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We study equilibrium configurations of ds-DNA in a
cylindrical viral capsid. We assume that the state of
the encapsidated DNA consist of a disordered inner
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capsid wall. In our approach, a DNA configuration
is described by a unit helical vector field, tangent to
an associated center curve, passing through properly
selected locations. We postulate an expression for
the energy of the encapsulated DNA based on that
of columnar chromonic liquid crystals. A thorough
analysis of the Euler-Lagrange equations yields
multiple solutions to the corresponding boundary
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with nonzero helicity of the opposite sign. Using
bifurcation analysis, we derive the conditions for
local stability of such solutions and determine when
the preferred coiling state is helical. The relevant
bifurcation parameters are the ratio of the twist versus
the bend moduli of DNA and the ratio between the
sizes of the ordered and the disordered regions.
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1. Introduction
In this work, we study the packaging geometry of viral double-stranded (ds) DNA of tailed
bacteriophages in idealized cylindrical capsids. The cylindrical geometry is taken as a coarse
approximation of the actual capsid shapes, including icosahedral and prolate, found in ds-DNA
bacteriophage viruses [1, 2, 3, 4, 5, 6, 7]. These viruses use a molecular motor to store their genome
in the protein capsid, where the length of the genome is much larger than the characteristic size
of the capsid. We apply data from experimentally characterized viruses, such as the average
capsid size and the genome length, to infer properties of the condensed equilibrium states and
their bifurcations by taking advantage of the explicit calculations allowed only in the cylindrical
geometry. We postpone to future work the treatment of spherical and icosahedral capsids, where
numerical approaches are required. We point out that our study does not address single-stranded,
helical, RNA viruses, with cylindrical capsids, such as the tobacco mosaic virus [8].

Key stages of the bacteriophage cycle are the phage morphogenesis, which includes capsid
assembly and dsDNA packaging, a high pressure quiescent or equilibrium state, and the delivery
and infection of the bacterial host. The well-ordered organization of DNA within a viral capsid is
essential to ensure efficient genome delivery.

There is an extensive and rich body of work on bacteriophage viruses, involving, both, imaging
techniques and modeling. Leforestier [9] lists three main approaches, the inverse axial spooling
model, the ball of yarn and the liquid crystalline drop models. The latter approach stemmed
from the evidence gained from X-ray diffraction images of bacteriophages obtained during the
60’s decade, and later confirmed by cryo-EM microscopy, which provided strong evidence of the
hexagonal packaging of DNA in the capsid. This model exploids the hexagonal crystal structure
locally determined by the points of intersection of the DNA segments on orthogonal planes. In
this approach, hexagonally crystallized monodomains entirely fill the capsid volume, separated
by defect walls and forming a structure analogous to the Twist Grain Boundary liquid crystal
[10, 11]. Hexagonal phases have also been observed in-vitro, with highly concentrated DNA
arranged in toroidal clusters [12, 13].

In the inverse axial spooling approach, the DNA winds from the capsid periphery to the centre
following successive hoops [14, 15]. This model and the related DNA arrangement in toroids
has been extensively used for several decades [15, 16]. Evidence that supports the so called spool
structural motif has been provided by the cryo-EM observations of Olson et al. [2]. These show
that the DNA genome of the phage T4 forms a highly condensed series of concentric layers,
spaced about 2.36 nm apart, that tend to follow the contour of the inner wall of the protein capsid.
Along these lines, the data obtained by Cerritelli et al. [1] suggests that the T7 genome is spooled
around the capsid in approximately six coaxial shells in a quasi-crystalline packing. This evidence
combined with previous studies of a series of isometric bacteriophages lead to conclude that the
coiling organization of condensed DNA may apply to most dsDNA bacteriophages [17]. This
underlying model has been applied in many different contexts such as measuring of forces [18]
and packaging by molecular motor [19].

Other approaches include a ball of a string and spooling folded toroid [20, 21, 22, 23]. The
corresponding vector field is tangential to the concentric circles centered on the axis of the cylinder
[24, 25]. These approaches have been used in the case of spherical-like capsids; in particular,
the ball of yarn packages the DNA as in the axial spooling case but following a spherical
geometry. One important distinction among the different approaches is the modeling of the core.
Information from imaging lacks precision in reference to the structure of the core. In the spooling
approach, mostly associated with cylindrical shaped capsids, the core is simply left empty or filled
with strands parallel to the capsid axis.

A common theme in implementing the previous approaches is in that they involve the
optimization of an energy functional, very often using tools from Monte-Carlo or Brownian
motion molecular dynamics. An inherent problem to such approaches is their computational cost,
allowing to treat only small genomes. A novel modeling continuum approach is that by Klug and
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Ortiz [26] based on the introduction of a unit director field, as in nematic liquid crystals, with a
scalar variable representing the local density of DNA. An additional feature of the model is the
inclusion of a phenomenological cohesive energy that penalizes changes of the (hexagonal) cross-
section. The discretization of the energy, along with the application of the gradient flow method
to optimize it, lead to the torsionless toroidal solenoids, as the preferred configuration, having lower
energy than the inverse spooling structure.

In this paper, we consider the previously introduced continuum model that endows condensed
DNA with a structure locally consisting of curvilinear segments (representing the DNA center
axis) together with their orthogonal cross-sections [27]. Assigning these segments an effective
diameter yields a plane hexagonal crystal structure on the intersecting planes. The capsid core
is treated as an isotropic free boundary region representing the disordered state of the DNA.
Accordingly, the energy consists of the nematic Oseen-Frank contribution penalizing changes
of direction of the vector field (and, so that of the DNA axis), and the isotropic energy of the
core. Moreover, for the class of helical vector fields 3.3, the former also accounts for the elastic
energy associated with the disruption of the hexagonal cross-sectional structure (Remark 2.1 and
[27]). Furthermore, since images reveal a sharp transition between the ordered and disordered
regions of the capsid, we include a surface energy term that tends to minimize the surface
area of the interface. One relevant aspect of our approach is that the core is determined by the
competition between the bending energy of the ordered region and the isotropic penalty of the
core. One relevant aspect of our model is that it allows for twist energy mostly neglected in
earlier approaches. Intuitively, it has the effect of releasing bending energy and so affecting the
size of the core. However, it does not account for torsion. Mathematically, a key signature of our
approach is the vector field-filament structure as in models from nuclear and plasma physics
([28] and references therein). Although we minimize the energy to obtain the optimal vector field,
subsequent integration provides the center line filament. This also solves the connectivity problem
affecting the inverse spooling approaches. However, one drawback to our approach is in that the
Oseen-Frank energy does not allow for singularities in the vector field (except for point defects in
three-dimensions). This precludes accounting for the knots often observed in the DNA, issue that
we will address in forthcoming work.

We also depart from earlier works where the DNA is organized in concentric circles, such as in
the case of the inverse spooling. Instead, we follow the approach developed to study confinement
of semiflexible polymers following helical vector field configurations [29]. In this approach, the
unknown vector field ~n is parameterized by the azimutal angle ψ. In addition to providing
connectivity, this approach allows us to incorporate twist deformations, as well as incorporating
cholesteric effects. The rate of the bending versus twist modulus, α := K3

K2
, turns out crucial

in determining how the DNA fills the capsid. Indeed, this parameter provides a quantitative
justification for treating condensed DNA as a liquid crystal, and, in particular, endowing it with
the Oseen-Frank energy. Values of α used in our work stem from the DNA elasticity and viscosity
studies found in [30].

By considering cylindrical capsids of radius R2 and height 2h, we obtain exact expression
for the critical values of α. Through a bifurcation analysis, we identify the threshold value of α
below which concentric circles are the optimal organization structure, with helical states above.
This result is reminiscent of that in [19] that simulates the filling of a capsid under the axial
spooling structure, showing a transition between concentric circles organized as tori to such
circles expanding along the capsid axis as the DNA fills the capsid. Our work also admits a
natural extension to the case of spheroidal capsids and other general shapes. However, in such
cases the optimization can only be done numerically, although similar patterns of behavior as for
a cylindrical capsid are expected.

We also perform a stability analysis of the solutions and show that the states of four selected
viruses fall within the stable helical branches, except for the virus T5, with slightly larger capsid
diameter, which is classified within the stable concentric circle branch. The bifurcation structure
between concentric circles and helical configurations extends a renowned result on nematic
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liquid crystals placed between coaxial cylinders [31]. In the latter case, the bifurcation occurs
between radial director field configurations and those parallel to the cylindrical axis. From a
different point of view, the coexistence between the ordered and disorder DNA regions in the
capsid follows the analogous tactoid texture phenomenon, observed in small molecule chromonic
liquid crystals [32]. The paper concludes with the filament reconstruction. Choosing a point of
entrance of the DNA into the capsid, we integrate the vector field along helical segments on
the surface of a discrete family of concentric cylinders. The latter are separated by a distance
equal to the pitch of the helix. There are two types of reconstruction according to whether the
helices wind in the same or in opposite directions along alternating cylinders. In both cases,
interpolation between strands is required at the top and bottom, with the parallel one taking
the form of a U-turn, heuristically with higher bending energy than the first one. However,
the inclusion of the electrostatic energy would be needed for conclusively sorting out between
both such configurations. These constructions are presented in the Supplementary Materials.
The helical inversion in liquid crystal materials has been found, specially in polymer dispersed
liquid crystals, in connection with changes of temperature and radiation with ultraviolet light
[33]. It is also naturally found in biological systems, although scarcely. For instance, a case
remarkably similar to our alternating handedness construction has been reported in the protective
tubular structures of the deep-sea worm, where the sign changes every 180o rotation [34]. A
comprehensive overview on controlling and understanding the pitch inversion phenomenon is
given in [35]. A recent review of viral growth and form can be found in [36]. Our work is also
related to those on organization of confined polymers, also model as liquid crystals, both, in
the achiral and chiral cases [37, 38]. Although in the current article we deal with two types of
organization, that is, concentric circles and helices, a richer variety of structures has been observed
in polymers. Specifically, spontaneous domain formation in spherically confined elastic filaments,
shows that the ground state of the confined worm-like chain is an ordering mosaic of multiple
homogeneously ordered domains, instead of a single spool [39].

The work is organized as follows. In section 2, we present the model to be analyzed. The
main results are developed in section 3. In section 3 (a), we consider the case that the inner core
radius R1 is fixed and neglect the energy of the core. Section 3 (b) is devoted to studying the
Euler-Lagrange equations of the energy. The zero divergence condition reduces the problem to
nonlinear ordinary differential equation for the angle of orientation of the director field. In section
3 (c), we perform the bifurcation analysis and the investigation of the stability of the different
solution branches. Elliptic integrals play a main role in the analysis. In section 3 (d), we treat
the core as a free boundary domain and incorporate the isotropic energy in the total form. The
section ends with a discussion of the parameters of the model, showing that our results are along
the line with actual data, for a set of four sample viruses. Section 4 is devoted to the filament
reconstruction for alternating winding helices. In section 5, we present conclusions and discuss
follow up work.

2. The Model
In our approach, the equilibrium states of the DNA packaged inside the capsid are associated with
those of a unit vector field ~n. The capsid is represented by a bounded, open domain B, consisting
of two subsets Ω and Ω0, whose interiors are disjoint, and such that B=Ω ∪Ω0. The subset
Ω represents the region where the DNA is ordered whereas Ω0 corresponds to the disordered
one. In terms of the vector field approach, they represent the nematic and isotropic liquid crystal
states, respectively. The unknown fields of the model are the vector field ~n and the domainΩ0. We
formulate the total energy accordingly, that is, as the sum of the constrained Oseen-Frank energy
of the nematic plus the isotropic energy of the core region Ω0. That is,

E =

∫
Ω

(
K3|~n×∇× ~n|2 +K2(τ + ~n · ∇ × ~n)2

)
d~x+ Edisorder(Ω0) (2.1)

|~n|= 1 inΩ, (2.2)
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∇ · ~n= 0 in Ω, (2.3)

~n= ~n0 on ∂B, (2.4)

Vol(Ω) + Vol(Ω0) = Vol(B). (2.5)

The positive constants K2 and K3 denote the twist and bending moduli, respectively, and τ is
the chiral pitch. The zero constraint 2.3 on the splay is consistent with the columnar hexagonal
nature of the ordered DNA, indicating that the number of filaments that enter an orthogonal unit
area cross-section also exit it. That is, it guarantees that dislocations do not occur. We now recall
a fundamental result in the analysis of the minimization of the Oseen-Frank energy of nematic
liquid crystals, with density given by

WOF =K1(∇ · ~n)2 +K3|~n×∇× ~n|2 +K2(τ + ~n · ∇ × ~n)2

+ (K2 +K4)(tr(∇~n)2 − (∇ · ~n)2). (2.6)

The following inequalities on the Frank constants Ki, guaranteeing the coercivity of the total
energy, play a main role in the analysis:

K1 > 0, K2 > 0, K3 > 0, K2 ≥ |K4|, 2K1 ≥K2 +K4. (2.7)

Theorem 2.1. [40] Let U ∈R3 be an open and bounded set, with Lipschitz boundary ∂U . Suppose that
the Frank constants satisfy the inequalities (2.7). Let the admissible set be

A(~n0) = {~n∈H1(U ,S2) : ~n|∂U = ~n0}

is nonempty. Then for any Lipschitz function ~n0 : ∂U −→S2, the functional

EOF (~n) :=

∫
U
WOF(~n,∇~n) d~x (2.8)

admits a minimizer in A(~n0). Furthermore, if ~n is a minimizer of EOF (·), then ~n is analytic in U/Z for
some relatively closed subset Z of U which has one dimensional Hausdorff measure zero.

Since the term multiplying (K2 +K4) in (2.6) is a null Lagrangian, and given that the
boundary conditions imposed on the capsid wall are of Dirichlet type, without loss of generality,
we set K4 = 0 and arrive at the expression (2).

Remark 2.1. The hexagonal columnar phase of chromonic liquid crystals can be characterized by an
orthonormal set of vectors {~n, ~m, ~p}, the director ~n, the liquid direction, describing the average alignment
of the columnar axes, and the remaining pair of lattice vectors encoding the geometry of the crystal
orthogonal cross-section. In order to account for the distortion of the lattice, an elastic energy term,
WHex(~m, ~p,∇~m,∇~p), should be added to the integrand of the total energy 2.1. For the class of vector
fields ~n that we consider, including the cross-sectional energy amounts to replace the elastic constants K2

and K3 by effective values that account for the shear and bulk elastic modulus, but it does not otherwise
affect the analysis presented here. This simplifying approach may have to be reconsidered if the goal is to
predict the osmotic pressure in the capsid [27].

3. Main results
Henceforth, we will take the capsid to be a cylinder of radius R2 > 0 and height 2h, which in
cylindrical coordinates admits the representation B= {(r, z, θ)| 0≤ r≤R2, 0≤ θ < 2π, −h≤ z ≤
h}. For 0≤R1 ≤R2, the region where the DNA is organized is expressed as

Ω = {(r, z, θ)|R1 ≤ r≤R2, 0≤ θ < 2π, −h≤ z ≤ h}. (3.1)

The disordered core is taken to be the inner cylinder Ω0 = {(r, z, θ)|0≤ r≤R1, 0≤ θ < 2π,−h≤
z ≤ h}, where R1, 0≤R1 ≤R2, is either a prescribed number or an unknown of the problem.
In the latter case, we associate to it an energy consistent with the isotropic liquid crystal phase.
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Specifically, the assigned energy is equal to the sum of two contributions, one proportional to the
inner core volume and, the second one proportional to the surface area separating the ordered
and the disordered regions [27],

Edisorder[R1] = 2h(νπR2
1 + 2σπR1). (3.2)

Here ν > 0 is the isotropic modulus and σ≥ 0 is the surface tension.
We assume the director field ~n (later identified with the unit tangent vector to the DNA center

curve) takes the form,
~n= cosψ · ~eθ + sinψ · ~ez , (3.3)

where ψ(r, θ, z)∈ [−π/2, π/2] is a scalar function defined in Ω.

(a) Capsid with prescribed inner core: energy of the ordered region
We will first study the case when R1 ≥ 0 is prescribed, neglecting the contribution Edisorder . The
following theorem refers then to the total Oseen-Frank energy (2.8) of the liquid crystal in the
domain Ω, subject to the constraint (2.3).

Theorem 3.1. Consider the total Oseen-Frank energy (2.8) in the cylindrical shell Ω, with the prescribed
inner and outer radii 0<R1 <R2. Let the Frank constants K2,K3 > 0 also be given. Suppose that the
constraint (2,3) holds and let ~n be parameterized as in (3.3). Then the critical points of EOF in H1(Ω)

with natural boundary conditions, satisfy the following properties:
(i) They are independent of θ and z.
(ii) There exists a smooth (local) energy minimizing configuration ψ(r), r ∈ (R1, R2). Moreover, for

achiral energies, τ = 0, −ψ(r) is also a minimizer with the same energy. The scalar fields, ±ψ determine
helical vector fields of opposite handedness.

(iii) In the case of a chiral material, τ 6= 0, if ψ(r) is a minimizer, then −ψ(r) is also a minimizer of
EOF with the chiral pitch −τ .

Proof. For ~n of the form (3.3), the Oseen–Frank energy reduces to,

EOF =

∫
Ω

[
K3

(
(
cos2 ψ

r
)2 + (

cos2 ψ

r
ψθ +

sin(2ψ)

2
ψz)

2 + (
sin(2ψ)

2r
ψθ + sin2 ψψz)

2
)

+K2(
sin(2ψ)

2r
− ψr + τ)2

]
d~x (3.4)

The constraint∇ · ~n= 0 becomes

ψz =
tanψ

r
ψθ. (3.5)

Substituting the latter into the Oseen–Frank energy, it further simplifies to,

EOF [ψ(r, θ, z)] =

∫
Ω

[
K3

(
(
cos2 ψ

r
)2 +

1

r2 cos2 ψ
ψ2
θ

)
+K2(

sin(2ψ)

2r
− ψr + τ)2

]
d~x (3.6)

≥
∫
Ω

[
K3(

cos2 ψ

r
)2 +K2(

sin(2ψ)

2r
− ψr + τ)2

]
d~x (3.7)

=

∫h
−h

∫2π
0

∫R2

R1

[
K3(

cos2 ψ

r
)2 +K2(

sin(2ψ)

2r
− ψr + τ)2

]
rdrdθdz (3.8)

, Eorder[ψ(r, θ, z)]. (3.9)

We point out that a critical point of Eorder[ψ(r, θ, z)], which satisfies
δEorder
δψ

= 0, where the

symbol δ refers to the total variation of EOF with respect to ψ(r), satisfies

−K2 [(rψr)]r +
sin(2ψ)

2r
(K2 cos(2ψ)− 2K3 cos

2 ψ) = τ(cos(2ψ) + 1). (3.10)
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The boundary conditions also result from setting the first variation of the energy equals to zero,
that is

2rψr ± sin (2ψ) = 0 or ψ=C, (3.11)

at r=R1 and r=R2, where C is a suitably chosen constant. Here the ‘+’ sign corresponds to
r=R1 and the ‘−’ sign to r=R2. The difference of signs is due to the opposite directions of the
outer normal at two different boundary components.

In general, the solution to (3.10) and (3.11) may depend on (θ, z) as parameters. However, the
solution, which corresponds to the energy minimizer, is independent of θ and z, thus

Eorder[ψ(r, θ, z)]≥Eorder[ψ(r)]. (3.12)

We observe the critical points of the energy, that is solutions of the Euler-Lagrange equation (3.10)
are smooth for r > 0. It follows from standard theory of ordinary differential equations [41].

Remark 3.1. Theorem 3.1 relies on the cylindrical geometry. If we consider the spherical domain, then the
Oseen–Frank energy is minimized with ψ dependent on all three coordinates r, θ and z.

In view of Theorem 3.1, from now on, we will only consider axisymmetric solutions ψ(r). We
also note that there exists a constant trivial solution to Eq. (3.10), which is ψ= π

2 . It describes
the configuration of the director field to be parallel straight lines pointing from the bottom to
the top, corresponding to the spiral-fold model [42] which is not discussed in this paper. If we
further assume the chirality τ = 0, then ψ= 0 is also a constant trivial solution, which describes
the director field tangent to concentric circles.

In what follows, we first discuss the case τ = 0; we will return to configurations with non-zero
chirality in later sections. For physical consistency, we impose the natural boundary condition
at R1: 2R1ψr(R1) + sin(2ψ(R1)) = 0, and the Dirichlet condition at R2: ψ(R2) = 0. This setup
describes a liquid crystal, with the director field circularly anchored to the outer surface and free
on the inner one. The concentric-circle configuration can be viewed as a 2-dimensional liquid
crystal structure, while the 3-dimensional helical configuration corresponds to non-constant
ψ(r) 6= 0. The transition from the concentric-circle to helical solutions, is a type of “escape to the
third dimension" in nematic liquid crystals confined to cylinders [43].

We first study the existence of the helical solution and the stability of, both, the concentric-circle
and helical solutions, under different set of parameters.

(b) Solution of the Euler-Lagrange equations
We consider the governing equation (3.10), with τ = 0, subject to the boundary conditions{

2rψr + sin(2ψ) = 0, at r=R1;

ψ= 0, at r=R2.
(3.13)

We observe that the trivial solution ψ(r) = 0 satisfies both boundary conditions, with the
corresponding vector field ~n being tangent to concentric circles.

Next, we focus on nontrivial solutions ψ 6= 0, with ~n tangent to families of helical curves. For
this we introduce the parameter

α=
K3

K2
, (3.14)

that will turn out to be pivotal in classifying the solutions of the equation. We first note that,
integrating both sides of equation (3.10), after pre-multiplying by ψr , yields the first integral

(rψr)
2 − α

2
cos(2ψ)− 1− α

8
cos(4ψ) =C, (3.15)
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with C being an arbitrary constant. Using the boundary condition at r=R1, the constant C can
be expressed as

C =
1

4
sin2(2ψ(R1))−

α

2
cos(2ψ(R1))−

1− α
8

cos(4ψ(R1)). (3.16)

Equation (3.15) can be integrated once more. The solution satisfying the boundary condition
ψ(R2) = 0, is given by the elliptic integral

F
(
arcsin

(√
m2

1−m2
tanψ

)∣∣∣ m1(1−m2)
m2(1−m1)

)
√

(1− α)(1−m1)m2

=± ln
R2

r
. (3.17)

Here F (x|m) =

∫x
0

dθ√
1−m sin2 θ

is the elliptic integral of the first kind, with

m1,2 =
(1− 2α)/2±

√
α2/4 + (1− α)2/8− (1− α)C

1− α .

Detailed derivation of (3.17) is given in the supplementary material section.
To determine the constant C or, equivalently, ψ(R1), we need to consider the boundary

condition (3.13) at R1 and solve the resulting equation

F
(
arcsin

(√
m2

1−m2
tanψ(R1)

)∣∣∣ m1(1−m2)
m2(1−m1)

)
√

(1− α)(1−m1)m2

=± ln
R2

R1
,±M. (3.18)

We note that ψ(R1) depends on R2 through the ratio R2/R1 only, and M , ln R2
R1

turns out to be
an important parameter in later sections.

We observe that, when R1→ 0 with fixed R2, or when α→ 1, equation (3.18) may not be
properly defined. The first case corresponds to the DNA being fully ordered in the whole capsid,
whereas the second one corresponds to the limit of equal twist and bending effects. Next, let us
carefully analyze these two special cases, and then the general situation.

(i)R1 = 0

The energy of the system reduces to

Eorder = 4πhK2

∫R2

0

[∣∣∣∣ sin(2ψ)2r
− ψr

∣∣∣∣2 + α
cos4 ψ

r2

]
rdr. (3.19)

The boundary condition 2rψr + sin (2ψ) = 0 at r= 0 indicates ψ(0) = 0 or π/2.
If ψ(0) = 0, the first integral becomes,

(rψr)
2 =−α sin2(ψ)− 1− α

4
sin2(2ψ). (3.20)

We point out that, for given K2,K3 > 0, the right hand side of the previous equation is non-
positive. Thus, only the trivial solution ψ(r) = 0 exists.

Next, we focus on the case that ψ(0) = π/2. The first integral (3.15) and (3.16) becomes

(rψr)
2 = α cos2(ψ)− 1− α

4
sin2(2ψ). (3.21)

Integrating it once more, we get

1√
2α− 1

tanh−1(

√
2α− 1 sin(ψ)√

2α− 1 + (1− α) cos2 ψ
) =± ln

r

R2
, (3.22)

which implicitly defines the function ψ(r). In the special case α= 1, it becomes

ψ=± arcsin
R2
2 − r2

R2
2 + r2

=± arccos
2rR2

R2
2 + r2

. (3.23)
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Figure 1. (a) Solution ψ(r) given by Eq. (3.22), with R1 = 0, R2 = 1, K3 = 1 and different K2. (b) The graph of

function f(x;α) for different values of α. The curves with α= 0.5, 1, 2, 10 have a vertical asymptote at x= π/2. The

vertical asymptote for α= 0.3 is x= β(α)<π/2. The curves with α= 0.3, 0.5, 1, 2 are monotone increasing, while

the curve for α= 10 is decreasing then increasing.

Likewise, for α= 1/2, the explicit form of the solution is

ψ=± arctan(ln(R2/r)/
√
2). (3.24)

The graphs of ψ(r), for different values of α, are shown in Fig. 1 (a).

Remark 3.2. For α< 1/2, Eq. (3.22) does not have real solutions, indicating that the boundary conditions
in (3.13) fail. Hence only the solutions with ~n tangent to concentric circles exist.

Remark 3.3. For α≥ 1/2, the configurations given by (3.22) have finite energy, Eorder , and it is
independent of R2. (See Supplementary Material for the proof.)

(ii)α= 1 with R1 > 0

In this special case, the first integral becomes,

(rψr)
2 − 1

2
cos(2ψ) =C, (3.25)

Using the boundary condition at r=R1, then C =
sin2(2ψ(R1))

4 − 1
2 cos(2ψ(R1)), and

rψr =±
√
C + cos(2ψ)/2. (3.26)

Integrating (3.25) again and applying the boundary condition ψ(R2) = 0, we have

1√
m
F (ψ| 1

m
) =± ln

r

R2
. (3.27)

Here m=C +
1

2
=

sin2(2ψ(R1))

4
+ sin2(ψ(R1)), and F (x|m) =

∫x
0

dθ√
1−m sin2 θ

is the elliptic

integral of the first kind.
In order to determine ψ(R1), we need to solve the following equation:

1√
m
F (ψ(R1)|

1

m
) =±M. (3.28)
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Let us define

f(x),
2F (x| 4

sin2(2x)+4 sin2(x)
)√

sin2(2x) + 4 sin2(x)
=

2x√
sin2(2x) + 4 sin2(x)

∫1
0

du√
1− 4 sin2(xu)

sin2(2x)+4 sin2(x)

. (3.29)

This allows us to rewrite Eq. (3.28) as f(ψ(R1)) =±M , with M as in (3.18). The results of this
subsection are summarized in the following theorem and the proof is in the Supplementary
Material.

Theorem 3.2. Let α= 1 in equation (3.14). Then there exists a unique positive solution ψ(R1) := c > 0

to Eq. (3.28) if and only if
R2

R1
> eπ/4 ≈ 2.19328. Likewise, ψ(R1) =−c < 0 is the only negative solution.

Furthermore, the functions ψ(r) given by Eq. (3.27), with ψ(R1) =±c, are the only two non-trivial
solutions of Eq. (3.10) satisfying the boundary conditions (3.13).

Remark 3.4. For
R2

R1
= e

π
4 , we define f(0) = lim

x→0
f(x) =

π

4
. Then Eq. (3.27) has a solution satisfying

ψ(R1) = 0, which corresponds to the trivial solution ψ(r)≡ 0.

Remark 3.5. When R1→ 0, so that
R2

R1
→∞, the solution ψ(r) satisfies ψ(R1)→

π

2
. This is consistent

with the result from Section (i).

(iii) General Cases

Now we revisit Eq. (3.10), and analyze the general case α≥ 0 and R1 > 0 prescribed. Instead of
formally using the elliptic integral, we start again from the first integral, and consider the function,

f(x;α) =

∫x
0

dt√
α
2 (cos(2t)− cos(2x)) + 1−α

8 (cos(4t)− cos(4x)) + 1
4 sin2(2x)

=

∫1
0

xdu√
(1− α) sin4(xu)− sin2(xu) + 2 sin2(x)− (2− α) sin4(x)

. (3.30)

Notice that, f(x;α= 1) is the same function of x as f(x) in Eq. (3.29). By definition, and in analogy
with Eq. (3.28), Eq. (3.18) can be rewritten as,

f(ψ(R1);α) =±M =± ln
R2

R1
. (3.31)

The properties of f should give us sufficient information on the solution ψ(r). Furthermore, since
f(x;α) is an odd function of x, we only need to consider the positive sign in Eq. (3.31). Let us
define,

G(u, x;α) = (1− α) sin4(xu)− sin2(xu) + 2 sin2(x)− (2− α) sin4(x), (3.32)

for x∈ [0, π/2] and u∈ [0, 1]. Note thatG is continuously differentiable with respect to, both, x and
u. With x fixed, G(u, x;α) can be viewed as a function of u only. We now discuss the properties
of G and f , for two distinct ranges of values of α, that is, α≥ 1

2 and α< 1
2 . The conclusions are

based on calculating the derivative of G with respect to u.
When α≥ 1/2, there is no interior critical point with respect to u, thus the extreme values of G

can only occur at the end points u= 0 or u= 1. Morevoer, it is easy to check thatG(0, x;α)> 0 and
G(1, x;α)> 0, for all x∈ (0, π/2), and so G(u, x;α)> 0 for all x∈ (0, π/2) and u∈ [0, 1]. Hence
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f(x;α) is defined properly as a real function in 0<x<π/2. We can further calculate the limit,

lim
x→π/2

f(x;α) =∞, if α≥ 1/2. (3.33)

When α< 1/2, there is no interior critical point of G with respect to u, for x∈ (0, x0], with

x0 = arcsin(
√

1
2−2α ). Thus the arguments used for the case α≥ 1

2 still hold; hence f(x;α) is
a real function in (0, x0]. For x∈ (x0, π/2), there is one interior critical point of G(u, x;α), that
is u0 = x0

x . Since G(u0(x), x;α) is monotonically decreasing in x∈ [x0, π/2], G(1, x0;α)> 0 and
G(2x0/π, π/2;α)< 0, there must exist one β ∈ (x0, π/2), such that G(u0(x), x;α)< 0 for all x∈
(β, π/2) and G(u0(x), x;α)> 0 for all x∈ (x0, β). When x∈ (β, π/2), f(x;α) becomes complex
because

√
G(u, x;α) is pure imaginary near u= u0(x). When x∈ (0, β), f(x;α) is real. For x= β,

since G(x0/β, β;α) =Gu(x0/β, β;α) = 0, the integral
∫
G−1/2du diverges, thus

lim
x→β

f(x;α) =∞, if α< 1/2. (3.34)

In both cases, α≥ 1/2 and α< 1/2, we get the common limit

lim
x→0

f(x;α) =

∫1
0

du√
2− u2

=
π

4
. (3.35)

Proceeding with the Taylor expansion of f(x;α) about x= 0, we get higher order corrections to
the previous limit, that is,

f(x;α) ∼
∫1
0

(
1− (1− α)u4 + u4/3− 2/3 + (α− 2)

4− 2u2
x2
)

du√
2− u2

=
π

4
− x2

(
2− π
2

+
3π − 8

8
α

)
. (3.36)

Hence, it follows that f ′(0;α) = 0, and f ′′(0;α)> 0, when α< 4π−8
3π−8 ; f ′′(0;α)< 0, when α>

4π−8
3π−8 . The graphs of f(x;α), for different values of α, are shown in Fig. 1 (b).

Remark 3.6. Numerical calculation shows f(x;α) is monotone increasing when α≤ 4π−8
3π−8 , and f(x;α)

has one local minimum when α> 4π−8
3π−8 .

We point out that, for α small, f(x;α) is monotone increasing. For α large, f(x;α) has an
interval of decrease followed by one of increase, as x grows. Here, we omit the detailed calculation
of the study of the monotonicity of f(x;α). Since it is very tedious, and instead, we refer to the
numerical calculations shown in Fig. 1. We summarize the previous results as follows:

(i) When 0≤ α< 1/2, then f(x;α) is a real, monotone increasing function in (0, β(α))∈
(0, π/2), whose range is (π/4,∞). A non-trivial solution to Eq. (3.31) exists if M >π/4, and the
solution is unique.

(ii) When α≥ 1/2, then f(x;α) is real in (0, π/2). If f(x;α) is monotone increasing, then its
range is (π/4,∞), and a non-trivial solution to Eq. (3.31) exists if ln(R2/R1)>π/4; the solution
is unique. If f(x;α) is not monotone, then its range is [a,∞) with some a< π/4. A non-trivial
solution to Eq. (3.31) exists if M = ln(R2/R1)>a, and the solution is not unique if a<M <π/4.
We point out that a is the minimum of f(x;α).

(iii) In all cases, the nontrivial solution ψ(r) depends on R2 only through the ratio R2
R1
.

Likewise, the dependence on the elasticity constants is solely through the ratio α= K3
K2

.

(c) Stability of solutions
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Figure 2. Total energy of the system for different configurations and parameter values. In both graphs, the black line is

the plot of the energy of the concentric circle configuration. The coefficient 4πhK3 is omitted for all the curves. Panel (a)

shows the plot of the helical configurations for α= 0.3, 0.4, 0.5 and 1. Panel (b) corresponds to α= 10. There are two

helical solutions with different positive ψ(R1). The figure shows the energy of both helical configurations.

(i) Local stability of the helical solution ψ(r)

We consider a small perturbation δψ(r)∈H1
0 ([R1, R2]) about the helical solution ψ(r). It changes

the energy by the amount

δEorder = 4πhK2

∫R2

R1

[
[cos(2ψ)δψ − rδψr]2 − [sin(2ψ)− 2rψr] sin(2ψ)(δψ)

2

+6α cos2 ψ sin2 ψ(δψ)2 − 2α cos4 ψ(δψ)2
] dr
r
.

Let x= ln r − lnR1 and recall that M = lnR2 − lnR1. Then

δEorder = 4πhK2

∫M
0

[
(δψx)

2 + [cos(4ψ) +
3α

2
sin2(2ψ)− 2α cos4 ψ](δψ)2

]
dx, (3.37)

≥ 4πK2h

∫M
0

[
cos(4ψ) +

3α

2
sin2(2ψ)− 2α cos4 ψ +

π2

M2

]
(δψ)2dx. (3.38)

Here we applied Wirtinger’s inequality. The equality holds when δψ∝ sin(πx/M). This allows us
to establish the following theorem, and the proof is in the Supplementary Material.

Theorem 3.3. The helical solution ψ(r) is stable in the following cases:

(i) If 0≤ α≤ 4
5 , when M = ln(R2/R1)≤ π/

√
1− α+ α2

8(1−α) ;

(ii) If α> 4
5 , when M = ln(R2/R1)≤ π/

√
2α− 1.

Remark 3.7. Theorem 3.3 provides sufficient, but not necessary conditions for stability.

(ii) Local stability of concentric circles solution ψ = 0

Let us consider a small perturbation δψ(r)∈H1
0 ([R1, R2]) about the solution ψ(r) = 0. The

corresponding change in the energy is

δEorder = 4πhK2

∫M
0

[
(1− 2α)(δψ)2 + (δψx)

2
]
dx≥ 4πhK2

∫M
0

[
1− 2α+

π2

M2

]
(δψ)2dx.

(3.39)
We now establish the following theorem, and the proof is in the Supplementary Material.
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Theorem 3.4. The concentric circle solution ψ(r) = 0 has the following properties:
(i) It is stable, provided 0≤ α≤ 1/2, or α> 1/2 and M = ln(R2/R1)<π/

√
2α− 1.

(ii) It is unstable, if α> 1/2 and M = ln(R2/R1)>π/
√
2α− 1.

Remark 3.8. When the concentric circle solution is unstable, we expect the helical solution to be stable,
although it might not satisfy the conditions of Theorem 3.4.

(iii) Energy comparison

We now compare the energy of the concentric circle solution with that of the helical one. The
former can be explicitly calculated as

Eorder[ψ(r) = 0] = 4πhK2α

∫R2

R1

1

r
dr= 4πhK2α ln

R2

R1
. (3.40)

For the helical solutions, the energy has to be numerically calculated. Notice that the energy only
depends on the ratio R2/R1: Fig. 2 shows the comparisons between the energies as a function of
M = ln(R2/R1) for different values of α. We set k3 = 1 and let k2 change.

The α values in Panel (a) correspond to the situation when there is only one positive solution
ψ(R1) of (3.31). When α= 0.3, the concentric circle solution is preferred because it has a lower
energy than the helical configuration.

When α= 0.4, the helical configuration has a lower energy for a limited range of M . These
two curves show that, when M →∞, the energy diverges faster than that of the concentric-circle
configuration. This is consistent with Remark 3.2. When α= 0.5 and 1, the helical solution has a
higher energy for smallerM and becomes preferable for largeR2/R1. Moreover, these two curves
becomes horizontal when M →∞, which is also consistent with the statement in Remark 3.3.

In the figures of panel (b), α is set to be equal to 10. We have shown in Fig. 1 that there exist two
positive solutions of ψ(R1) for a particular range of a<M <π/4. One is marked as small ψ(R1)

and the other as large ψ(R1). In the case M → a+, the two helical solutions become identical.
When M → (π/4)−, the small ψ(R1) solution degenerates to the trivial concentric-circle solution,
thus the small ψ(R1) branch vanishes when M <a or M >π/4. The solution corresponding to
large ψ(R1) exists forM ≥ a. We note that the helical configuration in this case is always preferred
compared with the concentric-circle configuration. Moreover, the small ψ(R1) branch is preferred
when M is small; the large ψ(R1) branch is preferred when M is large. However, at the (right)
intersection of the two energy curves of the helical configurations, the values ofψ(R1) are distinct.
This suggests that the phase transition between these two helical configurations, as M changes
through the threshold value, is not smooth.

(d) Capsid with core energy: variable R1 with fixed R2

Next, we consider the total energy that consists of the sum of the ordered plus the disordered
contributions, with the unknown fields being ψ=ψ(r) and the real number R1 ≥ 0:

Etotal[ψ,R1] =Edisorder[R1] + Eorder[ψ] (3.41)

= 2πh

[
νR2

1 + 2σR1 + 2

∫R2

R1

(
K2

∣∣∣∣ sin(2ψ)2r
− ψr + τ

∣∣∣∣2 +K3
cos4 ψ

r2

)
rdr

]
.

Notice that Eorder[ψ] also depends on R1. The critical points satisfy the equations

δEtotal
δψ

= 0=
∂Etotal
∂R1

. (3.42)

It follows that the governing equation for ψ(r) and the corresponding boundary conditions are
again given by Eq. (3.10) and (3.11), respectively. The second equation in (3.42) gives the relation
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Figure 3. (a) Plot of the function g(R1/R2) of Eq. (3.44) corresponding to concentric circle vector fields (black line) and
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the stable one corresponding to the larger value of R1. Note that, the plots of g(R1/R2) for α= 10, show the two

analytically studied solution branches. (b) Plot of two opposite-handed helix segments on different cylinders.

satisfied by the unknown quantity R1,

νR1 + σ=

[
K2

∣∣∣∣ sin(2ψ(R1))

2R1
− ψr(R1) + τ

∣∣∣∣2 +K3
cos4 ψ(R1)

R2
1

]
R1. (3.43)

We will again consider the case τ = 0 and Substitute the natural boundary conditions (3.11) into
(3.43) yields the equation

νR2
2
R1

R2
+ σR2 = g(R1/R2),K2

sin2(2ψ(R1))

R1/R2
+K3

cos4 ψ(R1)

R1/R2
. (3.44)

Here we used the fact that, ψ(R1) only depends on the ratio R1/R2, determined by equations
(3.18) or (3.31). Thus R1/R2 (or equivalently R1) and ψ(R1) could be obtained through a set of
algebraic equations, without solving the boundary value problem (3.10) and (3.11).

Remark 3.9. Before discussing the solvability of Eq.(3.44), we carry out a simple calculation that gives
insight to the possible structure of solutions, according to the parameter values. Introducing the variable
z = cos2 ψ(R1), we rewrite the former as a quadratic equation on z,

νR1 + σ=
1

R1

[
Nz2 + 4K2z

]
, N := (K3 − 4K2) (3.45)

Solving it provides a relationship between cos2 ψ(R1) and R1, according to the sign of N . Specifically, (a)
there is a single branch relationship between z and R1, provided N ≥ 0 (equivalently, α≥ 4), and (b) two
possible branches otherwise (i.e. α< 4).

(i) Determine the inner core radius R1

We now discuss the numerical solution of Eq.(3.44). In Fig. 3, we represent the graphs of the
function g(R1/R2) in Eq.(3.44), for ψ(R1) corresponding to concentric circle vector fields as well
as to helical ones, and for several choices of the parameter α. These curves illustrate all possible
shapes of g(R1/R2). Solutions of Eq. (3.44) are then given by intersections of such cures with
the line νR2

2(R1/R2) + σR2. We observe that, given a pair (ν, σ) for which an intersection with a
graph of g(R1/R2) with negative slope occurs, subsequent increase of σ, with ν fixed, causes the
the value ofR1 at the intersection to decrease; this is also the case, when ν increases while keeping
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σ fixed. We also observe that, if on the left of the location of the intersection, the straight-line is
above the curve of g, the energy increases with increasing R1; otherwise, the energy decreases
with increasing R1.

We now summarize the solvability of Eq. (3.44) as follows.
For the concentric-circle curve: (1) In the case of no intersection (corresponding to small ν and

σ), then the stable configuration is R1 = 1, with the full inner capsid region being disordered; (2)
If there is one intersection, then the concentric-circle configuration is stable in R1.

For α= 0.5: (1) If there is an intersection, then the helical configuration is stable in R1; (2) If
there is no intersection, then the stable configuration is determined by the concentric-circle curve.

For α= 1.5: there might be two intersections, (1) The helical configuration withR1 = 0 is stable
in R1; (2) If there is one intersection that the straight-line crosses the curve from above, then it is
unstable; (3) If there is one intersection that the straight-line crosses the curve from below, then it
is stable in R1.

For α= 3: (1) The helical configuration withR1 = 0 is stable inR1; (2) If there is an intersection,
then the helical configuration is unstable in R1.

For α= 10, there are two branches of curves: (1) The helical configuration withR1 = 0 is stable
in R1; (2) If there is one intersection with the lower curve, then it is unstable. The configuration
where the two branches meet is stable in R1; (3) If there is one intersection with the upper curve,
it is stable in R1.

(ii) Comparison with data from a set of bacteriophages

We start exploring the parameters K2, K3, ν and σ of the model. Following Tzlil et al. [44], we
express

K3 =KBTLpm0, (3.46)

where, KB is the Boltzmann constant, T the absolute temperature, m0 represents the linear
density of DNA in the capsid and Lp the persistence length. The quantitym0 represents the linear
density of DNA in the capsid and has dimensions of square inverse of the length. Table 1 lists the
value of m0 for a sample of four viruses. For instance, for T4, we estimate m0 = 1/(π(d0/2)

2) =

0.221nm−2 (d0 ≈ 2.4nm), and taking T = 300K gives

K3 = 5× 10−11J/m. (3.47)

In [27], we take guidance from the theory of Onsager for lyotropic liquid crystals, to obtain
expressions for the isotropic modulus ν and the surface tension σ, and assume that they are
functions of the (DNA) molar concentration c [45]. We adopt the expressions

ν = ν0(c)
KBT

R3
2

, σ= σ0(c)
KBT

Lpd0
. (3.48)

Since, to our knowledge, no molecular theory is available to determine the dimensionless
parameters ν0 and σ0, and, likewise, we do not have an expression for K2 either, we proceed
to estimate these three quantities from the data shown in the table. (The analogous approach
followed in [27], and taking the capsid to be a sphere with the DNA arranged in concentric circles,
gives ν0 = 23 and σ0 = 0.388).

Prior to estimating ν0 and σ0, and taking into account that for DNA α> 1 holds, the stability
properties listed in Section 3(d)(i) indicate that the solution R1 in the graphs shown in Fig. 3 lies
either on the concentric circle branch or on the monotonically decreasing portion corresponding
to α= 10. Moreover, as the experimental values of R1

R2
shown in Table 1 indicate, the solutions

for the viruses T4, T7 and ε15 are located in the latter branch, whereas that for T5 belongs to the
concentric circle one. Also, for α= 10, the largest possible value of R1 is where the blue and red
curves meet. The results for α= 10 generalize to the case that α is large: the graph of g(·) has
two branches, with the system having a stable helical configuration corresponding to the largest
possible value of R1. On the other hand, if 0<α is relatively small, such that g(·) has a single
branch, then the stable configuration becomes R1 = 1, with inner capsid region being disordered.
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Virus Lp (nm) d0 (nm) c L (nm) R2 (nm) R1/R2 m0 (m−2)

T4 55.60 2.40 21.37 55047.6 40.00 0.5500 0.22× 1018

T5 58.38 2.94 17.85 39423.8 42.00 0.4286 0.147× 1018

T7 52.88 2.60 18.17 12932.0 26.05 0.5889 0.18× 1018

ε15 53.90 2.55 13.98 12846.0 28.37 0.5735 0.574× 1018

Table 1. Physical measurements of four different bacteriophages [27]. The symbolLp denotes the persistence length of a

DNA chain of length L, effective diameter d0, molar concentration c in a sphere-like capsid of radiusRc with a measured

radius rc of the disordered core. m0 represents the linear density. T4 [2, 3]; T5 [4]; T7 [1]; ε15 [5].

In order to fit the curves with the experimental data of R1/R2 shown in Table 1, we appeal
to a scaling argument and estimate the value ν0 ∼ 500 so that νR2

2/K3 ∼ 1. With the appropriate
choice of σ0, this yields intersections between the straight line and the graph of g(·), in the stable
range of the helical curves and the concentric-circle curves, at values R1/R2 ≈ 0.4∼ 0.6.

4. A filament reconstruction
In the previous sections, we have obtained a vector field ~n, parametrized by the angleψ that forms
with the horizontal azimuthal vector ~eθ (3.3), that minimizes the total energy (3.42). In this section,
we construct a smooth curve, a filament, that starting at a given point at the entrance of the capsid,
remains tangent to ~n at every point. We recall the invariance property of nematic liquid crystals
to the change ±~n that allows us to replace the oriented vector field with the corresponding line
field.

We consider an achiral liquid crystal, with τ = 0, in which case, if ψ(r) is the minimizing angle
−ψ(r) is also an energy minimizer, with the same energy. Moreover, ±ψ represent the right
and left handed helices, respectively. The reconstructed filament consists of piecewise helical
strands over cylinders of radius ri, i= 1, . . . N , with alternating handedness and connected by
interpolating smooth curves.

For a given ε > 0, let the point (r1 =R2 − ε, θ= 0, z = 0) represent the location where the DNA
segment enters the capsid. The number ε is taken to be of the order of the capsid thickness, that
we assume to be comparable to the effective diameter of the DNA filament d0. The reconstruction
of the center axis of the DNA curve of length L> 0 inside a cylindrical capsid of radius R2 and
height 2h starts with the observation that the sub-filament of length 0<L1 ≤L is organized in
piece-wise helices over a discrete collection of cylinders of radius ri,

R1 + ε≤ ri ≤R2 − ε, i= 1, 2, . . . N,

r1 =R2 − ε, r2 = r1 − d(r1), . . . , rN = rN−1 − d(rN−1), (4.1)

whereN a positive integer, and d(r) is the pitch of the helix on the cylinder of radiusR1 < r <R2,
both to be determined. We also take the distance between two neighbouring cylinders of radius
r= ri and r= ri+1 to be d(ri), providing the same spacing as that between neighboring segments
of the helix on r= ri. The core radius R1 > 0, also resulting from the minimization problem,
allows us to calculate N : from (4.1), N is the largest integer so that rN+1 ≤R1. The length of
the ordered DNA is then

L1 =

N∑
i=1

Li1 +O(ε), (4.2)

where Li1 is the length of the helix on the cylinder of radius ri. The correction term in the above
sum accounts for the length of the curves connecting the helical segments. The length of the
disordered DNA is then L2 =L− L1.
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Remark 4.1. We assume that the full genome is being packed, and it is sufficiently long to fill the entire
capsid. Modeling the packing of a short genome should include the nematic order parameter that keeps track
of the local DNA concentration.

Let s∈ (0, L1) denote the arc length parameter of the DNA center curve, ~r= ~r(s). We recall
that the vector field representation of a helix on the cylinder of radius r > 0, is given by the vector
equation

~r(s) = r~er(θ(s)) + z(θ(s))~ez , s∈ [si, si+1], (4.3)

Here 0< si < si+1 <L1 represent the arc length values such that z(θ(si) = 0 and z(θ(si+1) =

h, in the case that the curve is spooling along the positive z-direction, with the opposite signs
otherwise. Furthermore, we seek ~r(s) such that, at the point corresponding to the cylindrical
coordinates (ri, θ(s), z(θ(s)) is tangent to the vector field ~n. That is, we require

d~r

ds
=~n(θ(s); r) = cosψ(r)~eθ(θ(s)) + sinψ(r)~ez , (4.4)

s∈ [si, si+1], ~r(si) = ri~er. (4.5)

Calculating
d~r

ds
=
d~r

dθ

dθ

ds
=
(
r~eθ +

dz

dθ
~ez
)dθ
ds
, (4.6)

and combining it with (4.5), we obtain

dθ

ds
=

1

r
cosψ(r),

dz

dθ

dθ

ds
= sinψ. (4.7)

Integrating the latter on the surface of cylinder of radius r, R1 < r <R2, we obtain

θ(s) =
s

r
cosψ(r) + C1, z(s) = s sinψ(r) + C1r tanψ(r) + C2, (4.8)

where C1 and C2 are arbitrary constants.

Remark 4.2. In the special case of R1 = 0, Eq. (3.23), we get

θ(s) = 2
R2

r2 +R2
2

s, z(s) =
R2
2 − r2

R2
2 + r2

s. (4.9)

Note that, in calculating sinψ from its cosine, we have chosen the positive sign, this being consistent with
the convention that curve starts at z = 0 and it spirals towards the positive z-axis.

Next, with a simple calculation, we get the pitch d of the helix in (4.8). Let us consider a point
of the helix on the cylinder of radius r corresponding to the arc length s > 0, and a second point
on the same helix but at the location s+ l, l > 0. We let l > 0 and d > 0 be such that

θ(s+ l) = θ(s) + 2π, z(θ(s+ l)) = z(θ(s)) + d(r). (4.10)

The latter, together with equations (4.8), gives d(r) = l sinψ(r) and l= 2πr secψ. Hence

d(r) = 2πr tanψ(r). (4.11)

The plots in Figure 1 (a) show that ψ(r) is very small (near 0) for r close to R2. This indicates
that the outer cylindrical layers have higher filament concentration (here measured as h

d(r)
) than

the inner ones, as consistently shown in experiments. Also, from figure 1 (a), we see that the
overall values of ψ decrease as K2 increases, that is the angles are smaller for higher twist energy
penalty, also to be expected.

We obtain the equation of the centerline curve on subsequent cylindrical layers, located
at r1, r2, . . . , rN , respectively. The independent segments in each cylinder are connected by
interpolating lines, U -turns, mimicking inter layered spooling curves, resulting on a globally
smooth curve.
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The reconstructed DNA center line is a piece-wise smooth helical curve, consisting of ordered
strands as in (4.6, 4.8) connected by interpolating segments.
First layer. Assuming that the DNA is spooled counterclockwise from the location r= r1 near
capsid inner wall to the inner core, the first segment corresponds to equations (4.8) subject to the
initial conditions

θ(0) = 0 and z(0) =−h, s0 := 0, (4.12)

that is,

θ(s) =
s

r1
cosψ(r1), z(s) = sinψ(r1)s− h, (4.13)

We have seen in the previous sections that for the energy minimizing vector field 0≤ψ(r)≤ π
2

for r ∈ [R1, R2], with ψ(r) 6= 0 for r <R2. This guarantees sinψ(r) 6= 0, for r <R2. Note that the
curve (4.3, 4.13) reaches the top of the capsid z = h for s such that

s=
2h

sinψ(r1)
:= s1. (4.14)

We observe that the quantity s1 gives the length of the helix segment, on the surface of the cylinder
r= r1, running from z =−h to z = h. Furthermore, let us denote

θ1 = θ(s1) and P1 := (r1, θ1, h). (4.15)

Second layer. The second layer, the cylinder of radius r2 = r1 − d(r1), is covered by the helix (4.8)
with angle −ψ(r2). The initial point is P2 = (r2, θ2, h− d(r1)), with θ2 determined according to
the connection condition established next. So, the helical segment corresponds to the curve (4.8),
with r= r2 and θ≤ θ2, up to reaching z = 0.

Connecting layer. We construct an interpolating curve that joins the DNA segments on two
consecutive cylinders, from the outer to the inner one. The smooth curve consists of two segments,
but running counterclockwise, an upward one from (r1, 0, h− d(r1)) to (r1, π, h), and a second
segment starting at the point (r1, π, h) running downwards towards (r2, θ2, h− d(r2)). The
construction of the connecting layer segments is shown in the supplementary material.

5. Conclusions
We have presented a model of packaged DNA in a cylindrical capsid based on the duality of
vector field and filament approach. We have shown that the model includes fundamental features
some of them encountered in separate earlier models, such as the hexagonal crystal structure of
DNA cross-sections. Our work also generalizes the inverse spooling assumption that has been key
to earlier research and replaces it for fully helical configurations of the vector field able to sustain,
both, twist and bending. By assigning an isotropic energy to the capsid core, we characterize
its optimal size. Solutions of our model include the concentric circle states of earlier works. We
show how from such states helical configurations bifurcate, with respect to the parameter that
represents the ratio of the bending to the twist modulus. The assumption of Dirichlet boundary
conditions on the capsid wall may be unreasonably restrictive and possibly misrepresent the
role of the proteins there. In future work, we will relax it by assigning an anchoring energy to
the capsid wall. Furthermore, in the case that such an energy is anisotropic, it may allow for
corners an facets, consistent with the icosahedral geometry of the capsid. For simplicity, we do
not incorporate the scalar order parameter variable of our earlier work that helps quantify the
density of the DNA [24]. The work presented here is purely mechanical with no electrostatic
contributions of the DNA and the environmental ions taken into account as done in our previous
work [25]. The latter issues as well as the extension to capsid shapes other than cylindrical can be
computationally accomplished by numerical techniques. Finally, we point out the ideal nature of
the reconstructed filament in that it does not account for knots. This issue is the subject of follow
up work.



19

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

Funding. This work was partially supported by National Science Foundation grants DMS-1817156 (J.A.
and M.V.), DMS-1816740 (M.C.C. and P.L.), DMS-1729538 (D.G.), and DMS-1555222-CAREER, DMS-2111474
(S.W.).

References
1 M.E Cerritelli, N. Cheng, A.H. Rosenberg, C.E. McPherson, F.P. Booy, and A. Steven.

Encapsidated conformation of bacteriophage T7 DNA. Cell, 91(2):271–280, 1997.
2 N.H. Olson, M. Gingery, and T.S. Eiserling, F.A.and Baker. The structure of isometric capsids

of bacteriophage T4. Virology, 279(2):385–391, 2001.
3 V.V. Mesyanzhinov. Bacteriophage T4: structure, assembly, and initiation infection studied in

three dimensions. Advances in Virus Research, 63:287–352, 2004.
4 G. Effantin, P. Boulanger, E. Neumann, L. Letellier, and J.F. Conway. Bacteriophage T5

structure reveals similarities with HK97 and T4 suggesting evolutionary relationships. Journal
of Molecular Biology, 361(5):993–1002, 2006.

5 W. Jiang, J. Chang, J. Jakana, P. Weigele, J. King, and W. Chiu. Structure of epsilon15
bacteriophage reveals genome organization and DNA packaging/injection apparatus. Nature,
439(7076):612–616, 2006.

6 F. Guo, Z. Liu, P. Fang, Q. Zhang, E.T. Wright, W. Wu, C. Zhang, F. Vago, Y. Ren, J. Jakana,
et al. Capsid expansion mechanism of bacteriophage t7 revealed by multistate atomic models
derived from cryo-em reconstructions. Proceedings of the National Academy of Sciences, 111(43):
E4606–E4614, 2014.

7 A. Huet, R.L. Duda, P. Boulanger, and J.F. Conway. Capsid expansion of bacteriophage t5
revealed by high resolution cryoelectron microscopy. Proceedings of the National Academy of
Sciences, 116(42):21037–21046, 2019.

8 G.P. Lomonossoff and C. Wege. Tmv particles: the journey from fundamental studies to
bionanotechnology applications. Advances in Virus Research, 102:149–176, 2018.

9 A. Leforestier. Polymorphism of DNA conformation inside the bacteriophage capsid. Journal
of Biological Physics, 39(2):201–213, 2013.

10 A. Leforestier and F. Livolant. The bacteriophage genome undergoes a succession of
intracapsid phase transitions upon DNA ejection. Journal of Molecular Biology, 396(2):384–395,
2010.

11 J. Lepault, J. Dubochet, W. Baschong, and E. Kellenberger. Organization of double-stranded
DNA in bacteriophages: a study by cryo-electron microscopy of vitrified samples. The EMBO
Journal, 6(5):1507–1512, 1987.

12 F. Livolant, A.M. Levelut, J. Doucet, and J.P. Benoit. The highly concentrated liquid-crystalline
phase of DNA is columnar hexagonal. Nature, 339(6227):724–726, 1989.

13 T.E. Strzelecka, M.W. Davidson, and R.L. Rill. Multiple liquid crystal phases of DNA at high
concentrations. Nature, 331(6155):457–460, 1988.

14 W.C. Earnshaw, J. King, S.C. Harrison, and F.A. Eiserling. The structural organization of DNA
packaged within the heads of T4 wild-type, isometric and giant bacteriophages. Cell, 14(3):
559–568, 1978.

15 P.K. Purohit, J. Kondev, and R. Phillips. Mechanics of DNA packaging in viruses. Proceedings
of the National Academy of Sciences, 100(6):3173–3178, 2003.

16 N.V. Hud. Double-stranded DNA organization in bacteriophage heads: an alternative toroid-
based model. Biophysical Journal, 69(4):1355–1362, 1995.

17 W.C. Earnshaw and S.C. Harrison. DNA arrangement in isometric phage heads. Nature, 268
(5621):598–602, 1977.

18 P.K. Purohit, J. Kondev, and R. Phillips. Force steps during viral DNA packaging? Journal of
the Mechanics and Physics of Solids, 51(11-12):2239–2257, 2003.

19 J. Kindt, S. Tzlil, A.B.-Shaul, and W.M. Gelbart. DNA packaging and ejection forces in
bacteriophage. Proceedings of the National Academy of Sciences, 98(24):13671–13674, 2001.

20 J. Arsuaga, R. Tan, M. Vazquez, and S.S. Harvey. Investigation of viral DNA packaging using
molecular mechanics models. Biophysical Chemistry, 101:475–484, 2002.



20

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

21 S.R. Casjens. The DNA packaging nanomotor of tailed bacteriophages. Nature Reviews
Microbiology, 9(9):647–657, 2011.

22 A.S. Petrov, M.B. Boz, and S.C. Harvey. The conformation of double-stranded DNA inside
bacteriophages depends on capsid size and shape. Journal of Structural Biology, 160:241–248,
2007.

23 A.S. Petrov, K. Lim-Hing, and S.C. Harvey. Packaging of DNA by bacteriophage epsilon15:
structure, forces, and thermodynamics. Structure, 15(7):807–812, 2007.

24 S. Walker, J. Arsuaga, L. Hiltner, M.C. Calderer, and M. Vazquez. Fine structure of viral dsDNA
encapsidation. Physical Review E, 101(2):022703, 2020.

25 P. Liu, J. Arsuaga, M.C. Calderer, D. Golovaty, M. Vazquez, and S. Walker. Ion-dependent
DNA configuration in bacteriophage capsids. Biophysical Journal, 2021.

26 W.S. Klug and M. Ortiz. A director-field model of DNA packaging in viral capsids. Journal of
the Mechanics and Physics of Solids, 51(10):1815–1847, 2003.

27 L. Hiltner, M.C. Calderer, J. Arsuaga, and M. Vázquez. Chromonic liquid crystals and packing
configurations of bacteriophage viruses. Philosophical Transactions of the Royal Society A, 379
(2201):20200111, 2021.

28 F. Hang, F. Lin, and Y. Yang. Existence of Faddeev knots. Surveys in Differential Geometry, 13
(1):149–222, 2008.

29 H. Shin and G.M. Grason. Filling the void in confined polymer nematics: Phase transitions in
a minimal model of dsDNA packing. Europhysics Letters, 96(3):36007, 2011.

30 L. Lucchetti, T.P. Fraccia, G. Nava, T. Turiv, F. Ciciulla, L. Bethge, S. Klussmann, O.D.
Lavrentovich, and T. Bellini. Elasticity and viscosity of dna liquid crystals. ACS Macro Letters,
9(7):1034–1039, 2020.

31 F. Bethuel, H. Brezis, B.D. Coleman, and F. Hélein. Bifurcation analysis of minimizing
harmonic maps describing the equilibrium of nematic phases between cylinders. Archive for
Rational Mechanics and Analysis, 118(2):149–168, 1992.

32 D. Golovaty, Y. Kim, O.D. Lavrentovich, M. Novack, and P. Sternberg. Phase transitions
in nematics: textures with tactoids and disclinations. Mathematical Modelling of Natural
Phenomena, 15:8, 2020.

33 S. Relaix and M. Mitov. Polymer-stabilised cholesteric liquid crystals with a double helical
handedness: influence of an ultraviolet light absorber on the characteristics of the circularly
polarised reflection band. Liquid Crystals, 35(8):1037–1042, 2008.

34 F. Gaill and Y. Bouligand. Alternating positive and negative twist of polymers in an
invertebrate integument. Molecular Crystals and Liquid Crystals, 153(1):31–41, 1987.

35 N. Katsonis, E. Lacaze, and A. Ferrarini. Controlling chirality with helix inversion in
cholesteric liquid crystals. Journal of Materials Chemistry, 22(15):7088–7097, 2012.

36 R. Zandi, B. Dragnea, A. Travesset, and R. Podgornik. On virus growth and form. Physics
Reports, 847:1–102, 2020.

37 D. Svenšek and R. Podgornik. Confined chiral polymer nematics: Ordering and spontaneous
condensation. Europhysics Letters, 100(6):66005, 2013.

38 D. Svenšek, G. Veble, and R. Podgornik. Confined nematic polymers: Order and packing in a
nematic drop. Physical Review E, 82(1):011708, 2010.

39 T. Curk, J. Farrell, J. Dobnikar, and R. Podgornik. Spontaneous domain formation in
spherically confined elastic filaments. Physical Review Letters, 123(4):047801, 2019.

40 R. Hardt, D. Kinderlehrer, and F.H. Lin. Existence and partial regularity of static liquid crystal
configurations. Communications in Mathematical Physics, 105(4):547–570, 1986.

41 J.K. Hale. Ordinary differential equations,. Krieer, New York, 1980.
42 L.W. Black, W.W. Newcomb, J.W. Boring, and J.C. Brown. Ion etching bacteriophage t4:

support for a spiral-fold model of packaged dna. Proceedings of the National Academy of Sciences,
82(23):7960–7964, 1985.
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