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Abstract
Ebullition, the release of gas bubbles, is an important pathway of methane emission in many
ecosystems, yet its high spatio–temporal variability makes it challenging to quantify. In this
work, a methane-flux partitioning method based on scalar similarity in the wavelet domain
is applied to eddy-covariance data collected at two flooded rice fields. Inspection of initial
results indicates that several modifications are needed for robust ebullition detection. With
thesemodifications, our objectives are to compare the original andmodifiedmethods, conduct
a sensitivity analysis of the program’s empirical parameters, characterize the importance of
ebullition in rice across growth stages, and identify the primary drivers of ebullition. The
modified method’s ebullitive fluxes are significantly lower and show lower variance than
those from the original method. Furthermore, the two methods produce distinct patterns
of diel variation. While partitioning estimates show non-trivial sensitivity to the program
parameters, this sensitivity is lower in magnitude than the random error in the ebullitive
flux estimates. Ebullitive fluxes make up 9% of the total flux on average, with ebullition
increasing in importance as plants develop. Ebullitive fluxes are best predicted by wind speed
(negative effect), ecosystem respiration (positive effect), and sensible heat flux (positive
effect), suggesting an indirect effect of plant-mediated transport, a link with temperature
and methane production, and a potential effect of water column turnover, respectively. In
addition to validating the method with independent ebullition observations, we recommend
its application at more natural andmanaged wetlands to improve understanding of this highly
variable transport pathway.
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1 Introduction

Methane (CH4) is a potent greenhouse gas with a global warming potential 80 times that of
carbon dioxide (CO2) over a 20-year time horizon (Forster et al. 2021). Due to the relatively
short lifetime of CH4 in the atmosphere, changes in emissions can significantly alter the
amount of warming that occurs in the near future (United Nations Environment Programme
& Climate and Clean Air Coalition 2021), making improved monitoring of CH4 emissions
critical for predicting future warming trends. Of total global CH4 emissions, roughly 25%
are contributed by wetlands (20%) and rice agriculture (5%, or 8% of anthropogenic CH4

emissions), with wetlands also being one of the most important sources of uncertainty in
the CH4 budget (Saunois et al. 2020). Thus, further study of the processes involved in CH4

emission from these systems has the potential both to constrain their current contributions to
the CH4 budget and aid in understanding how they may change in future climate scenarios.

A key part of quantifying the CH4 emissions from rice fields and other wetland ecosystems
is determining the contribution of different emission pathways to the total CH4 flux. These
systems emit CH4 via three main pathways: plant-mediated transport through aerenchyma
tissue, diffusion from the water column, and ebullition through the soil-water matrix (i.e., the
release of gas bubbles enriched in CH4) (Wassmann and Aulakh 2000; Le Mer and Roger
2001), each having unique biophysical controls. Of these pathways, ebullition is particularly
challenging to characterize due to its high spatiotemporal variability (Comas and Wright
2012;Wik et al. 2016), and its relative contribution to the total CH4 flux can varywidely across
ecosystem type and within different periods of the growing season (≈2–90%; Butterbach-
Bahl et al. 1997; Tokida et al. 2007; Santoni et al. 2012; Stamp et al. 2013; Hoffmann et al.
2017; McNicol et al. 2017; Männistö et al. 2019; Stanley et al. 2019; Villa et al. 2021).
Therefore, accurate estimates of CH4 ebullition fluxes and their relative contribution to total
CH4 fluxes are critically needed to improve our understanding of biophysical controls on
CH4 flux partitioning, improve model-based estimates of net CH4 fluxes, and accurately
predict changes in CH4 emissions under future climate scenarios (Riley et al. 2011; Xu et al.
2016). The recent projection that ebullitive, not diffusive, CH4 fluxes will increase due to
climate change (6–20% per 1°C increase; Aben et al. 2017) further underscores the need
for improved representation of CH4 emission processes in models to accurately characterize
future climate feedbacks.

However, estimates of ebullition remain relatively scarce, in part because a direct estimate
of ebullition typically requires highly replicated manual observations using bubble traps or
similar small chambers (Wassmann et al. 1996; Wik et al. 2013; McNicol et al. 2017; Wang
et al. 2021). Commonly used techniques for measuring total CH4 fluxes such as the eddy-
covariance method do not explicitly distinguish between emission pathways (Morin et al.
2014; Knox et al. 2016). While eddy-covariance systems should capture sporadic ebullitive
fluxes due to their high temporal resolution, quasi-continuous observation, and relatively
large sampling areas, conventional data processing protocols estimate the net CH4 flux.
Fortunately, recent studies have shown that ebullition is typically associated with sudden,
sharp fluctuations in CH4 concentration, which leave distinct patterns in the resulting time
series (Komiya et al. 2015; Hoffmann et al. 2017; Iwata et al. 2018).

While measurements of CH4 concentration alone would not be sufficient to identify ebul-
lition in atmospheric turbulence measurements, concurrent observations of other routinely
measured atmospheric scalars such as H2O, CO2, and temperature can be used to isolate
the sporadic CH4 fluctuations associated with ebullition. When making measurements over
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homogeneous terrain, the sources and sinks of these scalars are uniformly distributed, lead-
ing to similar turbulent fluctuations between gases, or scalar similarity (Monin and Obukhov
1954; Katul et al. 1995). Iwata et al. (2018) showed that ebullition violated this scalar similar-
ity, and they subsequently developed a method for partitioning eddy-covariance CH4 fluxes
from a shallow lake into ebullitive and diffusive components by assessing the similarity
between CH4 and reference scalar fluctuations in the wavelet domain. Because this method
only requires some empirical parameters and basic site information such as measurement
height, it can readily be applied to any set of eddy-covariance observations, provided that
the raw high-frequency data are available. Thus it has the potential to vastly improve our
understanding of CH4 ebullition across many site-years of observations from networks of
long-term eddy-covariance stations (e.g., FLUXNET-CH4, Knox et al. 2019; Delwiche et al.
2021). However, the method has only been applied twice since its development: Taoka et al.
(2020) conducted a year-long study on dynamics of flux partitioning and their environmen-
tal controls at the site where the method was developed, and Hwang et al. (2020) used the
method in an assessment of carbon dynamics across three growing seasons in a rice paddy.
Implementing this CH4 flux-partitioning method at more sites is critical for confirming its
accuracy across a range of landscape types and measurement conditions (e.g., differences in
observation height, canopy height, reference scalar fluxmagnitudes, etc.). Furthermore, Iwata
et al. (2018) showed that the partitioning results were sensitive to one of the aforementioned
empirical parameters, suggesting the need for more sensitivity analyses and methodological
interrogation to improve the method’s robustness.

In this study we apply the CH4 flux-partitioning method of Iwata et al. (2018) to eddy-
covariance observations from two adjacent rice fields under delayed flood irrigation. Upon
implementing the partitioning method, we found that several modifications were necessary
for the method to consistently and correctly isolate the ebullitive component of CH4 fluxes
across the growing season. Thus, the first objective is to document and test the modifications
we made to the method, describe the physical basis for their role in improving the accuracy
of ebullition estimates, and present example 30-min periods demonstrating their effects on
the method’s performance. Due to the inherently empirical nature of the method, our second
objective is to conduct a sensitivity analysis by running the partitioning program using a range
of possible parameter sets for our site. This sensitivity analysis will inform our selection of a
‘finalized’ set of parameters in the absence of further ground-based validation of the method.
With these ‘best’ ebullitive flux estimates and their associated uncertainty, our last objective
is to characterize the importance of ebullition across different stages of crop development
and identify the main biophysical drivers of ebullition.

2 Methods

2.1 Site Description

The study dataset was collected during the 2017 growing season at two adjacent, commer-
cially farmed rice fields in Lonoke County, Arkansas, USA [34.58551° N, 91.75167° W;
humid subtropical climate with hot summers (Cfa, Kottek et al. 2006); see Fig. 1 in Run-
kle et al. 2019]. Both fields span approximately 26 ha (350 m by 750 m), were zero-grade
levelled in 2006, and have since been under continuous single-crop rice production. Despite
their close proximity, the two fields have slight differences in soil texture and properties (e.g.,
clay content, organic matter, etc.). Both fields were drill-seed planted with XL745 hybrid

123



74 W. P. Richardson et al.

Fig. 1 Conceptual overview of the partitioning method. Schematic of an eddy-covariance system observing
diffusive (Fdiff ) and ebullitive (Feb) fluxes from an inundated rice field (a, where zc is canopy height and ū is
the mean wind speed during observation); time series of methane (m), water vapour (q), and carbon dioxide
(c) concentrations (b, c, and d, respectively) during a period with substantial ebullition (3 August 1600 LT,
local time=UTC− 5 h); wavelet coefficient scatterplots used to assess scalar similarity by comparingmethane
coefficients (Wm) with those of two reference scalars, water vapour (Wq), and carbon dioxide (Wc) (e and f ,
respectively). Points in e and f are coloured by their normalized frequency (f n) values, and the dashed red lines
are the bounds of the ebullition threshold (i.e., points not contained by the lines are considered to be the result of
ebullition). The time locations of ebullitive wavelet coefficients spanning time scales (ts)≈3.2 s–1.7 min have
been plotted in red above the methane time series in b; see Eqs. 3 and 5 for more information on formulation
of f n and its relationship to ts
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seed (Rice Tec., Alvin, Texas); the north field was planted on 10 April and harvested on 26
August, and the south field was planted on 9 April and harvested on 27 August. Monthly
mean temperatures ranged from 18.8 to 27.8 °C, and cumulative rainfall during the study
period was 868mm, substantially wetter than normal (492mm). Both fields were treated with
urea and diammonium phosphate (DAP) fertilizers (155 kg urea-N ha−1 in 3 doses, 20 kg
DAP-N ha−1 in 1 dose) and managed with the delayed flood irrigation practice, through
which the field is inundated from the five-leaf stage until just before harvest. For additional
details on site characteristics, management practices, and yields, see Runkle et al. (2019) and
Suvočarev et al. (2019).

2.2 Flux and Ancillary Data

Fluxes of CH4, CO2, H2O, and sensible heat (H) were measured using the eddy-covariance
technique. Both fields were monitored with identical measurement systems consisting of
a three-dimensional sonic anemometer (CSAT3, Campbell Scientific, Inc., Logan, Utah,
U.S.A.), an open-path CO2 andH2O infrared gas analyzer (LI-7500A, LI-COR Inc., Lincoln,
Nebraska, U.S.A.) and an open-path CH4 analyzer (LI-7700, LI-COR Inc.). Instruments were
mounted on a tower at 2.28 m (north field; US-HRC) and 2.26 m (south field; US-HRA)
above the ground. The towers were positioned at the north edge of each field in order to
ensure adequate fetch, as winds at the site predominantly come from the south. Instruments
were installed 3 days after planting and remained installed until 3 days before harvest. High
frequency wind speed and gas concentration measurements were recorded at 20 Hz through
an Analyzer Interface Unit (LI-7550, LI-COR Inc.) with the LI-COR SMARTflux automated
processing system. Station outages prevented data collection from 20 April to 18 May at the
north field as well as from 18 to 25 April and 23 May to 9 June at the south field.

EddyPro software (v. 7.0.6, LI-COR Inc., Lincoln, NE, U.S.A.) was used for processing
the raw high-frequency data, calculation of 30-min turbulent fluxes (with the exception of
CH4 fluxes; see Sect. 2.3.2), and quality control of fluxes. Wind vector measurements from
the sonic anemometer were first corrected for transducer shadowing (Horst et al. 2015), and
then coordinates were transformed using a double rotation. All high-frequency data were
put through a series of statistical tests for quality control that are typical in eddy-covariance
processing (e.g., despiking, drop-outs, skewness and kurtosis, etc., Vickers andMahrt 1997).
Time lags due to sensor separation were compensated by maximizing covariance of scalars,
and linear detrending was applied to the high-frequency data prior to flux computation (Mon-
crieff et al. 2005). After this initial processing (but prior to detrending), raw data for each
30-min period were saved for use in the CH4 flux-partitioning scheme (see Sect. 2.3). Thirty-
minute fluxes were also corrected for frequency losses in themeasurement system (Moncrieff
et al. 1997) and for density fluctuations (Webb et al. 1980). We note that the frequency loss
correction adds a substantial amount to the observed fluxes in this work due to our relatively
low measurement height, as shown by an average spectral correction factor of ≈1.2 for the
fluxes of all three gas species, H2O, CO2, and CH4.

Thirty-minute flux estimates were filtered for quality control prior to further analysis.
Periods with wind direction between 265° and 95° were removed from the dataset, as these
directions do not include the target fields in the flux footprint. The footprint model of Kor-
mann and Meixner (2001) was used to remove 30-min periods in which the upwind distance
containing 90% of the flux contribution area was greater than 350-m away from the tower,
as this distance is beyond the field boundaries. Steady-state and integral turbulence charac-
teristics tests were performed to remove periods with non-stationary scalar fluxes or poorly
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developed turbulence (Foken and Wichura 1996). Based on the guidelines of Mauder and
Foken (2015), 30-min periods with flag values greater than 2 (on a 1–9 scale) for CH4 flux
stationarity, reference scalar (e.g., H2O or CO2, see Sect. 2.3) flux stationarity, or the vertical
velocity integral turbulence characteristic were removed before performing further analysis.
Following previous studies that have used scalar similarity as the basis for CH4 flux partition-
ing (Iwata et al. 2018; Taoka et al. 2020; Zorzetto et al. 2021), the universal flux–variance
relationships were used to remove periods in which the reference scalar was affected by
non-local processes (De Bruin et al. 1993). To aid our subsequent analyses of CH4 fluxes,
CO2 fluxeswere partitioned into gross primary productivity (GPP) and ecosystem respiration
(Reco) using the night-time method (Reichstein et al. 2005). This algorithm fits a relationship
between night-time CO2 fluxes (only containing Reco) and temperature that is then used to
separate Reco from the net CO2 flux based on the measured temperature.

Several microclimate measurements were collected on or near the eddy-covariance tow-
ers during the study period including: water-table depth, soil temperature at 2 cm depth,
four-component net radiation, air temperature, relative humidity, and atmospheric pressure.
However, data availability for soil temperature at the north field and four-component net
radiation at the south field was poor due to instrument malfunctions (north field soil tem-
perature available between April and early June, south field four-component net radiation
available between mid-July and harvest). Additional details on these sensors can be found in
Runkle et al. (2019). Daily canopy height (zc) and leaf area index (LAI) were estimated from
manually collected observations during the 2017 growing season and a growing-degree-day
(GDD) model previously developed for these fields (see Reavis et al. 2021, for more infor-
mation). By pairing this LAI–GDD model with the fields’ PhenoCam imagery (Milliman
et al. 2019), we separated the growing season into approximate crop growth stages: vegeta-
tive through early reproductive (GDD < 965 °C-day; planting to 20 June), panicle formation
through heading (965 °C-day < GDD < 1370 °C-day; 20 June to 18 July), and grain filling
and ripening (GDD > 1370 °C-day; 18 July to harvest), with GDD = 0 occurring on the date
of planting. These separations will be used to assess changes in the relative importance of
ebullition associated with phenology.

2.3 Methane-Flux Partitioning

2.3.1 Theoretical Overview

Net fluxes of CH4 were partitioned into diffusive (i.e., plant-mediated transport and diffusion
from the water column) and ebullitive subcomponents using the method and program code
of Iwata et al. (2018) (see Fig. 1 for a conceptual overview). This method is based on the
concept of local scalar similarity, which is generally satisfied for homogeneous, flat terrain
according toMonin–Obukhov similarity theory (Katul et al. 1995). The site used in this study
meets these conditions, indicating that the sources and sinks of sensible heat, water vapour,
and carbon dioxide are uniformly distributed within the flux footprint. After being emitted to
the atmosphere these scalars are transported by the same eddies past a stationary observation
point, leading to similar turbulent fluctuations between scalars.While the sources of diffusive
CH4 fluxes in rice fields are uniformly distributed (Fig. 1a, teal arrows), this situation is likely
not the case for ebullitive CH4 fluxes, as ebullition is generally heterogeneous in both space
and time (Fig. 1a, bubbles and red arrow) (Christensen et al. 2003; Baird et al. 2004; Comas
andWright 2012). The presence of ebullition thus violates local scalar similarity, resulting in
dissimilar fluctuations of CH4 when compared to the other scalars associated with an eddy.

123



Modification of a Wavelet-Based Method for Detecting… 77

We note that this conceptual framework does not suggest that ebullition events are spatially
coordinated, but rather that ebullition events that occur in various areas of the footprint
are periodically sampled by the eddy-covariance system. Critically, the fetch of the eddy-
covariance systemmust be spatially homogeneous during the measurement period in order to
attribute these abrupt changes in CH4 source strength to ebullition events instead of changes
in footprint composition.

Raw high frequency data (Fig. 1b–d) can be decomposed into eddy scales using the
orthonormalwavelet transform.Briefly,wavelet analysis extracts frequency information from
a time series while maintaining information on where fluctuations of a given frequency occur
in time (Foufoula-Georgiou and Kumar 1994). Thus the method is ideal for examining inter-
mittent processes (e.g., ebullition) and multiple time series, particularly when compared to
the commonly used Fourier transform, which provides high-resolution frequency informa-
tion but at the expense of all information in the time domain. Critically, the orthonormal
wavelet transform also preserves statistical properties of the original time series such as vari-
ance and covariance without generating redundant information, enabling flux computation
directly from the resulting wavelet coefficients (Scanlon and Albertson 2001). The magni-
tude of coefficients is indicative of the fluctuation occurring at a given frequency at a specific
point in time, and thus CH4 wavelet coefficients can be compared to wavelet coefficients of
another scalar at the same time scale and time location to assess scalar similarity and identify
eddies associated with ebullition (Fig. 1e, f). In the remainder of this section we describe the
most salient details of the method of Iwata et al. (2018), followed by modifications we made
to the original method in Sect. 2.4. The reader is referred to the original text for more infor-
mation, including the program code used for partitioning, which is freely available at http://
science.shinshu-u.ac.jp/~hiwata/program.html (v2.0was used in this work; while v3.0 is now
available, its changes are mostly relevant for analyzing closed-path CH4 measurements).

2.3.2 Partitioning Method

The 20 Hz time series are first truncated in order to satisfy the logarithmic uniform spacing
for discretizing wavelet scales (see more explanation below), leaving the first ≈27.3 min
of each 30-min period available for analysis. Missing values in the raw time series were
filled by linear interpolation with random noise. Point-by-point conversion (Detto and Katul
2007) was applied to sonic temperature and gas density data to account for variations in
air density (i.e., as analogous to the density corrections of Webb et al. (1980) but applied to
high-frequency data), and an additional spectroscopic correction was applied to the CH4 data
(Detto et al. 2011; McDermitt et al. 2011). Wavelet coefficients were then calculated using
the orthonormal wavelet transform,

W j,i
x =

∞∫

−∞
x(t)ψ j,i (t)dt (1)

where x(t) is the time series of the scalar of interest (e.g., vertical velocity component, sonic
temperature, H2O, CO2, or CH4),ψ j,i is the wavelet function, j is the scale parameter, i is the
time location, andWx is the wavelet coefficient for scalar x at scale j and time location i. The
wavelet function, ψ j,i, is given by a mother wavelet function that is dilated (i.e., stretched)
according to j and translated across all time locations i,

ψ j,i (t) = 1√
2 j

∗ ψ

(
t − 2 j ∗ i

2 j

)
(2)
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where ψ is the mother wavelet. The method of Iwata et al. (2018) utilizes the Haar mother
wavelet, which is the simplest wavelet form and is useful for its differencing characteristics
and localization in time (Foufoula-Georgiou and Kumar 1994; Scanlon and Albertson 2001).
Thus, the scale parameter j controls the frequency that is detected by the transform while the
time location i controls where in the time series the wavelet function is centred. In practice,
the orthonormal wavelet transform is implemented by discretizing j into integer values j =
1, 2, …, J (where the total number of measurements in the time series is 2 J ) and using a
pyramidal algorithm to recursively filter the signal into high pass (i.e., wavelet coefficients)
and low pass (the coarse-grained signal resulting from block-averaging) components (Mallat
1989). The result is 2 J− j wavelet coefficients at each scale j for a total of 2J − 1 coefficients.
Wavelet coefficients can be interpreted as the fluctuations in the original signal over a time
scale that becomes progressively longer as the transform proceeds.

After applying the wavelet transform to each scalar of interest, local scalar similarity
is assessed by comparing CH4 wavelet coefficients with those of a reference scalar (e.g.,
H2O, CO2, and/or sonic temperature) at the same scale and time location. Of the three
reference scalars initially examined in the development of the partitioning method, Iwata
et al. (2018) recommended that H2O be used because (1) scalar similarity between CH4 and
sonic temperature was influenced more often by non-local processes, and (2) CO2 fluxes at
their lake site were not of a sufficient magnitude for CH4 and CO2 to have strong scalar
similarity even in the absence of ebullition. To characterize the relationship between CH4

and the reference scalar in each 30-min period, coefficients within a selected spectral range
are used to fit an iteratively reweighted linear regression model. This spectral range is defined
in terms of a normalized frequency

fn = zm
tsu

(3)

where zm is themeasurement height (m), u is themeanwind speed (m s−1), ts is the time scale
of the coefficient (s; the length of time the coefficient spans), and f n is the normalized fre-
quency (dimensionless). The lower and upper boundaries of this normalized frequency range
(f n,LB and f n,UB, respectively) were determined by initial spectral analysis to be 0.003 and
1, as CH4 wavelet coefficients between these frequencies were responsible for transporting
a majority of the CH4 flux and generally had strong coherence with reference scalar wavelet
coefficients (see Online Resource 1a, c, e). CH4 coefficients at all frequencies greater than
f n,LB are then used to partition the CH4 flux into diffusive and ebullitive components based on
their distance from the iteratively reweighted linear regression line of best fit. The threshold
for how far a coefficient must fall from the line of best fit to be considered ‘dissimilar’ enough
to derive from ebullition is given in terms of the root-mean-squared deviation about the line
of best fit during periods in which ebullition is not apparent (RMSD; see Sect. 2.3.3 for details
on empirical determination of this parameter). Coefficients that fall farther than ± 3 RMSD
from the line of best fit are considered ebullitive, while all other coefficients are attributed
to diffusive processes (see Fig. 1e, f). While Iwata et al. (2018) found that the partitioning
results were sensitive to the multiplier defining the threshold, three standard deviations from
the mean response (i.e., the line of best fit) should contain 99.7% of the variance associated
with non-ebullitive coefficients, assuming that they are normally distributed. Therefore, we
deem a multiplier of 3 as sufficient for determining the ebullition threshold in terms of the
empirical RMSD.

Once the ebullitive CH4 wavelet coefficients have been identified (i.e., the points falling
outside the red dashed lines in Fig. 1e, f), the ebullitive flux (Feb) is calculated by summing
the product of the vertical velocity component and CH4 wavelet coefficients across all time
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locations at each scale and then summing this scale-wise covariance over all scales of the
transformation

Feb = 1

N

∑
j

∑
i

W j,i
w W j,i

m δ j,i (4)

whereWw andWm are the vertical velocity component and CH4 coefficients, respectively, N
is the total number of coefficients in the period, and δ is an indicator function for whether the
coefficient at location j,i is considered ebullitive, taking on a value of 1 when the coefficient
falls beyond the ebullition threshold and zero otherwise. The diffusive flux (Fdiff ) is calculated
as the difference between the total flux and Feb. In a final step, the method of Finkelstein
and Sims (2001) is used to estimate random error in both the diffusive and ebullitive flux
estimates.

2.3.3 Determination of Empirical Ebullition Threshold

As discussed in Sect. 2.3.2, determining the ebullition threshold for CH4 wavelet coefficients
requires an empirical parameter, RMSD, which represents the average deviation from the
line of best fit between the wavelet coefficients for CH4 and the reference scalar during 30-
min periods in which ebullition is minimal. We selected these ‘non-ebullitive’ periods by
visually screening the 20-Hz gas concentration data to ensure global similarity between CH4

and the reference scalars, which we assume holds when ebullition is not significant (Taoka
et al. 2020). Gas concentration data were inspected in both the time domain (Fig. 2) and
wavelet domain (Fig. 3) for global similarity. Each time series was required to lack sporadic
fluctuations unique to CH4, as their presence indicates that ebullition is potentially occurring
(Fig. 2a, d, as contrasted with Figs. 2b, c and e, f respectively). Scatterplots of Wm and
wavelet coefficients of each reference scalar (Wq for H2O, Wc for CO2, Wx when referring
to the reference scalars generally) with data points coloured by f n were then examined for the
same period; if coefficients generally fell in a cluster around the line of best fit and no high
frequency coefficients were far outside the main body of this cluster (Fig. 3e, f and g, h), the
period was deemed suitable for RMSD fitting. See Figs. 2 and 3 for a comparison of periods
containing apparent ebullition with non-ebullitive periods used for RMSD fitting. While not
explored in this work, we note that the process of non-ebullitive period selection could be
streamlined by screening all CH4 concentration time series using amedian absolute deviation
test (MAD, e.g., Papale et al. 2006; Schaller et al. 2017). Such a rule-based approach should
lead to a more objective and automated screening process in which periods with sporadic
fluctuations in CH4 concentration are automatically removed from consideration for RMSD
fitting.

The two previous studies using this partitioning method have calculated unique RMSD
values for approximately each month of the study by averaging the RMSD of non-ebullitive
periods falling within that sub-period (see Table 1). The findings of Hwang et al. (2020) indi-
cate that accounting for temporal variation in the RMSD is critical, as their values increased
by ninefold over the course of the growing season (reported values for RMSD based on
H2O ranged from 2 to 11 times the empirical RMSD reported by Iwata et al. (2018), see
Table 1). Following Taoka et al. (2020), we initially calculated a unique empirical RMSD
for each month of each site’s dataset to account for any temporal or site-specific variation
in the degree of similarity between CH4 and the reference scalars. We selected 3–10 such
30-min periods for each month, depending on the results of the aforementioned screening
process. The RMSD values resulting from the iteratively reweighted least-squares linear
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Fig. 2 Examples of periods with apparent ebullition (6 August 1600 LT, Monin–Obukhov stability parameter
(ζ ) = − 0.012, friction velocity (u*) = 0.51 m s−1, a–c; 1 July 1530 LT, ζ = − 0.076, u* = 0.16 m s−1,
d–f) and without apparent ebullition (30 June 1630 LT, ζ = 0.006, u* = 0.55 m s−1, g–i; 28 June 1000 LT,
ζ = − 0.001, u* = 0.30 m s−1, j–l) in the time domain, given traces of methane (m), water vapour (q), and
carbon dioxide (c). Note that 6 August 1600 LT is a period relatively dominated by ebullition for this site,
whereas 1 July 1530 LT is a more typical period in which some ebullition is occurring (intermittent sporadic
fluctuations in d) but diffusive processes contribute substantially to the total flux
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Fig. 3 Wavelet coefficient
scatterplots for example periods
shown in Fig. 2. Periods with
apparent ebullition: 6 August
1600 LT, a and b; 1 July 1530 LT,
c and d. Periods without apparent
ebullition: 30 June 1630 LT,
e and f ; 28 June 1000 LT, g and
h. In each row, methane wavelet
coefficients (Wm) are compared
with those of water vapour (Wq,
left column) and carbon dioxide
(Wc, right column) to assess
scalar similarity

regressions between wavelet coefficients of CH4 and the reference scalars in each of these
30-min periods were then averaged within each month (see Table 1). While not enough stud-
ies have been conducted to characterize an expected range of values for RMSD, our values
based on H2O (north field: 0.00107–0.00274, south field: 0.000729–0.00272) do fall near
the program default RMSD (0.000803) and within the range reported by Hwang et al. (2020,
0.00145–0.00927). These month-specific mean RMSD values were then used to calculate the
ebullition threshold and subsequently to partition the CH4 flux. However, upon more detailed
inspection of the program code and the results from the partitioning method (implemented
as described in this section), we found that several modifications were necessary to adapt the
method to our site and improve the accuracy of ebullition estimates.
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Table 1 Parameter values reported by previous studies* and calculated for this study following the original
partitioning program methodology

Study Sub-period mean non-ebullitive RMSD f n,LB

Iwata et al. (2018) Two-week period in August: 0.000803 (q) 0.003

Two-week period in August: 0.000859 (Tsonic)

Hwang et al. (2020)** Before rice transplanting: 0.001454 0.007

Before mid-season drainage: 0.001522

During mid-season drainage: 0.007894

After mid-season drainage: 0.009625

This study*** June: 0.00107 (q), 0.00119 (c) 0.003–0.030

July: 0.00274 (q), 0.00270 (c)

August: 0.00121 (q), 0.00145 (c)

*Taoka et al. (2020) also used this partitioning method, but parameter values were not reported. Tsonic: sonic
temperature
**All RMSD values reported by Hwang et al. (2020) based on q as reference scalar
***RMSD values reported here are for the north field, using Eq. 3 to calculate f n, and the range of f n,LB
reported here pertain to the modified method (i.e., using Eq. 5)

2.4 Modifications to the PartitioningMethod

2.4.1 Formulation of Normalized Frequency

The original formulation for the normalized frequency, f n, includes no information on surface
roughness, as the vertical dimension defining turbulent transport in Eq. (3) is zm. When
considering a lake, any emergent vegetation that is present tends not to protrude far above
the surface, and surface roughness (i.e., aerodynamic roughness length when no canopy is
present; 0.002–0.006mfor openwater,Monteith andUnsworth 2013,Table 16.1) is negligible
when compared to zm. In the case of observations made over an actively growing canopy, the
meanwind speedwill approach zero at some height above the ground surface due to increased
surface roughness. The most relevant vertical dimension for defining turbulent transport in
this case is zm − zd , where zd is the zero-plane displacement (Monson and Baldocchi 2014;
approximated as 2zc/3 for rice, Gao et al. 2003). This term is especially critical to account for
in our observations, as our zm is substantially closer to the ground than that used in Hwang
et al. (2020) (≈2.3 m versus 10 m). We therefore modified Eq. 3 to account for these changes
in the relative location of the sonic anemometer within the vertical wind profile over the
course of crop development,

fn = zm − zd
tsu

(5)

We also note that in the program code, a 10-Hz measurement frequency (i.e., interval
between data points is 0.1 s) is hard coded into the calculation of ts in several places; we
modified this program variable to 0.05 s because our data were collected at 20 Hz. These
changes had the net effect of shifting the covariance and coherence spectra toward lower fre-
quencies, meaning that morewavelet coefficients of longer time scales are generally excluded
by the frequency bounds when calculating f n using Eq. 5 as compared to using Eq. 3 (see
Online Resource 1b, d, f).
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2.4.2 Selection of Reference Scalars

While examining raw time series plots and wavelet coefficient scatterplots to find non-
ebullitive periods forRMSD fitting, we found that the suitability of using each of the reference
scalars in the partitioning method was dependent on the magnitude of the associated net flux
of that reference scalar in each 30-min period. Similar to the findings of Iwata et al. (2018)
with respect to CO2 fluxes, scalar similarity between CH4 and H2O, CO2, or sonic tempera-
ture broke down even in the absence of ebullition when the magnitude of the reference scalar
flux was small. We emphasize that the magnitude, not direction, of the flux dictates this effect
for CO2 and sonic temperature: a net downward flux of CO2 or H only changes the slope
of the Wm–Wx relationship from positive to negative. In the wavelet coefficient scatterplots
this breakdown in scalar similarity is marked by little to no linear relationship between Wm

and Wx (Fig. 4a) or large scatter about the line of best fit (Fig. 4b) despite the absence of
sporadic fluctuations in the CH4 time series. Without adequate scalar similarity as a baseline
for comparison in these cases, the method appears to overestimate the true ebullitive flux,
flagging many coefficients as ebullitive despite little evidence of sporadic ebullition in the
time series of the raw data.

Fig. 4 Examples of periods inwhich CH4–H2O (3 July 0030 LT, ζ = 0.031, u* = 0.23m s−1, a) andCH4–CO2

(12 July 1900 LT, ζ = 0.065, u* = 0.20 m s−1, b) scalar similarity breaks down due to low magnitude of the
respective reference scalar fluxes. The relationship between fractional ebullition (i.e., ebullitive flux divided by
total flux) and reference scalar flux is shown for water vapour and carbon dioxide in c and d, respectively, for
the north field, and determined via the modified partitioning method. Blue circles are bin averages. Example
periods shown in a and b have been plotted as green stars in c and d, respectively. The lower thresholds
defining adequate scalar similarity (dashed yellow lines in c and d) were identified manually
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Over different time scales, each of the H2O, CO2, and sensible heat fluxes varies uniquely,
which has important implications for which reference scalar is most appropriate to use for
CH4 flux partitioning in any given 30-min period. Under continuously flooded conditions,
most of the incoming radiant energy is partitioned toward LE rather than H. Because low-
magnitude H is the norm at our site, scalar similarity between CH4 and sonic temperature
often does not hold, and thus sonic temperature is not a suitable reference scalar at our site.
By the same token H2O is a particularly suitable reference scalar during the day and early
evening hours, as LE tends to be large during these times. However, LE typically decreases
as the night progresses, weakening the scalar similarity between H2O and CH4 and making
H2O less suitable as a reference scalar at night.

Net CO2 flux measurements include both photosynthesis (CO2 uptake, i.e., GPP) and
respiration (CO2 release, i.e., Reco) and show large variation in both sign and magnitude
across the diel cycle. The magnitude of CO2 fluxes due to each of these individual processes
in an actively growing crop should generally be larger than in lakes. Thus, CO2 should be
more suitable as a reference scalar when partitioning CH4 fluxes from rice as compared to
other lake or less productive wetland ecosystems. During daylight hours net CO2 exchange
is dominated by GPP, resulting in large net downward CO2 fluxes and a negative slope for
theWm–Wc relationship (because the net CH4 flux is positive in all periods in this analysis).
At night only Reco occurs, resulting in net upward CO2 fluxes and a positive slope for the
Wm–Wc relationship. During each of these times of day we found that magnitudes of CO2

fluxes were sufficiently large, such that scalar similarity between CO2 and CH4 was strong in
the absence of ebullition. As with the case of H2O–CH4 similarity during night-time hours,
CO2–CH4 similarity was not maintained in the absence of significant ebullition when net
CO2 fluxes were near zero (i.e., periods in which GPP and Reco are of similar magnitude,
generally around sunrise and sunset at our site). We also note that partitioning based on CO2

is not currently an option in the published program code, so we modified it to include the use
of CO2 as a reference scalar for partitioning.

Because ebullitive fluxes should not be a function of the latent heat flux or the CO2

flux, we plotted the fractional ebullition estimates (i.e., ebullitive flux divided by total flux;
Feb/Ftot) against the fluxes of their corresponding reference scalars to determine the flux
magnitudes at which scalar similarity with CH4 breaks down (Fig. 4c, d). As the magnitudes
of the latent heat flux and the CO2 flux increases above zero, Feb/Ftot rapidly declines. We
assume that once Feb/Ftot has declined to a level comparable with that at higher reference
scalar flux values, there is enough scalar similarity with CH4 for the reference scalar to be
used to partition CH4 fluxes. Using the data shown in Fig. 4c and d, we visually identified
threshold values that approximately define the minimum reference scalar flux magnitude for
adequate scalar similarity with CH4. These values were 27 W m−2 for latent heat fluxes and
6 μmol m−2 s−1 for CO2 fluxes. If either of these fluxes were less than the threshold, the
ebullition estimate for that reference scalar was flagged and omitted from further analysis. In
post-processing, we create a ‘harmonized’ time series of partitioning results in which H2O
is preferentially used as the reference scalar if latent heat fluxes are of sufficient magnitude;
CO2 is used as the reference scalar in cases where LE is not of sufficient magnitude but the
CO2 flux is.

2.4.3 Development of a Dynamic Ebullition Threshold

As we analyzed the partitioning results based on these month-specific ebullition thresholds,
several observations led us to hypothesize that the threshold should bemore dynamic to accu-
rately detect ebullition.When plotting themonth-specific ebullition thresholds on the wavelet
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coefficient scatterplots for each period, we found that the ebullition threshold often either (a)
failed to contain the spread of non-ebullitive coefficients in a period, subsequently classifying
many non-ebullitive coefficients as ebullitive during periods when minimal ebullition was
evident in the raw time series, or (b) fell so far beyond the spread of non-ebullitive coef-
ficients that even the higher frequency coefficients associated with sporadic fluctuations in
CH4 fell within the threshold and were not considered as ebullitive. Therefore, we calculated
RMSD based on each reference scalar in each 30-min period (RMSDx) to examine how this
parameter varied over shorter time scales as compared to a threshold that captures variation
only over a monthly time scale. When examining wavelet coefficient scatterplots spanning
a range of RMSDx , we found no consistent relationship between the magnitude of RMSDx

and the presence of apparent ebullition. While the magnitude of RMSDx should increase as
a result of ebullition, it is calculated from wavelet coefficients whose range of magnitude
is largely dependent on the global variance of the 30-min time series (see Online Resource
2), as the wavelet transformation decomposes this global variance across finer time scales of
fluctuation. The diel pattern in CH4 standard deviation (Online Resource 7e) corroborated
this relationship, showing similar behaviour to that of RMSDq and RMSDc. Thus RMSDx in
any period carries information on the global variance of CH4, and the ebullition threshold
should account for changes inwavelet coefficientmagnitude that are due to changes in 30-min
variance rather than ebullition. While the MAD has also been used as a metric for detecting
sporadic events in time series (Papale et al. 2006), we found that 30-min MAD values were
much smaller in magnitude than their corresponding RMSDx values (necessitating a multi-
plier much larger than 3 to fit a reasonable ebullition threshold) and did not distinguish well
between ebullitive and non-ebullitive periods. Therefore, we chose to continue with the use
of RMSDx for CH4 flux partitioning.

We further explored the relationship between RMSDx and the standard deviation of CH4

(σm) to develop a dynamic ebullition threshold as a function of σm (see Fig. 5). When
considering all best quality 30-min periods, we found strong linear relationships between
RMSDq and σm (R2 = 0.60, p < 0.01; grey dashed line in Fig. 5a) as well as between RMSDc

and σm (R2 = 0.75, p < 0.01; grey dashed line in Fig. 5b). While the mean responses of these
relationships across all 30-min periods (i.e., the linear regression slopes) are influenced by
periods with significant ebullition, this finding suggests that a linear model is suitable for
describing the relationship.We then fit these sameRMSDx–σm linear regression relationships
on only using the periods we had previously identified as non-ebullitive (pink dashed lines
in Fig. 5). The slope of these relationships defines the typical deviation expected around
the line of best fit when ebullition is not significant, accounting for the change in spread of
wavelet coefficients due to global variance of CH4. Critically, it should be noted that using
the observed σm to fit the ebullition threshold in each 30-min period may underestimate
the ebullitive flux because the presence of significant ebullition would increase σm and thus
the width of the ebullition threshold. However, for simplicity we do not attempt to resolve
this issue here (see Sect. 4.1 for more discussion). Additionally, it is somewhat subjective to
visually identify non-ebullitive periods, and these periods make up a relatively small sample
size (n= 21 for the north field, n= 11 for the south field) when compared to the total number
of best quality 30-min periods.

We therefore decided to characterize the RMSDx–σm relationships using quantile regres-
sion on all best quality 30-min periods as an alternate means of developing a dynamic
ebullition threshold. Briefly, quantile regression provides regression slopes between a set
of response and predictor variables across different parts of the response variable distribution
(Cade and Noon 2003). For example, the 5th percentile quantile regression slope describes
the response of the lowest 5% of response variable observations (RMSDx) to the predictor
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Fig. 5 RMSDx–σm relationships for a water vapour and b carbon dioxide as reference scalars. Open black
circles are 30-min periods from the north field meeting all quality requirements. Solid lines show quantile
regression slopes ranging from the 5th (i.e., Q = 0.05) to 95th (i.e., Q = 0.95) percentile. Manually identified
non-ebullitive periods (see Sect. 2.3.3) are shown in red circles, and the pink dashed line is the corresponding
linear regression line of best fit for these periods. The grey dashed line is the linear regression line of best fit
for all periods displayed

variable (σm), with the number of observations included in the regression increasing as the
quantile of interest increases. Thus the quantile regression slopes for the lower portion of
the RMSDx distributions are an alternate, objective means of generating a dynamic ebullition
threshold, assuming that ebullition is the main factor driving increased RMSDx at any given
value of σm.

To determinewhich quantile response would bemost appropriate for defining the dynamic
ebullition threshold, we fit the RMSDx–σm quantile regression model using a range of quan-
tiles (solid lines in Fig. 5) and compared these slopes to theRMSDx–σm linear regression slope
from the visually identified non-ebullitive periods. For both RMSDq–σm and RMSDc–σm at
the north field, the linear regression slope from non-ebullitive periods fell near the 33rd per-
centile slopes from quantile regression (slopes closer to 40th and 50th percentile slopes for
the south field). However, several of the visually identified non-ebullitive periods hadRMSDx

as large as the value predicted by the 50th percentile slope or value as low as that predicted
by the 15th percentile slope (red circles in Fig. 5). Based on these findings, we used the non-
ebullitive RMSDx–σm linear regression slopes as a baseline for the new dynamic ebullition
threshold and tested a range of thresholds (15th–50th percentile slopes for the north field,
25th–75th slopes for the south field) in the sensitivity analysis of the method (see Sect. 2.5).

Hereafter, the partitioning method as described in Sect. 2.3.2 is referred to as the ‘orig-
inal’ method, although we did use both H2O and CO2 as reference scalars in the original
method to increase the number of best quality observations. The partitioning method with all
modifications described in this section will be referred to as the ‘modified’ method.
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2.5 Method Uncertainties and Sensitivity Analysis

Whether in the original form developed by Iwata et al. (2018) or with the modifications we
proposed in Sect. 2.4, the empirical nature of this CH4 flux partitioning method leaves room
for substantial uncertainty in the resulting ebullitive flux estimates. As discussed above, the
width of the ebullition threshold is the RMSDx parameter multiplied by some integer (3 in
the original presentation of the method). This width, representing how dissimilar Wm must
be from Wx in order to be considered ebullitive, is somewhat arbitrary, and no studies have
rigorously examined the sensitivity of the resultant ebullitive flux estimates to changes in
ebullition threshold width. Furthermore, the method has only been applied a handful of times
and has not yet been validated against independent observations of ebullition. Collectively
these points illustrate that the parameters of the partitioning method have not been fully
explored and are largely unconstrained. In the absence of further ground-based validation of
the method, we conducted a sensitivity analysis by running the modified partitioning method
using a range of values for the primary parameters, f n,LB and RMSDx , to characterize the
magnitude of possible uncertainty associated with the ebullitive flux estimates. While f n,UB
could also potentially bemodified,we focused on f n,LB because of its relevance to the duration
of ebullition events (see below). In the following subsections we describe how modifying
f n,LB and RMSDx can potentially impact the partitioning results and how we selected a range
for each parameter to use in the sensitivity analysis.

2.5.1 Lower Frequency Bound

It is critical to recall that the lower frequency bound, f n,LB, determines which wavelet coef-
ficients are a) used to fit the iteratively reweighted linear regression and b) included in
the partitioning estimate (see Sect. 2.3.2). In light of the former, modifying this parameter
changes the value of RMSD in each period because a different set of Wm–Wx regression
model residuals is used for the calculation. Thus, regardless of which method is used to cal-
culate RMSDx for the ebullition threshold, changes in f n,LB also indirectly impact the width
of the ebullition threshold. We therefore first investigated changes in RMSDx as a function of
f n,LB. While RMSDx did tend to decrease slightly as f n,LB increased (see Online Resource 3),
these indirect changes in ebullition threshold width due to f n,LB will be encompassed by the
sensitivity analysis on RMSDx (see below), so we do not attempt to characterize uncertainty
in the method due to this specific interaction. The more salient impact of f n,LB on partitioning
estimates is selecting which wavelet coefficients should be included in the partitioning. In
our initial attempt to select an appropriate value for f n,LB (Sect. 2.3.2, Online Resource 1), we
followed the method of Iwata et al. (2018), in which f n,LB is determined by examining CH4

flux cospectra and CH4–reference scalar coherence spectra so as to include most of the flux
transporting region without including frequency regions that generally lack adequate scalar
similarity. While these criteria are important, the wavelet coefficients represent fluctuations
over discrete periods of time, which is especially critical to consider when identifying a pro-
cess with large spatiotemporal variation such as ebullition. It is therefore also important to
constrain f n,LB in the context of the expected time scale for ebullition events.

When examining theWm–Wx wavelet coefficient relationships and time series for 30-min
periods across the growing season, we often noticed that the lowest frequency coefficients
were classified as ebullitive despite no clear indication of ebullition events occurring over
such long time scales (> 2 min) in the 20-Hz time series. By comparing the f n values at
each time scale of the wavelet transformation for all best quality periods to potential values
for f n,LB, one can assess how frequently coefficients from each time scale are included in
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Fig. 6 Percentage of best quality 30-min periods including wavelet coefficients from a selection of time scales
as a function of lower frequency bound, f n,LB

the partitioning. As shown in Fig. 6, at f n,LB = 0.003 (the program default value), 90% of
periods include wavelet coefficients spanning ≈3.4 min, while 36% and 3% of best quality
periods include coefficients spanning ≈6.8 and ≈13.7 min, respectively. Because we found
little to no clear visual evidence of ebullition events spanning such long durations in the
raw CH4 concentration time series, we propose that it is also critical to interpret f n,LB as the
longest time scale over which a sporadic ebullition event could occur and be detected by an
eddy-covariance system.

Unfortunately, few datasets have reported on the duration of sporadic ebullition events
to further constrain our values for f n,LB. Iwata et al. (2018) suggested that the time scale
of ebullition is typically less than a few minute, and recent static chamber measurements
of CH4 fluxes in rice showed ebullition events predominantly lasting between 10 and 40 s
with a few large events lasting approximately 1 min (Kajiura and Tokida 2021). The 1 Hz gas
concentrationmeasurements from that study did not showmonotonic changewith time during
these longer duration ebullition events, suggesting the presence of multiple discrete bubbling
events in succession that are identifiable as distinct peaks within these larger events. Guided
by this information and Fig. 6 we ran the partitioning method using a range of values for
f n,LB spanning 0.003 to 0.030. We set 0.030 as the maximum value tested to exclude wavelet
coefficients spanning ≈51 s or longer in most periods, which is consistent with previous
observations that scalar similarity diminishes at event durations greater than 60 s (Ruppert
et al. 2006). In most cases, increasing f n,LB would tend to decrease the fractional ebullition
in any given period because moreWm coefficients would be excluded from the partitioning.
However, plotting cospectra for the ebullitive CH4 fluxes revealed that the longer time scale
(i.e., lower frequency) ebullitive fluxes in some 30-min periods were negative, which is
unclear to interpret. Thus when these coefficients were filtered from the partitioning, the
calculated fractional ebullition increased. This effect further underscores the need to examine
the sensitivity of themethod to f n,LB and to constrain the duration of sporadic ebullition events
in the context of the spatiotemporal resolution of an eddy-covariance system.
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2.5.2 Ebullition Threshold Width

During initial development, Iwata et al. (2018) performed a sensitivity test by running the
partitioning method with ebullition threshold multiplier values of 2 and 4 in place of the
original value, 3. These modifications changed the magnitude of the diffusive flux by 10%,
indicating a need to further investigate and constrain sensitivity related to ebullition threshold
width. While modifying either the multiplier or RMSDx would have the effect of changing
ebullition threshold width, we focus on RMSDx because our method modifications have
introduced a framework in which it is readily modified. Furthermore, modifying RMSDx is
still comparable with modifying the multiplier, as taking the ratio of any value for RMSDx to
the baseline value and multiplying it by 3 yields an equivalent ebullition-threshold multiplier
(i.e., themultiplier if all changes in ebullition threshold width were attributed to themultiplier
rather than RMSDx). Visualizing the partitioning method graphically (see Fig. 1e and f),
we would expect fractional ebullition and RMSDx to have an inverse relationship: when
increasing (decreasing) RMSDx in a given period, the ebullition threshold will be wider
(narrower), thus containing (excluding)morewavelet coefficients and decreasing (increasing)
the proportion of the total flux that is classified as ‘ebullitive’. However, similar to the point
raised at the end of the previous paragraph, the net flux due to Wm and Ww at a given scale
and time location (see Eq. 4) could be negative. If such points were counted as diffusive
(ebullitive) due to increased (decreased) RMSDx , the resultant fractional ebullition would
increase (decrease). These two small examples show that the effects of modifying RMSDx

on partitioning results may not always be straightforward and require further investigation.
As discussed in Sect. 2.4.3, our modified method uses the slope of the RMSDx–σm rela-

tionship from a selection of periods to generate a value for RMSDx in each 30-min period.
To facilitate direct comparison with the original partitioning method, we used the manually
identified non-ebullitive periods to fit this relationship, as those periods are common to both
methods of fitting RMSDx (see Sects. 2.3.3 and 2.4.3). With this ebullition threshold width as
a baseline in our modified method, we examined sensitivity to RMSDx by running the parti-
tioning method with the quantile regression slopes falling on either side of the non-ebullitive
RMSDx–σm line of best fit (see Fig. 5). We selected the minimum and maximum slopes for
the sensitivity analysis by plotting the resultant ebullition thresholds on wavelet coefficient
scatterplots (e.g., Fig. 1e and f) and visually examining where they typically fell in relation to
the main body of wavelet coefficients along theWm–Wx line of best fit. This exercise resulted
in three equivalent multipliers (EM) for use in the sensitivity analysis: EM ≈ 2.3 (15th per-
centile slope for the north field, 25th percentile slope for the south field, narrowest threshold),
EM ≈ 2.7 (25th percentile slope for the north field, 40th percentile slope for the south field,
slightly less narrow than the baseline threshold), and EM ≈ 3.5 (50th percentile slope for
the north field, 75th percentile slope for the south field). All partitioning runs in the RMSDx

sensitivity analysis were conducted at f n,LB = 0.020, which seemed to be most appropriate
value for these site-years after conducting the f n,LB sensitivity analysis (see Sect. 3.2).

2.6 Analysis of Biophysical Controls on Flux Partitioning

Lastly, we used the ancillary meteorological and flux observations to analyze the biophysical
controls on CH4 flux partitioning. This analysis consisted of two main steps, namely: (1)
a broad, pair-wise correlation analysis across a range of the partitioning runs between the
response variables of interest [i.e., total CH4 fluxes (Ftot), ebullitive CH4 fluxes (Feb), and
fractional ebullition (Feb/Ftot)] and all available predictor variables, and (2) development of
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multiple linear regression models for our ‘best’ partitioning estimates. The initial pairwise
correlation analysis helped us both identify the most relevant predictor variables for use in
subsequent linear regression modelling and detect any changes in variable relevance stem-
ming from changes in program parameters. Neither Ftot nor Feb were normally distributed
and both generally skewed to the right; thus, fluxes were log-transformed prior to both steps
of this analysis. Based on step (1), we found a need to implement a few additional filtering
steps prior to step (2). First, inspection of high frequency data from periods with low Ftot

showed a general inconsistency in method output when Ftot was less than 0.01 μmol m−2

s−1; therefore, we removed these periods from all further analysis. Second, the partitioning
method occasionally returned negative values for Feb; as the interpretation of ‘negative ebul-
lition’ is unclear, we omitted these periods from further analysis rather than forcing them
to a value of zero. These steps left a total of 839 and 716 30-min periods from the ‘best’
partitioning runs meeting all quality requirements for the north and south fields, respectively.

After constructing a preliminary set of models using predictor variables identified in step
(1), we assessed the relative importance of predictor variables using the R package Relaimpo
(Grömping 2006), which averages sequential R2 values across different orderings of the
predictor variables in the model to identify the unique contribution of each variable to the
model R2. In the case of all response variables of interest, 4–5 predictor variables emerged
as the most important, and these predictor variables were used to construct a final set of
regression models. Additionally, we examined diel variation in the partitioned fluxes and the
most relevant predictor variables to aid our inference of the processes controlling ebullition.
Tests for equality of means and medians on fractional ebullition across sets of partitioning
runs were conducted using the stats sub-package within the Python package SciPy (Virtanen
et al. 2020).

3 Results

3.1 Partitioning Estimates fromOriginal andModifiedMethods

As a preliminary step, we isolated all periods in which both H2O and CO2 were suitable as
reference scalars to ensure that the partitioning estimates based on the two scalars were com-
parable (Online Resource 4). Regardless of method or parameters used, fractional ebullition
based on CO2 (Feb,c/Ftot) generally showed good agreement with fractional ebullition based
on H2O (Feb,q/Ftot)(R2 values between 0.83 and 0.96), with slightly better agreement for the
south field. Linear regression slopes between Feb,q/Ftot (y) and Feb,c/Ftot (x) ranged from
0.91 to 0.98, indicating a tendency for CO2 to yield higher ebullition estimates than H2O.
However, differences between Feb,q/Ftot and Feb,c/Ftot also showed some variation by time
of day.Most notably,Feb,c/Ftot was larger thanFeb,q/Ftot more frequently around sunrise and
sunset (Online Resource 4, orange and purple points), while the reverse was more common at
night-time (Online Resource 4, green points). Although there are slight differences between
partitioning estimates based on the two reference scalars, the general agreement between
Feb,q/Ftot and Feb,c/Ftot across partitioning runs indicates that creating a harmonized time
series using multiple reference scalars for the partitioning is a feasible approach.

To further ensure the quality of the harmonized partitioning results, we analyzed scalar
similarity between CO2 and H2O in the wavelet domain to exclude the possibility that the
ebullition detected by the partitioning program was erroneously derived from fluctuations
in the reference scalar time series. As shown in Fig. 7, there was no relationship between
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Fig. 7 The relationship between fractional ebullition (Feb/Ftot ) and the R2 value of the iteratively reweighted
linear regression between wavelet coefficients of CO2 (Wc) and H2O (Wq) for the north field (a) and south
field (b). Data plotted are the harmonized 30-min time series for the modified method (f n,LB = 0.020)

Feb/Ftot and the degree of scalar similarity between CO2 and H2O (as given by theWc–Wq

iteratively reweighted linear regression R2). The vast majority of periods with poor scalar
similarity between CO2 and H2O had previously been flagged for one reference scalar not
meeting all quality requirements. For the periods in which both reference scalars met all
quality requirements, the magnitude of Wc–Wq coherence (considering all Wx with ts <
60 s) was consistently greater than 0.9 over the course of the day (negative during daytime,
positive during night-time; data not shown). In other words, for the range of frequencies in
which we would expect to observe ebullition, CO2 and H2O have strong scalar similarity,
and are thus not likely driving the observed patterns of ebullition.

The harmonized partitioning estimates from the original and modified methods along
with selected environmental variables are shown for the north and south fields in Fig. 8
and S5, respectively. Due to station outages and low Ftot in the early part of the season, only
observations from5 June onward are shown.At both fields, the original andmodifiedmethods
generally agreed on the seasonal timing of Feb and Feb/Ftot , but the values from the original
method had wider variation and larger extremes than those from the modified method for
both fields across much of the study period (see Fig. 8a, b and S5a,b). As estimated from the
modifiedmethod,Feb remained consistently below 0.04–0.05μmolm−2 s−1 until themiddle
of heading around 9 July, whereas Feb from the original method showed clear excursions
above these values during the second half of June (30-min Feb as high as 0.1 μmol m−2

s−1; see Fig. 8b), particularly at the north field. From this point in time, Feb based on
both methods increased to a local maximum near the beginning of grain filling (18 July),
coinciding with a period of decreasing wind speed and increasing air temperature (Fig. 8c,
d, S5c, d). Following this maximum, Feb decreased for the remainder of the season, with
the exception of large spikes in Feb during a period of rapid decrease in water-table depth
when the fields were drained (3–7 August). Again, while both methods capture this spike in
Feb, the original method yields substantially larger Feb estimates than the modified method
(maximum Feb during drainage spike: 0.33 and 0.16 μmol m−2 s−1 based on the original
and modified methods, respectively, at the north field; 0.13 and 0.07 μmol m−2 s−1 based
on the original and modified methods, respectively, at the south field). Seasonal variation in
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Fig. 8 Time series of partitionedCH4 fluxes and selected environmental variables at the north field. a Fractional
ebullition estimates from the original (blue) and modified (pink) partitioning methods (both using the default
value for f n,LB), b total CH4 fluxes and ebullitive CH4 fluxes for the corresponding partitioning runs shown
in (a) (left y-axis) alongside leaf area index (right y-axis), c wind speed, d air temperature, e vapour pressure
deficit, f air pressure, and g water-table depth. Other than the solid black lines in c, d, and e (daily averages),
dashed black lines in d and e (daily average of daytime observations), and green line in b (daily resolution), all
data shown are 30-min values. The vertical dashed yellow lines in b are approximate delineations of growth
stages into vegetative through early reproductive (left), panicle formation through heading (centre), and grain
filling and ripening (right); see Sect. 2.6 for more information on growth stage delineations
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Feb/Ftot displayed somewhat similar patterns to that of Feb, but the magnitude of Feb/Ftot

largely remained in the same range across the season (0.0–0.7 based on the original method,
0.0–0.4 based on the modified method; see Fig. 8a and Online Resource 5a), instead showing
stronger variation across shorter time scales (i.e., hours to days rather than weeks to months).

Unlike this general similarity in seasonal variation, the two partitioningmethods disagreed
strongly at the diel time scale (seeFig. 9).Other than from0900 to 1300LT the originalmethod
yielded higher Feb (and Feb/Ftot) than the modified method, and the two methods produced
distinctly different patterns of diel variation. For both fields the modified method had lowest
Feb during night-time, with fluxes increasing from 1000 LT until a peak between 1400 and
1500 LT (Fig. 9a, b, orange curves). At the north field, Feb based on the original method was
lowest inmorning hours (0900–1200 LT), increasing to a sustainedmaximum from afternoon
to early evening and followed by a general decrease through night-time hours (Fig. 9a, purple
curve). Diel variation in Feb based on the original method at the south field showed less of
a clear pattern, oscillating around 0.02 μmol m−2 s−1 (Fig. 9b, purple curve). In terms of

Fig. 9 Diel variation in partitioned CH4 fluxes (top row) and fractional ebullition (bottom row) for the north
(left column) and south (right column) fields across the 2017 growing season. Points show hourly bin averages,
and shaded areas encompass ± 1 standard deviation about the hourly bin averages. Note that a and b have
different y-axis limits to enhance visibility of CH4 fluxes at the south field, which tend to be lower than those
at the north field
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the relative importance of ebullition across the day, the modified method showed elevated
Feb/Ftot during midday and afternoon hours (1000–1600 LT) with a maximum hourly bin
average of 17% around 1300 LT (Fig. 9c, d, orange curves). Following the elevated afternoon
period, Feb/Ftot decreased to a minimum of 5% around 2000 LT, increasing slightly over the
progression of the night. In stark contrast, the modified method estimated ebullition to be of
greatest importance (Feb/Ftot as large as 25–32%) during evening and night-time (2000–0030
LT and a spike around 0600 LT at the north field, 0130–0600 LT at the south field) and of
least importance during morning and midday hours (Fig. 9c, d, purple curves).

While the original method did not consistently estimate higher Feb/Ftot than the modified
method on a 30-min basis (data not shown), Feb/Ftot based on the original method was
significantly higher than that based on the modified method (one-sided t-test, p < 0.01) for
both fields when averaged across the growing season (see Table 2, mean values in columns 1
and 2). Considering that the median Feb/Ftot between the two methods is more similar, this
discrepancy between 30-min and seasonal behaviour highlights the tendency of the original
method to produce extremevalues.Collectively, the twomethods produce distinctmagnitudes
and dynamics of ebullition whether considering the 30-min, diel, or seasonal time scales.

3.2 Sensitivity Analyses

Increasing f n,LB had the net effect of decreasing the amount of CH4 flux identified as ebul-
litive, lowering the mean, median, and IQR of Feb/Ftot at both fields (see Table 2, columns
2–5). Mean Feb/Ftot decreased by 4.6 percentage points at the north field and 6.3 percentage
points at the south field, representing a relative decrease of 35% and 45% across the full range
of f n,LB, respectively. In other words, lower frequency components of the flux contributed
substantially to the estimated ebullitive fluxes if considered in the partitioning. To further
characterize sensitivity to the program parameters, we examined variation in Feb/Ftot within
each 30-min period across the set of partitioning runs used in each sensitivity analysis (here-
after referred to as intra-period variation, see Fig. 10). These distributions of intra-period
variation were compared with the distributions of 30-min ebullitive flux random error (see
final paragraph of Sect. 2.3.2) normalized by the respective 30-min total flux (yellow distri-
butions, Fig. 10) to provide further context for the magnitude of parameter sensitivity (i.e.,
is uncertainty due to program parameterization of a similar magnitude to the random error
inherent in the flux measurements?). Due to the relatively wide range for f n,LB identified
with Fig. 6, we compared both the full range of partitioning runs (blue distributions, Fig. 10a,
b) and a reduced range of partitioning runs (red distributions, Fig. 10a, b) to the normal-
ized random error distributions. This comparison gives a sense of how much uncertainty
in the resultant Feb/Ftot estimates might be mitigated if f n,LB could be more confidently
constrained. While narrowing the range of f n,LB did reduce intra-period variation (decrease
in median intra-period Feb/Ftot standard deviation of 1.0 percentage points for the fields),
random error associated with the ebullitive flux estimates was larger than the variation in
Feb/Ftot due to f n,LB sensitivity (i.e., dotted lines fall to the right of solid lines in Fig. 10a,
b).

Similar to the effect of increasing f n,LB, widening the ebullition threshold by increasing
RMSDx decreased Feb/Ftot (see Table 2, columns 4, 6, 7, 8). Using the smallest RMSDx

value (Table 2, column 6) instead of the baseline RMSDx (Table 2, column 4) increased mean
Feb/Ftot by approximately 3.6 percentage points on average for the two fields, representing
a relative increase between 35 and 40%. While using the largest RMSDx value instead of
the baseline value decreased mean Feb/Ftot by a smaller amount (2.2 percentage points on
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Fig. 10 Sensitivity of partitioning results to changes in f n,LB (top row) and RMSDx (bottom row) compared
with the ebullitive flux normalized randomerror for the north (left column) and south (right column) fields. Red,
blue, and green bars show the distribution of the standard deviation in fractional ebullition within each 30-min
period across the partitioning runs in brackets shown in their respective legend entries. Yellow distributions
are the mean normalized ebullitive flux random error in each 30-min period across the partitioning runs shown
in the blue and green legend entries, respectively. Black lines show the median values of their respective
distributions: solid (full ensemble of partitioning runs), dashed (reduced ensemble of partitioning runs, f n,LB
only), and dotted (ebullitive flux normalized random error). See Sect. 2.5.2 for more information on the
equivalent multiplier (EM) values used in the RMSDx sensitivity analysis (green legend entry); all partitioning
runs used in RMSDx sensitivity analysis were conducted at f n,LB = 0.020

average for the two fields, or a relative decrease of roughly 23%), the largest RMSDx value
was closer to the baseline RMSDx value than the smallest RMSDx value (Table 2, column 8).
Across the full range ofRMSDx values tested, intra-period variation inFeb/Ftot was generally
close in magnitude to the normalized ebullitive flux random error (i.e., dotted and solid lines
in Fig. 10c, d are close together, especially for the north field). While the results shown in
Fig. 10 are in large part based on H2O as a reference scalar, we also examined the sensitivity
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of the partitioning program to its parameters when only using CO2 as a reference scalar
(Online Resource 6). Sensitivity to f n,LB was of a similar magnitude (Online Resource 6a,
b as compared with Fig. 10a, b), but partitioning results based on CO2 were slightly more
sensitive to RMSDx than the harmonized partitioning results (0.1 percentage point increase
in median intra-period standard deviation of Feb / Ftot for both fields; solid lines in Online
Resource 6c, d as compared with those in Fig. 10c, d). Collectively, these results indicate that
the magnitudes of ebullition based on the modified partitioning program show non-trivial
sensitivity to both RMSDx and f n,LB and need further constraint to reduce uncertainties in
the program outputs. Based on the spectral analysis in Online Resource 1 and relationships
shown in Fig. 6, we selected 0.020 as the appropriate f n,LB for these site-years of data. In
the absence of further ground-based validation of the method, we decided to leave RMSDx

unchanged from the baseline value for the modified method, resulting in finalized mean
Feb/Ftot estimates of 10.1% and 8.7% for the north and south fields (Table 2, column 4).

3.3 Biophysical Drivers of Methane Flux Partitioning

Across the ensemble of modified method partitioning runs, correlation coefficients between
Feb and predictor variables (as well as between Feb/Ftot and predictor variables) showed
little variation. The ebullitive flux was most strongly correlated with wind speed (north field
r = − 0.56, south field r = − 0.66; Fig. 11a), Reco (north field r = 0.55, south field r =
0.56; Fig. 11b), air temperature (north field r = 0.42, south field r = 0.37), sensible heat
flux (north field r = 0.24, south field r = 0.30), and water-table depth (north field r = 0.34,
south field r = 0.20). The ration Feb/Ftot was most strongly correlated with this same set of
variables (most notably with wind speed: north field r = − 0.52, south field r = − 0.53;
Fig. 11c) excluding water-table depth, where correlations were not significant. Partitioning
estimates based on the original method generally showed similar patterns of correlation to
those based on the modified method, except that correlations with all variables other than
wind speed were weaker for the original method (data not shown). Correlations between
Feb/Ftot and these predictor variables were generally weaker than the respective correlations
for Feb, although Feb/Ftot had stronger correlations with sensible heat flux (north field r
= 0.38, south field r = 0.40; Fig. 11d). While Feb was also significantly correlated with
outgoing longwave radiation (north field r = 0.40, south field r = 0.52), four-component net
radiation measurements were only sparsely available for the south field, and so these data
were excluded from use in further analysis. Thirty-minute change in air pressure had only a
weak negative correlation with Feb (north field r = − 0.15, south field r = − 0.12), while
air pressure itself had a positive correlation with Feb that was substantially stronger for the
south field (r = 0.36) than the north field (r = 0.20). Interestingly, many of the predictor
variables most strongly correlated with Ftot were the same variables previously mentioned
for Feb: Reco (north field r = 0.68, south field r = 0.64), water-table depth (north field r =
0.60, south field r = 0.42), wind speed (north field r = − 0.31, south field r = −0.50) and
air temperature (north field r = 0.32, south field r = 0.43). As with Feb, Ftot was positively
correlated with air pressure but more strongly for the south field (r = 0.42) than the north field
(r = 0.12). Soil temperature was strongly correlated with Ftot for the south field (r = 0.73),
but as these data were not available for the north field, we excluded soil temperature from
multiple linear regression modelling. While we lacked a complete soil temperature record,
the available soil temperature data showed a strong correlation with air temperature (r =
0.78).
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Fig. 11 Scatterplots of log-transformed ebullitive fluxes (top row) and fractional ebullition (bottom row) as a
function each quantity’s two most informative predictor variables. Predictor variables shown on the x-axes
are wind speed (a, c), ecosystem respiration (b), and sensible heat flux (d). North field data are shown in blue
circles (n = 839) and south field data are shown in red triangles (n = 716); the same colour scheme applies to
the lines of best fit shown in each plot. The partitioning results displayed are from the modified method with
f n,LB = 0.020, RMSDx from non-ebullitive periods (i.e., our best estimate)

Final multiple linear regression model R2 values decomposed into the contributions from
each predictor variable are shown in Fig. 12. Models for Ftot had better performance (R2 =
0.62; 0.64) than for Feb (0.49; 0.57) and Feb/Ftot (0.42; 0.39), with the north field always
having the lower R2 value than the south field, except in the case of Feb/Ftot . While both
fields shared Reco as the most important predictor variable for Ftot (Fig. 12a), wind speed
and air pressure were the next most important predictor variables at the south field, whereas
water-table depth and air temperature were the next most important predictor variables at the
north field. Wind speed and Reco were the most important predictor variables for Feb at both
fields (Fig. 12b), although wind speed explained more variance in Feb at the south field than
at the north field.While Feb/Ftot models had generally poor performance overall, wind speed
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Fig. 12 Relative importance of
predictor variables in final
multiple linear regression models
for a log-transformed total CH4
fluxes, b log-transformed
ebullitive CH4 fluxes, and
c fractional ebullition at the north
and south fields. Red and blue
bars show the amount of variance
in the response variable that is
explained by each predictor
variable. See Sect. 2.6 for more
information on decomposition of
model R2 values into the unique
contribution from each predictor
variable. Regression response
variable data in b and c are our
best partitioning estimates (f n,LB
= 0.020, RMSDx from
non-ebullitive periods)

and sensible heat flux were responsible for explaining most of the variance in observations
(Fig. 12c).

When split by rice growth stage, the contribution of ebullition to the total flux increased as
plants developed (Table 3). Mean Feb/Ftot was highest in the grain filling and ripening period
(≈13%), followed by panicle formation–heading (≈8%), and vegetative–early reproductive
growth (≈6%). Both mean and median Feb/Ftot in each growth stage were significantly dif-
ferent from those in the other growth stages (ANOVA and Kruskal–Wallis test, respectively;
p < 0.01).
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Table 3 Statistics on fractional ebullition estimates (%) in different rice growth stages. Data shown correspond
to the ‘finalized’ partitioning estimates (modified method, baseline RMSDx , f n,LB = 0.020)

Growth stage

Vegetative–early
reproductive

Panicle formation–heading Grain filling and
ripening

North field (n = 196) (n = 333) (n = 310)

Mean 6.3 8.8 13.9

Median 5.1 6.5 12.0

S.D 5.3 7.6 9.2

IQR 2.6–7.9 3.7–11.4 7.3–18.5

South field (n = 117) (n = 355) (n = 244)

Mean 5.8 7.8 11.5

Median 4.5 6.0 8.9

S.D 4.7 6.6 10.4

IQR 2.4–8.2 3.3–9.9 5.0–14.3

4 Discussion

By thoroughly examining the CH4 flux partitioning method of Iwata et al. (2018), making
subsequent modifications, and conducting a sensitivity analysis on this modified method, we
believe we have substantially improved the robustness and applicability of the method. In
this section we discuss the implications of our findings for future use of the method, draw
inference on the processes controlling ebullition in rice paddies, address uncertainties in our
results, and suggest future research opportunities using the method.

4.1 Implications of MethodModifications for Future Implementation

The inclusion of displacement height in the formulation of f n only had a minor impact on
covariance and coherence spectra aggregated across the study period, but this slight shift
of the spectra toward lower frequencies prevented further inclusion of low frequency flux
components, whichmay not necessarilymaintain scalar similarity in the absence of ebullition
(see Online Resource 1). As wetlands globally span a broad range of vegetation types with
varying phenology (e.g., the sites included in Delwiche et al. 2021), this modification should
make partitioning estimatesmore robust as themethod is applied atmore flux tower sites. This
consideration is especially important because instruments should be placed relatively close
to the surface in order to reliably capture ebullitive signals prior to dilution or mixing (Iwata
et al. 2018). While daily canopy height measurements may not be available (or necessary)
for some sites, average canopy heights are often reported in flux tower metadata and could be
supplemented as necessary with manual or other remote observations (e.g., from PhenoCam
imagery), or could be derived as aerodynamic canopy heights from the eddy-covariance data
(Chu et al. 2018). Through our exercises with f n,LB and its sensitivity analysis, we showed
that this parameter requires careful scrutiny and can substantially alter partitioning estimates
depending on the user’s selection (Table 2, Fig. 10a, b). Low frequency components of the
CH4 flux were often classified as ebullitive, likely due to diminished scalar similarity at low

123



Modification of a Wavelet-Based Method for Detecting… 101

frequencies (e.g., Online Resource 1d, f) even in the absence of ebullition (Ruppert et al.
2006; Foken et al. 2011). Putting f n values back in the context of wavelet coefficient time
scales (Fig. 6) was useful in helping us select a realistic final f n,LB and is recommended for
future applications of this method. Furthermore, recent work suggests that the coarser time
scale wavelet coefficients should be excluded from scalar similarity-based analyses, as the
Haar wavelet has poor time localization at the longest time scales (i.e., lowest frequencies)
of the wavelet transform (Zorzetto et al. 2021). Basing wavelet coefficient selection on the
integral time scale of vertical velocity fluctuations as in Zorzetto et al. (2021) would provide
a useful comparison with the f n-based approach used in this work.

By conducting the partitioning with multiple reference scalars, we gained important new
insights on scalar similarity and its breakdown when flux magnitudes are low. Similar to all
previous studies using the partitioningmethod, H2Owas generally themost reliable reference
scalar to use, owing to the large LE at the fields. As most prominent CH4 emitting sites are
frequently inundated, H2O would likely be the primary reference scalar to use in future
applications of the method. The rapid plant growth during agricultural growing seasons is
accompanied by large photosynthesis and respiration fluxes, creating conditions for strong
CH4–CO2 similarity in the absence of ebullition (see Fig. 3f, h). We found that Feb/Ftot

based on CO2 largely agreed with the H2O-based estimate (Online Resource 4), enabling
an expanded number of quality ebullition observations (7% increase in the number of best
quality 30-min periods for both fields). While the slight disagreements between the reference
scalars could indicate a need for slightly higher reference scalar flux thresholds (Fig. 4c,
d), this discrepancy cannot be resolved further in the absence of independent ground-based
validation of the partitioning method. We suggest instead that it may be useful to take time of
day into account when selecting reference scalars. The net CO2 flux during daytime hours is a
mixture of photosynthesis (downward flux) and of respiration (upward flux) while ebullition
is an upward release; the resulting mixture of positively and negatively correlated CH4–CO2

fluctuations could weaken scalar similarity across a daytime 30-min period. Given that night-
time CO2 fluxes are solely due to respiration and CH4–H2O similarity breaks down most
frequently at night due to negligible night-time evapotranspiration, CO2 may be a more
reliable reference scalar than H2O at night (given that respiration fluxes are large enough for
scalar similarity with CH4 to hold). This finding is particularly important considering that
it provides an opportunity to expand the observation of ebullition at night, often excluded
by chamber measurements (e.g., Minamikawa et al. 2012; Rogers et al. 2013). However, it
should be noted that such large CO2 fluxes may not occur as consistently at natural wetland
or lake sites and thus may limit the broader use of CO2 as a reference scalar. In our initial
exploration of the method, we also tried using sonic temperature as a reference scalar but
found that the low magnitude sensible heat fluxes at our site made these ebullition estimates
generally inconsistent. We note that it may still be worthwhile to pursue sonic temperature
as a reference scalar at sites with higher sensible heat fluxes, and this possibility could even
be further investigated in our data by isolating periods with the highest sensible heat fluxes.

Of the modifications, the new technique for fitting RMSDx is likely the most critical
departure from the original method, as it changes the ebullition threshold width on a 30-min
rather than a monthly time scale. For our site, 30-min RMSD values were strongly driven by
σm (see Fig. 5), and this relationship was even stronger when only considering the manually
identified non-ebullitive periods (R2 ≥ 0.95 for both H2O and CO2 as reference scalars; red
circles in Fig. 5). Furthermore, diel profiles constructed for σm showed strong similarity to
those of Feb/Ftot based on the original method (Online Resource 7e). The strong differences
between outputs from the original and modified methods indicate that analyses based on
scalar similarity should account for unit magnitudes of the scalars (Hill, 1989), and another
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recent wavelet-based CH4 flux partitioning method (Zorzetto et al. 2021) even normalizes
wavelet coefficients by their respective standard deviations prior to assessing scalar similarity.
However, as mentioned in Sect. 2.4.3, one drawback of our new RMSDx fitting technique
is that unlike the non-ebullitive periods, the observed σm is the result of both ebullitive and
diffusive emission. This results in a larger RMSDx than that based on diffusive Wm alone,
thereby reducing the ebullitive flux estimate. One potential solution to this problem would
be to iterate the partitioning, using the observed σm to fit a first guess for RMSDx . With this
initial RMSDx , the user could then calculate a non-ebullitive σm using only Wm related to
diffusive emission. A new RMSDx would then be calculated from this non-ebullitive σm to
partition the flux again, repeating the process until convergence on a value for Feb.

Aside from its utility as a step toward more accurate ebullition estimates, the new RMSDx

fitting technique also eliminates the abrupt month-by-month changes in ebullition threshold
width, which may be partially responsible for the sharp decrease in Feb/Ftot at the north
field based on the original method at the beginning of July (see Fig. 8a). While the RMSDx

values generated via quantile regression were useful for setting up our sensitivity analyses
on RMSDx , we recommend continuing the practice of manually identifying non-ebullitive
periods for determiningRMSDx . This step allows the resultant ebullition thresholds to reliably
contain all coefficients showing high scalar similarity, thus enabling the detection of what
appeared to be real ebullition for coefficients outside those bounds. Although the partitioning
estimates are clearly sensitive to RMSDx (an ≈25% relative decrease in RMSDx resulted in
a 35–40% relative increase in Feb / Ftot), the empirical nature of the ebullition threshold
width will likely remain unconstrained until future independent validation of the partitioning
method (see Sect. 4.3). Further comparison of our RMSDx sensitivity analysis with that of
Iwata et al. (2018) is complicated by (1) the difference in RMSDx fitting techniques and (2)
the reporting of units, as that study reports sensitivity in terms of diffusive flux magnitude,
which is of much lower importance for that site (43% of the total flux as reported by Taoka
et al. (2020) versus approximately 90% of the total flux at our site).

4.2 Dynamics and Drivers of Ebullition

The average contribution of ebullition to the total flux across the study period, roughly 9%
at both fields, is generally consistent with values reported by previous studies in rice paddies
(Schütz et al. 1989; Wassmann et al. 1996, 2000; Butterbach-Bahl et al. 1997; Hwang et al.
2020). However, most of these studies reported that the relative importance of ebullition
was greatest in early growth stages and decreased with crop development, while we found
that Feb/Ftot increased over the course of crop development. As the aforementioned studies
(excluding Hwang et al. 2020) also had delayed flood irrigation but used static chamber
techniques for flux measurement, typical manual measurement protocols (e.g., sampling
weekly, Minamikawa et al. 2012) may fail to fully capture the (spatio)temporal variation in
rice paddy ebullition. While the modifications made to the original method may be partially
responsible for the differences in our observed patterns of Feb/Ftot and crop development
and those of Hwang et al. (2020), the field in that study was drained for several weeks during
the vegetative growth stage in each crop cycle. In that case, nearly all of the preexisting soil
CH4 pool would likely have been released during drainage or subsequently consumed as
oxygen entered the soil profile (Denier Van Der Gon et al. 1996). After applying a new flood
it would take some time for anaerobic conditions to be re-established (Runkle et al. 2019) and
subsequently for gas bubbles to form and accumulate, thus potentially lowering ebullition
in later parts of the growing season. Furthermore, early-season land-preparation practices
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vary substantially between our study and that of Hwang et al. (2020) due to differences
in planting strategy (i.e., drill-seeding versus transplanting). Fields are flooded and then
tilled or levelled prior to transplanting (Ge et al. 2018; Bhattacharyya et al. 2019), creating
subsurface conditions that could differ from those at our fields. It should be noted that station
outages in the early part of this study prevented flux observation during much of the period in
which aerenchyma were forming. While we cannot rule out that some substantial ebullitive
fluxes occurred during this period, large CH4 fluxes during the early growing season are more
commonly associated with the application of carbon-rich organic fertilizers (Wassmann et al.
1996), and all fertilizers applied to the fields in this study were inorganic.

In addition to this seasonal variation, the modified method provided new insight into
dynamics of Feb and Feb/Ftot at the diel scale (Fig. 9) and the mechanisms connecting them
to their most informative predictor variables (Online Resource 7a–d). A visual comparison
of the grey and orange curves in Fig. 9a, b shows that ebullition played some part in shaping
the diel cycle of total CH4 fluxes at the fields, particularly in afternoon hours. Of the relevant
predictor variables for Feb (Sect. 3.3, Fig. 12b), Reco and air temperature displayed the most
similar diel cycles to Feb (Online Resource 7a, b), suggesting several possible mechanisms
driving Feb. Ecosystem respiration was strongly informative of both Feb and Ftot (Fig. 12),
pointing to a strong connection between microbial activity (i.e., production of new CH4)
and CH4 emission (Morin et al. 2014; Knox et al. 2016; Irvin et al. 2021), through both
the diffusive and ebullitive pathways. Much of the soil CH4 pool in rice paddy systems
consists of gas bubbles, with the proportion of gaseous to total soil CH4 increasing in later
growth stages (Tokida et al. 2013). Thus, the diel synchronization of Feb and temperature
may indicate that Feb is driven in part by diel changes in the volume of gas bubbles in the
soil resulting from (1) gas expansion and (2) degassing of porewater CH4 (due to lower
solubility) under increased temperature (Green 2013; Tokida et al. 2013). While we found
only weak negative relationships between Feb and changes in air pressure at the 30-min
scale, air pressure dropped by 0.3 kPa on average during the afternoon period of elevated
Feb (Online Resource 7f). This magnitude of air pressure drop has previously been shown to
trigger ebullitive fluxes (Mattson and Likens 1990; Tokida et al. 2007; Stanley et al. 2019), so
it is possible that air pressure may still be an important driver of ebullition at our fields. More
clarity on the relationship between ebullition and air pressure might come through analysis at
different time scales, such as considering the change in air pressure over the previous several
hours or focusing on synoptic scale change associated with low pressure systems.

Interestingly, the diel cycle of Feb/Ftot led that of Feb (particularly at the north field),
with the periods of highest importance and daily maxima occurring 1–2 h earlier on average
(Fig. 9). Sensible heat flux showed similar patterns of diel variation to Feb/Ftot , and portions
of the day with elevated Feb/Ftot coincided with the largest sensible heat fluxes of the day
(Online Resource 7c). As the water surface is largely shaded past a certain point in crop
development, positive sensible heat fluxes may be associated with localized sensible cooling
at the water surface, causing convective turnover in the water column (Poindexter and Vari-
ano 2013). While water column turnover has previously been reported to enhance diffusive
emission at sub-daily time scales in wetlands via hydrodynamic transport (e.g., Poindexter
et al. 2016), we hypothesize that convective turnover could also enhance ebullitive emission
by bringing gas bubbles from the sediment–water interface to the surface (Podgrajsek et al.
2014). Additionally, wind speeds during this time of day were relatively calmer (Online
Resource 7d) as compared to the adjacent morning and sunset values; given the relative dom-
inance of diffusive fluxes at our fields, this pattern may indicate that plant-mediated transport
is suppressed under lowered wind speeds (i.e., higher wind speeds should promote flushing
of CH4 from the aerenchyma system due to mechanical disturbance of plant stems; Kim
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et al. 1999; Wang et al. 2017). Considering that this behaviour occurs at the warmest time of
day with highest microbial activity (Online Resource 7a, b), lower plant-mediated transport
capacity may indirectly increase Feb/Ftot due to an increase in CH4 accumulation and bubble
formation in the soil, as CH4 production could outpace plant-mediated transport.

4.3 Method Uncertainties and FutureWork

The largest source of uncertainty in the ebullitive fluxes from this partitioning method is the
lack of validation with independent ebullition observations, which should be a top priority in
future work (see below). In the absence of such validation, the random ebullitive flux error
generated with the method of Finkelstein and Sims (2001) provided valuable context for
potential uncertainty in the partitioning results related to the empirical parameters (Fig. 10).
While the magnitude of this uncertainty was generally bounded by the random error inherent
in the ebullitive flux estimates, constraining the parameters during validation would further
increase confidence in the resultant ebullitive fluxes, as parameter-induced errors could be
systematic.

Several other sources of uncertainty remain in the output of the partitioning method.
First, although relatively infrequent, Feb estimates were occasionally negative. Bubbling
fluxes are positive by definition, so the treatment of these instances (i.e., set to zero or
omit from analysis) remains unclear at this point. Negative covariance between the vertical
velocity component and CH4 most commonly occurred in the lower frequency region of
the spectrum (Online Resource 1a, b), suggesting that the coarser scale wavelet coefficients
may be primarily responsible for negative ebullition estimates. Regardless, more inspection
of ebullitive flux cospectra for these periods could provide better understanding of negative
scale-wise ebullition, its causes, and its impacts on 30-min Feb estimates. Second, when
inspecting high-frequency data during method exploration and development, it was evident
that large trends in either CH4 or the reference scalar tended to produce slightly inflated
ebullition estimates. For such periods, it may be useful to run the partitioning program
on de-trended time series (e.g., EddyPro Level 7 processed raw data rather than Level 6).
Lastly, no spectral corrections are applied to the total flux or its subcomponents by the
partitioning program. In our context, the higher frequency components of the flux which
are not fully detected by eddy-covariance systems (Moncrieff et al. 1997) are of particular
interest. Because the partitioning method is based on observed scalar similarity, applying
a spectral correction to the partitioned fluxes would impose an assumption on the relative
amount of diffusion and ebullition in the ‘missed’ CH4 flux. Although the spectral correction
on average (1.24) adds a non-negligible amount to Ftot , at this time it remains uncertain how
a spectral correction would best be applied to the partitioned fluxes.

As previously mentioned, comparison with collocated independent ebullition observa-
tions is a crucial next step to validate the partitioning method. Several previous studies
have deployed bubble traps or other manual means of measuring ebullition alongside eddy-
covariance towers (e.g., McNicol et al. 2017; Männistö et al. 2019; Waldo et al. 2021; Zhao
et al. 2021); re-visiting these datasets and applying the partitioning method would be a valu-
able opportunity to further validate themethodwithout needing to collectmore data.However,
both in the case of previously collected data and future field campaigns, flux footprint infor-
mation should be used to isolate periods when the area sampled by the eddy-covariance
system overlaps with the locations of manual ebullition sampling. As the method is further
validated, it could also be applied at various other lake, wetland, rice, and aquaculture sites,
having the potential to greatly improve understanding of CH4 flux partitioning and our ability
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to model CH4 fluxes. In the future we plan to automate the process of non-ebullitive period
selection with a MAD-based screening, investigate an iteration scheme for the partitioning
(see Sect. 4.2), and apply the modified partitioning method to more growing seasons of data
from these sites, which span a variety of irrigation regimes and environmental conditions.
This work should provide opportunities to (1) revisit the contribution of ebullition in early
growth stages, (2) focus on the role of ebullition during drainage events, (3) investigate field-
to-field differences, and (4) gather more data to inform pathway-specific modeling of rice
CH4 fluxes.

Another useful future research avenue could involve comparing the modified partitioning
method with other existing high frequency CH4 flux processing methods. For example, an
intermittent surface renewal method for detecting CH4 hotspots has recently been developed
(Zorzetto et al. 2021) andmay provide additional useful comparisonwith both the original and
modified methods. While not focused on ebullition, using other wavelet-based methods for
estimating CH4 fluxes over short time intervals during nonstationary periods (e.g., Schaller
et al. 2017) may provide valuable information for improving the partitioning program. The
method of Schaller et al. (2017) uses more advanced mother wavelet functions, such as the
Mexican hat wavelet, which have better localization in time than the simple Haar wavelet
used in our partitioning program. Partitioning CH4 fluxes using additional mother wavelet
functions could be an alternativemeans of assessing the robustness of our partitioningmethod.
Lastly, itmaybe interesting to apply themodifiedmethod to previous studies using the original
method and examine how results change.

5 Conclusion

In thiswork,we applied and subsequentlymodified a recently developedCH4 fluxpartitioning
method in order to accurately quantify ebullitive fluxes from eddy-covariance observations at
inundated rice fields. Of the modifications made to the original method, the most critical for
robust ebullition detectionwas scaling the empirical ebullition-threshold parameter (RMSDx)
by the standard deviation of CH4 concentration measurements. Additionally, we developed
new tests to ensure the quality of the partitioning results, namely: using information on
the time scales of wavelet coefficients to select the lower frequency bound (Fig. 6) and
selecting an appropriate reference scalar for each 30-min period based on reference scalar
flux magnitude (Fig. 4c, d). Despite these modifications, this work confirms the observation
of Iwata et al. (2018) that ebullition leaves a distinct imprint in the CH4 concentration data;
at this time it remains unclear as to how its detection is impacted by measurement height and
mixing length, but making flux observations at multiple measurements may help shed light
on the nature of this turbulent exchange (Thomas and Foken 2007). Themodified partitioning
method produced lower ebullitive fluxes than the original method and revealed coherent diel
variation in both ebullitive fluxes and fractional ebullition. We found that ebullition made
up approximately 9% of the total CH4 flux on average, similar to previous studies on rice,
although ebullition increased in importance as the crop developed. Sensitivity analyses on
the method’s empirical parameters showed that the typical intra-period change in fractional
ebullition across each parameter’s full range was 2–2.5 percentage points (Fig. 10), which
was generally less than the amount of random error in the ebullitive flux estimates. Ebullition
was enhanced under conditions of low wind speed, high ecosystem respiration, and positive
sensible heat flux. Increased application of this method to flux data collected at wetland and
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rice sites has great potential to improve understanding of the controls on hot spots ormoments
of CH4 emission and further inform process-based CH4 flux models.

Supplementary Information The online version contains supplementary material available at https://doi.org/
10.1007/s10546-022-00703-y.
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Suvočarev K, Castellví F, Reba ML, Runkle BRK (2019) Surface renewal measurements of H, λE and CO2
fluxes over two different agricultural systems. Agric For Meteorol 279:107763. https://doi.org/10.1016/
j.agrformet.2019.107763

Taoka T, Iwata H, Hirata R, Takahashi Y, Miyabara Y, Itoh M (2020) Environmental controls on diffusive and
ebullitive methane emission at a sub-daily time scale in the littoral zone of a mid-latitude shallow lake.
J Geophys Res Biogeosci. https://doi.org/10.1029/2020JG005753

Thomas C, Foken T (2007) Flux contribution of coherent structures and its implications for the exchange of
energy and matter in a tall spruce canopy. Boundary-Layer Meteorol 123:317–337. https://doi.org/10.
1007/s10546-006-9144-7

Tokida T, Cheng W, Adachi M, Matsunami T, Nakamura H, Okada M, Hasegawa T (2013) The contribution
of entrapped gas bubbles to the soil methane pool and their role in methane emission from rice paddy
soil in free-air [CO2] enrichment and soil warming experiments. Plant Soil 364:131–143. https://doi.org/
10.1007/s11104-012-1356-7

Tokida T, Miyazaki T, Mizoguchi M, Nagata O, Takakai F, Kagemoto A, Hatano R (2007) Falling atmospheric
pressure as a trigger for methane ebullition from peatland. Global Biogeochem Cycles 21:1–8. https://
doi.org/10.1029/2006GB002790

United Nations Environment Programme and Climate and Clean Air Coalition (2021). Global methane
assessment: benefits and costs of mitigating methane emissions. Nairobi: United Nations Environment
Programme.

Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J
Atmos Ocean Technol 14:512–526. https://doi.org/10.1175/1520-0426(1997)014%3c0512:QCAFSP%
3e2.0.CO;2

Villa JA, Ju Y, Yazbeck T, Waldo S, Wrighton KC, Bohrer G (2021) Ebullition dominates methane fluxes from
the water surface across different ecohydrological patches in a temperate freshwater marsh at the end of
the growing season. Sci Total Environ 767:144498. https://doi.org/10.1016/j.scitotenv.2020.144498

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P,
Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, Nelson ARJ,
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