension of MFCCs is 25 ×  81. We resize MFCCs and the
corresponding first and second derivatives through a bilinear
interpolation to 128 ×  128 to have standard-size inputs. This
results in X1, X2, and X3 being of various sizes of 32 ×  32, 16
×  16, and 8 ×  8, respectively. All feature maps X1, X2, and X3
should therefore be reshaped to 128 ×  128 using bilinear
interpolation, so these features would be concatenable with the
resized MFCCs-related features. As a result, the concatenation
builds a larger set of feature maps consisting of 1,795 (3 +  256
+  512 +  1,024) feature maps of size 128 ×  128.

As shown in Fig. 5(a), concatenated feature maps are de-
noted by F  � R C × H × W  with C ,  H ,  and W representing the
number of channels (1,795), height (128), and width (128) of
the feature maps, respectively. In the vision transformer,
F  is segmented into P  small patches represented by F i  �
R C × p × p ,  i  =  1, 2, 3, . . . , P , where p shows the dimensions
of the patches. Each p ×  p patch is then reshaped to a vector
with a length C  ×  p ×  p. This practice allows for processing
images as 1-D vectors, similar to the processing of time series
using a transformer network. In this work, the size of each
patch is set to p =  8, thus resulting in 256 patches for an
input feature size of 128 ×  128. A linear projection layer is
then applied to each 114,800-long flattened vector to shrink it
to a vector of length 64. As a result, P  vectors of size 32 (Z i  �
R1×64 , i  =  1, 2, 3, . . . , P ) are generated, and summed

with trainable embedding vectors which are denoted by ei �
R1×64 , i  =  1, 2, 3, . . . , P in Fig. 5(a). The embeddings enable
the network to take the position of each patch in the image into
account while learning the patterns of healthy and PAD subjects.

To encode the dependencies among the patches of a whole
sequence, we employ L =  4 stacked transformer encoders, the
architecture of each is illustrated in Fig. 5(b). This encoder
consists of two normalization layers, 8 multi-head attention
layers, and a fully-connected (FC) as well as two residual
layers. Normalization layers accelerate the learning process and
enhance the generalizability of the model [42]. After the batch
normalization step, a multi-head attention module is employed to
quantify the dependencies among the embeddings correspond-
ing to patches. The attention mechanism begins with multiplying
each embedding with three learnable matrices W Q  � R32×64 ,
W K  � R32×64 , and W V � R32×64 . This generates three vec-

tors called query (qi � R1×32 ), key (ki � R1×32 ), and value (vi

� R1×32) for each embedding. The query of each embedding is
multiplied by all the keys in the sequence to find the relevance
between the embedding under test and other elements in the
sequence. The score vector which is of size P  subsequently
undergoes a Softmax function to rescale the scores into the
range of [0, 1], and make them sum up to 1. The resulting
rescaled scores are then multiplied by their corresponding value
vectors to build the attention module output for the embedding
under test. Hence, the attention module can be formulated
as:

U =  Softmax
Q ×  K T

V, (7)

where Q � RP × 3 2 ,  K  � RP × 3 2 ,  and V � R P × 3 2  denote the
matrices built by stacking query vectors, key vectors, and value
vectors respectively. Matrix U � R P × 3 2  shows the output ma-
trix with P  rows, each of which represents the output of the
attention layer corresponding to a patch (or embedding). In our
implementation, we embed 8 attention heads for each attention
layer, yielding 8 attention outputs Ui, i  =  1, 2, 3, . . . , 8. Per
embedding then, a vector of size 8 ×  32 results. Every output
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is finally converted to a vector of size 256 through a fully-
connected layer in the transformer encoder as shown in Fig. 5(b).
Another fully connected layer is employed in the PAD detection
network in Fig. 5(a) to resize the encoder output to the number
of classes, i.e., two for PAD identification and three for PAD
severity level classification. The objective of the multi-stream-
powered vision transformer (MSPViT) is to minimize the error
between predicted values and the corresponding ground truth
labels, using mean squared error (MSE) as follows:

TABLE II
10-LSOCV AVERAGE (±STANDARD DEVIATION) PERFORMANCE ON PAD

DETECTION

` (y, ŷ) =  
1 X

( y i  −  yb )2 (8)
i = 1

where y and ŷdenote one-hot coding vectors for the ground truth
and predicted values, respectively.

IV. EXPERIMENTAL RESULTS

This section provides an overview of the training procedure
and the metrics used to evaluate the performance of MSPViT.
Additionally, the performance of the model on PAD detec-
tion and severity classification is discussed in the following
sub-sections.

A. Training Procedure

As mentioned in Section III-C, each signal segment is repre-
sented by its MFCCs and HLACs which are used as the input to
the MSPViT. This network is trained in a supervised manner
to learn the subjects’ labels assigned by two interventional
cardiologists based on echocardiography parameters. In this
work, we trained the model for both the detection of PAD (binary
classification) and the classification of PAD severity levels into
either healthy, mild PAD, or severe PAD (ternary classification).

The training procedure was conducted using the data of 95
subjects amounting to 46,878 signal segments. A 10-fold leave-
subject-out cross-validation (10-LSOCV) approach was adopted
to assess the generalizability of the model to unseen data. To
this end, the dataset was split into train (68 subjects; 70%),
validation (18 subjects; 20%), and test (9 subjects; 10%) sets.
The model is trained on the train set for 150 epochs, validated
on the validation set, and the performance is reported using the
test set when the loss function, defined in (8), is minimized.
The Adam optimization algorithm [43] was employed with an
initial learning rate of 0.001 which was reduced by a factor of
0.98 every ten epochs without performance improvement. The
model was implemented on a 24-GB NVIDIA GeForce RTX
3090 Ti FTW3 with a batch size of 64.

B. Evaluation Metrics

Statistical analyses were conducted to evaluate the perfor-
mance of MSPViT and compare it with state-of-the-art PAD
detection methods. In order to compare the ground-truth labels
with those predicted by MSPViT, sensitivity (Sen), specificity
(Spec), accuracy (Acc), positive predictive value (PPV), and F1
score (F1) are calculated as follows:

Sen =  100 ×  
T P +  F N  

, (9)

Spec =  100 ×  
T N +  F P  

, (10)

Acc =  100 ×  
T P +  F P  +  F N  

,                  (11)

PPV =  100 ×  
T P +  T N 

,                               (12)

2 ×  PPV ×  Sen
PPV +  Sen

where T P , T N , F P , and F N denote the true positive (correctly
detected as PAD), true negative (correctly detected as healthy),
false positive (falsely detected as PAD), and false negative
(falsely detected as healthy) cases, respectively. It is to be noted
that statistical metrics were calculated for each label in the
ternary classification, and each metric was averaged over all
three classes. i.e., macro averaging. Sensitivity and specificity
respectively indicate the concordance of MSPViT with respect
to the reference, whereas the positive predictive value signifies
the likelihood that MSPViT can successfully identify PAD.
Additionally, the F1 score was adopted to present a harmonic
mean of positive predictive value and sensitivity of MSPViT.

C. PAD Detection Performance

Table II summarizes the results of 10-LSOCV for PAD de-
tection (binary classification), where the test dataset at each fold
consists of 6 PAD patients and 3 healthy subjects. In this table,
MSPViT (X1), MSPViT (X2), and MSPViT (X3) respectively
denote vision transformers supplied with the feature maps of
layers 10, 22, and 40 of a ResNet50 fine-tuned on the PAD
data. The last row signifies the results associated with MSPViT
(X, X1, X2, X3) whose input incorporates MFCCs and their
derivatives (three feature maps) as well as the feature maps
corresponding to layers 10, 22, and 40 of a pre-trained ResNet50,
amounting to a total of 1,795 feature maps. Additionally, the
performance of a ResNet50-alone and a vision transformer,
denoted by ResNet50 (X) and ViT (X) respectively, are listed in
the table for the sake of comparison.
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TABLE III
10-LSOCV AVERAGE (±STANDARD DEVIATION) PERFORMANCE ON PAD

SEVERITY CLASSIFICATION

As shown in the table, MSPViT (X2) with 99.45% (±0.47)
offers the highest sensitivity among other architectures for PAD
detection, implying the lowest missed rate of PAD cases. ViT
(X) and MSPViT (X1) respectively with 99.08% (±0.71) and
99.05% (±0.84) of sensitivity scores are the runner-ups for
PAD detection. MSPViT (X1) and MSPViT (X2) identify PAD
with specificity scores of 98.96% (±1.0) and 98.21% (±2.93)
respectively, which are superior to those of other architectures.
In parallel with specificity, MSPViT (X1) with 99.68% (±0.31)
and MSPViT (X2) with 99.37% (±0.63) have the highest PPV,
thus are most likely to successfully detect PAD. According to the
reported F1 scores, vision transformers powered by high-level-
of-abstraction features from layers 10 and 22, i.e., MSPViT (X1)
and MSPViT (X2), predict the presence of PAD with 99.36%
(±0.47) and 99.37% (±0.63) respectively. The highest F1 score,
i.e., 99.37%, implies increases of 5.13% and 1.05% compared
to the ResNet50-alone and ViT-alone architectures, respectively.
MSPViT (X1) and MSPViT (X2) therefore, suggest the best
performance for PAD detection.

D. Severity Classification Performance

Statistical analyses on PAD severity classification are pre-
sented in Table III, where the test dataset at each fold consists of 3
mild-PAD, 3 severe-PAD, and 3 healthy subjects. Similar to PAD
detection, we quantify the performance of MSPViT in compar-
ison to ResNet50 (X) and ViT (X) using sensitivity, specificity,
accuracy, PPV, and F1 scores. As summarized in Table III,
the highest sensitivity scores were achieved by MSPViT (X2)
and MSPViT (X3) with 97.60% (±1.12) and 96.66% (±4.08)
respectively. An average specificity of 97.37% (±2.19) ranks
the MSPViT (X3) architecture at the top for false stratification
of PAD severity. MSPViT (X3) and MSPViT (X, X1, X2, X3)
suggest the highest average PPV scores of 96.24% (±2.51) and
95.28% (±2.68), respectively, presenting superior performance
compared to other architectures with 96.07% (±4.04), 94.66%
(±2.98), 93.72% (±2.79), and 93.61% (±3.34) for ResNet50
(X), ViT (X), MSPViT (X1), and MSPViT (X2) respectively. In
terms of F1 score, MSPViT with 96.29% (±3.01) outperforms

MSPViT (X, X1, X2, X3), ResNet50 (X), ViT (X), MSPViT
(X1), and MSPViT (X2) with 95.66% (±1.92), 95.58% (±4.72),
91.12% (±5.09), 94.70% (±1.97), and 95.18% ±2.06) respec-
tively, which demonstrates the superiority of MSPViT (X3) for
the classification of PAD severity levels.

Comparing Tables II and III signifies the importance of
HLACs features as well as the functionality of the layers for
PAD detection and severity classification. While layer 22 (lower
abstraction) provides a discriminative feature space for PAD
detection, i.e., binary classification, severity level classification
could benefit from higher abstraction level features in layer 44.
This behavior can be related to the ternary classification defined
for PAD severity stratification which requires more detailed
information in comparison to PAD detection.

E. Receiver Operating Characteristic (ROC) Analysis

The discrimination power of MSPViT is also evaluated us-
ing the area under the curve (AUC) of the receiver operating
characteristic (ROC). In this work, ROC is defined as the true
positive rate versus the false positive rate for each class as
illustrated in Fig. 6. The predicted labels of the test data from
all folds were appended, and the ROC curve was obtained using
all the test data. Fig. 6(a) indicates the ROC curve associated
with PAD detection (binary classification), whereas Fig. 6(b),
(c), and (d) correspond to the ROC curves of healthy, mild-
PAD, and severe-PAD classes respectively. The highest AUC
for PAD detection was achieved by MSPViT (X1) with 0.997,
followed by MSPViT (X3) and MSPViT (X2) with AUC of
0.994 and 0.990 respectively. ResNet50 (X) offers the lowest
AUC of 0.923 which still implies excellent prediction stability.
The performance obtained in Fig. 6(a) confirms the validity of
the assumption of backflow pressure resulting from arterial
obstruction associated with PAD in the arterial tree, mentioned
in Section II.

In order to present ROC characteristics in PAD severity classi-
fication, we compare each class with others in a one-versus-rest
manner. For this purpose, the target class was labeled with one,
and the other two classes were assigned zero. As such, three
ROC curves associated with healthy, mild-PAD, and severe-
PAD classes were achieved as shown in Fig. 6(b), (c), and (d)
with AUCs within the ranges of [0.926, 0.992], [0.941,
0.987], and [0.950, 0.978], respectively. Among the MSPViT
architectures, the highest AUC scores for healthy, mild-PAD,
and severe-PAD cases were achieved by MSPViT (X2) with
AUC =  0.989, MSPViT (X2) with AUC =  0.969, MSPViT
(X, X1, X2, X3) with AUC =  0.973 respectively, although
MSPViT (X3) with AUChealthy =  0.980, AUCmild =  0.941,
and AUCsevere =  0.950 suggests slight differences compared
to their relative superior models. Hence, MSPViT (X3) predicts
the severity level with an average AUC of 0.957.

V. DISCUSSION

In the previous section, we comprehensively investigated the
feasibility of the detection of PAD and classification of the
severity levels through attention-based modules supplied by
MFCCs and HLACs. In this section, the clusters corresponding
to different classes in the output of the MSPViT are measured to
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Fig. 6.     Receiver operating characteristic (ROC) curves for (a) PAD
binary classification, (b) healthy class in ternary classification, (c) mild-
PAD class in ternary classification, and (d) severe-PAD class in ternary
classification.

analyze the separability of classes in a high-dimensional feature
space. Additionally, our framework for PAD detection and clas-
sification is compared with state-of-the-art methods. Finally, the
limitations of the methods are comprehensively discussed.

A. High-Dimensional Separability

A well-trained deep neural network classifier is expected to
discriminate test samples of different classes in the high-
dimensional space presented by the last layer of the network.
We use the output of the transformer encoder layer to inspect
separability among PAD classes. Principal component analysis
(PCA) was utilized for mapping 32-dimensional feature vectors
into a 2-dimensional space as shown in Fig. 7 to visually inspect
the separability for fold 1 of test data. As observed in Fig. 7(a),
(b), (c), and (d) which respectively correspond to architectures
MSPViT (X1), MSPViT (X2), MSPViT (X3), and MSPViT (X,
X1, X2, X3), excellent separability is offered among healthy,
mild-PAD, and severe-PAD classes. Slight overlaps between

Fig. 7.     Principal component analysis (PCA) applied to the outputs of
the transformer encoder corresponding to (a) MSPViT (X1), (b) MSPViT
(X2), (c) MSPViT (X3), and (d) MSPViT (X, X1, X2, X3).

classes are due to PCA discarding non-principal components
which potentially provide discriminating capabilities. As such,
we employ the whole feature vectors which are of length 32, and
quantify the clusters formed by each class in the 32-dimensional
space. To this end, we adopt the silhouette score for each test
data point which is defined as follows:

b( i) −  a( i)
max{a(i), b( i)}

where b( i) and a( i) denote the distance between a sample and
the nearest cluster that the sample does not belong to and the
distance between a sample and the cluster that the sample is a
part of, respectively. Silhouette score ranges within [−1, +1]
with + 1  suggesting a perfect match between the sample and
the assigned label, i.e., healthy, mild-PAD, and severe-PAD. In
this work, we present the silhouette score by averaging over
the test data points corresponding to 10-LSOCV. Tables IV and
V summarize silhouette scores for folds of PAD detection and
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TABLE IV
SILHOUETTE SCORES OF OBTAINED CLUSTERS FOR PAD DETECTION

NETWORK IN 10-LSOCV

TABLE V
SILHOUETTE SCORES OF OBTAINED CLUSTERS FOR SEVERITY

CLASSIFICATION NETWORK IN 10-LSOCV

severity classification, respectively. Table IV suggests the supe-
riority of MSPViT (X2) with a silhouette score of 0.66 (±0.16)
over MSPViT (X1), MSPViT (X3), and MSPViT (X, X1, X2,
X3) with AUCs of 0.59 (±0.18), 0.65 (±0.20), and 0.65 (±0.18)
respectively, as also concluded in Table II. As mentioned in
Table V, MSPViT (X3) with a silhouette score of 0.81 (±0.03)
outperforms MSPViT (X1), MSPViT (X2), and MSPViT (X,
X1, X2, X3) with 0.70 (±0.04), 0.70 (±0.05), and 0.75 (±0.04),
respectively, in classifying the severity levels. These results are
consistent with our findings in Table III where an F1 score of
96.29% (±3.01) in severity classification is reported for
MSPViT (X3). Comparing Tables IV and V implies higher
dissimilarities among clusters in severity classification than PAD
detection. This finding is aligned with the example shown in
Fig. 7, where mild and severe PAD classes fall apart in the
two-dimensional space. The distance between mild and severe
PAD classes in the 32-dimensional feature space, while being
considered in the same cluster, leads to a lower silhouette score.

Additionally, this observation confirms the difference between
the nature of mild and severe cases in a high-dimensional space.

B. Comparative Analysis

Table VI compares MSPViT with state-of-the-art methods for
PAD detection. These methods leverage either blood pressure
patterns acquired from an arm cuff [13], [14], or PPG sensors
placed on toes [16], [17], [19] to recognize PAD patients. As
discussed in Section I, state-of-the-art methods employ deep
learning (DL) techniques and statistical analysis to process PPG
and oscillometry recordings for the detection of PAD.

Our proposed framework for PAD detection, ACM + MSPViT
(X2), outperforms other methodologies in terms of sensitivity
(99.4% vs. 90.0%, 90.0%, 93.0%, 92.0%, and 82.4% respec-
tively offered by [13], [14], [16], [17], and [19]), implying the
lowest missed PAD rate. The specificity of the proposed method,
i.e., 98.2%, exceeds the oscillometry method in [13] by a margin
of 0.8%, suggesting a lower false detection rate. MSPViT (X2)
offers an accuracy of 99.1% which is considerably greater than
94.8%, 91.4%, 91.0%, and 86.9% presented by [13], [14], [16],
and [19], respectively. Comparing the F1 score of the proposed
method with that reported in [13] (99.3% vs. 92.3%), an im-
provement of 7.0% is concluded as a result of using ACM
proximal recordings with MSPViT (X2). An area under the
curve (AUC) of 0.99 by ACM + MSPViT (X2) outperforms the
oscillometry method in [13] and the PPG-based method in [17]
with AUC scores of 0.94 and 0.79 respectively. Additionally, our
proposed methodology is capable of determining the severity
level of PAD with an F1 score of 96.3% and an average AUC
score of 0.96, whereas conventional methods are unable to
evaluate the severity level.

C. Limitations and Future Works

It was demonstrated that patterns representing the presence
of PAD and its corresponding severity level could be detected
using proximal accelerometer contact microphone recordings.
While our method offers excellent performance, it could benefit
from addressing the limitations mentioned in the following
paragraphs.

As mentioned in Section III-A, the ACM sensor should have
high precision and sensitivity to record minute vibrational pat-
terns corresponding to PAD. This is however accompanied by
recording undesired components such as respiration and vocal
cord vibrations due to speaking. Fig. 8 represents an example of
a signal distorted by vocal cord vibrations. This distortion affects
feature extraction and hence the decision-making process. This
problem can be addressed through the use of blind source
separation (BSS) techniques to discriminate cardiac components
from vocal vibrations. The BSS method could be either based on
a single-channel platform similar to our previous work in [44], or
an array of sensors used for the independent component analysis
(ICA) technique [45].

The purpose of this study is to make a decision on the presence
of PAD as well as classify its severity levels. However, the
proposed framework is unable to locate the obstruction region,
which if possible, can be followed by medical interventions. In
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TABLE VI
COMPARATIVE ANALYSIS OF PAD DETECTION AND SEVERITY CLASSIFICATION BASED ON ACCELEROMETER CONTACT MICROPHONE DATA TRAINED ON

MSPVIT ARCHITECTURES VERSUS STATE-OF-THE-ART

Fig. 8.     An example of an ACM recording distorted by vocal cord vibra-
tions during speaking.

our future studies, we will investigate the possibility of determin-
ing the obstruction regions using multiple-ACM configurations
distributed on the limbs. The signal pattern changes among
various arterial sites may provide useful information about the
obstruction region(s).

VI. CONCLUSION

This study presents a novel framework based on the proximal
recordings of heart vibrations using a high-precision accelerom-
eter contact microphone (ACM) for the detection of peripheral
artery disease (PAD) and the classification of its severity level. A
deep neural network coined multi-stream-powered vision trans-
former (MSPViT) is introduced to differentiate PAD patients
from healthy subjects using blood pressure backflow patterns in
ACM recordings corresponding to arterial obstructions. The pro-
posed architecture leverages Mel frequency cepstral coefficients
(MFCCs) and high-level-of-abstraction coefficients (HLACs)
generated by a pre-trained ResNet50 network for PAD detection
and severity classification. The performance of the proposed
framework is evaluated on the data of 74 PAD patients and 21
healthy subjects (a total of 95 subjects) for PAD detection as well

as severity classification. Sensitivity, specificity, accuracy, posi-
tive predictive value, and F1 scores of 99.45% (±0.47), 98.21%
(±2.93), 99.07% (±0.89), 99.30% (±1.25), and 99.37% (±0.63)
are respectively reported for PAD detection using MSPViT (X2)
whose input is provided by layer 22 of the fine-tuned ResNet50
network. An AUC of 0.99 also confirms the discrimination
power of MSPViT (X2). Additionally, the network is assessed
for the classification of severity levels where average sensitivity,
specificity, accuracy, positive predictive value, and F1 scores
of 96.66% (±4.08), 97.34% (±2.19), 97.65% (±1.67), 96.24%
(±2.51), and 96.29% (±3.01) are achieved. As such, for the
first time in this study, the functionality of proximal recordings
of heart sounds for PAD detection is proven.
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