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EVOLUTIONARY BIOLOGY

Proteotype coevolution and quantitative diversity

across 11 mammalian species

Qian Ba't, Yuanyuan Hei't, Anasuya Dighe?3, Wenxue Li', Jamie Maziarz*?, Irene Pak*?,
Shisheng Wang?®, Giinter P. Wagner>>*®*, Yansheng Liu"7*

Evolutionary profiling has been largely limited to the nucleotide level. Using consistent proteomic methods, we
quantified proteomic and phosphoproteomic layers in fibroblasts from 11 common mammalian species, with
transcriptomes as reference. Covariation analysis indicates that transcript and protein expression levels and vari-
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abilities across mammals remarkably follow functional role, with extracellular matrix-associated expression being the
most variable, demonstrating strong transcriptome-proteome coevolution. The biological variability of gene
expression is universal at both interindividual and interspecies scales but to a different extent. RNA metabolic
processes particularly show higher interspecies versus interindividual variation. Our results further indicate that
while the ubiquitin-proteasome system is strongly conserved in mammals, lysosome-mediated protein degrada-
tion exhibits remarkable variation between mammalian lineages. In addition, the phosphosite profiles reveal a
phosphorylation coevolution network independent of protein abundance.

INTRODUCTION

Despite the scalable nucleotide sequencing performed in evolutionary
biology, it is ultimately protein abundances and activities that, to a
large part, define the organism phenotype. Recently, a qualitative pro-
teome landscape for 100 taxonomically diverse organisms was es-
tablished by mass spectrometry (MS)-based analysis (1). However,
a quantitative evolutionary comparison of proteomes across multiple
species, such as mammals, represents, so far, uncharted territory. Ribo-
some profiling (Ribo-seq) was used as a proxy for quantifying proteins
synthesized, which revealed coevolutionary patterns across the
transcriptome and translatome in five mammals (2). However, both
the proteome dynamic range and protein degradation cannot be directly
measured by Ribo-seq. On the other hand, the recently developed re-
producible proteomic workflow exemplified by data-independent
acquisition (DIA) MS has achieved favorable reproducibility and
quantitative performance for the global proteome (3, 4), with data quality
thoroughly and widely assessed (5-8). However, a systematic, unbiased
multispecies quantitative effort has been lacking to link individual vari-
ability to species level variability (9) and to understand phosphorylation
signaling among multiple species in a comprehensive manner.

RESULTS

Steady-state and diverse proteotype across

11 mammalian species

Proteotype is defined as the proteome complement of a genotype (10, 11).
To understand the functional and molecular basis of proteotype
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evolution in mammals, we profiled the steady-state proteomes and
phosphoproteomes of primary skin fibroblasts from 11 common
mammalian species (Fig. 1A) by DIA-MS (12, 13). Considering that
different cell types present a major variable factor in profiling gene
expression (14-16), we here exclusively analyzed cultured fibroblast
cells commonly used for evolutionary studies (fig. S1). The mam-
malian species we analyzed represent two major phylogenetic clades,
Euarchontoglires (EAOG: primates, rodents, and their relatives) and
Laurasiatheria (LAUT: carnivores, hoofed animals, and their relatives),
together with an evolutionarily distant species, Monodelphis domestica
(opossum), a marsupial, as the outgroup. The EAOG taxon samples
include Oryctolagus cuniculus (rabbit), Rattus norvegicus (rat), Macaca
mulatta (monkey), and Hormo sapiens (human), whereas the LAUT taxon
samples include Ovis aries (sheep), Bos taurus (cow), Sus scrofa (pig),
Canis lupus (dog), Felis catus (cat), and Equus caballus (horse). For
clarity, the short common names of the species are used hereafter.
Our spectral library-free DIA-MS (4, 17) was able to detect an
average of 6490 protein groups [peptide and protein false discovery
rates (FDRs) < 1%] (18) in the fibroblasts of different species, ranging
from 5968 (dog) to 7165 (human) identified proteins. In most species,
our phosphoproteomic analysis measured >8000 unique, confidently
localized phosphosites (P-sites) despite limited species-specific pep-
tide mixtures acquired. In addition, we profiled the mRNA levels
for an average of 12,400 genes in all the samples by mRNA sequencing
(RNA-seq) to study possible posttranscriptional regulations (Fig. 1A
and tables S1 and S2). To quantify the molecular traits across the 11 spe-
cies, the mRNA, protein, and P-site levels were further compared after
a one-to-one gene ortholog mapping between species, using the Ensembl
Biomart tool (see Materials and Methods) (19). This gene-centric
mapping filtered 4353 transcripts [transcripts per million (TPM) > 1],
1660 proteins, and 546 phosphoproteins (containing 611 P-sites)
being overlapping across species (fig. S2A and table S3). All the in-
dividual replicates clustered together in the hierarchical clustering
analysis based on both mRNA and protein quantities (Pearson
R =0.9822 and 0.9855; fig. S2, B to E). The overall coefficient of varia-
tions (CVs) of the experimental replicates at both mRNA and pro-
tein levels are comparable, most of which (86.59% for transcripts and
88.59% for proteins) are <20% (fig. S2, F and G). Considering the
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Fig. 1. Identification and quantification overview of transcriptome, proteome, and phosphoproteome across 11 mammalian species. (A) Phylogenetic relationships
among 11 mammalian species including 10 Boreotherian mammals and the opossum M. domestica as an outgroup. In Boreotherian mammals, six LAUT were colored as red,
and four EAOG were colored as blue. The transcriptome, proteome, and phosphoproteome in skin fibroblast cells of all these species were shown in Circos plots. The identifi-
cation numbers of MRNA (TPM > 1), protein, or P-sites in individual species are shown in green, red, and blue colors; created with BioRender.com. (B) Principal component
analysis (PCA) of mRNA, protein, and P-site profiles in 11 species. (C and D) Within-species correlation between different layers [nRNA~protein (C) and protein~P-site (D)] of all
genes/sites in individual species. Spearman’s rho for every species was individually calculated from all detected genes/sites in single species. (E) Gene-specific and cross-species
correlation between different layers (NRNA~protein and protein~P-site). Spearman’s rho for every gene/site was individually calculated from the dataset of 11 species. All
rho values were then summarized as violin plots. (F and G) Representative pathways showing different distribution of mRNA~protein (F) and protein~P-site (G) correlation.

similarly great reproducibility demonstrated for phosphoproteomic
DIA workflow (4, 20), together, our datasets enabled a deep and
precise quantification of proteotype and covarying signaling at each
molecular layer (fig. $3) in mammals.

We subsequently explored the extent of regulation at different
molecular layers. First, according to principal components analysis
(PCA) (Fig. 1B), we found that, compared to the matched mRNA data,
the proteome data showed a smaller power in separating EAOG and
LAUT (90 Ma ago), indicating substantial proteotype variability. The
phosphoproteome data also showed a limited separating power, which
might be partially due to the low coverage of phosphoproteome across
species. The transcriptome and proteome of opossum (160 Ma) are
both quantitatively distant from EAOG and LAUT species, as expected.
Second, we analyzed mRNA~protein and protein~P-site relationships on
the absolute scale. Within each species, the mRNA-protein correlation
is as high as 0.52 to 0.64 (Spearman rho; Fig. 1C and fig. S4), similar
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to previous single-species reports (21-23). Thus, nRNA quantities seem
to determine the protein abundances in all mammalian cells tested to
a globally similar extent. In contrast, the absolute protein abun-
dances only poorly predict the P-site intensities (rho = 0.10 to 0.15;
Fig. 1D) (4). Third, we determined the gene-specific and P-site-
specific quantitative correlations in the relative scale. We found that
cross-species mRNA~protein correlation is centered at Spearman’s
rho of merely 0.224, based on all quantified mRNA~protein pairs
across species (n = 1656; Fig. 1E), arguing for pervasive protein level
remodeling between species. Because of the removal of detectability
bias among P-sites, the cross-species protein~P-site correlation is
higher than the within-species comparison but still weak for many
P-sites (mean of rho for all P-sites, 0.326). Furthermore, the rho dis-
tributions for mRNA~protein and protein~P-site tend to be gene
function class dependent (Fig. 1, F and G). We discovered that, for
example, the mRNA~protein correlation across species is much higher
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for “secretome” (mean of rho = 0.464) than other processes such as
“ubiquitin-mediated proteolysis” (rho = 0.027). The protein~P-site
correlation rho was merely 0.245 for “cellular component movement.”
Therefore, both posttranscriptional and phosphorylation-mediated
regulations among mammals are extensive and gene function specific.

Transcriptome-proteome coevolution across gene classes

Phylogenetic relationships can cause nominal correlations among
variables even when the variables are in fact evolving independently.
To associate mRNA and protein levels with evolutionary process,
we performed phylogenetically independent contrast (PIC) analy-
sis to remove the effect of phylogenetic history (see also Materials
and Methods and fig. S5) (24). The thus determined mRNA and

(averaged R = 0.306; fig. S5, A and B), confirming strong transcriptome-
proteome coevolution along the phylogeny. The top mRNA~protein
coevolving genes are WDR13, XRCC5, GCN1, and others (fig. S5C).
To compare coevolution between strongly correlated (R > 0.8) and
noncorrelated (|R| < 0.2) genes, we determined the signed geometric
mean of mMRNA and protein PIC values as a proxy, which integrates the
direction and size of evolution. We found that highly correlated
mRNA-protein pairs tend to coevolve at all episode nodes through-
out the phylogenetical tree (fig. S6 for C12 to C21). For example, at
node C13 that separates EAOG and LAUT clades, geometric means of
mRNA and protein PIC are mostly positive and much higher if
mRNA~protein correlation is high (P = 2.4 x 1071 (Fig. 2A). By
mapping the number of protein-protein interactions in the STRING

protein PICs across phylogenetical nodes are still positively correlated  (search tool for retrieval of interacting genes/proteins) database (25)
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Fig. 2. Biological features associated with mRNA-protein coevolution and their quantitative variability across 11 mammalian species. (A) Highly correlated mRNA-
protein pairs tend to coevolve. The distribution of signed geometric (geom) mean of mRNA and protein PIC values at node C13 for each gene with high mRNA-protein
PIC correlations (Pearson’s R > 0.8) and other genes. Node C13 separates LAUT from Eurchontoglires. P values, Wilcoxon rank sum test. (B) Number of protein-protein in-
teractions (PPI) of each protein with high (Pearson’s R > 0.8) or low (|Pearson’s R| <0.2) mRNA-protein PIC correlations. P values, Wilcoxon rank sum test. (C) Profiling of SD
for mRNA and protein levels and their relationship to gene essentiality (Wilcoxon rank sum test P =9.948 x 107° and 0.005369 for nonessential versus conditional essential
at the mRNA level and 2.644 x 107"° and 8.203 x 107 at the protein level), haploinsufficiency (P=2.776 x 1074, 3.374 x 107, and 7.44 x 10° for haplo-insensitive versus
medium, insensitive versus sensitive, and medium versus sensitive at the mRNA level and 0.005101, 3.243 x 10™, and 1.675 x 10~ at the protein level), secretome
(P=1.137 % 1078 and 2.303 x 107'° at the mRNA and protein levels), surfaceome (P=6.176 X 10™*and 4.607 x 107 at the mRNA and protein levels), and cancer biomarker
annotations (P=1.514 x 10~ and 1.036 x 10~ at the mRNA and protein levels) and whether the corresponding proteins are in stable protein complex in the CORUM
database (Complex_in) or not (Complex_out). Note that P=4.556 x 10~ and 2.393 x 107° were obtained at the mRNA and protein levels, respectively, for comparing
Complex_In and Out groups in cross-species comparison and P=0.2582 and 3.816 x 107¢ in the cross-individual comparison. The point range showed the median, 25th,
and 75th quantiles, and the histogram showed gene number in each class. SD, SD of the relative expression across 11 species or 11 individuals.
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among proteins, we found that correlated evolution of RNA and pro-
tein levels (e.g., R > 0.8 versus |R| < 0.2; Fig. 2B) is prevalent among pro-
teins with a low number of protein-protein interactions.

To discern the functional implications of gene expression vari-
ability, we calculated the SD for mRNA and protein levels among
species (see Materials and Methods). By mapping SDs to a gene es-
sentiality database (26), we found that the expression levels of es-
sential or conditionally essential gene products tend to be much less
variable during evolution than the expressions of nonessential
genes (Fig. 2C). Likewise, haploinsufficient genes (27) are expressed
with much more stable transcript and protein levels than other genes.
Also, the newly evolved mammal-specific genes during evolution (i.e.,
“younger” genes) (28) show higher expression divergence among mam-
mals, especially at the protein level, than those of “older” eukaryote-
specific genes (Fig. 2C and fig. S7A). Furthermore, secretory (29)
and cell surface proteins (30) display much less stability between
species compared to nonsecretory or proteins inside the cells, con-
sistent to their adaptable roles. A curated list of cancer biomarkers
(31) also showed larger variability, indicating that these proteins might
be prone to be dysregulated in disease states. Together, the interspe-
cies SD of mRNA and protein abundances provides an evolutionary
angle to understand gene functional diversity.

To broadly map mRNA and protein species variability to gene
functions in an unbiased manner, we used a two-dimensional (2D)
enrichment plot (Fig. 3A) (32). Such a 2D plot essentially summa-
rizes gene classes expressed with either significantly more variable
or stable transcript or protein levels, as compared to other classes.
First, we found that most functional classes exhibit highly correlated
mRNA and protein variabilities—when mRNA levels are variable,
the protein concentrations also tend to be diverse across species and
vice versa. This overall trend endorses the notion of strong coevo-
lution of transcriptome and proteome across gene classes (table S4
and fig. S7B) (2). Second, among the gene classes, extracellular matrix—
related genes have most variable expressions at both, the transcript
and the protein levels (highlighted in blue, Fig. 3A). This agrees well
with the role of extracellular matrix in interacting with the environment.
On the other hand, the intracellular protein and phosphorylation
removal systems such as the proteasome complex and the serine/
threonine phosphatase complexes showed the least variable con-
centrations among all functional classes. This may imply that those
cell adaptive responses, correcting excessive protein copies (33) and
abnormal phosphorylation (34), are evolutionarily conserved. Third,
the gene categories with the most deviation from transcriptome-
proteome coevolution are translation-related genes, especially genes
involved in translational elongation and initiation, for which the
protein quantitative variabilities are strongly buffered compared to
that of mRNA. Last, we confirmed that the lower abundant tran-
scripts and proteins are not associated with functional categories
that are more variable between mammalian species, strongly en-
dorsing that the above observations are independent of any intensity-
associated effects (fig. S7, C and D). In summary, both PIC analysis
and functional annotations demonstrate global coevolutionary dy-
namics between transcriptome and proteome levels across gene
classes and among species, with deviating classes mainly due to the
protein level buffering and protein-protein interaction constraints.

Biological variability analysis: Interindividual versus interspecies
How does evolutionary gene expression variability compare to vari-
ation at other scales? We here refer to a published dataset, part of

Ba et al., Sci. Adv. 8, eabn0756 (2022) 9 September 2022

which reported the proteome variability among 11 unrelated healthy
human individuals by using the same cell type and DIA-MS tech-
nique (35). This comparison thus intriguingly presents an interspecies
(n = 11) versus interindividual (n = 11) comparison of biodiversity.
Combined PCA (see Materials and Methods) indicates that the
global variability between mammalian species is naturally much
larger than the variability between human individuals (fig. S7E). Be-
sides the extent of variation, proteins participating in any heteromeric
protein complex [i.e., Complex_In, according to the annotation in
the CORUM database (36)] exhibited significantly lower interindividual
and interspecies SDs than other “Complex_Out” proteins (Fig. 2C,
bottom two). This demonstrates the proteostasis control through protein
complex stoichiometry, which was previously found posttranscrip-
tionally in many studies (35, 37-39). However, our data indicate
that the mRNA variability in the Complex_In group is also notably
lower than that of Complex_Out. The gene-gene correlation analysis
demonstrates a consistent trend (fig. S3D). Hence, the evolutionary
diversity might have already started to intensively regulate the transcript
abundance toward protein-level usage of, e.g., protein complexes.

Next, we used a 2D enrichment plot (32) to illustrate the func-
tional convergence between interindividual diversity and interspe-
cies diversity at the proteome level (Fig. 3B). We found that, at both
individual and species scales, the members of the proteasome com-
plex, again, manifest the lowest protein abundance variability, whereas
the extracellular matrix proteins show the highest. Compared to the
same items enriched in Fig. 3A, it is thus appealing to deduce that
abundance control of the subcellular proteomes can extend over
both scales of biodiversity (table S5 and fig. S7F). RNA processing and
cell division pathways show a particular higher protein abundance
variability at the interspecies scale than at the interindividual scale,
indicating that these pathways play a particularly important role in
mammalian evolution. In addition, at the mRNA level, a similar anal-
ysis suggests that while the most variable classes are again extracellular
matrix related at both biodiversity scales, the most stable classes are
RNA processing-associated pathways (fig. S8). Thus, during mam-
malian evolution, RNA processing and splicing, although stable
between individuals, are tightly regulated at the protein level. To
summarize, the interindividual and interspecies proteome variabil-
ities are in fact broadly correlated and function dependent.

Divergent evolutionary conservation for proteasome-

and lysosome-mediated protein degradation

Because of the prominent conservation of proteasome expression
between individuals and between species, we next sought to interro-
gate the interspecies stability of the general protein degradation
machineries in the cell. We found that the transcript and protein
abundance profiles of lysosomal hydrolases and ubiquitin (Ub) en-
zymes including both deubiquitylating enzymes (DUBs) and E3 Ub
ligases demonstrate distinctly higher variabilities than the protea-
some components across both, individuals and species (Fig. 4A and
fig. S9). Whereas the distribution of Ub enzyme levels is wide, the
lysosomal proteases display an even higher protein expression di-
versity than the average level proteome wide (P = 5.38 x 10™"; fig. $9).
This result suggests that the lysosome-mediated degradation path-
way is fast evolving among mammals, despite proteasomal degrada-
tion is evolutionarily conserved. Only two proteasome proteins
showed exceptional instability—proteasome 20S subunit alpha type-4
(PSMA4) and proteasome activator complex subunit 2 (PSME2),
the latter was implicated in immunoproteasome assembly (40). Many
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lysosome hydrolases seem to be expressed lower in opossum than
EAOG and LAUT species in which they become more variable. Certain
DUBs such as ubiquitin carboxyl-terminal hydrolase 5 (USP5), USP7,
USP8, USP14, and USP47 are as conserved as proteasome core subunits,
whereas USP19 and USP48 are quite dynamic among mammals. A
summary network analysis not only reinforces similar rates of mRNA
and protein divergence in these cellular protein removal processes
but also reveals that a few Ub enzymes such as the deubiquitinating
protein VCPIP1 (valosin containing protein interacting protein 1), the
ubiquitin thioesterase (OTU deubiquitinase with linear linkage
specificity), and the E3 ubiquitin-protein ligases XIAP (X-linked
inhibitor of apoptosis) , and TRIP12 (thyroid hormone receptor
interactor 12) underwent extensive posttranscriptional regulation
during evolution (Fig. 4B). We additionally checked that the CV's of
experimental replicates for all the above proteins, confirming the bi-
ological variability between the functional classes, are not associated
with any measurement bias (P = 0.335; Fig. 4C).

To corroborate these results, we performed an independent Ub
modification search (41), to focus on Ub chains with specific Ub
chain linkage to different lysine (K) residues. We were able to detect
the signature peptides representing modified lysine positions in Ub,
including K11, K27, K48, and K63, successfully among all species
with the modified representative peptides (see Materials and Meth-
ods). For the most abundant K48 and K63 DIA-MS signals, we used
an unmodified peptide between K48 and K63 peptide sequences as
a normalization reference. The relative comparison suggests that the
K48-linked Ub chains harbor a smaller cross-species variability than
K63 chains (CV 27.2% versus 77.4%; Fig. 4D). Because of the canoni-
cal role of K48 polyUb chains in proteasome-mediated degradation
and the diverse signaling roles of K63, the Ub modification search-
ing effort agrees well to the above variability analysis.
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Common and covarying phosphoproteomic signatures
across mammalian species

To interrogate how phosphoproteomics could shed light on molec-
ular evolution, we first evaluated cross-species SDs among transcripts,
proteins, and phosphoproteins. We found that P-sites are molecularlgf
much more dynamic than mRNAs and proteins (P < 2.2 x 10”7
Fig. 5A and fig. S10). In addition, the protein abundance “regressed out”
P-site values (or P-site_reg) (42) are still credibly higher (P < 2.2 x
107'9), indicating that phosphoproteomes captured activity dynamics
that is not reflected by transcript and protein abundances. Follow-
ing, we focused on the 611 P-sites that were aligned across 11 spe-
cies (hereafter, common P-sites). Compared to all the other P-sites,
we detected that, in human, the common P-sites are predicted with
an overall lower “sift_ala_score,” a computational score predicting
the system tolerance if the P-site residue is mutated to alanine (P =
6.6 x 107% Fig. 5B) (43, 44). Besides, the common P-sites exhibit a
noteworthy higher functional fitness score (43) than other P-sites
(P =3.6 x 10"'%). Moreover, by mapping to a dataset reporting P-site—
specific melting temperature (Ty,) (45), we found a small but signif-
icant difference, indicating that the common P-sites may bring more
structural thermal stability to proteins than other P-sites (P = 3.5 x
10™%). These results supported the conservative and essential role of
common P-sites in evolution and organismal fitness. As for se-
quence features, the frequency of amino acids surrounding all the
common P-sites revealed a diverse amino acid distribution and en-
riched for a few signature motifs (Fig. 5, C and D). These motifs, such
as (SP), (SP.R), and (R..S), can potentially match to the substrate motifs
of, e.g,, cyclin-dependent kinases (CDKs) and calmodulin-dependent
protein kinase or protein kinase A. Last, a relative amino acid fre-
quency comparison to human background revealed notable deple-
tion of glutamic acid (E) and enrichment of arginine (R) and serine
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Fig. 4. The distinctive interspecies quantitative diversity for proteasomal and lysosomal protein degradation. (A) Heatmaps visualizing the protein-specific vari-
ability in 11 species for proteins detected and annotated as proteasome, lysosomal hydrolases, Ub enzymes including both DUBs and E3 Ub ligases. The color bar rep-

resents expressive values relative to the average, as calculated by the log; (intensity)

in the particular species subtracted by mean of the log, (intensity) across species.

(B) Network analysis visualizing STRING interactions between proteins. The outer ring and inner circle are colored for mRNA and protein SDs, respectively. SD, SD of the
relative expression across 11 species. (C) The distribution of the quantitative CVs among experimental replicates for human along with the CVs across 11 species. CV, co-
efficient of variation of the raw scale (before log transformation) expression. (D) The log-scale ratios of modified Ub peptide versus unmodified peptide reference for K48

and K63 that were quantified across species.

(S) around the common P-sites (Fig. 5E). These motifs and rules
might be useful for predicting P-site evolutionary conservation
in mammals.

Previously, little has been known about the structure and evolu-
tion of phosphorylation signaling networks. We here built a phos-
phorylation coevolution network (Fig. 5F and fig. S11 for all P-site
identities). Each node represents a particular P-site. In addition, each
edge denotes a strong site-to-site Pearson correlation (P < 0.001)
based on the P-site_reg levels across the 11 mammalian species. We
found that the majority (i.e., 96.23%) site-to-site correlations are
strongly positive and coevolving in the network. Also, the biological
annotation suggests that most of the P-sites (i.e., 74.85%) could be
functionally annotated to five processes including transport, RNA
processing, protein modification process, organelle organization, and
developmental process. The top nine kinases, including three CDKs
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(1, 2, and 5), could govern 18.69% of the P-sites in this network
(Fig. 5F), indicating their prevalent roles in mammalian evolution.
In summary, our phosphoproteomics analysis has revealed con-
servative P-site motifs and a pilot phosphorylation coevolutionary
network containing variance independent of protein abundance. We
lastly generated a website to facilitate the navigation of the multi-omic
data basis (https://yslproteomics.shinyapps.io/Evolutome/; fig. S12).

DISCUSSION

Our proteomic data delineate both protein expression and activity
regulation underlying evolutionary diversity on a large scale. In
agreement with Wang et al. (2) that measured translational rates,
we found that the old, essential, and housekeeping genes tend to be
expressed with much smaller between-species divergence than other
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Fig. 5. P-site characteristics among 11 mammalian species. (A) Profiling of SD across 11 species from the average at mRNA, protein, P-site, and protein-corrected P-site
levels from the intersecting list between layers. SD, SD of the relative quantification across 11 species. (B) The site-specific parameters and features of the common P-sites
(detected in all 11 species) and other human P-sites. P values, Wilcoxon rank sum test. dTp,,, difference in melting temperature. (C) The sequence logo of surrounding
amino acids (+7 amino acids) of common P-sites (detected in all 11 species). (D) Motif analysis of the flanking amino acids (+7 amino acids) around the common P-sites
(detected in all 11 species). The representative enriched motifs (four motif examples with >7-fold of enrichment) were shown. (E) Sequence analysis of the flanking amino
acids (7 amino acids) around the P-sites (common P-sites versus other human P-sites). The fold changes (FCs) of significant residues (P < 0.05) were shown. (F) By infer-
ring the binary, quantitative correlation analysis between any P-site pairs, the phosphorylation coevolution network was built on the significantly associated common
P-sites (Pearson’s correlation, P < 0.001) after correction by total protein changes. Red lines indicate positive associations while blue lines indicate negative associa-
tions. The representative GOBPs of phosphoproteins were highlighted in different colors. The top nine kinases curated from the P-sites as substrates were shown as di-
amonds, and the kinase-substrates pairs were shown as dashed lines.
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genes. We also found that coevolution of expression layers is strong
and prevalent across gene classes. In our results, the global proteome
variability is comparable to or even slightly higher than the tran-
scriptome level across species (see Fig. 5A and fig. S10), emphasiz-
ing the evolution of lineage adaptions, rather than the genome-wide
compensatory evolution (2), at the proteome level. Processes such
as negative regulation of G protein—coupled receptor signaling and
mRNA methylation, as examples that can be extracted from table
S4, seem to show a higher variability at the protein level than at the
RNA level. In addition, our data further suggest that the involve-
ment in protein complexes or protein-protein interactions presents
additional constraints potentially reducing the transcriptome-
proteome coevolution.

The biological variabilities between individuals and between
species jointly shape the biological diversity on Earth. Our data ad-
dressed two principles underlying biodiversity. The first principle is
that the proteome largely reflects variability at the transcriptional
level. As shown in Fig. 3A, gene expression variabilities at mRNA
and corresponding protein levels are overall tightly controlled with-
in classes of genes of the same molecular functions. Extracellular
matrix proteins overall show a very high evolvability. The dynamics
of gene products participating in the extracellular matrix might ren-
der each mammalian species a rapid environment adaptive response.
In contrast, the expression of proteasome components seems to be
evolutionarily conserved as reported (33). According to our data,
the tight expression regulation is already detectable at the transcrip-
tional level, probably due to the high cost of protein synthesis (46).
Accordingly, the translation-relevant gene expressions are particu-
larly stabilized at the protein level across species (Fig. 3A). This re-
inforces the previous finding that translation efficiency profile is
highly conserved in evolution (47).

In a mammalian cell, the proteasome and lysosome represent
the two major machineries for protein degradation (48). Previously,
Ub-proteasome pathway was found to be evolutionarily conserved
(33), but little is known about the evolutionary conservation of the
lysosomal proteolysis pathway and the entire Ub system. We discov-
ered a much higher variability of the lysosomal degradation pathway.
Considering that the endosome transportation-associated protein
expressions are quite stable across species, our discovery might be
associated with lysosomal exocytosis for remodeling extracellular
proteins (49). Consistent to this finding, previous studies about the
Ub code (50) suggested that K48-linked Ub, the most stable Ub
codes we found here, is mainly involved in canonical protein degra-
dation via proteasome. In contrast, other lysine-linked Ubs carrying
diverse functions, such as endocytosis and DNA damage responses
(K63), were quantitatively more variable between species in our re-
sults. Even for proteasome itself, the immunoproteasome components
such as PSME2 (11) manifested high interspecies variation than other
proteasome components. Together, our data delineate a complex and
manifold relationship between protein degradation and biodiversity.

The second principle underlying biodiversity at the molecular
level is that proteome variability tends to be parallel at both the in-
dividual and species scales (Fig. 3B). Although it is expected that
interspecies protein variability globally exceeds the interindividual
variability, proteins in extracellular matrix and proteasome again
showed the highest and the lowest variable abundances, respectively,
also among humans. Functional classes such as mRNA splicing, nRNA
metabolism, and cell division that showed exceptionally higher in-
terspecies variability are intriguing and warrant future investigations.
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For example, Keren et al. (51) have summarized various changing
models of mRNA alternative splicing (AS) in different eukaryotic
lineages. AS provides a strategy for relaxing negative selection pres-
sure against evolutionary change (52). In our data, the evolutionary
variability of the AS pathway is strong at the protein level, which might
enhance evolvability and proteotype diversity. The cell division-
associated protein variability among mammals was further supported
by phosphoproteomic data. Our cross-scale analysis represents a critical
step toward comprehensive understanding of inherent protein ex-
pression variability. For many proteins such as those in and related
to the extracellular matrix-mediated pathways, their expressions
exhibit marked individual differences through intrinsic regulatory
machineries, the evolutionary selective forces in speciation and
phylogeny would prefer to just expand the magnitude of their intra-
specific protein diversity. For the other type of proteins, they are
regulated particularly along the evolution axis, irrespective of their
biological variability within species, such as RNA processing. It is
thus essential to classify two types of protein variabilities for future
evolutionary research.

Compared to early studies (53), our phosphoproteome data are
fairly large in coverage and quantitative. Previously, little was known
about the evolution of phosphorylation signaling networks. Our co-
variance analysis between P-sites provides a first coevolutionary
phosphorylation network independent of protein levels. The enriched
sequence motifs around the common P-sites pointed out similar
kinases such as CDKs heavily evolving in mammalian evolution. We
found the patterns of depleted glutamic acid (E) and enriching argi-
nine (R) residues around the common P-site. This result agrees well
to our previous study that showed that such patterns tend to accel-
erate protein turnover when the P-sites get phosphorylated (20).
Thus, the timely phosphoprotein turnover may render active selec-
tion on P-sites in mammalian evolution.

The present study only analyzed fibroblast cells, whereas enor-
mous single-cell and multitissue studies have demonstrated the
complexity and diversity of gene expression among different cell types
(14-16). Our datasets could provide additional broad impacts, be-
cause skin-derived fibroblast cells play an essential role during cuta-
neous wound healing and were used to discover different molecular
traits associated with the longevity between different mammals and
other species previously (54, 55), and skin fibroblasts are critical de-
terminants of skin cancer malignancy across species (56, 57). More-
over, cryobanking of fibroblast cells presents a national-wide tool
that facilitates the biological diversity characterization and contrib-
utes to ex situ conservation of genetic resources (58). Although
most of our conclusions, such as transcriptome-proteome coevolu-
tion and biological variability control, are unlikely to be limited to
fibroblast cells, our results promisingly anchor future proteotype char-
acterization studies on other cell types and multiple tissues across
species. In addition, the species differences of molecular events
might be more apparent in studies of the disturbed or dynamic sys-
tems. Moreover, as already shown in studies analyzing protein turn-
over (9, 59), thermal stability (60), protein-protein interaction (61),
and specific phosphorylation signaling process (62, 63), the MS-
based quantitative proteomic analysis across multiple species will
provide additional insights into answering fundamental evolution-
ary questions and beyond. We expect the establishment of quantitative
landscape of proteins and posttranslational modifications across spe-
cies to further contribute to our understanding of biological vari-
ability and biodiversity on Earth.
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MATERIALS AND METHODS

Skin fibroblast cell culture

Human skin fibroblast (SF) cells were purchased from American
Type Culture Collection (CRL-4001). B. taurus (cow), C. lupus (dog),
E. caballus (horse), F. catus (cat), M. mulatta (monkey), M. domestica
(opossum), O. cuniculus (rabbit), O. aries (sheep), R. norvegicus (rat),
and S. scrofa (pig) SFs were obtained from fresh skin tissue follow-
ing established protocols (56, 64). Briefly, a small piece of skin was
collected with hair removed, washed in phosphate-buffered saline
(PBS) buffer, and cut into strips approximately 1.0 cm?. Dermis was
separated from epidermis by enzymatic digestion (30 min in 0.25%
trypsin buffer at 37°C, followed by dissociation buffer [collagenase
(1 mg/ml), dispase (1 mg/ml), and deoxyribonuclease I (400 ug/ml)]
for 45 min at 37°C. Epidermis was then removed, and 2-mm pieces
were cut from the dermis and transferred to a 12-well plate and cov-
ered with media. Fibroblasts emerged from the explants and grew to
confluency in growth media with extra tissue removed. Fibroblast
cell cultures were then established in 10-cm dishes with high glu-
cose Dulbecco’s modified Eagle’s medium supplemented with 10%
fetal bovine serum at 5% CO; (fig. S1). The approximate doubling
times for all the species are about every 3 to 4 days for H. sapiens, 3 to
4 days for B. taurus, 3 to 7 days for C. lupus, 4 days for E. caballus, 7 days for
F. catus, 7 days for M. mulatta, 4 to 5 days for M. domestica, 2 to 3 days
for O. cuniculus, 5 to 7 days for O. aries, 6 to 7 days for R. norvegicus,
and every 3 to 5 days for S. scrofa. The sample preparation procedures
were approved by Institutional Animal Care and Use Committee
under the no. 2021-11483. Three replicates (each of 60 to 80% con-
fluency) were processed for RNA-seq and proteomic analyses, re-
spectively, with the exception that five replicates for human and two
for monkey proteomic profiling. After estimating the experimental
reproducibility (fig. S2), all the replicate measurements were ac-
cepted and averaged per each of the 11 mammalian species for tran-
scriptomic and proteomic profiling.

RNA isolation, sequencing, and data procession

RNA was isolated using an RNeasy micro kit (QTAGEN) and resus-
pended in 15l of water. The RNA samples were measured at The
Yale Center for Genome Analysis on the Agilent Bioanalyzer 2100 to
determine RNA quality, prepared mRNA libraries, and sequenced
on Illumina HiSeq 2500 to generate 30 to 40 million reads per sample
[single-end 75-base pair (bp) reads].

RNA-seq data obtained were quantified using the transcript-based
quantification approach provided in the “kallisto” program (65). Reads
are aligned to a reference transcriptome using a fast hashing of k-mers
together with a directed de Bruijn graph of the transcriptome. This
rapid quantification technique produces transcript-wise abundances
that are then normalized and mapped to individual genes and ul-
timately reported in terms of TPM (66). The Ensembl release 100
(May 2020 version) (67) gene annotation model was used, and raw
sequence reads (single-end 75 bp) for SFs from the 11 species were
aligned to GRCh38.p13, ARS-UCD1.2, CanFam3.1, Felis_catus_9.0,
EquCab3.0, Mmul_10, MonDomS5 (Release 97), OryCun2.0, Oar_
v3.1, Rnor_6.0, and Sscrofall.l reference transcriptome assemblies.
The Ensembl Biomart tool was used to obtain a dataset of one-to-one
orthologs. Specifically, the “Multi-species Comparisons” and
“Homologues” filters were used in addition to “Homology type”
filter to obtain one-to-one orthologs from a pair of species. This was
done in an iterative fashion for each pair of species. An intersection
operator was applied to these pairwise gene lists to obtain a final set
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of 8138 orthologs between 11 species. To facilitate gene expres-
sion across species, this one-to-one ortholog dataset was formu-
lated across the 11 species such that the sum of TPMs across these
genes for each species totals to 1 x 10°. The TPMs across replicates
of the same species were averaged and log,-transformed for the fol-
lowing bioinformatic analysis.

Protein extraction, alkylation, and digestion

The fibroblast cell proteomes were harvested as previously described
(35). Cells were washed with PBS twice and scaped off from the dish
using the lysis buffer containing 8 M urea containing complete pro-
tease inhibitor cocktail (Roche) and Halt Phosphatase Inhibitor
(Thermo Fisher Scientific). The cell pellets were then ultrasonically lysed
at 4°C for 2 min using a VialTweeter device (Hielscher-Ultrasound
Technology) and centrifuged at 18,000¢ for 1 hour to remove the
insoluble material. Protein concentrations were then determined
with a Bradford assay (Bio-Rad, Hercules, CA, USA). The superna-
tant protein samples were reduced with 10 mM dithiothreitol for
1 hour at 57°C and alkylated by 20 mM iodoacetamide in the dark
for 1 hour at room temperature. All samples were further diluted
five times using 100 mM NH,HCOj3 and were digested in-solution
with sequencing-grade porcine trypsin (Promega) overnight at 37°C
as previously described (37). The resulted peptide mixture was
desalted with a C18 column (MarocoSpin Columns, NEST Group
INC). The final peptide amounts were determined by NanoDrop
(Thermo Fisher Scientific).

Phosphopeptide enrichment

Besides ~4 ug of peptides digested per sample that were used for pro-
teomic analysis, all the peptides from different replicates of equal
amount were pooled for phosphopeptide enrichment and phosphopro-
teomics, due to the limited peptide amounts yielded in individual
replicate. The phosphopeptide enrichment was performed using
the High-Select Fe-NTA kit (Thermo Fisher Scientific, A32992) ac-
cording to the manufacturer’s instructions (68). Briefly, the resins
of spin-column in the Fe-NTA kit were aliquoted and incubated
with 80 to 300 pg of total peptides for 30 min at room temperature.
The resins were then transferred into a filter tip (TF-20-L-R-S, Axygen),
so that the supernatant was removed by centrifugation. Then, the
resins were washed sequentially with 200 pl of washing buffer (80%
acetonitrile (ACN) and 0.1% trifluoroacetic acid) three times and
200 pl of liquid chromatography (LC)-MS grade H,O two times
to remove the nonspecifically adsorbed peptides. The enriched
phosphopeptides were then eluted off the resins by 100 pl of elution
buffer (50% ACN and 5% NH3-H,O) two times. All the centrifugation
steps were kept at 500g, 30 s. The eluates per species were combined
and dried by speed-vac and stored in —80°C.

LC separation coupled with MS

All peptide-level samples (and their pooled mixtures per species)
were resolved in 2% ACN and 0.1% formic acid for LC-MS mea-
surements, with 2 ug of peptides or 0.2 to 0.5 nug of the enriched
phosphopeptides injected per measurement. The single-shot DIA-MS
analysis of 2.5 hours was performed as previously described
(4, 69). The LC used was an EASY-nLC 1200 system (Thermo Fisher
Scientific, San Jose, CA) harboring a 75 um by 50 cm C18 column
packed with 100A C18 material. A 150-min LC separation was con-
figured on the basis of the mix of buffer A (0.1% formic acid in
H,0) and buffer B (80% acetonitrile containing 0.1% formic acid):
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Buffer B was made to increase from 4 to 34% in 139 min, then to
surge to 100% in 3 min, and then kept at 100% for 8 min. The LC-MS
flow rate was kept at 300 nl/min with the temperature-controlled at
60°C by a PRSO-V1 column oven (Sonation GmbH, Biberach, Germany).
The additional column re-equilibration was performed in about 10 to
15 min using the high-flow rate up to ~800 nl/min.

DIA-MS measurements

The Orbitrap Fusion Lumos Tribrid mass spectrometer (Thermo
Fisher Scientific) instrument coupled to a nanoelectrospray ion source
(NanoFlex, Thermo Fisher Scientific) was used as the DIA-MS plat-
form for both proteomic and phosphoproteomic analyses (4). Spray
voltage was set to 2000 V and heating capillary temperature was set
at 275°C. All the DIA-MS methods consisted of 1 MS1 scan and 33
MS?2 scans of variable windows by quadrupole isolation (70). This
schema was composed of 350 to 373.775, 373.25 to 393.75, 393.25 to
410.75, 410.25 to 427.75, 427.25 to 443.75, 443.25 to 459.75, 459.25 to
474.75, 474.25 to 489.75, 489.25 to 503.75, 503.25 to 518.75, 518.25
to 533.75, 533.25 to 547.75, 547.25 to 562.75, 562.25 to 577.75, 577.25
to 592.75, 592.25 to 608.75, 608.25 to 623.75, 623.25 to 639.75,
639.25 to 656.75, 656.25 to 674.75, 674.25 to 692.75, 692.25 to
711.75, 711.25 to 732.75, 732.25 to 754.75, 754.25 to 778.75, 778.25
to 803.75, 803.25 to 833.75, 833.25 to 866.75, 866.25 to 905.75, 905.25
to 955.75, 955.25 to 1023.75, 1023.25 to 1134.75, and 1134.225 to
1650 with 0.5 mass/charge ratio (m/z) overlapping between win-
dows. The MS1 scan range was 350 to 1650 m/z and the MS1 reso-
lution was 120,000 at 200 m/z. The MS1 full scan automatic gain
control (AGC) target value was set to be 2.0 x 10%, and the maxi-
mum injection time was 50 ms. The MS2 scan range was set to be
200 to 1800 m/z, and the MS2 resolution was 30,000 at 200 m/z. The
normalized HCD collision energy was set at 28%. The MS2 AGC
was set to be 1.5 x 10°, and the maximum injection time was 52 ms.
The default peptide charge state was set to 2.

Database search for proteomics and phosphoproteomics
DIA-MS data procession was performed using Spectronaut v14
(17, 71) with the “DirectDIA,” an optimal spectral library-free pipe-
line (72). For both proteomic and phosphoproteomic results (4),
the DIA-MS raw datasets were searched directly against the Ensembl
species-specific protein fasta files (zipped files with name ending
as “pep.all.fa.gz” at useast.ensembl.org/index.html). These files
include Bos_taurus.ARS-UCD1.2.pep.all.fa (for “cow”), Canis_lupus_
familiaris.CanFam3.1.pep.all.fa (for “dog”), Cavia_porcellus.Cavpor3.0.
pep.all.fa (for “opossum”), Equus_caballus.EquCab3.0.pep.all.fa (for
“horse”), Felis_catus.Felis_catus_9.0.pep.all.fa (for “cat”), Homo_sapiens.
GRCh38.pep.all fa (for “human”), Macaca_mulatta. Mmul_10.pep.all.fa (for
“monkey”), Oryctolagus_cuniculus.OryCun2.0.pep.all.fa (for “rabbit”),
Ovis_aries.Oar_v3.1.pep.all.fa (for “sheep”), Rattus_norvegicus.Rnor_6.0.
pep-all.fa (for “rat”), and Sus_scrofa.Sscrofall.l.pep.all.fa, (for “pig”).
In particular, for the total proteomic identification in each spe-
cies, the possibilities of oxidation at methionine and acetylation at
the protein N terminus were set as variable modifications, whereas
carbamidomethylation at cysteine was set as a fixed modification.
For the phosphoproteomic identification, the additional possibility
of phosphorylation at serine/threonine/tyrosine (S/T/Y) was enabled
as the variable modification. For both proteomic and phosphopro-
teomic datasets per species, both peptide and protein FDR (based
on Q value) were both controlled at 1%. In particular, the PTM lo-
calization option in Spectronaut v14 was enabled to locate P-sites
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(6, 73) in each species with the probability score cutoff of >0.75 (73),
which ensures class I peptides (74), in which each P-site is confi-
dently localized onto one S, T, or Y in the peptide sequence, to be
identified, quantified, and reported in the results. For each localized
P-site, the corresponding phosphopeptide precursors (if more than
one) were averaged for quantification.

Database search for Ub linkage types

In addition, to search and determine the different types of Ub chains
via its lysine residue (i.e., the “Ub code”), a “Gly-Gly” or diGly mod-
ification was set up as a variable modification in a separated search
in all mammalian species, by searching the total proteomic data
against the same fasta files. After the identical FDR control (i.e., 1%)
at both peptide and protein levels, the diGly localization scoring in
peptide sequence, the search results on the peptide level were manually
inspected. The detection of K11-, K27-, K48-, and K63-linked chains
were inferred on the basis of the identification of peptide precursors
for TLTGKGGTITLEVEPSDTIENVK (K11), TITLEVEPSDTIENVKGAK
(K27), LIFAGKGGQLEDGR (K48), and TLSDYNIQKGGESTLHLVLR
(K63), respectively, all mapped to Ub sequence. To determine the rela-
tive quantitative variability between K48- and K63-linked chains,
the tryptic peptide TITLEVEPSDTIENVK that is in the middle be-
tween K48 and K63 peptides was used for normalization purpose.

Data analysis, representation, and statistics

All the other Spectronaut settings for identification and quantifica-
tion were kept as default (4). This means that, for example, the “missed
cleavages” allowed was set at 2, the “Inference correction” was enabled,
the “global normalization” (on “median”) was used, the quantification
was performed at the MS2 level using peak areas, the “protein infer-
ence algorithm” was implemented using “IDPicker,” and the top 3
peptide precursors (“min: 1 and max: 3”) were summed on the basis
of MS2-level peak areas for representing protein quantities in all
DIA analyses. The quantitative data reported by Spectronaut analy-
sis for proteins and P-sites were then log,-transformed for down-
stream statistical analysis if applicable. As for multispecies analysis,
due to the database searching against Ensembl species-specific pro-
tein fasta files, the proteomic quantitative results could be directly
added to the “one-to-one ortholog” data table consisting of 8138
genes (see above for RNA-seq data procession) using the ensembl
gene identities, allowing the transcriptomic and proteomic quanti-
fications to be summarized with a “gene-centric” perspective. For the
absolute scale analysis, the log,-transformed mRNA, protein, and
P-site quantification data are compared between molecular layers
or between species. For the relative scale analysis, the mRNA, protein,
and P-site quantification data of each species were compared to the
averaged values across all 11 species, summarized as fold changes
(FCs), and the log,-transformed FCs (i.e., individual species/averaged
values of 11 species) were used for relative correlation analysis and
variability analysis (i.e., by determining the SD). Alternatively, the
CVs were calculated using data before log transformation for evalu-
ating data deviation. Pearson and Spearman’s correlation coeffi-
cients were calculated using R [functions cor() or cor.test() to infer
statistical significance]. Wilcoxon rank sum test was used to calcu-
late P values of SDs between functional categories.

Bioinformatic analysis
Circos-0.69-9 (http://circos.ca) (75) was used for the circle visual-
ization (Fig. 1A). Functional annotation was carried out in David

100f 13


http://useast.ensembl.org/index.html
http://circos.ca

SCIENCE ADVANCES | RESEARCH ARTICLE

Functional Annotation Tool v6.8 (https://david.ncifcrf.gov/summary.
jsp) (76) with all detected proteins in this study as background (fig.
S$3). PCA was performed by NIA (National Institute of Aging) Array
Analysis (Fig. 1B) (77). The colored scatterplots were visualized by
the “heatscatter” function in R package “LSD” based on a 2D kernel
density estimation (figs. S4 and S7). The annotation of surfaceome,
secretome, cancer biomarkers, gene essentiality, haploinsufficien-
cy, and age were annotated, respectively, by Cell Surface Protein
Atlas (30), human secretome map (29), Human Protein Atlas (www.
proteinatlas.org) (31), OGEE v2 (26), HIPred scores (27), and modeAge
(28) (Fig. 2). Protein complex information was extracted from the
CORUM database (36) (Fig. 2). The gene ontology and Kyoto Ency-
clopedia of Genes and Genomes annotation and 2D enrichment
analysis were performed in Perseus v1.6.8.0 (78) (Fig. 3 and figs. S7
and S8). The retrieve of flanking amino acid sequences (+7 amino
acids) of P-sites and the motif enrichment were performed by mo-
tifeR (79) (Fig. 5). Sequence analysis (Fig. 4) was conducted and vi-
sualized by IceLogo (https://iomics.ugent.be/icelogoserver) (80).
The functional score can reflect the importance of P-site for organismal
fitness (Fig. 5) (43). The sift score predicts the functional impact of
missense variants based on sequence homology and the physico-
chemical properties of the amino acids (Fig. 5) (81). The melting
temperature (T, °C) values (Fig. 5) for each P-site were taken from
the reported datasets (45). The net phosphorylation changes were de-
tected by total protein change correction through linear regression
as reported previously (42). After regression, the phospho-site pairs
with significant correlation (Pearson, P < 0.001) were used to con-
struct interaction network by Cytoscape (82) (Fig. 5 and fig. S11). The
kinase-substrate relations were curated from PhosphoSitePlus (83). To
identify the homologous P-sites across 11 species from our phosphor-
ylation datasets, the sequence windows (+7 amino acid flanking se-
quence) of detected P-sites in one-to-one orthologous proteins
were aligned by the “pairwiseAlignment” function in R package “Bio-
strings.” The sequence windows with a score > 10 and in ortholo-
gous proteins were considered as homologous. Data from other
species were first mapped to human data, and then the common
P-sites were obtained as the intersection of all species. The number
and relationship of protein-protein interactions were curated using
STRING v11.0 (https://string-db.org) (25).

Species are the product of a process of lineage splitting (speciation)
and divergence and are thus not statistically independent random
events. The most broadly used method to account for phylogenetic
structure is the method of PICs where observations on N species are
transformed into N-1 contrasts (differences) (84, 85). The method
estimates the most likely history of evolutionary change in variables
such that the contrasts reflect independent evolutionary changes.
PIC values were computed by R package APE (analysis of phyloge-
netics and evolution) using the function “pic” (84, 85) where the
gene and protein expression values were iteratively fed into the pic
function to obtain an array of resultant PICs (86).

Website inventory for proteome-centric

multispecies navigation

Because of the well-matched multi-omic layers especially the appli-
cation of consistent DIA-MS, we consider our dataset a high-quality
resource for future mammalian evolution and gene expression studies.
We thus generated a website https://yslproteomics.shinyapps.io/
Evolutome/ to facilitate the navigation of the data basis (fig. S12).
This website interactively provides queries about the abundances
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for any transcript or protein in every species. It additionally offers
heatmaps and scatterplots between molecular layers for individual
gene or gene sets of interest.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abn0756
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