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Coherent backscattering of entangled 
photon pairs

Mamoon Safadi1, Ohad Lib    1, Ho-Chun Lin    2, Chia Wei Hsu    2, 
Arthur Goetschy3 & Yaron Bromberg    1 

Correlations between entangled photons are a key ingredient for testing 
fundamental aspects of quantum mechanics and an invaluable resource 
for quantum technologies. However, scattering from a dynamic medium 
typically scrambles and averages out such correlations. Here we show 
that multiply scattered entangled photons reflected from a dynamic 
complex medium remain partially correlated. In experiments and full-wave 
simulations we observe enhanced correlations, within an angular range 
determined by the transport mean free path, which prevail over disorder 
averaging. Theoretical analysis reveals that this enhancement arises from 
the interference between scattering trajectories, in which the photons leave 
the sample and are then virtually reinjected back into it. These paths are the 
quantum counterpart of the paths that lead to the coherent backscattering 
of classical light. This work points to opportunities for entanglement 
transport despite dynamic multiple scattering in complex systems.

Entangled photons exhibit correlations that cannot be explained by 
classical physics. Over the past decades, physicists harnessed entan-
gled states of photons to test some of the most peculiar predictions 
of quantum mechanics, such as the violation of Bell’s inequalities1 and 
teleportation2. Entangled photons have also proven to be indispensa-
ble for quantum technologies, such as device-independent quantum 
communication3 and linear optical quantum computation4. While 
such states are indeed an invaluable resource, they are typically prone 
to a variety of processes that affect their non-classical correlations. 
One ubiquitous and often inevitable process is light scattering from 
inhomogeneities. Thus, it is crucial to understand how such scatter-
ing events affect entangled photons, especially given recent rapid 
advances in utilizing quantum states of light in real-life scenarios, 
such as satellite-based entanglement distribution through turbulent 
atmosphere5 and quantum imaging through biological tissue6. While 
entanglement can survive multiple scattering from a static medium if all 
output modes are accessible7,8, the dynamic movement of the scatterers 
constantly changes the state of the photons, washing out correlations 
in disorder-averaged states9–12. In the classical regime, researchers have 
observed the existence of several so-called mesoscopic phenomena 

that survive the dynamic movement and disorder averaging13–16, 
such as long-range correlations17,18 and coherent backscattering 
(CBS)19–22. Thus, it is invaluable to study whether the quantum coun-
terpart of such phenomena can exhibit correlations that are robust to  
disorder averaging.

Studying quantum states of multiply scattered light poses remark-
able theoretical, numerical and experimental challenges, due to the 
huge Hilbert space spanned by multiphoton states that occupy numer-
ous spatial modes. To circumvent this issue, analogies of multiple scat-
tering were studied in one-dimensional arrays of coupled single-mode 
waveguides, with engineered and propagation-invariant disorder. Such 
arrays mimic quantum walks in disordered potentials, which exhibit 
transverse Anderson localization of photon pairs23–25. However, experi-
ments in such one-dimensional arrays do not account for the angular 
degrees of freedom and cannot probe mesoscopic phenomena, such 
as CBS, universal conductance fluctuations and universal optimal 
transmission. While theoretical studies indicate that the scattering of 
quantum states by volumetric disordered samples can exhibit diverse 
mesoscopic effects in the angle-resolved photon correlations7,26–29, 
such features could not be measured in experiments due to the low 
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after ensemble averaging over realizations of the disorder, as a single 
realization is dominated by a strongly fluctuating speckle. Classical CBS 
has been studied by scattering laser light off a wide array of disordered 
samples, including powder suspensions19–22, random phase screens38–40, 
amplifying random media41, biological tissues42, human bones43, mul-
timode fibres44, ultracold atom gases45 and liquid crystals46. CBS was 
also observed for other types of classical light, such as pseudothermal47 
and Raman light48, as well as for other types of waves, such as acoustic49, 
seismic50 and quantum matter waves51. The universality and robustness 
of CBS arises from the optical reciprocity principle52, as revealed by a 
diagrammatic decomposition of the field over the scattering paths, 
featuring two dominant terms of the reflected intensity22. The first 
term, the ‘diffuson’, accounts for a homogeneous background and cor-
responds to all pairs of paths propagating through the same scatterers 
identically. The second term, the ‘cooperon’, accounts for the enhance-
ment observed in the backscattering direction and corresponds to 
constructive interference of all path pairs propagating through the 
same scatterers but in a reversed order (Fig. 1b).

The question of whether entangled photon pairs also exhibit 
coherent backscattering has not been addressed so far. Quantum 
interference of photon pairs is probed by measuring the rate of coin-
cidence events, namely simultaneous detection of two photons by two 
single-photon detectors (Fig. 1c). A convenient interpretation of such a 
detection scheme is provided via Klyshko’s advanced wave picture53, in 
which the joint two-photon probability of detecting a photon in mode 
a and a photon in mode b is mapped to the probability of a photon 
launched into the system from mode a and detected in mode b, after 
traversing the optical system twice54. Using this representation and a 
rigorous diagrammatic expansion, we will show (see discussion and 
Supplementary Sections 4 and 6) that two-photon interference of 

collection efficiency of multiply scattered photons. Experiments in 
this regime focused instead on global features of the total reflection 
or transmission that do not resolve the angles30–33. Speckles in the 
angle-resolved two-photon correlations, coined two-photon speckle, 
were measured only for thin, forward-scattering diffusers, but no meso-
scopic correlations were reported34–37. Therefore, mesoscopic features 
of quantum light in high dimensions have not been observed so far.

In this work, we experimentally and theoretically study quantum 
correlations between pairs of entangled photons that backscatter from 
a dynamic disordered sample. We discover that even after disorder 
averaging, the photon pairs remain correlated, revealing a mesoscopic 
feature of two-photon speckle, which we coin ‘two-photon coherent 
backscattering’ (2p-CBS). We succeeded in collecting enough photons 
to observe a pronounced signal by designing a scattering sample made 
of a thin rotating diffuser followed by a mirror that reflects the photons 
back through it. This double-passage configuration allows each photon 
to scatter twice from the same thin and forward-scattering diffuser, 
enabling the formation of reciprocal paths, which is a key ingredient 
for observing coherent backscattering in disordered media. We also 
perform a theoretical and numerical study in a true multiple-scattering 
medium to identify the fundamental scattering processes at the origin 
of the 2p-CBS. Our analysis reveals that the experimentally observed 
correlations are universal and not unique to the double-passage con-
figuration considered in the experiment. Finally, we show that one 
can achieve a better estimation of the transport mean free path using 
2p-CBS compared to classical CBS.

When a classical plane wave illuminates a disordered medium, 
a twofold enhancement of the backscattered intensity is observed 
in the direction opposite to the incoming wave (θ = 0∘ in Fig. 1a). This 
region of enhanced intensity, coined the CBS cone, is revealed only 
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Fig. 1 | Classical and quantum coherent backscattering. a, Typical 
experimental scheme of a classical coherent backscattering experiment.  
A classical coherent plane wave impinges onto a random medium, and the 
reflected light is collected by a detector (Db). At the precise backscattering 
angle, θ = 0∘, an enhancement of the light is observed, the CBS. b, Classical CBS 
diagrams of the mean reflection coefficient Rba, where a (b) represents the input 
(output) mode with transverse momentum qa (qb). The first term, the ‘diffuson’, 
is an incoherent summation of all path pairings inside the medium. The second 
term, the ‘cooperon’, contains all path pairings that visit the same scatterers 
but in a reversed manner. c, Schematic layout of a 2p-CBS experiment. A flux of 

entangled photon pairs illuminates the random medium and the backscattered 
photons with transverse momenta qa and qb are collected using two detectors 
whose coincidence events are registered. Here, θ is the angle between the two 
output modes. d, The leading diagrams found for 2p-CBS when calculating the 
two-photon correlation function Γba of the two output modes a and b. In Klyshko’s 
advanced wave picture, the detected mode a is replaced by an illumination mode 
that backpropagates through the system with an opposite transverse momentum 
(−qa), and is detected in mode b. We call these diagrams the bi-diffuson (first 
term) and bi-cooperon (second term), and they represent the two-photon 
generalizations of their classical counterparts (see text for more details).
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the backscattered light does not vanish after disorder averaging and 
is governed by two new leading diagrammatic terms. The first term, 
which we coin the ‘bi-diffuson’, corresponds to all path pairs that visit 
the same scatterers inside the medium, leave it and are virtually rein-
jected into it once more, undergoing another scattering sequence. The 
second term, which we coin the ‘bi-cooperon’, contains all the path pairs 
that visit the same scatterers in the first and second passages but in a 
reversed order (see Fig. 1d).

To experimentally study the backscattering of entangled photons, 
we illuminate the rotating random sample with a stream of spatially 
entangled photon pairs generated by spontaneous parametric down 
conversion (SPDC) (Fig. 2a and Supplementary Fig. 1). The photon 
pairs are generated at the same wavelength of λ = 808 nm and the same 
polarization (see Methods for more details). In the thin crystal regime54, 
the SPDC photons are maximally entangled in their spatial degree of 
freedom (see Supplementary Section 2) and can be described by an 
Einstein–Podolsky–Rosen (EPR) state |ψ⟩ = 1

√2N
∑N

i=1 ̂c†qi
̂c†−qi |0⟩, where

 N is the number of modes illuminating the random sample and ̂c†qi  
is the creation operator of an incident mode with transverse momen-
tum qi. We then measure the disorder-averaged coincidence rate 
between detectors Da and Db, placed at the far field of the rotating 
sample (Fig. 2a). The temporal coincidence window used to register 

simultaneous arrival of photons to the detectors is chosen to be 800 ps, 
much shorter than the average separation time between detected pairs 
(a few μs). To overcome the challenge of low collection efficiencies of 
photons backscattered from multiple-scattering samples, we imple-
ment the double-passage configuration using a thin diffuser with a 
scattering angle of θ0 ≈ 4.4 mrad, and a mirror at a distance L behind it 
(Fig. 2c). This choice of random medium allows us to achieve a collec-
tion efficiency of near unity using low numerical aperture lenses 
(NA ≈ 0.1), relaxing the need to use high NA objectives that introduce 
multiple backreflections, which typically overwhelm the CBS effect.

The coincidence map of detectors Da and Db reveals a sharp peak on 
top of a wide background, with a peak-to-background ratio of approxi-
mately 2 (Fig. 2b), which we refer to as 2p-CBS. In contrast, the spatial 
distribution of the photons detected by the single counts of Db reveals 
no discernible structure (Fig. 2d). The fact that the backscattering 
enhancement is observed only in the two-photon correlation map and 
not in the single-counts distribution is a hallmark of two-photon inter-
ference, distinguishing it from classical CBS. Registering only the single 
counts of the photons arriving at detector Db corresponds to tracing out 
the angular degree of freedom of their twin photons arriving at detec-
tor Da, which results in a mixed state that cannot exhibit single-photon 
interference34. We note that to obtain a prominent enhancement of the 
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Fig. 2 | Experimental observation of two-photon and one-photon coherent 
backscattering. a, Scheme of the 2p-CBS experiment where entangled photon 
pairs illuminate the random sample. The backscattered photons are measured 
via coincidence logic of detectors Da and Db. b, The two-dimensional coincidence 
map observed and a normalized cross-section along the indicated row (green 
arrow). The coincidence distribution exhibits a clear enhancement in the 
backscattering direction. c, The random sample consists of a rotating diffuser and 
a plane mirror placed behind it at a distance L. d, The single counts registered by 
the scanning detector Db exhibit a homogeneous distribution over the scanned 
region. e, Scheme of the 1p-CBS experiment, which mimics classical CBS. Heralded 
single-photon illumination is obtained by a coincidence logic between detector 
Db and detector Da, which is now placed before the random sample. f, The two-
dimensional coincidence map observed and a normalized cross-section along the 

indicated row (blue arrow). Once again, the coincidence distribution exhibits a 
clear enhancement in the backscattering direction. Despite the diffuser–mirror 
spacing being the same (L = 2.5 cm), the 2p-CBS shape is narrower than the 1p-CBS 
shape. Both experiments are performed at the far-field plane of the random 
medium. The transverse momenta of the coincidence counts, as well as the single-
counts distribution are expressed in terms of angles θx,b = qx,b/k, where θx,b is the 
angular position of the scanning detector (Db) and k is the photon wavenumber 
(the same goes for θy,b). The angular location of the static detector (Da) θa was 
along the optical axis (θa = 0), such that the background and CBS cones are 
concentric. The dashed lines in panels b and f indicate the background fit for each 
of the 2p-CBS and 1p-CBS experiments on which we perform the normalization. 
More details about the setup and the fitting procedure are given in the Methods 
and Supplementary Sections 1 and 5.
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non-classical light, one has to surpass the two main noise sources in the 
experiment: the speckle noise of the disorder and the Poisson noise of 
the coincidence events. To surpass the Poisson noise, we integrated 
each pixel in the coincidence map for over 200 seconds to accumulate 
hundreds of coincidence events per pixel. To surpass the speckle noise, 
the diffuser was rotated and translated in the transverse direction, 
covering its entire surface, during the acquisition time. In this way, we 
were able to achieve a sufficient signal-to-noise ratio and observe a 
pronounced peak of the backscattered quantum light.

We now compare the features of the 2p-CBS shape to the classical 
CBS shape. Since the flux of classical light is identical to that obtained 
by repeatedly illuminating the sample with a stream of single photons, 
classical CBS is identical to the CBS obtained using a single-photon 
source55. Here, we use heralded single photons to measure the classical 
CBS, referred to as 1p-CBS, by placing the static detector Da before the 
scattering sample (Fig. 2e). Now, detection of a photon by detector Da 
heralds the presence of its twin and collapses its state to a photon in 
a plane-wave mode with a well-defined transverse momentum, which 
illuminates the rotating sample. This backscattered photon is then 
collected with detector Db, and its coincidence counts with detector 
Da are recorded. Figure 2f depicts the observed 1p-CBS coincidence 
map, which is clearly wider than the 2p-CBS one.

To investigate the structure of the enhanced region in 2p-CBS, we 
calculate the two-photon correlation function, Γba, defined as

Γba = ⟨ψ| ∶ ̂nqa
̂nqb ∶ |ψ⟩, (1)

where ̂nq = ̂d
†
q
̂dq is the photon number operator of a reflected mode 

with transverse momentum q and ̂d
†
q ( ̂dq) being the corresponding 

creation (annihilation) operator, : (…) : stands for normal ordering, 
and … represents ensemble averaging over different realizations of 
disorder. This correlation function is proportional to the coincidence 
rate of two detectors measuring photons reflected by the sample with 
transverse momenta qa and qb (see Supplementary Section 3). The 
operators of the incoming and outgoing modes are related through 
the reflection matrix r of the sample, as ̂dqa = ∑a′ rqa ,qa′

̂cqa′
. Inserting 

the reflection matrix and the EPR state into equation (1), we obtain

Γba =
2
N |∑i

rqb ,qi rqa ,−qi |2 =
2
N
||(r2)qb ,−qa

||
2
, (2)

where in the second equality we used optical reciprocity rq,q′ = r−q′,−q 
to express Γba by the matrix product r2.

The 2p-CBS can now be computed by decomposing r2 over the 
scattering paths. Modelling scattering by the thin diffuser as Gaussian 
random processes, we find that in the limit of large diffuser–mirror 
spacing, kLθ2

0 ≫ 1 (k = 2π/λ being the photon wavenumber), Γba is  
dominated by (Supplementary Section 4)

Γba ∝ {1 + exp [− (2Lθ0)
2

2
(qa − qb)

2]} × exp [− (qa+qb)
2

4k2θ20
] . (3)

The first term in the curly brackets can be interpreted as the 
bi-diffuson (the background) while the second can be interpreted as 
the bi-cooperon (the 2p-CBS peak). Since the scattering is anisotropic, 
an envelope representing the finite scattering angle of the diffuser 
multiplies both terms. The envelope is centred at the same position as 
the peak of the coincidence map in the absence of scattering, qa + qb = 0, 
reflecting the fact that scattering broadens the tight momentum anti-
correlations of the EPR state. In contrast, the 2p-CBS peak is centred 
at qa − qb = 0, revealing that after backscattering the photons tend to 
have correlated transverse momenta. To illustrate the transition from 
anticorrelated to correlated momentum, we compare in Supplemen-
tary Fig. 6 the positions of the experimentally measured coincidence 
peaks, with and without scattering.

The 1p-CBS, meanwhile, is given by (Supplementary Section 4):

Rba ∝ {1 + exp [− (Lθ0)
2

2
(qa + qb)

2]} × exp [− (qa−qb)
2

2k2θ20
] . (4)

Rba is the mean reflection coefficient that represents the intensity scat-
tered from mode qa to mode qb, where the first term in the brackets 
represents the background that corresponds to the diffuson, and the 
second term represents the CBS shape and corresponds to the coop-
eron. Once again, an envelope term accounting for the finite scattering 
angle of the diffuser multiplies both terms. We note that in equation (4)  
the peak is centred around qa + qb = 0, since in 1p-CBS qa marks the 
transverse momentum of the photon illuminating the sample (Fig. 1a), 
while in 2p-CBS it marks the transverse momentum of the detected 
photon (Fig. 1c).

We then measured the 2p-CBS and 1p-CBS angular widths as a 
function of the diffuser–mirror spacing L. The experimental widths 
depicted in Fig. 3 (green diamonds for 2p-CBS and blue circles for 
1p-CBS) agree with the theoretical curves (solid curves). At small dis-
tances, deviations become more apparent and we attribute this to the 
CBS profile being washed out by the finite background. In Supplemen-
tary Section 5 we provide a detailed description of the measuring 
process and fitting procedure. We note that as the angular widths of 
the 2p-CBS and 1p-CBS shapes scale as (2kLθ0)

−1
 and (kLθ0)

−1
, respec-

tively, this signifies that the shape of the 2p-CBS corresponds to the 
shape of the 1p-CBS yet with a two times larger wavenumber. Interest-
ingly, this unique feature of entangled photons mimicking single pho-
tons at double the wavenumber—a quantum feature of entangled 
photons that often leads to super-resolution and super-sensitivity56—
appears to survive scattering and disorder averaging.

We now address the important question of the universality of 
the 2p-CBS. Is this phenomenon restricted to the double-passage 
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the 1p-CBS in blue circles. Solid green line corresponds to the predicted width for 

2p-CBS Δθ2p =√δ22p + (2kLθ0)
−2, where δ22p = 2σ2/f24 accounts for the angular 

resolution in the 2p-CBS experiment, determined by the radius of the 
fibre-coupled detectors (σ = 50 μm) and the focal length of the far-field lens 
(f4 = 200 mm). Solid blue line corresponds to the theoretically predicted 1p-CBS 

width, Δθ1p =√δ21p + (kLθ0)
−2, where δ21p = σ2/f21 + σ2/f24 is the angular 

resolution in the 1p-CBS experiment, determined by the divergence of the 
heralding single photon, located at the far field of the crystal (f1 = 150 mm), and 
the angular resolution of the fibre-coupled detector. The CBS width extracted at 
each diffuse–mirror spacing was recorded at over 500 realizations of disorder. 
Error bars indicate the confidence intervals (95%) of the fit parameter for the  
CBS width (±the variation in that parameter). See Supplementary Section 4 for 
more information.
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configuration and washed out in the presence of strong multiple 
scattering, or is it robust against any type and strength of disorder? 
To answer this question, we consider the propagation of entangled 
photons in opaque disordered media deep in the multiple-scattering 
regime. In such systems, light experiences, on average, a random walk, 
and the number of scattering paths contributing to the two-photon 
correlation function equation (2) becomes exponentially large. We 
thus must rely on a diagrammatic expansion of the four-field average 
to identify the scattering sequences that will contribute the most to 
the 2p-CBS. This requires great care in the reflection geometry since 
sequences with few scattering events contribute significantly and 
a rich variety of diagrams may play a prominent role for strong dis-
order. With the help of two complementary approaches, one based 
on a Feynman-path-type decomposition and the other on a random 
matrix theory formulation, we show that the correlator in equation (2)  
is dominated by the bi-diffuson and bi-cooperon represented in Fig. 1d, 
in the regime where the transport mean free path of light, ℓ, exceeds 
the wavelength λ (see Supplementary Section 6 for details). This cor-
relator is expressed as

Γba = Γ0 [1 + F(|qa − qb|)
2] , (5)

where Γ0 is the amplitude of the bi-diffuson and F(q) is a lineshape func-
tion between 0 and 1, proportional to the transverse Fourier transform 
of the diffuse intensity. The latter is a decaying function of range 1/ℓ, 
indicating that most photons experience a few scattering events before 
being reflected. Comparing the result for double-passage samples 
(equation (3)) and for strongly disordered samples (equation (5)), we 
find that in both cases the width of the CBS peak is inversely proportional 
to the typical transverse distance between the photons when they exit 
the medium, Lθ0 for the double-passage configuration and ℓ for strongly 
disordered samples. It is instructive to compare equation (5) with the 
mean reflection coefficient Rba = |rqb ,qa |2  that characterizes the  
classical 1p-CBS. Using the same diagrammatic framework and assum-
ing negligible single-scattering contribution, we obtain

Rba = R0 [1 + F (|qa + qb|)] , (6)

where R0 is the amplitude of the diffuson. This means that the contrast 
of 2p-CBS is simply the square of the contrast of 1p-CBS, in the limit 
kℓ ≫ 1 and in the absence of single-scattering contribution in the 1p-CBS. 
For a semi-infinite disordered medium without absorption, F(q) ≃ 1 − 2qℓ 
in the vicinity of the backscattering angle q = 0 (ref. 14), so that the 
2p-CBS is predicted to be cone shaped, with a width approximately 
half that of the 1p-CBS cone. Finally, we note that the result in  
equation (5) is surprisingly different from the total intensity correlation 

function RbRa, where Ra = ∑a′ |rqaq
′
a
|2, which is known to be dominated 

by long-range contributions made of pairs of conjugated propagating 
fields that exchange diffusing partners inside the medium18,57,58. We 
show in Supplementary Section 6 that similar long-range contributions 
occur in the evaluation of Γba, but have a relative weight of ~1/kℓ with 
respect to the bi-diffuson and bi-cooperon.

To rigorously test these predictions of 2p-CBS in the 
multiple-scattering regime, we perform numerical simulations that 
directly solve the scalar wave equation in two dimensions, 
[∇2 + k2εr(x, y)]ψ(x, y) = 0 , with no approximation beyond spatial 
discretization. Evaluating the two-photon correlation function through 
equation (2) requires the full N × N reflection matrix r for all incoming 
and outgoing states, averaged over a large number of disorder realiza-
tions to suppress speckle fluctuations. The disordered media should 
have width W ≳ 60ℓ to resolve the 2p-CBS cone shape, and thickness 
L ≫ ℓ to be in the multiple-scattering regime with sufficient long tra-
jectories that contribute to the sharpness of the cone at small angles15. 
While full-wave reflection matrix computations of such large systems 
would normally take a prohibitive amount of computing resources, 
some of us recently developed a scattering-matrix computation 
method called augmented partial factorization (APF)59 that is many 
orders of magnitude more efficient. Using APF, we compute 4,000 
distinct reflection matrices in plane-wave basis for different disorder 
realizations, each consisting of 56,000 randomly positioned 
0.8λ-diameter dielectric cylinders in air with 10% filling fraction  
(Fig. 4a). The transport mean free path is ℓ = 9.5λ (see Methods  
for details).

Figure 4b shows the numerically calculated 1p-CBS (blue cir-
cles) and 2p-CBS (green diamonds) cones; data across the full 
angular range are shown in Supplementary Fig. 11. We find the 
peak-to-background ratio of the 1p-CBS cone to be 1.94; the reduc-
tion below 2 comes from single scattering in reflection, which does 
not contribute to the cone60,61. We indeed observe a sharp 2p-CBS 
cone, validating our analytical prediction. The enhancement factor 
of the 2p-CBS cone is found to be 2 with no reduction; this is because 
in the Klyshko’s advanced wave picture for two-photon coincidence, 
photons traverse the system twice so they must be scattered at least 
twice, with no single-scattering contribution left. The 2p-CBS con-
trast (green diamonds) is narrower and agrees with the square of the 
1p-CBS contrast (orange solid line), in agreement with the analytical  
prediction above.

To investigate the dependence on the transport mean free path, 
we vary the filling fraction between 6% and 17%. The full set of 1p-CBS 
and 2p-CBS data are shown in Supplementary Fig. 12. Figure 4c sum-
marizes the transport mean free path dependence of the numerically 
computed angular full-width at half-maximum (FWHM) of the 1p-CBS 
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Fig. 4 | Two-photon coherent backscattering from disordered samples in 
multiple-scattering regime. a, Relative permittivity profile εr(x, y) for one 
realization of disorder. b, Normalized one-photon and two-photon coincidence 
rates in reflection, Rba/R0 in blue circles, Γba/Γ0 in green diamonds and 

1+ [(Rba/R0) − 0.94]2 in orange solid line. The relative angle θ is as labelled  
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of the one-photon and two-photon CBS cones. Symbols are numerical data, and 
solid lines are 0.78/(kℓ) and 0.43/(kℓ).
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and 2p-CBS cones, which are well described by single-parameter fits 
of 0.78/(kℓ) for 1p-CBS and 0.43/(kℓ) for 2p-CBS.

The fact that the 2p-CBS cone has a smaller width and larger slope 
near the cone’s peak suggests that it could yield a better estimate of 
the transport mean free path than 1p-CBS. To make this intuition quan-
titative, we evaluated the Cramer–Rao lower bound on the parameter 
ℓ, which sets a lower bound on the variance of any estimator of ℓ. It is 
given by the inverse of the Fisher information matrix ℱ. An important 
property of 1p-CBS and 2p-CBS is the presence of speckle fluctuations 
in the CBS map, which add up to the Poisson fluctuations of the detec-
tor. Specifically—and this is a key aspect of the following discussion—
the statistics of two-photon speckle built with an EPR state made of a 
large number of modes N is identical to the statistics of one-photon 
speckle, in sharp contrast with the two-photon speckle of 
non-entangled states or mixed states26. Taking into account both the 
speckle and the Poisson noise, we find the elements of the matrix ℱ for 
2p-CBS to be (Supplementary Section 8)

ℱ(2p)
ij = ∑

b

Nr
Nr + Nba

∂θiNba ∂θjNba

Nba
, (7)

where Nba ∝ Γba is the number of coincidences detected during the 
acquisition time, θi are the unknown parameters of the problem at 
hand, Nr is the number of disorder realizations and the sum runs over 
the independent positions (separated by a distance larger than the 
angular size of a speckle grain) probed by the detector Db. Interestingly, 
in the limit where speckle noise dominates (Nr ≪ Nba), ℱij becomes inde-
pendent of the amplitude Γ0 of the coincidence rate; in particular, in 
the situation where only ℓ is unknown, we get ℱ(2p)

ℓℓ = Nr∑b(∂ℓΓba/Γba)
2. 

Similarly, for 1p-CBS, we find ℱ(1p)
ℓℓ = Nr∑b(∂ℓRba/Rba)

2. With the theo-
retical expressions established previously for Γba and Rba (see equations 
(5) and (6)), we immediately conclude that ℱ(2p)

ℓℓ = 4ℱ(1p)
ℓℓ  in the vicinity 

of the cone centre. Remarkably, this result holds independently of the 
precise expression of the CBS profile F(q), because the 2p-CBS contrast 
is simply the square of the 1p-CBS contrast. We conclude that the 
Cramer–Rao lower bound on ℓ is reduced by a factor 4 using 2p-CBS 
of the EPR state instead of 1p-CBS, in the common situation where 
Poisson noise is negligible (long integration time).

To summarize, we experimentally observed coherent backscatter-
ing of maximally entangled photon pairs from a dynamically changing 
scattering medium. We provided an in-depth analysis of the funda-
mental processes governing the phenomenon, revealing unique types 
of diagrams that determine the scattering process, and which are 
also absent in classical coherent backscattering. In particular, we find 
that the two-photon CBS shape is precisely the square of the classi-
cal CBS shape in strongly disordered media, as verified by full-wave 
numerical simulations. Consequently, the Cramer–Rao lower bound 
for estimating the transport mean free path from the two-photon 
CBS shape is four times lower than the bound for classical CBS. The 
narrower CBS shape can be attributed to the fact that correlations 
between entangled photons mimic propagation of a single photon at 
half the wavelength. While such wavelength scaling is typically sensi-
tive to dephasing and noise, we find that in two-photon CBS it prevails 
scattering and disorder averaging. Finally, we note that since both 
the Klyshko picture provided to understand two-photon CBS and the 
cooperon object employ the optical reciprocity principle, it would be 
interesting to study its role in two-photon CBS by utilizing reciprocity  
breaking techniques44,62.
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Methods
Experiment
We used a CW laser at λp = 404 nm (OBIS, Coherent) to pump a h = 2 mm 
long periodically poled potassium titanyl phosphate (PPKTP) crystal 
in a collinear type 0 degenerate configuration. Pairs of degenerate 
entangled photons (signal and idler) at λ = 808 nm were thus generated 
via SPDC. The beam waist at the incidence plane of the crystal was 
approximately wp = 550 μm, yielding spatially entangled photons  

with a Schmidt number of K = kpw2
p

4h
≈ 588 (ref. 63). The remainder of the 

pump beam is deflected via a dichroic mirror located right after the 
crystal. The down-converted photons were selected via interference 
filters at λ = 809 ± 40 nm. In the 2p-CBS experiment, both photons were 
imaged to a spot area of approximately 1 mm2 via a 4f system 
(f = 150 mm) on a polarization-preserving diffuser of 1 inch diameter 
(Luminit, circular Light Shaping Diffusers), behind which a plane mirror 
was placed. Dynamic scattering was achieved by rotating the diffuser 
at approximately 5,300 rounds per minute using a custom-built rota-
tion stage and simultaneously translating the diffuser in the transverse 
horizontal direction at a speed of 2 mm s−1. The entire area of the dif-
fuser was therefore covered by the SPDC spot within 6 seconds, cor-
responding to over 500 disorder realizations that change at an average 
rate of approximately 80 realizations per second. The measured  
scattering angle of the diffuser, defined by the 1/e width of its 
disorder-averaged far-field intensity distribution (see equation (4.3) 
of Supplementary Section 4), was measured to be θ0 ≈ 4.4 mrad. The 
reflected light was then scattered once more off the rotating diffuser, 
and collected by a lens (f4 = 200 mm) and two fibre-coupled 
single-photon detectors (Excelitas SPCM-AQ4C) of radius σ = 50 μm 
located at the Fourier plane of the diffuser. The coincidence circuit was 
implemented using Swabian Instruments’ Time Tagger 20 with a tem-
poral coincidence window of 800 ps. The figures in this article presenting 
the coincidence count rates are corrected for the accidental coincidence 
counts. In the 1p-CBS experiment, the idler photon was detected with a 
lens (f1 = 150 mm) and a stationary fibre-coupled detector located at the 
Fourier plane of the crystal, whereas the signal photon was directed into 
the circuit mentioned above. The number of modes in our experiment, 
N, is smaller than the Schmidt number K by a factor of approximately 5, 
given by the square of the ratio of the SPDC divergence angle (≈20 mrad) 
and the scattering angle of the diffuser θ0. For a more detailed description 
of the experimental setup, see Supplementary Section 1.

Numerical simulations
Numerical simulations were performed by solving the scalar wave 
equation in two dimensions, [∇2 + k2εr(x,y)]ψ(x,y) = 0, using 
finite-difference discretization with grid resolution Δx = λ/10 and sub-
pixel smoothing64. Each disordered medium consists of 56,000 ran-
domly positioned dielectric cylinders with refractive index n = 1.5 and 
diameter 2r0 = 0.8λ in air, inside a region with width W = 700λ and vary-
ing thickness L. Periodic boundary condition was used in the direction 
along W to mimic an infinite system, so the angle is discretized at a 
resolution δθ = λ/W at small angles. Perfectly matched layer65 was used 
in the direction along L to implement an outgoing boundary. Note that 
since the 2p-CBS cone has an angular full-width at half-maximum of 
0.43/(kℓ), a system width of W > 4λ/FWHM ≈ 58ℓ is needed to resolve 
five or more angles with δθ spacing within the half-maximum of the 
2p-CBS cone. Here, an individual dielectric cylinder has a scattering 
cross-section σsca = 3.02λ and an anisotropy factor g ≡ ⟨cosθ⟩ = 0.825, 
obtained from its differential scattering cross-section numerically 
computed by near-to-far-field transformation for such cylinders at 
Δx = λ/10. We obtained the transport mean free path directly through 
the independent-particle approximation16 as ℓ = [σscaρ(1 − g)]−1, where 
ρ is the number density. To vary ℓ, the thickness L of the scattering 
region was varied between L = 232λ and L = 695λ while fixing width W 

and the number of dielectric cylinders (corresponding to filling frac-
tion 𝜋𝜋r20ρ between 17% and 5.8%); the numerically computed average 
transmission T̄  stays between 3.7% and 3.8% for different L, in excellent 
agreement with the analytic prediction of T̄ = [1 + (2/𝜋𝜋)(L/ℓ)]−1 = 3.6% 
(ref. 66), indicating the ℓ computed from independent-particle approxi-
mation is accurate for these configurations. We used the full-wave 
method APF59 to compute the complete 2N × 2N scattering matrix 
(which includes the reflection matrices from both sides) without loop-
ing over the input states, with N = 1,425 ≈ 2W/λ being the number of 
propagating plane-wave channels on one side. We performed the 
simulations for 2,000 realizations of disorder at each L, giving 4,000 
reflection matrices per thickness. To further suppress the speckle 
fluctuations, we also averaged over 29 vertical slices of matrix |rqb ,qa |2 
and |(r2)qb ,−qa

|2 centred within ±20 mrad from qa = 0 while excluding qb 
at the exact specular direction. The computations were done on the 
USC Center for Advanced Research Computing’s Discovery cluster.

Data availability
Source data are provided with this paper. All other data that support 
the plots within this paper and other findings of this study are available 
from the corresponding author upon reasonable request.

Code availability
Simulations performed in this work use the augmented partial factori-
zation method implemented in software MESTI, available at https://
github.com/complexphoton/MESTI.m.
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