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Abstract: Using the Schur complement scattering analysis (SCSA) method, we acceler-
ate the scattering matrix computation for large-scale disordered media by many orders of
magnitude and realize full-wave simulations of classical and quantum coherent backscatte-
ring. © 2022 The Author(s)

1.     Introduction

The scattering matrix is the central object that characterizes wave transport through complex systems and is used
extensively in wavefront shaping [1] and imaging [2]. However, numerical computation of the scattering matrix is
a challenge, especially for large-scale disordered media which can involve thousands to millions of input and
output channels.

Here, we propose the Schur complement scattering analysis (SCSA) method, which can compute the entire
scattering matrix of an arbitrary complex system without looping over the input states, with no approximation
beyond discretization, while utilizing the sparsity of the wave operator, the inputs, and also the outputs. For large
systems, we find S C S A  to be orders of magnitude faster than existing frequency-domain full-wave solvers while
using less memory. As an example, we use S C S A  to realize full-wave simulations of coherent backscattering in
disordered media.

2.     Schur complement scattering analysis (SCSA)

The scattering matrix S  maps any incident wavefront β to the resulting outgoing wavefront α , as αn =  ∑m  Snmβm.
Each column of S corresponds to one scattering problem, defined mathematically through a system of linear equa-
tions Axm =  bm where matrix A  =  −(ω /c)2ε r (ω , r) + �× µ −1 (ω , r)�× is the electric-field Maxwell operator, and
column vectors bm and xm are the equivalent source profile that generates the m-th incident wavefront and the
resulting electric field profile E(r) .  Solving for the m-th column of S  corresponds to solving for xm =  A−1 bm .
Computing M � 1 columns of S  typically requires repeating this process M times. Instead of such repetition, we
directly compute S  through relation S  =  C A − 1 B − D,  with B  =  [b1, . . . ,bM], the n-th row of matrix C  being the
conjugated profile of the n-th output state on the surface, and matrix D subtracting the incident fields on the
surface. Matrices A, B, C,  D are all sparse.

Conventional iterative and direct solvers compute the field profile everywhere, namely A−1 B,  which is redun-
dant since the quantity of interest C A − 1 B  is a much smaller matrix. To compute only what is needed, we directly

evaluate C A − 1 B  by constructing a new sparse matrix K  and performing a partial LU factorization on it,

K  ≡ C      D = E I 0 H . (1)

The factorization is partial as it stops after factorizing the upper-left block of K  into A  =  L U  with L  and U being
lower-triangular and upper-triangular, and I  being the identity matrix. Notably, we do not use such LU factors. By
equating the middle and the right-hand sides of Eq. (1) for each of the four blocks, we can see that matrix H, called
the Schur complement, satisfies H  = D−C A − 1 B .  Using S  =  C A − 1 B − D,  we obtain the scattering matrix as S  =
−H ;  we call this method the “Schur complement scattering analysis” (SCSA). The Schur complement is often used
in domain decomposition, but here we use it for computing the scattering matrix without looping over the inputs.
S C S A  is applicable to any structure, and it provides the exact full-wave solution with the only errors coming from
discretization and truncation of simulation domain, which are intrinsic in all numerical methods.

The computing time of S C S A  depends weakly on the number M of input states because the partial factorization
time is typically dominated by matrix A  which has more nonzero elements than matrices B  and C.  The sparsity
patterns of all matrices are maintained and can be fully utilized in the partial factorization process. Furthermore,
storing matrices L  and U is typically the memory bottleneck for direct methods, but S C S A  does not use L  and U so
we can drop them during the factorization process to significantly reduce memory usage and computing time.
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Fig. 1: (a) A  500λ × 100λ disordered medium. (b) The memory usage of S C S A  and other methods. (c)
The computation time of S C S A  and other methods when solving for M columns of the scattering
matrix. Solid symbols are raw data, and open symbols are extrapolated from smaller M or smaller sys-
tems. (d) Reflectivity profiles at eight incident angles θin averaged over 40,000 realizations of disorder
(open circles), in comparison to analytical prediction (solid lines).

3.     Results

We implement S C S A  for 2D transverse-magnetic waves under finite-difference discretization, using the MUMPS
package [3] with AMD ordering to compute the Schur complement. As an example, we compute the full scatte-
ring matrix of a large-scale disordered medium with discretization size ∆x =  λ /15 (Fig. 1a), with up to M =  2000
inputs. The system consists of 75,000 randomly positioned cylinders with refractive index n = 2 and diameter D
=  0.2λ in air, with scattering mean free path ls =  1.5λ . Periodic boundary condition is used in the trans-verse
direction, and perfectly matched layers are used in the longitudinal direction. Figure 1b-c shows the mem-ory
usage and computation time of S C S A  in comparison to (1) a conventional direct solver implemented in
MaxwellFDFD [4] where the full computation is repeated M times, (2) MaxwellFDFD modified to have the LU
factors stored and reused, (3) an iterative solver implemented in FD3D [5], (4) the recursive Green’s function
method (RGF) implemented in [6], and (5) RCWA implemented in S4 [7]. S C S A  achieves an M-independent
computation time and is over 1000× faster than all of the other methods while also using less memory.

We use S C S A  to realize full-wave modeling of coherent backscattering (CBS) [8] in disordered media. C B S
is a hallmark of coherent effects in mesoscopic physics, where constructive interference between time-reversed
paths leads to enhanced reflection in the backscattering direction. To observe CBS, it is crucial to average over
many disorder realizations to suppress the speckle fluctuations that would otherwise overwhelm the C B S  signal.
Restricted by the efficiency of existing numerical methods, prior C B S  simulations resorted to few realizations with
coarse discretization [9] or point-scatterer approximation in small systems [10] and did not provide quantitative
predictions of the C B S  enhancement. With SCSA, we compute C B S  averaged over 40,000 realizations for all inci-
dent angles for the above system. This allows, for the first time, quantitative and fitting-free validation of the exact
solution of C B S  [11], as shown in Fig. 1d, with an incident-angle-dependent reduction of the C B S  enhancement.
We also use S C S A  to predict, for the first time, C B S  of entangled photon pairs in disordered media [12].

References

1. S. Rotter and S. Gigan. Rev. Mod. Phys. 89, 015005 (2017).
2. S. Yoon et. al. Nat. Rev. Phys. 2, 141–158 (2020).
3. P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster. SIAM J. Matrix Anal. Appl. 23, 15–41 (2001).
4. W. Shin. MaxwellFDFD. https://github.com/wsshin/maxwellfdfd.
5. W. Shin. FD3D. https://github.com/wsshin/fd3d.
6. C. W. Hsu. RGF. https://github.com/chiaweihsu/RGF.
7. V. Liu. S4. https://github.com/victorliu/S4.
8. E. Akkermans and G. Montambaux. Mesoscopic Physics of Electrons and Photons, (Cambridge, 2007).
9. S. H. Tseng et. al. Opt. Express 13, 3666–3672 (2005).

10. N. M. Estakhri, N. M. Estakhri, T. B. Norris, arXiv:2111.15007.
11. E. E. Gorodnichev, S. L .  Dudarev, and D. B. Rogozkin. Phys. Lett. A 144, 48–54 (1990).
12. M. Safadi, O. Lib, H.-C. Lin, C. W. Hsu, A. Goetschy, and Y.  Bromberg. in preparation.


