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Techniques are developed to extend the notions of F-splitting 
ratios to modules over rings of prime characteristic, which are 
not assumed to be local. We first develop the local theory for 
F-splitting ratio of modules over local rings, and then extend 
it to the global setting. We also prove that strong F-regularity 
of a pair (R, D), where D is a Cartier algebra, is equivalent 
to the positivity of the global F-signature s(R, D) of the pair. 
This extends a result previously proved by these authors, by 
removing an extra assumption on the Cartier algebra.
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1. Introduction

This article is focused on extending the notion of F-splitting ratio of a local ring in 

two directions: from the local to the global setting, and from the ring to all finitely 
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generated R-modules. The F-splitting ratio of a local ring, denoted rF (R), is a measure 

of the asymptotic free-rank of the modules F e
∗ R. More specifically, if (R, m, k) is a local 

ring with perfect residue field, for each e ∈ Z>0 we write F e
∗ R = R⊕ae(R)

⊕

Me, where 

Me has no free summands. It is easy to see that, under these assumptions, the integers 

ae(R) do not depend on the chosen direct sum decomposition. The F-splitting ratio of 

R is defined as

rF (R) = lim
e→∞

ae(R)

pe sdim(R)
,

where sdim(R) is the splitting dimension of R (see [1], and Section 2). The F-splitting 

ratio is always positive for F-pure rings. Its existence as a limit was first proved by Tucker 

for local rings [20], while its positivity for F-pure local rings was established in [2].

Observe that rF (R) is defined similarly to the F-signature of R; in fact, the two 

definitions coincide if and only if sdim(R) = dim(R). However, rF (R) is always positive 

for an F-pure ring, while s(R) is non-zero only for strongly F-regular rings.

The splitting dimension and splitting numbers can naturally be reinterpreted for a 

finitely generated module M over an F-finite ring which is not necessarily local (see 

Section 4). We call our generalization of the splitting dimension the splitting rate of M , 

and we denote it by sr(M). When sr(M) � 0, the F-splitting ratio of M is defined as

rF (M) = lim
e→∞

ae(M)

pe sr(M)
,

provided the limit exists.

Our first main result provides strong uniform bounds local splitting numbers of a 

module. An immediate consequence of this is the existence of the F-splitting ratio of a 

module in the local case.

Theorem A (see Theorem 4.6). Let R be an F-finite ring, and M be a finitely generated R-

module. Then the local F -splitting ratios rF (MQ) exist for all Q ∈ Spec(R). Furthermore, 

there exists a constant C such that for all Q ∈ Spec(R) and e ∈ Z>0,

∣

∣

∣
ae(MQ) − pe sr(MQ)rF (MQ)

∣

∣

∣
� Cpe(sr(MQ)−1).

In particular, if (R, m, k) is local and M is a finitely generated R-module, then rF (M)

exists as a limit.

We provide an example to show that, in general, lower semi-continuity may not hold on 

the whole spectrum of a ring, even in the case when the ring is a domain (Example 5.4). 

This is in contrast with the behavior of several other invariants: Hilbert-Kunz multiplicity 

and F-signature [17,13], Frobenius Betti numbers and Frobenius Euler characteristics [4].

Using Theorem A and some partial lower semi-continuity results for the F-splitting 

ratio (see Theorem 5.1), we prove the existence of the F-splitting ratio of a module 



A. De Stefani et al. / Journal of Algebra 610 (2022) 773–792 775

over a ring which is not necessarily local. We also relate both the splitting rate and the 

F-splitting ratio of a module to the respective invariants in the localizations at prime 

ideals. This last fact allows us to relate the positivity of rF (R) to the F-purity of R.

Theorem B (see Theorem 5.6). Let R be an F-finite domain of prime characteristic p > 0. 

Then

(1) The limit rF (R) exists.

(2) We have equalities

sr(R) = min{sr(RP ) | P ∈ Spec(R)}

and

rF (R) = min{rF (RP ) | sr(R) = sr(RP )}.

(3) rF (R) > 0 if and only if R is F-pure.

Theorem B is here stated only for global F-splitting ratio of the ring R, under the 

additional assumption that it is a domain. We refer the reader to 5 for more general 

results on finitely generated R-modules. We point out that (3) is an important property 

of F -splitting ratios that mimics an important property of F -signature; s(R) > 0 if and 

only if R is strongly F -regular. Item (3) follows by item (2) and [2, Corollary 4.3].

Among other properties of F-splitting ratios, we prove that if R is a positively graded 

algebra over a local ring (R0, m0), then sr(R) = sr(Rm) and rF (R) = rF (Rm), where 

m = m0 + R>0 (see Proposition 5.7). This result gives an analogous statement for the 

global F-signature (see Corollary 5.8).

In the final section of this article, we positively answer [5, Question 4.24]. In the local 

case, it was proved in [2] that the F-signature of a Cartier algebra D on R is positive 

if and only if the pair (R, D) is strongly F-regular. These authors were able to recover 

the same result in the global setting, provided the Cartier algebra D satisfies certain 

additional assumptions [5, Theorem 2.24]. We are able to remove these extra conditions:

Theorem C. Let R be an F-finite domain, and D be a Cartier algebra on R. Then (R, D)

is strongly F-regular if and only if s(R, D) > 0.

2. Background on F-splitting ratio of local rings

Let (R, m, k) be an F-finite local ring of prime characteristic p > 0. Aberbach and 

Enescu introduced the concepts of splitting prime and F-splitting ratio of a local F-finite 

ring in [1]. Assume that R is F-pure, that is, the Frobenius map is pure as a map of rings. 

In our assumptions, this is the same as requiring that R is F-split [9, Corollary 5.3]. For a 

finitely generated R-module M , we let frkR(M) be the maximal rank of a free summand 
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of M . Equivalently, frkR(M) is the maximal rank of a free module G for which there is a 

surjection M → G → 0. For all e ∈ Z>0, we let ae(R) = frkR(F e
∗ R) be the e-th splitting 

number of R. Let α(m) = logp[F∗k : k]. The splitting dimension of R is

sdim(R) := sup

{

ℓ ∈ Z�0

∣

∣

∣

∣

lim inf
e→∞

ae(R)

pe(ℓ+α(m))
> 0

}

.

The F-splitting ratio of R is defined to be the limit

rF (R) := lim
e→∞

ae(R)

pe(sdim(R)+α(m))
,

which always exists [20, Theorem 4.9] and is always positive for F-pure rings by work of 

Blickle, Schwede, and Tucker [2, Corollary 4.3].

Remark 2.1. Observe that, when sdim(R) = dim(R), the F-splitting ratio is equal to the 

F-signature of R.

Continue to let (R, m, k) denote an F-finite and F-pure local ring of prime character-

istic p > 0. For each e ∈ Z>0 let Ie = {r ∈ R | R
·F e

∗
(r)

−−−−→ F e
∗ R is not pure} be the e-th 

splitting ideal of R. Aberbach and Enescu show in [1] that P :=
⋂

e∈Z>0
Ie is a prime 

ideal of R and R/P is a strongly F-regular local ring. The ideal P is called the splitting 

prime of the local ring R. Moreover, it is shown in [2] that the splitting dimension of R

is the Krull dimension of the local ring R/P.

We recall that a graded Fp-subalgebra D of 
⊕

e∈Z�0
HomR(F e

∗ R, R), with D0 =

HomR(R, R) and multiplication ϕ • ψ = ϕ ◦ F e
∗ ψ ∈ De+e′ for all ϕ ∈ De and ψ ∈ De′ , 

is called a Cartier algebra. If De = HomR(F e
∗ R, R) for all e, we refer to D as the full 

Cartier algebra on R. See [2] for more details on Cartier algebras.

If I ⊆ R is an ideal, then we let DR/I be the Cartier algebra on R/I whose e-th graded 

component is denoted by DR/I,e and consists of R/I-linear maps ϕ : F e
∗ (R/I) → R/I

which can be factored through an R-linear map φ : F e
∗ R → R. That is, there exists 

commutative diagram of R-modules of the form

F e
∗ (R/I)

ϕ
R/I

F e
∗ R

∃φ
R

Observe that the construction of this Cartier algebra did not require R to be local. 

Moreover, if P is a prime ideal of R which contains I, then the localized Cartier algebra 

(DR/I)P agrees with DRP /IRP
.

We now recall the definition of splitting numbers of a pair (R, D) in the local case. Let 

(R, m, k) be a local F-finite and F-pure ring of prime characteristic p > 0, and D be a 
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Cartier algebra. We let ae(R, D) be the largest rank of a free D-summand of F e
∗ R. More 

explicitly, we look at the largest rank of a free R-module G ∼=
⊕

R for which there is a 

surjection F e
∗ R

ϕ
−→ G → 0, with ϕ that is a direct sum of elements in De when viewed 

as an element of HomR(F e
∗ R, G) ∼=

⊕

HomR(F e
∗ R, R). It was proved in [2] that, if D is 

the full Cartier algebra on R, and P is the splitting prime of R, one has

ae(R) = ae(R/P, DR/P).

We record the following theorem of Blickle, Schwede, and Tucker for future reference.

Theorem 2.2 ([2]). Let (R, m, k) be a local F-finite and F-pure ring of prime characteristic 

p > 0. Let D be the full Cartier algebra on R, and P be the splitting prime of R. 

Then ae(R) = ae(R/P, DR/P) for all e ∈ Z>0, and thus rF (R) = s(R/P, DR/P) =

rF (R/P, DR/P). In particular, the F-splitting ratio of R is strictly positive.

3. Uniform bounds for splitting numbers

With the goal in mind of extending the theory of F-splitting ratios to modules over 

rings which are not necessarily local, we must first discuss and understand properties of 

centers of F-purity, i.e., compatibly split subvarieties, whose properties are developed by 

Schwede in [15] and [16], and by Kumar and Mehta in [10].

Let R be an F-finite ring of prime characteristic p > 0, not necessarily local, and M

be a finitely generated R-module. For e ∈ Z>0 we let ae(M) = frkR(F e
∗ M), and assume 

that ae(M) > 0 for some e. Under these assumptions, we make the following definition.

Definition 3.1. We define the F-splitting rate of M to be

sr(M) := sup

{

ℓ ∈ Z�0

∣

∣

∣

∣

lim inf
e→∞

ae(M)

peℓ
> 0

}

.

If (R, m, k) is local, then sr(R) = sdim(R) + α(m). Moreover, if P the splitting prime 

of (R, m, k), then sr(R) = γ(R/P) by [1, Theorem 1.1] and [2, Corollary 4.3]. When 

ae(M) = 0 for all e ∈ Z>0 we set sr(M) = −1.

Now assume that R is F-finite and F-pure, that is, ae(R) > 0 for some (equivalently, 

for all) e ∈ Z>0. An ideal P ∈ Spec(R) is called a center of F-purity if for every x ∈ P

and every e ∈ Z>0 the map

RP
·F e

∗
x

−−−→ F e
∗ (RP )

is not pure as a map of RP -modules. If R is local and P the splitting prime of R then P

is the unique maximal center of F-purity of R, [16, Remark 4.4]. An important property 

enjoyed by all F-finite F-pure rings is that they only admit finitely many centers of 

F-purity [15, Theorem C].
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Also crucial to our proof of existence of global F-splitting ratio will be that Cartier 

algebras of the form DR/I described above satisfy the following technical condition.

Condition 3.2. Let R be an F-finite ring and D a Cartier algebra. We say that D satisfies 

condition (∗) if we require that for each ϕ ∈ De+1 that the natural map i ◦ ϕ ∈ De where 

i : F e
∗ R → F e+1

∗ R is the Frobenius.

Lemma 3.3. Let R be an F-finite ring of prime characteristic p > 0 and I ⊆ R be an 

ideal. Assume that the Cartier algebra D on R satisfies (∗). Then the Cartier algebra 

DR/I on R/I satisfies condition (∗) as well.

Proof. Let ϕ ∈ DR/I,e+1, and i : F e
∗ (R/I) → F e+1

∗ (R/I) be the Frobenius map on 

F e
∗ (R/I). We are assuming there exists a commutative diagram of R-modules of the 

form

F e
∗ (R/I)

i
F e+1

∗ (R/I)
ϕ

R/I

F e
∗ R F e+1

∗ R
φ

R

The Frobenius map on F e
∗ (R/I) can be lifted by the Frobenius map on F e

∗ R. Therefore 

the above commutative diagram can be filled in, and it follows that ϕ ◦ i ∈ DR/I,e. �

We use the following notation: given a prime P ∈ Spec(R) we let α(P ) = logp[F∗κ(P ) :

κ(P )] and γ(R) = max{α(P ) | P ∈ Spec(R)}. Moreover, given a pair (R, D), P ∈

Spec(R) and e ∈ Z>0, we let ae(RP , DP ) be the maximal rank of a free DP -summand 

of F e
∗ (RP ). In the case when D = HomR(F e

∗ R, R) is the full Cartier algebra, we simply 

write ae(RP ), which is also equal to frkRP
(F e

∗ RP ). We are almost ready to prove a 

uniform bound result for the localized splitting numbers ae(RP ) of an F-finite ring R, 

but first we recall a uniform bound found in [13]. In the proof of [13, Theorem 6.4] it is 

shown that if D is a Cartier algebra satisfying condition (∗) then there exists a constant 

C such that

∣

∣

∣

∣

ae(RP , DP )

peγ(RP )
− s(RP , DP )

∣

∣

∣

∣

�
C

pe

for all e ∈ N and P ∈ Spec(R). We record this uniform bound for future reference.

Theorem 3.4 ([13, Proof of Theorem 6.4]). Let R be an F-finite ring, and D be a Cartier 

algebra satisfying condition (∗). There exists a constant C such that for all P ∈ Spec(R)

and all e ∈ Z>0

∣

∣

∣
ae(RP , DP ) − peγ(RP ) s(RP , DP )

∣

∣

∣
� Cpe(γ(RP )−1).
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Using this, we obtain uniform bounds for the difference of localized splitting numbers 

of an F-finite F-pure ring and the corresponding F-splitting ratios.

Theorem 3.5. Let R be an F-finite ring and F-pure ring. There is a constant C ∈ R such 

that for all P ∈ Spec(R) and e ∈ Z>0

∣

∣

∣
ae(RP ) − pe sr(RP )rF (RP )

∣

∣

∣
� Cpe(sr(RP )−1).

Proof. Let Y = {p1, . . . , pN } be the finitely many centers of F-purity of Spec(R), and 

D be the full Cartier algebra on R. Observe that D trivially satisfies condition (∗). For 

each pi, let Ci be a constant as in Theorem 3.4 for the pair (R/pi, DR/pi
). We claim 

that we can choose C = max{C1, . . . , CN }. In fact, given P ∈ Spec(R), there is a unique 

pi ∈ Y such that piRP is the splitting prime of RP . If we let S = R/pi, by Theorem 2.2

we have that ae(RP ) = ae(SP , DSP
) and rF (RP ) = rF (SP , DSP

). As the Cartier algebra 

DS still satisfies condition (∗), it then follows from Theorem 3.4 that

∣

∣

∣
ae(RP ) − pe sr(RP )rF (RP )

∣

∣

∣
=

∣

∣

∣
ae(SP , DSP

) − pe sr(RP )rF (SP , DSP
)
∣

∣

∣

� Cip
e(γ(SP )−1)

� Cpe(sr(RP )−1). �

A consequence of Theorem 3.5 is the following:

Corollary 3.6. Let R be an F-finite and F-pure ring of prime characteristic p > 0. 

Then the normalized splitting number functions ãe : Spec(R) → R mapping P �→

ae(RP )/pe sr(RP ) converge uniformly as e → ∞ to the F-splitting ratio function rF :

Spec(R) → R mapping P �→ rF (RP ).

4. F-splitting ratio of modules over local rings

The theory of splitting ratios over a local ring developed in [1] and [2] only concerns 

itself with the Frobenius splitting numbers ae(R) of a local ring (R, m, k). In this sec-

tion we extend the local theory by studying the Frobenius splitting numbers of finitely 

generated modules. We first make a more general definition.

Definition 4.1. Let R be an F-finite ring of prime characteristic p > 0, and M be a finitely 

generated R-module. If ae(M) > 0 for some e ∈ Z>0, we let

rF (M) = lim
e→∞

ae(M)

pe sr(M)
,

provided the limit exists. If ae(M) = 0 for all e ∈ Z>0, we let rF (M) = 0.

The goal of this section is to prove the existence of the limit when R is assumed to 

be local.
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We begin with the following observation.

Lemma 4.2. Let (R, m, k) be a local F-finite ring of prime characteristic p > 0 and let M

be a finitely generated R-module. If ae0
(M) > 0 for some e0 ∈ Z>0 then sr(M) = sr(R).

Proof. Choose an onto R-linear map R⊕n → M . Then ae(M) � nae(R) and it follows 

that sr(M) � sr(R). If F e0
∗ M ∼= R ⊕ Me0

for some e0 then F e+e0
∗ M ∼= F e

∗ R ⊕ F e
∗ Me0

for 

each e ∈ Z>0. Therefore ae(R) � ae+e0
(M) for each e ∈ Z>0 and sr(R) � sr(M). �

In what follows, it will be useful to keep track of the primes P for which the splitting 

rate of M is non-negative. We make the following definition.

Definition 4.3. Let R be an F-finite ring and M a finitely generated R-module. The F-split 

locus of M is fs(M) = {P ∈ Spec(R) | F e
∗ (MP ) has a free summand for some e > 0}.

Observe that, if F e
∗ (MP ) has a free summand, then so does F e

∗ (RP ). Therefore fs(M) ⊆

fs(R). Moreover, Lemma 4.2 proves that, if P ∈ fs(M), then the splitting rates of MP

and RP agree. Our next lemma establishes the existence of the F-splitting ratio of a 

finitely generated module over a local ring (R, m, k) under the assumption that m is the 

splitting prime ideal of R.

Lemma 4.4. Let (R, m, k) be an F-finite and F-pure local ring, with m being its splitting 

prime. Let γ = γ(R/m). For every e � 0, write F e
∗ M ∼= R⊕ae(M) ⊕ Me. Then

(1) The sequence {ae(R)/peγ} is the constant sequence {1}. In particular rF (R) = 1.

(2) The sequence {ae(M)/peγ}e�0 is a bounded non-decreasing sequence of integers, and 

therefore eventually constant. In particular, the F-splitting ratio rF (M) exists. More-

over, sr(M) = γ ⇐⇒ rF (M) > 0 ⇐⇒ m ∈ fs(M).

(3) If ae(M)/peγ = rF (M) then ae′(Me) = 0 for all e′ � 0.

Proof. If we let Ie = {r ∈ R | R
·F e

∗
r

−−−→ F e
∗ R does not split} then Ie is an m-primary ideal 

such that λ(R/Ie) = ae(R)
peγ , and 

⋂

e∈Z>0
Ie is the splitting prime of R, see [1, Corollary 2.8 

and Theorem 3.3]. Hence Ie = m for each e ∈ Z>0 and therefore λ(R/Ie) = ae(R)
peγ = 1

for each e ∈ Z>0.

Given finitely generated module M we let Ie(M) = {m ∈ M | R
·F e

∗
m

−−−→

F e
∗ M does not split}. It is known, and easy to prove, that Ie(M) is a submodule of 

M containing m[pe]M and λ(M/Ie(M)) = ae(M)
peγ is an integer.

As M is a homomorphic image of R⊕n for some integer n � 0, we see that

ae(M)

peγ
�

ae(R⊕n)

peγ
=

ae(R)n

peγ
= n.
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Also observe that for all e′ � 0, we have ae+e′(M) = ae(M)ae′(R) + ae′(Me) =

ae(M)pe′γ + ae′(Me) and hence

ae+e′(M)

p(e+e′)γ
=

ae(M)

peγ
+

ae′(Me)

p(e+e′)γ
�

ae(M)

peγ
.

In summary, {ae(M)/peγ}e�0 is a non-decreasing sequence of integer values with an 

upper bound. So it is eventually constant. All remaining claims follow immediately. �

Let (R, m, k) be a local ring, not necessarily of prime characteristic, and M a finitely 

generated R-module. Similar to the above, we define I(M) = {m ∈ M | R
·m
−−→

M does not split}. Then I(M) ⊆ M is a submodule of M satisfying mM ⊆ I(M) and 

λ(M/I(M)) = frk(M). We refer to I(M) as the non-split submodule of M . Notice that 

I(F e
∗ M) = F e

∗ Ie(M). Our next lemma studies the behavior of non-split submodules 

under R-linear maps.

Lemma 4.5. Let (R, m, k) be a local ring (of any characteristic), let M , N and K be 

finitely generated R-modules, f ∈ HomR(M, N) and g ∈ HomR(N, K). Let I(M), I(N)

and I(K) be the non-split submodules of M , N and K respectively.

(1) We have frk(N) � λ(M/(g ◦ f)−1(I(K))).

(2) Further assume that R is an F-finite ring of prime characteristic p, M = K and 

g ◦ f = c1M for some c ∈ R. Then, for all e � 0,

ae(N) � ae(M) − λ(M/(Ie(M) + cM))peγ(m).

Proof. For (1) first observe that g(I(N)) ⊆ I(K). Else, if there exists n ∈ I(N) such 

that g(n) /∈ I(K) then there is ϕ : K → R such that ϕ(g(n)) = 1 contradicting the 

assumption n ∈ I(N). Therefore g(f(f−1(I(N)))) ⊆ g(I(N)) ⊆ I(K). In particular, 

f−1(I(N)) ⊆ (g ◦ f)−1(I(K)) and hence

frk(N) = λ(N/I(N))) � λ(M/f−1(I(N))) � λ(M/(g ◦ f)−1(I(K))).

We now prove part (2). Suppose (R, m, k) is an F-finite ring of prime characteristic 

p > 0. For each e � 0, the induced maps F e
∗ f and F e

∗ g satisfy F e
∗ g ◦ F e

∗ f = (F e
∗ c)1F e

∗
M . 

So (F e
∗ g ◦ F e

∗ f)−1(I(F e
∗ M)) = (I(F e

∗ M) :F e
∗

M F e
∗ c) = F e

∗ (Ie(M) :M c). By (1), we see

ae(N) = frk(F e
∗ N) � λ(F e

∗ M/F e
∗ (Ie(M) :M c)) = λ(M/(Ie(M) :M c))peα(m)

= [λ(M/Ie(M)) − λ(M/(I(M) + cM))]peγ(m)

= λ(M/Ie(M))peα(m) − λ(M/(I(M) + cM))peα(m)

= ae(M) − λ(M/(Ie(M) + cM))peα(m).
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The equation λ(M/(Ie(M) :M c)) = λ(M/Ie(M)) − λ(M/(Ie(M) + cM)) follows since 

length is additive and there is short exact sequence

0 → M/(Ie(M) :M c) → M/Ie(M) → M/(Ie(M) + cM) → 0. �

We are now ready to accomplish two tasks simultaneously: proving the existence of 

the F-splitting ratio of a finitely generated module over a local ring, and a uniform 

convergence result which extends Theorem 3.5 to finitely generated modules.

Theorem 4.6. Let R be an F-finite ring, M a finitely generated R-module, and for each 

prime ideal Q ∈ fs(R) let P(Q) be the splitting prime ideal of RQ. Then rF (MQ) =

rF (MP(Q))rF (RQ) and sr(MQ) = sr(MP(Q)) for all Q ∈ fs(R). Moreover, there exists a 

constant C such that for all Q ∈ Spec(R) and e ∈ Z>0,

∣

∣

∣
ae(MQ) − pe sr(MQ)rF (MQ)

∣

∣

∣
� Cpe(sr(MQ)−1).

Proof. If Q /∈ fs(R) then ae(MQ) = ae(RQ) = 0 for all e ∈ Z>0 and any choice of 

constant C � 0 satisfies the desired inequality for all such prime ideals. Furthermore, 

as the F-pure locus fs(R) is open, we can write fs(R) = Spec(R) � V (f1, . . . , fn) =

D(f1) ∪ · · · ∪ D(fn) where f1, . . . , fn generate the defining ideal of the non-F-pure locus 

of R. Therefore fs(R) is covered by finitely many principal open sets of the form Spec(Rf )

with each Rf being F-pure. Thus we may prove the theorem for each of these pieces of 

the affine cover and assume for the remainder of the proof that R is an F-pure ring. In 

particular, R has only finitely many centers of F-purity (see [15, Theorem C] and [10, 

Theorem 1.1]).

Our approach is to stratify Spec(R) as a finite union of locally closed sets of the form 

V (P) ∩D(s) where P is the unique maximal center of F-purity of D(s). We then provide 

a uniform constant C for which the desired inequality holds for each of piece of the 

stratification. For each center of F-purity P, let Q(P) = {Q ∈ Spec(R) | P(Q) = PRQ}. 

If Q ∈ Spec(R) then P(Q) = PRQ if and only if PRQ is the splitting prime ideal of RQ, 

i.e., the maximal center of F-purity of RQ. Let P1, . . . , Pℓ be all the centers of F-purity 

that are not subsets of P, and let ∩ℓ
i=1Pi = (s1, . . . , st). We may assume that sj /∈ P

for all j = 1, . . . , t. In fact, ∩ℓ
i=1Pi � P, and we can assume s1 /∈ P; if sj ∈ P for 

some j > 1, then we can replace sj by s1 + sj . We have that Q ∈ Q(P) if and only if 

Q ∈ V (P) � V (∩ℓ
i=1Pi), which is equivalent to Q ∈ ∪t

j=1

(

V (P) ∩ D(sj)
)

. Note that, for 

each j = 1, . . . , t, the centers of F-purity of Spec(R) contained in D(sj) are subsets of P, 

so P is the unique maximal center of F-purity in D(sj). Because there are only finitely 

many centers of F-purity P ∈ Spec(R), we can realize Spec(R) as a finite union of locally 

closed sets of the form V (P) ∩ D(s) where P is the unique maximal center of F-purity 
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of D(s). If Q is in one such V (P) ∩ D(s) then we replace R by Rs and may assume that 

R has a unique maximal center of F-purity P and Q ∈ Q(P) = V (P) ⊆ Spec(R).2

If rF (MP) = 0 then rF (MQ) = 0 and the conclusion holds for all Q ∈ Q(P). So we 

assume rF (MP) > 0 for the rest of proof. Let γ = γ(P) = sr(MP). By Lemma 4.4, 

there exists e0 such that ae0
(MP)/pe0γ = rF (MP). Let a = ae0

(MP). Then F e0
∗ MP

∼=

R⊕a
P ⊕ (Me0

)P over RP , for some finitely generated R-module Me0
. Lifting to R, we 

obtain R-linear maps

R⊕a → F e0
∗ M → R⊕a and F e0

∗ M → R⊕a ⊕ Me0
→ F e0

∗ M

such that both compositions are multiplication by some c ∈ R \ P. Applying Lemma 4.5

to the composition map R⊕a → F e0
∗ M → R⊕a, we see that for all Q ∈ Q(P) and e � 0,

ae0+e(MQ) � a · (ae(RQ) − λ(RQ/(Ie(RQ) + cRQ))peγ(Q)).

Therefore

ae0+e(MQ)

p(e0+e)γ
�

a · (ae(RQ) − λ(RQ/(Ie(RQ) + cRQ))qγ(Q))

p(e0+e)γ

=
a

pe0γ

(

ae(RQ)

peγ
−

λ(RQ/(Ie(RQ) + cRQ))

pe dim(RQ/PRQ)

)

� rF (MP)

(

ae(RQ)

peγ
−

λ(RQ/(Q[pe] + P + cR)RQ)

pe dim(RQ/PRQ)

)

.

The last inequality comes from the observation that (Q[pe] +P +cR)RQ ⊆ Ie(RQ) +cRQ

for all e ∈ N. Indeed, Q[pe]RQ ⊆ Ie(RQ) for all e, see [20, Lemma 4.4], and PRQ ⊆

Ie(RQ) for all e since PRQ = ∩e∈NIe(RQ) by [1] and [16, Remark 4.4].

By Theorem 3.5 there exists a constant C1, independent of e and Q ∈ Q(P), such that 
ae(RQ)

peγ � rF (RQ) − C1

pe , where γ = sr(MP) as above. This is because, by Lemma 4.2, we 

have sr(MP) = sr(RP). Moreover, since sdim(RQ) = dim(RQ/PRQ), we have sr(RP) =

sr(RQ) for all Q ∈ Q(P). Thus, γ = sr(MP) = sr(RP) = sr(RQ) for all Q ∈ Q(P). By 

[13, Proposition 3.3], there exists a constant C2, independent of e and Q ∈ Q(P), such 

that 
λ(RQ/(Q[pe]+P+cR)Q)

pe dim(RQ/PRQ) �
C2

pe . Therefore the constant C = rF (MP)pe0(C1 +C2), which 

is independent of e and Q ∈ Q(P), is such that

ae0+e(MQ)

p(e0+e)γ
� rF (MP)rF (RQ) −

C

pe+e0
.

2 We thank the anonymous referee for pointing out this simpler approach: With P ranging over the finitely 
many centers of F-purity of R, the subsets Q(P) give rise to a partition of Spec(R). So it suffices to pick a 
center of F-purity P and prove the claims (including the existence of a constant C) for all Q ∈ Q(P). The 
rest of the proof works verbatim, without replacing R by its localization Rs.
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An argument similar to the above, applied to the composition of maps F e0
∗ M → R⊕a⊕

Me0
→ F e0

∗ M , will provide the existence of a constant C ′, independent of Q ∈ Q(P)

and e, such that

ae0+e(MQ)

p(e0+e)γ
� rF (MP)rF (RQ) +

C ′

pe+e0
.

This shows, in particular, that 
ae(MQ)

peγ converges uniformly to rF (MP)rF (RQ) > 0, and 

thus γ = sr(MP) = sr(MQ), for all Q ∈ Q(P). All assertions of the theorem now 

follow. �

5. Lower semi-continuity and global F-splitting ratio

The main purpose of this section is to prove existence of the global F-splitting ratio 

of a finitely generated module M .

We first need to establish some lower semi-continuity results for F-splitting ratios. We 

will see that, unlike the F-signature, the F-splitting ratio of an F-finite domain may not 

be a lower semi-continuous function.

Let R be an F-finite ring and M a finitely generated R-module. For each −1 � ℓ �

γ(R) we set Wℓ(M) = {P ∈ Spec(R) | sr(MP ) = ℓ}. From Lemma 4.2 and subsequent 

observations, we have that Wℓ(M) = Wℓ(R) ∩ fs(M) for all ℓ � 0.

Theorem 5.1. Let R be an F-finite and F-pure ring of prime characteristic p > 0, set X =

Spec(R) and let M be a finitely generated R-module. Then there is a finite stratification 

of X into locally closed quasi-compact subsets such that the restriction of the F-splitting 

ratio function on each subset is lower semi-continuous. Specifically, X =
⋃γ(R)

i=−1 Wi(M), 

Wi(M) ∩ Wj(M) = ∅ whenever i �= j, the sets Wi(M) are locally closed and quasi-

compact, and the function rF : Spec(R) → R mapping P �→ rF (MP ) is lower semi-

continuous when restricted to each Wi(M).

Proof. The functions ae : Spec(R) → R mapping P �→ ae(MP ) are easily checked to 

be lower semi-continuous, see [6, Proposition 2.2]. The normalized functions ãe mapping 

P �→ ae(MP )/pe sr(MP ) are therefore lower semi-continuous when restricted to each of the 

subsets Wℓ(M). It follows that the function rF is lower semi-continuous when restricted 

to each Wℓ(M) as it is realized as the uniform limit of lower semi-continuous functions 

by Theorem 4.6. It is also easy to see that the sets W−1(M), W0(M), . . . , Wγ(R)(M) are 

disjoint and X =
⋃γ(R)

i=−1 Wi(M). It remains to show each of the sets Wℓ(M) are locally 

closed and quasi-compact.

We adopt the convention that Wi(M) = ∅ if i < −1, and we let P(Q) denote the 

splitting prime of RQ. For every Q ∈ Spec(R), and every −1 � ℓ � γ(R), Theorem 4.6

shows that sr(MQ) = sr(MP(Q)), and hence Q ∈ Wℓ(M) if and only if P(Q) ∈ Wℓ(M).
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Let {p1, . . . , pN } be the finitely many centers of F-purity of R that are contained in 

fs(M). Relabeling if necessary, we may assume γ(R/pj) = ℓ if and only if 1 � j � i, and 

γ(R/pj) < ℓ if and only if i + 1 � j � t. Observe that

Wℓ(M) =

⎛

⎝

i
⋃

j=1

V (pj)

⎞

⎠ �

⎛

⎝

t
⋃

j=i+1

V (pj)

⎞

⎠ =

⎛

⎝

i
⋃

j=1

V (pj)

⎞

⎠ ∩

⎛

⎝X �
t

⋃

j=i+1

V (pj)

⎞

⎠ ,

hence it is a locally closed set. Finally, note that every locally closed set of Spec(R), with 

R Noetherian, is quasi-compact. �

Corollary 5.2. Let R be an F-finite and F-pure ring and let M be a finitely generated 

R-module. For ℓ � 0, if Wℓ(M) �= ∅, then the F-splitting ratio function defined by 

rF : Spec(R) → R mapping P �→ rF (MP ) has a nonzero minimum value when restricted 

to Wℓ(M).

Proof. The function rF is lower semi-continuous when restricted to the non-empty quasi-

compact set Wℓ(M) and therefore attains a minimum value. �

The F-splitting ratio function is generally not a lower semi-continuous function when 

viewed as a function on the spectrum of a ring. We provide an example of such a ring, 

but first we need a lemma.

Lemma 5.3. Let (R, m, k) be an F-finite and F-pure ring satisfying the following:

(1) R is F-pure;

(2) R is not strongly F-regular;

(3) RP is strongly F-regular for all P �= m;

(4) RP is not regular for some P �= m.

Then the F-splitting ratio function rF : Spec(R) → R is not lower semi-continuous.

Proof. For each e ∈ Z>0 let Ie = {r ∈ R | R
·F e

∗
(r)

−−−−→ F e
∗ R is not pure} be the eth splitting 

ideal of R and set P =
⋂

e∈Z>0
Ie. Recall that P is referred to as the splitting prime of 

R, and since R is assumed to be not strongly F-regular, the closed set V (P) is contained 

in the non-strongly F-regular locus of R. Therefore P = m and it is straightforward to 

check that ae(R) = ae(R/m) = [k1/pe

: k] for all e. In particular, ae(R)/pe sr(R) = 1 for 

all e and therefore rF (R) = 1. However, localizing at a prime P �= m for which RP is not 

regular it follows RP is strongly F-regular by assumption but not regular and therefore 

rF (RP ) = s(RP ) < 1 by [8, Corollary 16] and therefore the F-splitting function is not 

lower semi-continuous. �
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Theorem 5.4. There exist an F-finite ring R for which the F-splitting ratio function is 

not lower semi-continuous as a function from Spec(R) to R.

Proof. Let k be a perfect field of prime characteristic p and let A be a non-regular 

strongly F-regular ring of finite type over k, write A = k[x1, . . . , xn]/I, with I ⊆

(x1, . . . , xn), and assume A(x1,...,xn) is a non-regular local ring. Let B = A[v] and 

R = {f ∈ B | f(0, . . . , 0, 0) = f(0, . . . , 0, 1)} localized at the maximal ideal 

R ∩ (x1, . . . , xn, v)B = R ∩ (x1, . . . , xn, v −1)B. The ring R is realized as a fiber product, 

i.e. a gluing of the local rings B(x1,...,xn,v) and B(x1,...,xn,v−1) at their maximal ideals. 

It readily follows that the conductor ideal of R inside its normalization is the unique 

maximal ideal of R and R is isomorphic to localizations of B on the punctured spec-

trum. Hence R is strongly F -regular on the punctured spectrum, but not an isolated 

singularity. Moreover, R is an F -pure ring since there exist splittings of B(x1,...,xn,v) and 

B(x1,...,xn,v−1) compatible at the residue field level of these rings. Moreover, the conduc-

tor ideal is compatible under all R-linear maps F e
∗ R → R by [12, Lemma 3.1]. Therefore 

R is not strongly F -regular and satisfies all hypotheses of Lemma 5.3.3 �

For convenience of the reader, we recall the following:

Theorem 5.5 ([19,3]). Let R be a Noetherian ring of Krull dimension d < ∞ and M a 

finitely generated R-module. If frkRP
(MP ) � dim(R/P ) + k for all P ∈ Spec(R), then 

frkR(M) � k. In particular, frkR(M) � min{frkRP
(MP ) | P ∈ Spec(R)} − d.

We are finally ready to show the existence of the global F-splitting ratio of modules, 

and relate it to the F-splitting ratio of the localization at prime ideals.

Theorem 5.6. Let R be an F-finite ring of prime characteristic p > 0 and M a finitely 

generated module. Then

(1) We have sr(M) = min{sr(MP ) | P ∈ Spec(R)}.

(2) The limit rF (M) = lim
e→∞

ae(M)

pe sr(M)
exists, and it is positive if sr(M) � 0.

(3) We have rF (M) = min{rF (MP ) | sr(MP ) = sr(M)}. In particular, rF (M) is positive 

whenever there exists e ∈ Z>0 and onto R-linear map F e
∗ M → R.

(4) If sr(R) = 0, then the sequence {ae(R)} is the constant sequence {1}. Therefore, we 

have rF (R) = 1.

(5) If sr(M) = 0 then the sequence {ae(M)} is a non-decreasing sequence of eventu-

ally positive integers bounded from above, hence is eventually the constant sequence 

{rF (M)}.

3 If the reader was interested in finding an example of normal ring whose F -splitting ratio function is not 
lower semi-continuous, then one could instead consider the cone of a singular Calabi-Yau 3-fold and show 
such a ring localized at the homogeneous maximal ideal satisfies the hypotheses of Lemma 5.3.
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Proof. If there exists a prime ideal P ∈ Spec(R) such that ae(MP ) = 0 for all e ∈ Z>0, 

i.e., if W−1(M) �= ∅, then all statements of the theorem trivially follow, and we have 

rF (M) = 0.

For the remainder of the proof, we assume that W−1(M) = ∅. Since ae(M) � ae(MP )

for all P ∈ Spec(R), it easily follows that sr(M) � min{sr(MP ) | P ∈ Spec(R)}.

First, assume that min{sr(MP ) | P ∈ Spec(R)} > 0. For each e ∈ Z>0, we let Pe ∈

Spec(R) be such that ae(MPe
) = min{ae(MP ) | P ∈ Spec(R)}. If we set d = dim(R), it 

follows from Theorem 5.5 that ae(M) � ae(MPe
) − d. Let C be as in Theorem 4.6, and 

let r = min{rF (MP ) | P ∈ Spec(R)}. Such an r exists, and is positive by Corollary 5.2. 

In particular, we have

ae(M) � ae(MPe
) − d � rF (MPe

)pe sr(MPe ) − Cpe(sr(MPe )−1) − d

� rpe sr(MPe ) − Cpe(sr(MPe )−1) − d.

Since sr(MPe
) > 0, it follows that ae(M) � rpe

2 for all e ≫ 0, and therefore sr(M) > 0. 

Moreover, we have that sr(MPe
) > sr(M) only for finitely many values of e. Else, from 

the inequalities above we would get

r �
ae(M)

pe sr(MPe )
+

C

pe
+

d

pe sr(MPe )
�

ae(M)

pe(sr(M)+1)
+

C

pe
+

d

pe(sr(M)+1)
,

for infinitely many values of e. Because sr(M) > 0, the expression on the right hand 

side can be made arbitrarily close to 0 for e ≫ 0, contradicting the fact that r > 0. 

Therefore we have sr(MPe
) = sr(M) for all e ≫ 0 and, in particular, this gives the 

reverse inequality sr(M) � min{sr(MP ) | P ∈ Spec(R)}. This finishes the proof of (1)

under the assumption that min{sr(MP ) | P ∈ Spec(R)} > 0.

Continue to assume that ℓ = sr(M) > 0, and let Pe ∈ Spec(R) be as above. We have 

already observed that sr(MPe
) = ℓ for all e ≫ 0. Moreover, there are inequalities

ae(MPe
) − d

peℓ
�

ae(M)

peℓ
�

ae(MPe
)

peℓ
.

Under the assumption that ℓ > 0, parts (2) and (3) follow if lim
e→∞

ae(MPe )
peℓ exists and is 

equal to min{rF (MP ) | sr(MP ) = ℓ}. But this is indeed the case since the F-splitting ratio 

function restricted to the quasi-compact set Wℓ(M) = {P ∈ Spec(R) | sr(MP ) = ℓ} is the 

uniform limit of the lower semi-continuous functions ae(−)
peℓ . In particular, the minimum 

the functions ae(−)
peℓ on Wℓ(M) converges to the minimum of the F-splitting ratio functions 

on Wℓ(M). This proves (2) and (3) under the assumption that min{sr(MP ) | P ∈

Spec(R)} > 0.

Now we prove (4), so we assume sr(R) = 0. By what we have shown above, we must 

necessarily have 0 = sr(R) � min{sr(RP ) | P ∈ Spec(R)} � 0, and thus sr(RP ) = 0 for 

some P ∈ Spec(R). Observe that we have sr(RP ) � α(P ), with equality if and only if 
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PRP is the splitting prime of RP . Thus, sr(RP ) = 0 implies that PRP is the splitting 

prime of RP , and that κ(P ) is perfect. It is well-known that an F -finite ring is F -pure 

if and only if RP is F -pure for all P ∈ Spec(R), see for example [18, Exercise 2.10]. It 

follows from Lemma 4.4 that 1 � ae(R) � ae(RP ) = 1 for all e ∈ Z>0, and therefore 

ae(R) = 1 for all e ∈ Z>0. This proves (4).

Now suppose that min{sr(MP ) | P ∈ Spec(R)} = 0. Let P ∈ Spec(R) be such that 

sr(MP ) = 0. By Lemma 4.2, this also gives sr(RP ) = sr(R) = 0. To prove (5), we choose 

for each e ∈ Z>0 a direct sum decomposition F e
∗ M ∼= R⊕ae(M) ⊕ Me. Then

F e+1
∗ M ∼= F∗R⊕ae(M) ⊕ F∗Me.

As R is F-pure, F e
∗ R⊕ae(M) has a free summand of rank ae(M), and therefore ae+1(M) �

ae(M). To see that the sequence {ae(M)} is bounded from above, choose an onto map 

R⊕N → M . By part (4), the condition that sr(R) = 0 implies that ae(R⊕N ) = N for 

each e ∈ Z>0, and therefore ae(M) � N for all e ∈ Z>0. We have now proven, under the 

assumption that min{sr(MP ) | P ∈ Spec(R)} = 0, that the sequence {ae(M)} is a non-

decreasing sequence of non-negative integers, and is therefore eventually the constant 

sequence {rF (M)}.

To complete the proof it is enough to show that rF (M) = min{rF (MP ) | sr(MP ) = 0}, 

which concludes (5). Moreover, since min{rF (MP ) | sr(MP ) = 0} > 0 by Corollary 5.2, 

this also implies ae(M) = rF (M) > 0 for e ≫ 0. Hence sr(M) = 0, which concludes the 

proof of parts (1), (2), and (3).

Let {P1, . . . , Ps} be the set of maximal objects, with respect to containment, of the 

set of all centers of F-purity of R. We refer to them as the maximal centers of F-purity of 

R. We may assume that sr(MPi
) = 0 for all 1 � i � r, and sr(MPi

) > 0 for r +1 � i � s. 

From what shown above, we know that for all e ≫ 0 we have F e
∗ M ∼= R⊕rF (M) ⊕ Me, 

where F e′

∗ Me does not have a free summand for all e′ � 0. We claim that frk((Me)Pi
) � 1

for all r +1 � i � s. To see this, we assume by contradiction that, for some r +1 � i � s, 

we have frk((Me)Pi
) = 0 for infinitely many e ∈ Z>0. Then the splitting rate of MPi

would be 0, and this contradicts our arrangement of the maximal centers of F-purity of 

R.

Suppose rF (M) < min{rF (MP ) | sr(MP ) = 0}. Then frk((Me)Pi
) > 0 for each 

1 � i � r, and e ≫ 0. Then for each 1 � i � s we can find mi ∈ Me and hi ∈

HomR(Me, R) such that hi(mi) /∈ Pi. By prime avoidance we can find for each 1 � i � s

an element ri ∈
(

⋂

j 	=i Pj

)

� Pi. Let m =
∑

rimi and h =
∑

rihi. Then x := h(m) =
∑ ∑

rirjhi(mj) /∈
⋃s

i=1 Pi. Therefore the element x avoids all maximal centers of F-

purity of R, hence all centers of F-purity of R. In particular, if Q ∈ Spec(R), then there 

exists eQ ∈ Z>0 such that RQ
·F e′

∗
x

−−−→ F e′

∗ RQ splits for all e′ � eQ. Therefore, the union of 

the sets Ue′ := {Q ∈ Spec(R) | RQ
·F e′

∗
x

−−−→ F e′

∗ RQ splits} is equal to Spec(R). Moreover, 

they are open sets, and they form an ascending chain [7]. By quasi-compactness of 

Spec(R), there exists e′ ∈ Z>0 such that Ue′ = Spec(R). Therefore R
F e′

∗
x

−−−→ F e′

∗ R splits, 
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since splitting of is a local condition. Suppose ϕ : F e′

∗ R → R satisfies ϕ(F e′

∗ x) = 1. 

Then, the composition F e′

∗ Me
F e′

∗
h

−−−→ F e′

∗ R
ϕ
−→ R maps F e

∗ m �→ 1, and this contradicts 

the property that F e′

∗ Me does not have a free R-summand for all e′ � 0. This completes 

the proof. �

We end this section by showing that the global F-splitting ratio of a positively graded 

algebra is equal to the F-splitting ratio at the irrelevant maximal ideal.

Proposition 5.7. Let (R0, m0, k) be an F-finite local ring and let R be a positively graded 

algebra of finite type over R0. Let R>0 be the ideal of R generated by elements of positive 

degree and m = m0 + R>0. Suppose that M is a finitely generated graded R-module. 

We have the equality ae(M) = ae(Mm). In particular, we have sr(M) = sr(Mm), and 

rF (M) = rF (Mm).

Proof. Since ae(M) � ae(Mm) always holds, it is sufficient to prove the other inequality. 

To this end, we observe that F e
∗ M is a Q-graded module. Hence, we can find a graded 

isomorphism F e
∗ M ∼=

⊕be

i=1 R[ni] ⊕ Me, where ni ∈ Q, and Me is a Q-graded module 

with no graded free summands. Here, R[ni] denotes the cyclic Q-graded free module 

whose generator is in degree −ni. We claim that (Me)m has no free summands either. 

In fact, if it did, there would be a surjective Rm-linear map (Me)m → Rm. Such a map 

lifts to an R-linear map ϕ : Me → R with ϕ(Me) � m. Since HomR(Me, R) is a graded 

module, we can find a graded component ψ of ϕ that still satisfies ψ(Me) � m. Such a 

map ψ gives rise to a graded free summand of Me, contradicting our assumptions. This 

shows that ae(M) � be = ae(Mm), as claimed. �

Corollary 5.8. Let R and m be as in Proposition 5.7. We have s(R) = s(Rm).

Proof. In our assumptions, the ideal defining the non-strongly F-regular locus is homo-

geneous [11, Lemma 4.2]. If R is not strongly F-regular, then Rm is also not strongly 

F-regular; thus, s(R) = s(Rm) = 0 in this case. Now assume R is strongly F-regular. Then 

Rm is also strongly F-regular, and thus sr(Rm) = γ(Rm) = γ(R). Using Proposition 5.7, 

we conclude that sr(R) = γ(R), and hence s(R) = rF (R) = rF (Rm) = s(Rm). �

6. Positivity of F-signature of Cartier algebras and strong F-regularity

This section is devoted to giving a positive answer to [5, Question 4.24]. We recall 

the following condition from [5]. For unexplained notation and terminology we refer to 

Subection 2.4 of the same article.

Condition 6.1. We say that (R, D) satisfies condition (†) if at least one of the following 

conditions is satisfied:
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• D satisfies condition (∗), as in 3.2.

• D = Ca
t

for some ideal a ⊆ R and t > 0.

• R is normal and D = C(R,Δ) for some effective Q-divisor ∆.

Using the same notation as in Section 5, we now recall the definition of global F-

signature of a pair (R, D). Given an F-finite and F-pure ring R, and a Cartier algebra 

D , the F-signature of (R, D) is

s(R, D) = lim
e→∞

ae(R, D)

peγ(R)
.

When D is the full Cartier algebra, we simply write s(R) for s(R, D). In this case, if we 

also have γ(R) = sr(R), the global F-signature s(R) coincides with the global F-splitting 

ratio rF (R) defined in Section 5. The limit above was shown to exist in [5, Theorem 

4.19]. In the same article, a global version of a result of Blickle, Schwede and Tucker 

[2], relating the positivity of s(R, D) to the strong F-regularity of the pair (R, D) was 

established in this setup.

Theorem 6.2. [5, Corollary 4.23] Let R be an F-finite domain, and let D be a Cartier 

algebra satisfying condition (†). Then s(R, D) > 0 if and only if (R, D) is strongly F-

regular

The way Theorem 6.2 was proved in [5] was by exploiting the relation

s(R, D) = min{s(RP , DP ) | P ∈ Spec(R)}.

Since the strong F-regularity of (R, D) is equivalent to such minimum being positive, this 

was sufficient. However, the proof of the equality between the global F-signature of (R, D)

and the minimum of the local invariants required some semi-continuity results, that are 

only known to hold under the additional assumption that (†) holds [13,14]. The goal of 

this section is to show that Theorem 6.2 is true without assuming (†). In particular, we 

will provide a direct way to show that the signature of a strongly F-regular pair (R, D)

is positive, without looking at the corresponding invariants in the localizations at prime 

ideals.

We start with two preparatory lemmas.

Lemma 6.3. [2, Lemma 3.13c] and [14, Lemma 4.2] Let R be an F-finite normal domain 

and let ϕ ∈ HomR(F e
∗ R, R). There exists 0 �= z ∈ R such that for all n ∈ Z>0, and all 

ψ ∈ HomR(F ne
∗ R, R), there exists r ∈ R such that

zψ = ϕn(F ne
∗ r−)

where ϕn = ϕ ◦ F e
∗ ϕ ◦ F 2e

∗ ϕ ◦ · · · ◦ F
(n−1)e
∗ ϕ and ϕn(F ne

∗ r−) is composition of the maps
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F ne
∗ R

·F ne
∗

r
−−−−→ F ne

∗ R
ϕn

−−→ R.

Lemma 6.4. Let R be a strongly F-regular F-finite domain. Then there exists ε > 0 such 

that for all e ∈ Z>0, ae(R) � ε rank(F e
∗ R).

Proof. As R is strongly F-regular, s(R) > 0 by [5, Theorem 4.15]. Hence, there exists 

e′ ∈ Z>0 such that for all e > e′, ae(R)/ rank(F e
∗ R) � s(R)/2. Let

ε = min

{

a1(R)

rank(F∗R)
, ...,

ae′(R)

rank(F e′

∗ R)
,

s(R)

2

}

.

Then ae(R) � ε rank(F e
∗ R) for all e ∈ Z>0. �

The following theorem extends [5, Corollary 4.20], giving a positive answer to [5, 

Question 4.21].

Theorem 6.5. Let R be an F-finite domain and let D be a Cartier algebra. Then (R, D)

is strongly F-regular if and only if s(R, D) > 0.

Proof. If (R, D) is not strongly F-regular, then there exists P ∈ Spec(R) such that 

(RP , DP ) is not strongly F-regular. Since ae(R, D) � ae(RP , DP ), we get s(R, D) �

s(RP , DP ) = 0.

Conversely, suppose that (R, D) is strongly F-regular. Then R is strongly F-regular 

and by Lemma 6.4 there exists ε > 0 such that ae(R) � ε rank(F e
∗ R) for all e ∈ Z>0. 

Let e0 ∈ Z>0 be such that ε � 1
pe0

. If rank(F e
∗ R) = 1 for each e ∈ Z>0, then R is a 

perfect field and there is nothing to prove. We assume R is not a perfect field so that, 

for all e � e0, pe0 divides rank(F e
∗ R). Let ℓe = rank(F e

∗ R)/pe0 , so that ae(R) � ℓe for 

each e ∈ Z>0.

Let e1 > 0 be such that ae1
(R, D) > 0, and let ϕ ∈ De1

be a non-zero map. Let z be 

as in Lemma 6.3. In particular, for each n ∈ Z>0 and for each ψ ∈ HomR(F ne1
∗ R, R), 

the map zψ belongs to Dne1
. Consider integers of the form e = ne1 � e0. As ae(R) � ℓe, 

we can write F e
∗ R ∼= R⊕ℓe ⊕ Me for some R-module Me. Let λ1, . . . , λℓe

∈ F e
∗ R form a 

basis for the free summand R⊕ℓe of F e
∗ R. Denote by λ̃i : F e

∗ R → R the R-linear map 

defined by λi �→ 1, λj �→ 0 for all j �= i, and x �→ 0 for all x ∈ Me.

We chose 0 �= z ∈ R such that zλ̃i ∈ De, and zλ̃i maps λi �→ z and λj �→ 0 for all 

j �= i. As (R, D) is strongly F-regular, there exists e2 ∈ Z>0 and γ ∈ De2
such that 

γ(F e2
∗ z) = 1. Then the R-linear maps γi := γ ◦ F e2

∗ zλ̃i : F e+e2
∗ R → R are elements of 

De+e2
such that F e2

∗ λi �→ 1 and F e2
∗ λj �→ 0 for all j �= i. Therefore, for each e = ne1 � e0, 

we have

ane1+e2
(R, D) � ℓne1

=
rank(F ne1

∗ R)

pe0
=

rank(F ne1+e2
∗ R)

pe0 rank(F e2
∗ R)

,

and thus
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s(R, D) = lim
e′∈ΓD→∞

ae′(R, D)

rank(F e′

∗ R)
= lim

n→∞

ane1+e2
(R, D)

rank(F ne1+e2
∗ R)

�
1

pe0 rank(F e2
∗ R)

> 0. �

Remark 6.6. As pointed out above, the proof of Theorem 6.2 contained in [5] requires 

the extra assumption that (†) holds, because it is based on the equality s(R, D) =

min{s(RP , DP ) | P ∈ Spec(R)}. Theorem 6.5 settles the positivity of s(R, D) for strongly 

F-regular pairs (R, D), but it does not indicate any progress in the direction of showing 

that s(R, D) is equal to the minimum of the local invariants. In particular, it does not 

show the existence of a prime P ∈ Spec(R) such that s(R, D) = s(RP , DP ).
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