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ABSTRACT

Although rice cultivation is one of the most important agricultural sources of methane (CHy4) and contributes
~8% of total global anthropogenic emissions, large discrepancies remain among estimates of global CH4 emis-
sions from rice cultivation (ranging from 18 to 115 Tg CH4 yr™ 1) due to a lack of observational constraints. The
spatial distribution of paddy-rice emissions has been assessed at regional-to-global scales by bottom-up in-
ventories and land surface models over coarse spatial resolution (e.g., > 0.5°) or spatial units (e.g., agro-
ecological zones). However, high-resolution CH4 flux estimates capable of capturing the effects of local
climate and management practices on emissions, as well as replicating in situ data, remain challenging to pro-
duce because of the scarcity of high-resolution maps of paddy-rice and insufficient understanding of CHy4 pre-
dictors. Here, we combine paddy-rice methane-flux data from 23 global eddy covariance sites and MODIS remote
sensing data with machine learning to 1) evaluate data-driven model performance and variable importance for
predicting rice CHy4 fluxes; and 2) produce gridded up-scaling estimates of rice CH4 emissions at 5000-m reso-
lution across Monsoon Asia, where ~87% of global rice area is cultivated and ~ 90% of global rice production
occurs. Our random-forest model achieved Nash-Sutcliffe Efficiency values of 0.59 and 0.69 for 8-day CHy fluxes
and site mean CHy4 fluxes respectively, with land surface temperature, biomass and water-availability-related
indices as the most important predictors. We estimate the average annual (winter fallow season excluded)
paddy rice CH4 emissions throughout Monsoon Asia to be 20.6 + 1.1 Tg yr~! for 2001-2015, which is at the
lower range of previous inventory-based estimates (20-32 CH4 Tg yr 1). Our estimates also suggest that CH,
emissions from paddy rice in this region have been declining from 2007 through 2015 following declines in both
paddy-rice growing area and emission rates per unit area, suggesting that CH4 emissions from paddy rice in

Monsoon Asia have likely not contributed to the renewed growth of atmospheric CHy4 in recent years.

1. Introduction

Atmospheric methane (CHy4) is a more potent greenhouse gas than
carbon dioxide (CO3) and has contributed approximately 0.5 °C to
observed global warming (2010-2019 relative to 1850-1900) (IPCC,
2021). After a relatively stable period during 1999-2006, atmospheric
methane concentration reached ~1908 ppb in May 2022 (Dlugokencky,
2022). Anthropogenic emissions from agriculture have been proposed as
one of the main sources contributing to this revived CHy increase (Nisbet
et al., 2016; Schaefer et al., 2016; Zhang et al., 2021). Rice cultivation is
one of the most important CH,4 sources from agriculture and contributed
an estimated 8% of total global anthropogenic emissions for the
2008-2017 decade (Saunois et al., 2020). However, large discrepancies
exist among estimates of global CH, rice emissions, ranging from 18 to
115 Tg CH, yr~! (Frankenberg et al., 2005; Saunois et al., 2020; Yan
et al., 2009; Zhang et al., 2016).

Both bottom-up and top-down approaches have been used to esti-
mate CH4 emissions from paddy rice. Top-down approaches use atmo-
spheric CH4 measurements with transport model inversions to infer
surface CH4 emissions. Top-down approaches also require prior emis-
sions estimates and the spatial distribution of paddy rice fields, which
are usually derived from bottom-up approaches (Bergamaschi et al.,
2007; Bloom et al., 2010; Jacob et al., 2016; Saunois et al., 2020).
Bottom-up approaches include both inventory methods drawing on
region-specific emission factors (Yan et al., 2009) and process-based
land surface models that simulate grid-based CH4 emissions (Zhang
et al., 2016), each scaled by the emitting area of paddy rice. However,
universal emission factors in inventory methods typically average flux
variability across environmental heterogeneities and climate dynamics
and thus limit accurate predictions of CH4 emissions. Process-based
models consider multiple environmental factors and land-surface het-
erogeneities, but current models for paddy rice (e.g., Dynamic Land
Ecosystem Model-DLEM and DeNitrification-DeComposition-DNDC)
remain at coarse spatial resolution (e.g., usually >0.5°) (Wang et al.,
2021; Zhang et al., 2016) and lack constraints and validation from
longer-term and ecosystem-scale observations. New and independent
data-driven estimates of paddy rice CH4 emissions from observations
that represent diverse management and climate conditions are impor-
tant for benchmarking top-down and bottom-up estimates, reconciling
differences between different estimates, and refining parameterization
in process-based models (Jung et al., 2020).

Eddy covariance (EC) methods measure the quasi- continuous

exchange of carbon (CO2 and CHy), water, and energy flux between the
land surface and the atmosphere at ecosystem scales (Baldocchi, 2014),
and can be combined with rigorous scaling methods and remote sensing
data to produce spatially detailed landscape emission estimates. Coor-
dination within the EC flux community has resulted in the formation of
the international data network FLUXNET that provides standardized and
gap-filled EC flux data of CO,, water, and energy (Baldocchi, 2014;
Papale, 2020). FLUXNET CO, data have been combined with remote
sensing data and rigorous scaling methods to produce spatially detailed
carbon flux estimates over large geographic scales for benchmarking and
informing earth system models (Jung et al., 2020; Xiao et al., 2014).

An analogous global CH4 synthesis for CH4 fluxes (i.e., FLUXNET-
CH4) was produced more recently (Delwiche et al., 2021; Knox et al.,
2019), allowing data-driven CH4 flux products using eddy covariance
measurements. One study, for instance, developed data-driven CHy4
emission products for northern-latitude wetlands (>45°N) (Peltola et al.,
2019). Due to the scarcity of synthesized EC data for CH4 flux in paddy
rice (FLUXNET-CH4 only contains 7 rice sites), no data-driven modeling
approach to our knowledge has been used to spatially upscale rice-
paddy CH4 eddy covariance data regionally or globally.

To fill these gaps, we compiled and synthesized CH4 flux data in
paddy rice fields from 23 globally distributed EC sites and developed the
first data-driven gridded paddy rice CH4 emission maps (RiceCHy). Our
approach combines EC measurements and remote-sensing-based pre-
dictors from 2001 to 2015 across Monsoon Asia, which contains ~87%
of the global paddy rice area and ~ 90% of global rice production
(Zhang et al., 2020). We generated CH4 emission maps at 8-day in-
tervals, an interval length that is short enough to show the seasonality of
CH4 emissions and also matches the 8-day intervals of MODIS remote
sensing products that provide key biophysical predictors of CH4 emis-
sions. We also produced maps at 5-km resolution to reveal detailed
spatial distribution at regional and continental scales, which are un-
available from inventory-based methods. Overall, the higher temporal
and spatial resolution of our products allows finer examination of the
spatial-temporal variations of paddy-rice CH4 emissions, in comparison
with previous products and process-based studies, and better inputs as
emissions priors in top-down inversion studies.
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2. Data and methods
2.1. Eddy covariance data synthesis

We collected data from 23 paddy rice EC flux sites (Fig. 1, Supple-
mentary Table 2), seven from the FLUXNET-CH,4 Version 1.0 dataset
(Delwiche et al., 2021), 15 with data obtained directly from the site
investigators, and one digitized (CN-JSY) from plots in publications (Ge
et al., 2018). Most of our sites were in Monsoon Asia (14) and North
America (7), with additional sites in Italy and Brazil.

Half-hourly flux and meteorological measurements were collected
for all sites except CN-CMC, CN-SJP, CN-LHP, and CN-JSY. All data were
quality-controlled, standardized, and post-processed using the proced-
ures for the FLUXNET-CHy4 database (Delwiche et al., 2021). Briefly, we
used the REddyProc package in R (Wutzler et al., 2018) to filter flux
values with low friction velocity (u*) and to fill gaps in CO2 and energy
fluxes and in meteorological variables including air temperature (TA),
incoming shortwave (SWIN) and relative humidity (RH), vapor pressure
deficit (VPD), pressure (PA), precipitation (P), and wind speed (WS)
using the marginal distribution sampling method (Reichstein et al.,
2005). We then partitioned net CO; fluxes into gross primary production
(GPP) and ecosystem respiration (ER) using both the nighttime (Reich-
stein et al., 2005) and daytime methods (Lasslop et al., 2010). Lastly,
gaps in CH4 flux were filled using a random-forest algorithm specifically
developed for CH,4 time-series from both wetlands and rice paddy sites
(Irvin et al., 2021). This method uses all available 30-min predictors
measured at the site and an additional three temporal variables (deci-
mal, sine, and cosine of day of year), where the gap-filling result is
evaluated using a nested cross-validation procedure applied to artificial
gaps (Irvin et al., 2021). The test scores of gap-filling are listed in Sup-
plementary Table 1. Gap-filling performed well in 16 of our 23 sites (R?
> 0.65) but performed only moderately well in the remaining seven sites
037 <R?< 0.65), with an overall mean R? of 0.74 + 0.15 (mean +
standard deviation) among all sites.

Daily flux and meteorological measurements were collected for CN-
CMC and CN-JSY, and 8-day flux and meteorological measurements
were collected for CN-SJP and CN-LHP. The daily or 8-day data were
computed by site investigators based on marginal distribution sampling
(MDS)-gap-filled half-hour data.

Eight-day aggregates of CH4 fluxes and other EC tower measure-
ments were computed (sum for precipitation and mean for other vari-
ables) for all sites to match the 8-day composites of MODIS remote-
sensing products. Since gap-filling performance decreases for longer
gaps relative to shorter gaps (Irvin et al., 2021), only 8-day intervals
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with >40% of half-hourly CH4 observations or >50% daily data avail-
able were included in our training data to further ensure data quality.

2.2. Predictor data preparation

A total of 175 predictors (including lagged terms of some variables)
were explored to predict CH4 flux, including site measurements of
meteorological data (18 out of 175), MODIS remote sensing data (116
out of 175), other geospatial data on climate, soil, and topography (37
out of 175), and four artificial temporal variables (4 out of 175). Details
on the full set of potential predictors are provided in Supplementary
Table 3.

Meteorological variables include air temperature (TA), shortwave
incoming radiation (SWIN), relative humidity (RH) and vapor pressure
deficit (VPD), all of which were computed from tower measurements
directly. These variables have been shown previously to be well corre-
lated with CH4 flux (Dai et al., 2019; Knox et al., 2016, 2021; Hwang
et al., 2020; Li et al., 2019). We only tested local meteorological vari-
ables when they were measured at all sites and relevant spatial datasets
are easily available (e.g., from European Centre for Medium-Range
Weather Forecasts (ECMWF) re-analysis or other reanalysis datasets).
Some potentially important environmental/meteorological variables,
such as soil water content, and water table depth that are important CHy
controlling variables (Delwiche et al., 2021; Knox et al., 2021), were not
considered because data were missing across some sites and geospatial
datasets did not exist for upscaling. Additionally, we considered the
potential radiation at the top of the atmosphere that can be computed
based on time, latitude, and longitude, because it embeds information
on seasonal cycles and was also found to be useful in previous CHy flux
upscaling (Peltola et al., 2019).

MODIS remote sensing data include land surface temperature and 12
indices related to surface vegetation, water, and soil conditions
(Table 1). MODIS surface temperatures for both night and daytime were
extracted from MOD11A2 (8-day intervals at 1000 m resolution) and
converted from Kelvin to Celsius, whereas other indices were computed
based on band-based references from MOD09A1 (8-day intervals at 500
m resolution). We applied quality control based on internal quality flags
of MOD09A1 and MOD11A2. Specifically, questionable 8-day observa-
tions under cloudy, high view angle, or high solar zenith angle condi-
tions were excluded. Short gaps (1-2 8-day time steps) in the data due to
quality control removals were filled using linear interpolation for both
MODIS land surface temperature and indices, and long gaps (>3 8-day
time steps) were filled using the 2001-2015 mean seasonal cycles.
MODIS data at the tower locations used for model training were

ISHRA & US-HRC
N

N - USOE2 & US-OF5
US-BDA &US-BDC
Years of Data
1

2
3
4~

G

i South Asia

B China

CN-CMC
CNRS,
CN-NJL
CNSY. ™ KR-CRK. CN-SJP
HP'9 4\ Jp-nisE
X )
> CNHNY ® =\
" \
AR KRHPK
TARI2
INCRRI
7 PH-RIF

Fig. 1. Global locations of 23 distributed paddy rice EC flux sites, and (inset) the Monsoon Asia study area with its four sub-regions used to compare with other
estimates of methane emissions from paddy rice. Although Mongolia is often considered to be part of monsoon Asia, it is excluded for its sparse rice cultivation and
lack of rice calendar information (i.e., planting and harvesting dates). More information about the 23 sites is found in Supplementary Table 2.
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Table 1

MODIS indices explored in this study with their formula and background ref-
erences. B1 to B7 are MODIS bands where RED=B1, NIR1 = B2, BLUE = B3,
GREEN=B4, NIR2 = B5, SWIR1 = B6, SWIR2 = B7. Many of these indices were
originally developed and tested using Landsat images; we replaced them with

MODIS bands with similar ranges of wavelength.

Indices  Full Name Formula References
npyr  Normalized (NIR-RED)/(NIR + RED)
Vegetation Index
. EVI = 2.5 * ((NIR1 - RED)
H al.
EVI :j:{nced Vegetation /(NIRL + 6 * RED - 7.5 * (2033;(‘ et al.,
BLUE +1)
Normalized Water (NIR1- NIR2)/(NIR1+
NDWI Index NIR2) (Gao, 1996)
. . (Zarco-Tejada
SRWI ISI‘:;;:"' Ratio Water NIR1/NIR2 and Ustin,
2001)
LSWI Land Surface Water (NIR1 - SWIR1) / (NIR 1+  (Xiao et al.,
Index SWIR1) 2002)
Simple Ratio Tillage (Van Deventer
ST Index SWIRL/SWIR2 et al., 1997)
NDTI Normalized Difference (SWIR1-SWIR2)/ (SWIR1- (Van Deventer
Tillage Index SWIR2) et al., 1997)
CRC Crop Residue Cover (SWIR1 -BLUE)/ (SWIR1 (Sullivan et al.,
Index + BLUE) 2006)
o . (SWIR1 -GREEN)/ (SWIR1 (Sullivan et al.,
CRCm Modified CRC index + GREEN) 2006)
Soil Adjusted SAVI = (NIR1-RED) *(1 +
SAVI . Huete, 1988
Vegetation Index 0.5)/(RED+NIR1 + 0.5) (Huete )
. . (1 + 0.5) *(SWIR1-RED)/ 3
s AT a0 G
8 SWIR2/2
Normalized Difference
NDSVI Senescent Vegetation (SWIRL - RED)/(SWIR1 -+ (Qi et al., 2002)

RED
Index )

extracted using the AppEEARS platform (https://Ipdaac.usgs.gov/tools/
appeears/). However, when prepared for spatial upscaling, the gridded
data were processed in Google Earth Engine at a resolution of 5000-m
where the value in each cell is the average value over all paddy rice
covered area at 500-m resolution in that grid. We chose the 5000-m
resolution for upscaling because it is still a relatively finer-scale reso-
lution compared to previous flux machine learning (Peltola et al., 2019)
or process-based modeling studies (Zhang et al., 2016) but at the same
time can reduce spatial gaps in MODIS predictors through spatial ag-
gregation. Gaps of time-series of MODIS images (<5%) at 5000-m res-
olution were filled using a simple linear interpolation method.

Other geospatial predictors are a set of 37 static variables relevant to
bioclimate, soil, and topography from either modeled or assimilated
reanalysis products. These variables include nineteen bioclimatic vari-
ables extracted from WorldClim 2.0 (Fick and Hijmans, 2017), two
variables on total nitrogen and sulfur deposition (Lamarque et al.,
2013), five soil variables from SoilGrids (Hengl et al., 2017), and 11
topographic variables from Earth Environment Topography (Amatulli
et al., 2018) (See Supplementary Table 3 for more details). Static vari-
ables are more likely to cause spatial overfitting than dynamic variables
(Meyer et al., 2018), therefore, we only considered them as ancillary
predictors. When prepared for upscaling, any selected static variables
were resampled to 5000 m resolution.

Additionally, four temporal variables associated with rice calendars
were created to mimic a generic seasonal cycle and tested for predictive
performance. The four variables are the number of 8-day intervals since
the planting date (WOS_0), the number of 8-day intervals to the har-
vesting date (WOS_1), the length of the growing season (i.e., SLength:
the number of 8-day intervals between the planting and harvesting
date), and the sine function of the decimal growing season length (Sine
(WOS_0/SLength)). If any of these variables are selected as important
variables, the corresponding gridded map could be computed based on
maps of the rice calendar.
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2.3. Pretreatment of spatial representativeness

Spatial representativeness issues may arise when modeling with
MODIS data, when a single image pixel is larger than the flux footprints
and includes heterogeneous land covers that are different from the tar-
geted land cover in the footprints (Chu et al., 2021). In such cases,
modeling CH4 flux with MODIS variables may not work well because the
MODIS pixels do not directly represent the paddy rice area under EC
measurements. Based on visual image check and site-based knowledge,
we identified a few of our sites as being relatively more affected by this
spatial misrepresentation and applied site specific processes to reduce
the problem in training data. Specifically, we excluded pre-2010 data
from US-TWT because the paddy rice fields covered a limited extent
before 2010 (Knox et al., 2016). We used additional MODIS data from
three neighboring pixels covered by similar rice cultivation (i.e., similar
management and rice variety) to reduce the spectral contribution from
open water at JP-MSE, because a large proportion of open water exists in
the overlapping 500-m MODIS pixel. TARI1 measured a small paddy rice
field within the overlapping MODIS pixel among other crops, so we
averaged its MODIS index with that of a neighboring pixel that covers a
large proportion of paddy rice similar to the one under measurement. A
similar scale problem affected the site PH-RIF, but we failed to find an
adjacent MODIS pixel that covers similar paddy rice fields. However,
weekly LAI was sampled at PH-RIF. We then used Landsat-derived EVI
and NDVI to establish a linear regression with measured LAI and then
further used this relationship to compute 8-day EVI/NDVI for replacing
MODIS EVI/NDVL Other remote sensing indices for PH-RIF were still
extracted from MODIS images directly. US-HRA and US-HRC were under
alternate wetting and drying manipulations in 2015 and 2016, and 2016
respectively, which are different from adjacent paddy-rice applying
traditional continuous flooding within the overlapping MODIS pixel.
Therefore, data in 2015 and 2016 for US-HRA, and data in 2016 for US-
HRC were excluded. US-BDA was under alternate wetting and drying
manipulations in 2015 but adjacent paddy-rice in the overlapping
MODIS pixel was applying continuous flooding, therefore we also
excluded 2015 data from US-BDA. US-OF2 and US-OF5 were under
traditional continuous flooding but a proportion of their neighboring
fields are under alternate wetting and drying manipulation. This
mismatch will potentially cause a low spatial representation of the
overlapping MODIS pixel to the flux footprint. However, since there is
no way to eliminate the issue, we used these two sites without any
pretreatment of spatial representativeness. For more details on sites with
spatial representativeness issues between MODIS pixels and EC flux
footprints, see Appendix A in the supplementary.

2.4. Calendar and distribution of paddy rice

Maps of paddy rice were used to mask non-rice pixels prior to
extracting predictors for upscaling methane fluxes. We used annual
paddy rice distribution maps at 500-m resolution in Monsoon Asia from
2001 to 2015 that were produced using time series MODIS data and a
phenology-based algorithm (Xiao et al., 2005; Zhang et al., 2017a;
Zhang et al., 2020). The paddy rice maps were validated for both total
areas using FAO statistical data and for pixel-level classification accu-
racy using higher resolution Landsat-based paddy rice maps (Zhang
et al., 2020).

Maps of the rice calendar were used to remove predictions that fell
outside of rice cultivation periods. Unlike natural wetlands, rice is
usually cultivated for part of the year with a long winter fallow season
and sometimes is rotated with other crops such as winter wheat. Our
upscaling approach should not account for periods when other crops are
planted beyond the rice growing season. Moreover, our training data
consists primarily of flux measurements during the rice-growing season,
as many sites only measure methane emissions after rice is planted and
before rice is harvested. Therefore, in this study, we focus on emissions
during rice growing periods, including short transition periods between
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two or more crop seasons but excluding the longer winter fallow sea-
sons, which can also generate CH4 emissions especially when sites were
flooded (Knox et al., 2016; Reba et al., 2019). RiceAtlas, which provides
a spatial database of global paddy rice calendars (Laborte et al., 2017),
was used to create binary masks for each 8-day interval during a year to
tell whether each grid was in or out of rice cultivation periods. A few
spatial gaps exist in RiceAtlas for India and China, which we filled using
averages of neighboring spatial units with similar climates.

2.5. Machine learning model development

We used the random forest (RF) regression algorithm (Breiman,
2001) to produce upscaled flux predictions (Fig. 2). RF models consist of
a large ensemble of regression trees where each tree is built by training it
with a random subset of training data and predictors. The prediction of
an RF model is the average of all the predictions made by individual
regression trees in the forest, thus taking full advantage of ensemble
means to decrease the noise of the prediction. RF has been widely
adopted to predict CO,, energy, and CHy fluxes, and shows similar
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performance when compared to other machine learning algorithms
including neural network, Cubist, and Support Vector Machine (Irvin
et al., 2021; Tramontana et al., 2016; Xu et al., 2018; Zhang et al.,
2021a). RF models were developed using the ‘caret’ (Kuhn, 2008) and
‘ranger’ packages (Wright and Ziegler, 2015) in R including essential
steps of cross validation, predictor selection, and hyper-parameter
tuning.

2.5.1. Cross validation

A nested leave-one-cluster-out spatial cross validation scheme
(LOCOC validation, hereafter) was applied during training for both
predictor selection and hyper-parameter tuning. The 23 sites were
grouped into 16 clusters of one or multiple sites. Sites within a 20-km
distance were grouped as a cluster. One exception was for CN-HNY,
which was grouped with CN-CMC despite their large distance because
CN-HNY has few flux measurements but was under similar management
as CN-CMC and has similarly high CH4 emissions. In each round of the
model development, 16 RF models were trained with data from one
cluster held out for the purpose of independent testing and the

[ i e e e T N
H . 1 1
Global sites (16 clust(_ers). CHa flux and 175 o1 | Optical set of predictors L — 1
predictors ! 1
i i i S S 0 S i e Vo s Bt s J
Y v
Train 16 RF models (leave-one-cluster-out) for Subset sites (13 clusters): CHa flux and the
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 / \/ g
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two predictors (k=2) with hyper-parameter turning 5
©
i 8
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N S 1 ............... J across Monsoon Asia

Fig. 2. Flowchart showing the processes from the processed CH, flux and predictor data to produce the upscaled gridded CH4 emission maps (RiceCHy) in paddy rice
across Monsoon Asia, i.e., RiceCHy4 using random forest (RF). The cross validation applied here is the leave-one-cluster-out cross validation, as introduced in section
2.5.1. The gridded predictors based on MODIS remote sensing are aggregated into 5000-m resolution with non-paddy rice pixels masked out prior to aggregation. The
rice area normalization means multiplication of the percentage of paddy rice in area for each grid. The cross validation scores from forward feature selection based on
global sites were used to determine which sites out of Monsoon Asia were included in the final models for upscaling Monsoon Asia paddy rice.
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remaining 15 clusters were used for 5-fold internal cross-validation.
Folds were formed based on site clusters rather than random splits, i.
e., all data from a given cluster falls either entirely within or out of a
single fold. Model performance was evaluated by comparing predicted
and observed CHy fluxes (from the held out cluster only) using the co-
efficient of determination (Rz) and mean absolute error (MAE). An
instance of RF model (i.e., with prescribed predictors and hyper-
parameters) was regarded better if the average MAE score from all 16
hold-out tests based on 16 trained RF models was smaller than the
alternative. Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970)
was also computed as an integrative measure of model performance for
the final selected model. NSE above zero corresponds to a model per-
formance better than simply taking the average of the data while NSE
below zero indicates that the model performance is worse than the mean
of validation data. Performance was not only evaluated with respect to
8-day data, but also on-site mean flux (mean of all 8-day flux from all
years as a proxy to annual mean flux, because not all sites have measured
the whole growing season, and it is not possible to compute the real
annual mean flux for validation). The ability to accurately predict spatial
variability in annual site mean CH4 fluxes is important, as it is the total
or mean emissions that can help estimate paddy rice source contribu-
tions to the global CH4 budget (Saunois et al., 2020).

2.5.2. Predictor selection

An optimal set of predictors used in the final upscaling model was
identified using a forward feature selection (FFS) method (Meyer and
Pebesma, 2021). FFS starts with the best one (or two) predictor(s) based
on the performance metric (cost function) computed on validation data,
then gradually adds one new variable at each step that maximizes the
model performance - the one that gives the largest increase in model
performance (minimizes cost function) on validation data by comparing
all candidates. We started with the best pairs of predictors (i.e., LSTn and
MaxLSTd, selected after comparing all pairs of candidate predictors) and
followed with 15 further single FFS steps. More FFS steps are not needed
as no improvement on performance metrics was observed after a few
steps. Within each FFS iteration, random forest models were trained
following LOCOC validation as explained in 2.5.1. Variable selections
were based first on the validated MAE score, then R? score, because
squared error metrics (e.g., R%) are more sensitive to outliers and highly
skewed data, which are characteristic of CH4 flux data (Morin, 2019).
FFS requires considerable computing time because of its many itera-
tions. To reduce the computation time of each FFS iteration, we adopted
a set of fixed values of hyperparameters (the number of variables to
possibly split at each node (mtry) is set to the square root of the total
number of predictors at each step, and the minimum node size (min.
node.size) is fixed to 5 as recommended for regression problems, the
number of trees (ntree) is set to 100), rather than turning them with
multiple tries.

2.5.3. Hyperparameter tuning

Hyperparameters including the number of trees (ntree), number of
variables to possibly split at each node (mtry), and minimum node size
(min.node.size) were tuned to further optimize random-forest models on
the set of optimal predictors identified through FFS. The same LOCOC
validation scheme was applied during hyperparameter turning as in FFS.
A full hyperparameter grid-search (including ntree, mtry, and min.node.
size) was performed, which allowed for trees of varying depth and
complexity. The final hyperparameter values were determined based on
performance scores through cross validation.

2.5.4. Bias correction

Machine learning (ML) regression models can suffer from ‘regression
to the mean’, which results in over-prediction (positive bias) for small
values and under-prediction (negative bias) for high values. Our model
has a low mean bias (see 3.2 Model validation and performance) among
training samples, but still over-predicts small values and underestimates
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high values. Multiple methods, ranging from a simple regression of
observed on estimated values (Song, 2015) to a second machine learning
model used to estimate residuals (Zhang and Lu, 2012) can be used to
correct bias in regression based machine learning. In this study, we
applied a linear equation based on the Z-score transform method (Belitz
and Stackelberg, 2021) to correct bias based on prediction compared to
observation during cross-validation. This method is simple and linear,
yet the performance on bias-correction can approximate more compli-
cated methods such as empirical distribution machining and machine
learning based methods (Belitz and Stackelberg, 2021).

Given the original RF prediction for CH4 flux (denoted by Yy) and
the observed CH4 flux (denoted by Yogs), the bias corrected prediction
(denoted by Yzz) is:

Yzz = a*Yy +b

where a = /var(Yogs)/+/var(Yu) and b = E(Yops) — a * E(Yar). E is
the expected value operator.

2.6. CHy flux upscaling

A final model for CHy4 flux upscaling was trained using the deter-
mined hyperparameters and optimal set of predictors using 16 sites (13
of the 16 clusters) in Monsoon Asia as well as IT-CAS and BR-CDS in Italy
and Brazil respectively. The selection of sites in training the final model
was made to maximize temporal-spatial coverage of training flux
without significantly diminishing cross-validation accuracy scores. All
sites in Monsoon Asia are included since that is the extent of our
upscaling predictions. We then added other sites/clusters outside
Monsoon Asia to increase temporal-spatial representativeness of
training conditions if its testing R? score (when it is a hold-out sample)
was less than one standard deviation away from the mean R? of all sites
(see also 3.2 Model validation and performance). Using this criterion,
all US sites were excluded from the training data. Similar folded cross-
validation was still applied based on clusters when training the final
model, i.e., clusters are either entirely included or excluded during
training and internal validation.

The uncertainty around the predicted fluxes was estimated by
generating 500 predictions from 500 independent RF models trained
using bootstrap samples from the available training data. This boot-
strapping enables us to make 500 predictions for each grid cell and time
step in the upscaled CH4 flux map, which are then summarized into a
standard deviation around the predicted mean flux.

The bootstrapped models were applied to 8-day time series of global
grids for the final set of selected optimal predictor variables in the period
2001-2015 at a spatial resolution of 5000-m. All gridded predictors
were prepared and processed consistently using MODIS sinusoidal pro-
jection at 5000-m resolution (note: all maps in this paper were repro-
jected to WGS-84 geographic coordinates). Finally, the upscaled
methane fluxes were masked at each time step using both paddy rice
distribution and calendar information to restrict upscaled flux to
represent only flux emitted from paddy rice under cultivation (i.e.,
winter fallow seasons are excluded).

2.7. Model applicability and tower constituency

Cross validation evaluates model extrapolation performance but is
ultimately limited by the environmental conditions captured by training
data. Spatial upscaling applies model predictions to a much larger
spatial (Stell et al., 2021) and temporal (Chu et al., 2017) domain,
risking extrapolation beyond cross validation conditions which may
reduce prediction accuracy. The sparsity of our training sites (16 sites)
was complemented by long time-series data at each site as the dynamic
conditions can represent different “space” (time for space), but it is still
important to evaluate spatial representativeness of the training data
with respect to the multivariate predictor space of the model at different
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periods (Villarreal et al., 2018; Villarreal and Vargas, 2021). In this
study, we evaluate the spatial representativeness of the training condi-
tions by mapping 1) grid-based dissimilarity, and 2) tower constituency,
as described below.

The grid-based dissimilarity score was defined as the minimum
Euclidean distance between each grid cell to flux tower combinations
(all 8-day data in the training sites) in predictor space, normalized by the
mean distance among flux towers (Meyer and Pebesma, 2021). Dis-
tances were computed based on the eight selected optimal predictors
that were firstly rescaled to between zero and one, and then weighted in
proportion to their average variable importance in the random forest
model. Dissimilarity score was evaluated at each 5000-m grid with non-
zero paddy-rice area at an 8-day time-step. If a dissimilarity score is less
than one, the new data point's distance to its nearest tower in predictor
space is closer than the average distance among towers, suggesting a
high chance of high-quality interpolation. If the dissimilarity score is
greater than one, the difference to the nearest training data point is
larger than the average distance between all training data pairs, sug-
gesting high chances of low-quality extrapolation. We define good
model applicability (low risk of extrapolation) for a grid if its dissimi-
larity score is less than the 95% percentile (~0.3) of the dissimilarity
from training sites.

A tower's constituency is estimated as the geographical area that is
most analogous in predictor space to the tower. To map the tower
constituency, each 5000 m-grid was assigned as a constituent of the site
that was closest in predictor space (Hargrove and Hoffman, 2004). The
percentage of area coverage by each tower's constituency was then
computed to identify the importance of the tower.

3. Results and discussion
3.1. Model predictors

We identified the 8 best predictors from the 175 total variables in the
final model based on FFS, according to a combined consideration of

reduction in MAE and increase in R? (Fig. 3). The final best eight pre-
dictors were: satellite-estimated land-surface temperature at night
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(LSTn), LSTn lagged with a one 8-day interval (LSTn_LAG1) and two 8-
day intervals (LSTn_LAG2), annual maximum satellite-estimated land-
surface temperature during daytime (MaxLSTd), annual maximum crop
residual cover index (MaxCRC), available soil water-holding capacity
(ASWC), simple ratio water index lagged by one 8-day interval
(SRWI_LAG1), and soil adjusted total vegetation index lagged by three 8-
day intervals (SATVI_LAG3).

Four of the final eight predictors were temperature-related and were
the highest in importance score (Fig. 3), thus temperature and its lagged
terms are considered to be the dominant factors in our model for pre-
dicting CH4 emissions. Temperature as the single most important pre-
dictor of CH4 emissions is consistent with the results of various global
syntheses and regional data-driven upscaling based on multiple sites in
natural wetlands (Peltola et al., 2019), as well as in predictions of
temporal dynamics in single site-based studies (Dai et al., 2019; Knox
et al., 2016; Li et al., 2019; Xiao et al., 2017). Night-time surface tem-
perature was also selected as a more important predictor than daytime
surface temperature, probably because nighttime surface temperature is
more correlated to soil temperature (Huang et al., 2020) which in-
fluences the microbial processes controlling CH4 production and
oxidation and subsequent soil diffusion and ebullition (Knox et al., 2019,
2021).

Biomass-related vegetation indices were also included in the final
predictive model. Substrate availability influences CH4 production po-
tential because it fuels methanogenesis (Delwiche et al., 2021; Knox
et al., 2021; Sturtevant et al., 2016; Xiao et al., 2017). Thus, gross pri-
mary productivity (GPP) is often found to be an important variable
controlling substrate availability as a proxy for recent organic carbon
supply to the soil. Although we were unable to include GPP directly in
our initial exploratory datasets because of a lack of GPP measurements
at two of our sites and the lack of gridded GPP products for paddy rice, in
particular, we did include many vegetation indices that are proxies of
GPP or NPP, such as EVI and NDVI, CRC, SATVI, LSWI. The model
selected at least two greenness/biomass related indices: MaxCRC and
SATVI_LAG3. SATVI instead of the commonly used EVI or NDVI was
likely selected because of the better ability of soil-adjusted vegetation
indices to minimize soil influences on canopy spectra (Huete, 1988; Qi
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Fig. 3. (a) Evolution of model cost function (mean absolute error (MAE) and R?) during forward feature selection. The best-performing feature pair was added first (i.
e., LSTn and MaxLSTd), then a single additional predictor was added in each forward step from the remaining predictors if it reduces most (or increase least) of the
MAE. The horizontal bar (orange) length encompasses the 8 final model predictors, after which MAE begins to increase and R? begins to decline. (b)Variable
importance ranked using the permutation importance method. LSTn: Land surface temperature during night; LSTn_LAG1:LSTn lagged with one 8-day interval;
LSTn_LAG2: LSTn lagged two 8-day intervals; MaxLSTd: annual maximum satellite measure land surface temperature during daytime; MaxCRC: annual maximum
crop residual cover index; ASWC: available soil water holding capacity; SRWI_LAG1: simple ratio water index lagged by one 8-day interval; SATVI_LATS3: soil adjusted
total vegetation index lagged by three 8-day intervals. The results presented here are based on cross-validation on 16 clusters (23 sites) globally.
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et al., 1994); this effect is important for short vegetation such as rice,
especially during early growing stages when soil is visible from above
the canopy. Residual biomass or brown litter can provide organic sub-
strate to methane producers, too. Crop residues such as straw and
stubble are commonly left in some paddy rice fields after harvest and can
stimulate methane emissions (Liou et al., 2003; Yan et al., 2005). The
crop residual index (CRC) was designed to differentiate soil and crop
residues but also reflect green vegetation signals during the growing
season. Thus, the annual maximum of the crop residual index (MaxCRC)
likely cannot capture the amount of crop residues left in the field after
harvest, but rather suggests the peak value of combined brown and
green biomass/vegetation. Additionally, the water-relevant index SRWI
can also reflect the amount of green biomass during the growing season
as leaf thickness and leaf area affect the ability of satellites to see water
underneath the canopy (Zarco-Tejada and Ustin, 2001).

Water regimes are also widely recognized as regulators of methane
emissions in wetlands and paddy rice (Knox et al., 2021; Runkle et al.,
2019; Yan et al., 2005). However, without full information on water-
table dynamics and irrigation practices at the gridded scale, we could
not incorporate them into our predictive model for spatial upscaling.
Nevertheless, a water index should capture surface water conditions
affected by water management. The model selected SRWI from various
water indices, which was also adopted in previous research for wetland
CH,4 emission upscaling (Peltola et al., 2019). SRWI has been shown to
be correlated with wetland water-table depth and thus reflects surface
water dynamics (Meingast et al., 2014). Moreover, the soil water-
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holding capacity (ASWC) (Hengl et al., 2017) quantifying the static
amount of water that the soil can hold was selected as a second variable
related to the water regime.

We found that relationships between the selected predictors and CHy4
emission are non-linear (Supplementary Fig. 1). A partial exponential
dependence of CH4 was observed against LSTn, LSTn_LAG1, and
LSTn_LAG2, reconfirming the dominance of temperature on CHy fluxes.
The partial dependence of CH,4 on other predictors is more complicated
(Supplementary Fig. 1), suggesting the overlapping effects of multiple
mechanisms of CH4 production, consumption and transport. Further-
more, the model selected lagged terms of temperature and vegetation
and water indices, suggesting lagged effects on methane emissions,
which have also been observed previously (Chang et al., 2021; Knox
et al., 2021).

3.2. Model validation and performance

The model achieved a moderate to high (>0.4) hold-out test score of
R? for most clusters, with a mean R? of 0.48 + 0.26 (mean + standard
deviation) among all 16 clusters (Fig. 4). The clusters with lower scores
included US-HRA, US-HRC, US-OF2, US-OF5, US-BDA, US-BDC, and US-
TWT, and PH-RIF (i.e., cluster 10). Many of these sites with low vali-
dation scores have low spatial representativeness of flux footprints by
the MODIS pixels (Supplementary Appendix A, Figs. A1-A7), because
the overlapping MODIS pixels cover additional crops and management
practices. On the other hand, clusters of sites showing good testing
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Fig. 4. Independent test score of R? (coefficient of determination) on each single hold-out cluster data when the model was trained on all other 15 clusters using
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scores generally had good spatial representativeness of the MODIS pixel
to the overlapping flux footprints (e.g., CN-LHP shown in Supplemen-
tary Appendix A, Fig. A8).

The performance of our model during cross validation was compa-
rable to or even better than recent efforts upscaling wetland CH, fluxes
with similar data-driven approaches trained on EC measurements (Pel-
tola et al., 2019). When pooling together all 16 hold-out clusters, the
model can predict 8-day CHy fluxes with a MAE of 49.7 nmol m~2 s,
NSE of 0.57, and R of 0.58 (Fig. 5(a)), which is slightly higher than the
recent Northern latitude upscaling on wetland CHy4 flux based on 25
eddy covariance towers (Peltola et al., 2019) and global upscaling of
COq flux (Tramontana et al., 2016). However, our performance did not
reach the accuracy achieved in global upscaling of gross primary pro-
ductivity (R? > 0.7) and ecosystem respiration R? > 0.6) (Jung et al.,
20205 e.g., Tramontana et al., 2016). This may be because CH4 fluxes are
more variable and episodic than CO; fluxes and because CH4 fluxes are
less seasonally predictable due to non-linear regulation from biophysical
variables with a greater influence of lagged effects (Chang et al., 2021;
Knox et al., 2021). The importance of including lagged effects to
improve the prediction of CH4 flux was demonstrated by our model
including multiple lagged predictors during feature selection. The model
also captured geographic differences better than seasonal differences, as
the cross validation achieved an NSE of 0.63 and R? of 0.69 for site-mean
flux (Fig. 5(b)), higher than those same metrics for 8-day flux pre-
dictions (0.57 and 0.58 respectively).

Because our target study area is Monsoon Asia, we wanted to
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evaluate the tradeoff between including low-performance sites outside
of this region to increase temporal-spatial representativeness and
adversely impacting the model performance of our final upscaling RF
model. We excluded a site outside of Monsoon Asia if its testing R? score
(when it is a hold-out sample as shown in Fig. 4) was more than one
standard deviation lower than the mean R? of all sites (i.e., <0.22).
Applying this criterion, all sites in the United States were excluded, i.e.,
sites in clusters 12, 13, and 14 as shown in Fig. 4. Cross-validation scores
show that excluding the low performance sites in the United States
improved the overall model performance (Fig. 5), with the NSE
increasing from 0.57 to 0.59 for 8-day fluxes and from 0.63 to 0.69 for
site-mean fluxes, and nMAE decreasing from 0.6 to 0.53 for 8-day fluxes
and from 0.41 to 0.31 for site mean fluxes.

3.3. Temporal dynamics of CH4 emissions across monsoon Asia

Across all the paddy rice in Monsoon Asia, our upscaling model
depicted notable seasonal dynamics and annual trends for total CHy
emissions (Fig. 6). Seasonal CH4 emissions peaked in late July and early
August (the 27-29th 8-day interval) (Fig. 6a), driven by both the highest
temperatures of the year and the largest paddy rice area under cultiva-
tion in Asia (Fig. 6a) (Laborte et al., 2017).

Estimated annual total CH4 emissions in Monsoon Asia increased
from 2001 to 2007, then declined from 2007 through 2015, a result
consistent with the bilinear trends in paddy-rice cultivation area (Fig. 6
(b)). Although a decline in planted paddy rice area apparently
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Fig. 5. Model predicted (Pred.) CH,4 flux versus observed (Obs.) CH,4 flux on all hold-out data for (a) 8-day CH, flux, and (b): site mean CH,4 flux (both including all
original 16 clusters from 23 sites) (c) 8-day CH4 flux and (d): site mean CHy flux (both excluding US-TWT, US-BDA,US-BDC, US-OF2, US-OF5, US-HRA, and US-HRC
sites). NSE, Nash-Sutcliffe Efficiency (NSE); R?: coefficient of determination; MAE: mean absolute error; nMAE: mean absolute error normalized by the average
observed CH, flux; Bias: the average predicted CH4 flux minus the average observed CH, flux. The black line shows the 1:1 line. Note this plot shows cross-validation

results without bias corrections.
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dominated the cause of a decline in CH4 emission after 2007 in our es-
timate, it was not the sole causing factor. The emission rate (emission
per unit of area) computed based on our estimates also declined from
2005 to 2015 (Fig. 6(b)), suggesting effects from other factors, such as
variations in climate and agronomic management. Different trends are
observable before and after 2007, with regional CH4 emissions
increasing from 2001 through 2007 and then declining from 2007 to
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Fig. 6. (a) The 8-day emissions of CH4 from
all paddy rice in Monsoon Asia, overlaid
with the paddy rice area under cultivation
and the average land surface temperature at
night across all paddy rice. (b) The annual
total and area normalized emission of CHy
(error bars show standard deviation based
on 500 bootstraps), and paddy rice area. The
temporal trends in periods of 2001-2007
and 2007-2015 were drawn for paddy-rice
area and total emissions, and a trend for
emission rates (area-normalized emissions)
was drawn for the period 2005-2015. The
linear trends (i.e., slope) and p values are
labeled for each period. Error bars of emis-
sions represent standard deviation based on
500 bootstrapped upscaling. Note in (a) the
label of year on the x-axis is positioned in
the middle of the year rather than at the
beginning of the calendar year.

increase in atmospheric CH4 concentration

since 2007 has little consensus as to its cause (Allen, 2016; Nisbet et al.,
2014, 2016; Schaefer et al., 2016; Schwietzke et al., 2017; Turner et al.,

2019). Some studies suggest

that biogenic sources from agriculture may

be the key contributor to this renewed growth in atmospheric CHy4
(Nisbet et al., 2016; Schaefer et al., 2016). Paddy rice is one of the main

agricultural sources of CHy4

and Monsoon Asia grows ~87% of global
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Fig. 7. Annual total CH4 emissions (Tg CH,4), emission rate (i.e., area-normalized emission (g CHy4 m~2)), and paddy rice area (million ha) in (a) China, (b) Southeast
Asia, (c) South Asia, and (d) Korea and Japan. Trends in 2001-2007, 2007-2015, and 2001-2015 are drawn for total emission and paddy rice area, while trends in
2001-2015 are drawn for normalized emission rate. The linear trends (i.e., slope) and p values are labeled for each period. Error bars represent standard deviation
based on 500 bootstrapped upscaling.
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paddy rice. Our estimated decrease in CH4 emissions from paddy rice in
Monsoon Asia since 2007 through 2015 would support the notion that
rice paddies are likely not contributing substantially to the regrowth in
atmospheric CHy4 concentrations during the same period.

Contrasting trends in annual CH4 emissions exist among the four
subregions of Monsoon Asia: China, South Asia, Southeast Asia, and
Korea-Japan. China and Korea-Japan show similar declining trends after
2007, and they contributed most to the total methane emission reduc-
tion in Monsoon Asia after 2007 (Fig. 7). A declining trend of total
cultivated paddy rice in both China and Korea-Japan after 2007 was
apparently one of the main causes of reduced emissions. However, we
also estimated a declining trend of emission rate after 2005 (0.2 g CHy
m~2 yr™1)), which is likely related to the northeastward shift of paddy
rice area in China during recent years (Wang and Hijmans, 2019; Zhang
etal., 2017a) and the increasing use of intermittent irrigation schemes in
both China and Korea and Japan (Bo et al., 2022; Xu et al., 2016; Zhang
et al., 2017b; Hwang et al., 2020). Methane emissions in South Asia
increased before 2007 but showed no trend after 2007, same as the
paddy rice area over South Asia that increased before 2007 but then
remained relatively stable after 2007. This finding is consistent with an
earlier report showing little year-to-year variability of rice methane
emissions during 2010-2015 in India (Ganesan et al., 2017), the largest
rice producer in South Asia. Southeast Asia shows no significant trends
of total emissions before or after 2007. While its total area of paddy rice
declined after 2007, the average annual total emission after 2007 is
higher than that before 2007.

Remote Sensing of Environment 284 (2023) 113335
3.4. Spatial patterns of emissions

The spatial pattern of CH4 emissions closely matches the spatial
pattern of paddy rice area distributions (Fig. 8). This is not surprising as
the existence of paddy rice is the main driver of CH4 emissions at large
spatial scales, though climate, soil, and agro-management can be
important local drivers of emissions. The most prominent hotspot of CHy
emission is the Ganges River Delta in India and Bangladesh (~20% of
the total emission in Monsoon Asia by our estimate), which is consistent
with results from previous process-based modeling (Zhang et al., 2016)
where the highest emission rates were observed in the same region. The
Ganges River Delta region uses intensive paddy rice cultivation with two
to three rice seasons as well as high temperatures, which can lead to high
annual CH4 emissions. The highest CH4 emission rates per unit area were
also found in Ganges River Delta in process-based modeling. The
Mekong River Delta in Southeast Asia, the Red River Delta in Vietnam,
the Ayeyarwady Delta in southern Myanmar, and the Yangtze River
Delta in southern China were also hotspots of CH4 emissions (Fig. 8, see
Supplementary Fig. 2 for the locations of these deltas). These coastal
alluvial delta plains not only have high temperatures but also dense
paddy rice areas. Among these hotspots, the Yangtze River Delta in
China was predicted to have lower than average CH4 emissions probably
due to lower temperatures, fewer rice cultivation seasons within the
year, and more widely adopted intermittent irrigation scheme, though
this delta area has similar dense rice areas as the other major tropical
deltas. Aside from these alluvial plains, the Indo-Gangetic Plain in
northwest India, the Chengdu plain in central China, and northeast
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Fig. 8. The spatial distribution at 5000-m resolution of (a) the multi-year (2001-2015) annual average percentage of paddy rice area from 2001 to 2015, (b) the
multi-year annual (2001-2015) average CH4 emissions in paddy rice area. (c) The difference of average annual paddy rice area between 2008 and 2015 and
2001-2007, and (d) the difference of average annual methane emissions in paddy rice between 2008 and 2015 and 2001-2007.
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China also appear as hotspots of CH4 emissions due to intensive rice
cultivation there.

There was a substantial decline of paddy rice area after 2007
compared with before 2007 in Yangtze Plain of southern China,
Chengdu plain of Central China, and eastern Thailand, and accordingly a
decrease of methane emissions (Fig. 8). Changes of paddy rice densities,
however, do not necessarily lead to the same change of methane emis-
sions, suggesting again multiple regulating factors on methane

wW
o
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emissions beyond rice area alone. Decline of paddy rice area also
occurred in the northeast of India where neighbors Nepal and the east of
Thailand and correspondingly a decrease of methane emissions. The
northeast of China (mainly in Heilongjiang Province), on the other hand,
has observed increased paddy rice area and estimated methane emis-
sions. However, despite an increase in paddy rice area observed for
northwest India, modeled methane emissions did not increase propor-
tionally to the increase of paddy rice area. This may be attributable to
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the decline of the water table in the region that forced more water-
saving technologies in rice field irrigation in recent years (Humphreys
et al., 2010). In the Chao Phraya River Basin of Thailand, we observed
no obvious increase of paddy rice area but, nevertheless, a substantial
increase of CH4 emissions. Further investigation is needed to understand
the cause of this estimated increase of CH4 emissions. It may be a
combined effect from water management and climate changes, i.e.,
continuous flooding is still common in this region (Maraseni et al., 2018)
and climate warming can lead to increase of emission under continuous
flooding (Minamikawa et al., 2016).

3.5. Comparison with inventories

Our estimate of total CH4 emissions associated with rice cultivation
for Monsoon Asia is in the lower range of the inventory-based estimates,
although our observed trends pre- and post-2007 diverge from those
from inventories (i.e., CEDS and EDGAR) with estimations lower than all
the inventories in the recent years (Fig. 9). Our average annual CHy
emissions from paddy rice in monsoon Asia is 20.6 & 1.1 Tg yr ! for
2001-2015, which falls at the low end of the average annual emission
range (20-32 Tg yr!) from four major inventory-based estimates (i.e.,
EPA, CEDS, GAINS, and EDGAR). Within this period, the highest annual
emissions of our estimate occurred in 2007 at 23.0 + 1.3Tg yr ' and the
lowest emissions occurred in 2015 at 17.9 + 1.1 Tg yr . Among the
inventories, the estimates from EPA and CEDS are very close to ours, but
GAINS and EDGAR's estimates are ~20-50% larger. Our finding that
emissions increased until 2007 and then declined afterward contrasts
strongly with both CEDS and EDGAR inventories showing an increasing
trend CHy4 emissions since 2005 and 2003 respectively to 2015. EPA and
GAINS only report emissions every 5 years, and they both show a slight
emission decline from 2010 to 2015 (1% and 0.4% respectively), while
our estimates show a 15% decline from 2010 to 2015.

The difference between our estimates of total CH4 emission and the
inventory-based estimate can be attributed to multiple reasons. Firstly,
our low estimate of total emissions may partly derive from the lower
paddy-rice area we use from MODIS relative to the FAO-based rice
paddy area (Zhang et al., 2020) that was used by all other inventories.
Two reasons may explain the underestimation of MODIS paddy-rice
area. One reason is that the approach used to produce MODIS paddy-
rice was based on detecting flooding signals (Zhang et al., 2020),
which may miss some rain-fed paddy rice that are included in FAO
statistics. The other reason is that the 500 m resolution of MODIS data
may miss the detection of some small paddy rice fields. Secondly, the
inventories adopted a large variation of CH4 emission rates from rice
paddies in different regions and different management conditions (e.g.,
organic amendment and irrigation scheme), which largely impacted the
range of estimates of CH4 emissions among themselves. The higher
emission estimates for GAINS and EDGAR can be partly explained by
their higher emission rates used for certain regions (Hoglund-Isaksson,
2005; Janssens-Maenhout et al., 2019; Peng et al., 2016). Moreover, the
inventory estimates adopted constant emission factors for each man-
agement type in a region that may fail to account for the declining trend
due to growing adoption of water-drainage and drawdown practices
over time in East Asia (Bo et al., 2022; Xu et al., 2016; Zhang et al.,
2017b), due to outdated or inaccurate information of the area of paddy
rice under different management. Using a constant emission rate for the
same management type in a region also ignores the variation of emission
rates caused by heterogeneous local environmental factors. In contrast,
our model estimated grid-based emission rates completely based on
local variables, which addressed at least partially the spatial variation of
emission rates within a region. Although our model does not directly
consider management types, the management practices such as organic
amendments or water irrigation schemes might be partly captured in our
model through their effects on surface temperature, vegetation index,
and water index used as input.

At the scale of our four subregions (as shown in Fig. 1) the results are
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different among areas. Our estimate is in the range of the majority of the
inventories in China and South Asia while it is lower than all the in-
ventories in Southeast Asia and Korea and Japan. In this last case
however, the magnitude of the emission is very low and probably inside
the overall uncertainties. In terms of trends, the decline we estimated in
China in the second part of the period was reported only by the EPA and
GAINS inventories but at a very low rate. However, the stabilization of
the emissions in South Asia and the declining trend we estimated in
Korea and Japan after 2010 is consistent across all the inventories and
our estimates. Inter-annual variability was much higher in our estimates
than in the inventories, likely because our approach modeled high res-
olution variations in paddy-rice area and emission rates both in time and
space.

Our results suggest that methane emissions in monsoon Asia have not
only declined during 2001-2015 but may be also lower than previously
thought. Since the inventories considered herein are largely based on
IPCC Tier 1/2 methods, these varying discrepancies to our estimates
reflect the large uncertainties for using different approaches on deter-
mining region-specific emission rates, rice cultivated area, and season
length.

3.6. Future directions to improve data-driven upscaling

There is usually a geographic bias in spatial coverage of training flux
sites (e.g., Papale et al., 2015), therefore increasing new measurements
in under-measured areas is desirable to improve future data-driven
upscaling. To assess the impact of such geographic bias on the model's
ability to extrapolate beyond training conditions, we evaluated the
spatial representativeness of the training sites with respect to the
multivariate predictor space (Villarreal et al., 2018; Villarreal and
Vargas, 2021) using dissimilarity and tower constituency (see 2.6 in
Data and Methods). The dissimilarity map shows that fortunately, most
of the study area (>97%) has good model applicability (i.e., low chances
of extrapolation beyond training conditions) across different times of the
year (Fig. 10). However, most of our training sites are located in the
temperate zone, while only one site (PH-RIF) is located in the tropical
zone. We observed that while IN-CRRI tends to dominate the constitu-
ency map in tropical South and Southeast Asia during both summer and
winter, PH-RIF can have a significant share of the tower constituency
space during spring and winter (Fig. 11). The low cross-validation score
of 8-day samples at PH-RIF hints at possible model inaccuracy over
tropical South and Southeast Asia for seasonal dynamics. Therefore, the
under-measured areas of tropical South and Southeast Asia are prime
locations for expansion of EC measurement of CHy4 flux in paddy rice to
improve future upscaling efforts.

Our model development processes suggest that it is important to
consider the spatial representativeness of EC flux footprints to remote
sensing data in training datasets (Chu et al., 2021; Kong et al., 2022).
Towers in paddy rice are usually a few meters (3-6 m) in height with a
dynamic flux footprint area (a few hundred m?) smaller than the area of
the overlapping MODIS pixel (2500 m?). Therefore, when the MODIS
pixel covers extra different land types from the measured paddy rice
within EC footprints, it introduces dissimilarity of biophysical properties
between the two that hurts the model performance. Therefore, until
finer resolution remote sensing products are available, where possible
we recommend new towers to be located in the middle of large and
homogeneous paddy rice areas for assisting modeling with coarse res-
olution remote sensing data. The heterogeneity around existing towers
will be better accommodated in the future by leveraging the new gen-
eration of remote sensing products at both very high spatial and tem-
poral resolution (e.g., 1-10 m resolution with daily or weekly revisit) to
spatially match the boundaries of flux footprints more closely (Fisher
et al., 2020; Kim et al., 2006; Yang et al., 2020). Future advances in the
constellation of Cubesats (e.g., Planet) and data fusion techniques (e.g.,
MODIS-Landsat fusion, MODIS-Sentinel Fusion) are particularly prom-
ising in this regard.
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dissimilarity score in a small proportion of areas in South Asia is higher than 0.3.

It is also possible to improve data-driven models by including addi-
tional biophysical/biochemical predictors. Many studies have suggested
that proxy variables of the availability of substrate for CH4 production,
such as gross primary productivity (GPP) or net primary productivity
(NPP), are important predictors of CH4 flux (Dai et al., 2019; Knox et al.,
2021; Li et al., 2019; Schiitz et al., 1990). However, due to limitations of
site data and a lack of gridded products exclusively for rice, we did not
consider GPP or NPP. Instead, we included several vegetation indices (e.
g., EVL, NDVI, SAVI, and SATVI) that can be proxies of GPP, and our
predictor selection process selected SATVI, but its importance is sec-
ondary to other variables (Fig. 2b). Indeed, the previous study for
wetland CH,4 upscaling also did not identify GPP or vegetation indices (i.
e., EVI) as important predictors either (Peltola et al., 2019). Moreover,
Knox et al. (2019) did not find GPP as an important predictor of cross-
site CH4 emission variability in their multi-site synthesis study. There-
fore, GPP/NPP might be important as within-site drivers of CH4 emis-
sions, but their effect on cross-site differences may be less important or
may be confounded by other factors such as temperature. Latent heat
flux, which is correlated to the plant-mediated transportation ability of
gasses, has been found to influence or correlate with methane emission
(Dai et al., 2019; Knox et al., 2021; Sturtevant et al., 2016) but was also
not explored in this study for the same reason as GPP/NPP. Nevertheless,
future studies should test the abilities of GPP/NPP and other fluxes (e.g.,
respiration and latent heat) to predict CHy fluxes, particularly if gridded
products exclusively for paddy-rice would be available from global
carbon and energy flux upscaling efforts such as FLUXCOM (Jung et al.,
2020). Water table depth and soil moisture are important methane
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drivers too (Knox et al., 2021). Our inclusion of the water index LSWI
can indirectly capture part of water dynamic information, but future
studies should try to directly consider water table depth and soil mois-
ture when such data becomes available at a large spatial scale.

Future studies should also consider the management of paddy rice (e.
g. plowing, tillage, fertilization, and irrigation), which affects the
magnitude and timing of CH4 emissions (Hou et al., 2020; Runkle et al.,
2019; Yan et al., 2009) but could not be thoroughly tested in our
upscaling because of the scarcity of spatially-resolved data. Previous
efforts have mapped different agronomic managements, such as manure
application (Carlson et al., 2016) and synthetic nitrogen fertilizer
application rates (Houlton et al., 2019). However, the spatial resolution
of these products is still too coarse (based on country or province/state
levels, and occasionally county levels) and typically not time-resolved,
thus limiting their application for dynamic higher-resolution applica-
tions such as ours. As smart-farming tools spread, and statistical data is
collected at finer scales in the future, researchers may combine citizen-
science and crowdsourcing techniques to produce dynamic maps of
agronomic management at regional-to-field scale which would be usable
in CH4 flux upscaling. Remote sensing can and will also play an
important role in improving mapping of agronomic management (Bégué
et al., 2018), especially for irrigation practices (Chen et al., 2018; Huang
et al., 2021). New generations of sensors, including presently available
Planet CubeSat, SMAP, and Sentinel 1 & 2 optical and SAR images, and
other planned SAR sensors such as Tandem-L and NISAR Satellites, can
provide great opportunities for mapping regional and global irrigation
regimes and soil moisture conditions.
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Calendars of rice cultivation are important to be improved for
masking growing season and fallow season emissions. While rice plan-
tation schedules generally follow the seasonality of the local climate,
artificial planting and harvesting dates can still vary by a few weeks
across regions with similar climates, leading to different season lengths
and environmental or management conditions. The rice calendar data
from riceAtlas were used in this study to mask predictions outside the
rice season, but riceAtlas is not sufficiently detailed both in time and
space (as it provides the earliest date, latest date, and peak date based on
national survey statistics for spatial units at first (e.g., country) or second
(e.g., state or province) administrative levels). We adopted the peak
dates provided by riceAltas for calendar masking in this study, which
could introduce errors and uncertainties at finer spatial scales. There-
fore, it is important for future studies to consider more accurate rice
cropping calendars and produce rice calendar data at finer spatial de-
tails. Again, new generations of remote sensing satellites (such as Planet
CubeSat and/or Sentinel-1A images) provide new opportunities to map
rice calendars at higher resolution utilizing time series images and
analysis (Moeini Rad et al., 2019), which in the future can help improve
predicting methane emissions in paddy rice.

4. Conclusions

We produced to our knowledge the first gridded CH4 emission
product for paddy rice in Monsoon Asia countries based on upscaling of
ground-based eddy covariance CH4 flux measurements using remote
sensing predictors, at 8-day steps from 2001 to 2015. We predict average
annual paddy rice CH4 emissions of 20.6 & 1.1 Tg yr~* for 2001-2015
which is at the lower range of previous inventory-based estimates
(20-32 Tg yr 1). Our annual emission estimates also reveal that CHy
emission from paddy rice may have been declining over time, especially
after 2007, suggesting the CH4 emission from paddy rice in Monsoon
Asia has likely not contributed to the renewed growth of CH4 in the
atmosphere in recent years. We explored 175 predictors in predicting
CH4 through machine learning, and found that temperature, biomass
and water related indices are most important for CH4 prediction in
paddy rice, but future studies should consider incorporating variables
regarding carbon substrates, carbon fluxes, and crop management and
calendars. Our network of 23 towers also highlights the need to expand
ecosystem-scale CHy flux measurement to paddy rice in tropical parts of
South Asia and Southeast Asia. All gridded emissions products are
available at https://doi.org/10.5281/zenodo.7145497 and can be used
to compare to other bottom-up or top-down studies or used as priors in
inversion modeling.
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