


II. RELATED WORK

1) Transparent object perception: Perceiving transpar-

ent objects is particularly challenging because transparent

objects can refract, reflect, and absorb light. Some pre-

vious works focus on perceiving transparent containers;

methods have been developed for transparent object seg-

mentation [13], [14], depth estimation [15], [16], keypoint

estimation [17], and transparent object matting [18]. Other

methods for segmenting transparent objects use light field

cameras [19], [20] or light polarization [21]. On the manip-

ulation side, other recent works have been developed to di-

rectly grasp transparent objects without first estimating their

3D shape [22]. Our approach builds on [13] for transparent

container segmentation; however, our focus is on segmenting

the transparent liquid inside the container. Unlike previous

work that uses manual annotations for training [13], our work

does not rely on any manual annotations.

2) Transparent liquid perception: Perception of liquid

is more challenging than perception of object due to the

lack of a fixed shape or geometry. While perception of

colored liquid can sometimes be done using background

subtraction [3], it does not work for transparent liquid. One

approach to transparent liquid perception is to use heated

liquid observed by a thermal camera to obtain ground-truth

labels for liquid [6]–[8]. However, the requirement to heat the

liquid before recording the ground-truth is a tedious process;

our method does not require heated liquid. To segment liquid

while it is being poured, one can use optical flow [9] or

audio signals [10], [11]. Our method can segment static

liquid, which is important for liquid state estimation before

initiating a pouring task. Some methods reason about the

refraction of the infrared light emitted by a depth sensor [1],

[12], multiple noisy readings from different viewpoints [1],

or from different time points during pouring [12], integrated

probabilistically. In contrast, our method can segment the

liquid from just a single RGB image. Another approach is

to use a depth sensor to estimate the height of the liquid

surface [2]; however, such depth readings are inaccurate for

transparent liquids. A different strategy is to pour liquid in

front of a checkerboard background or to use weight readings

from a scale [4]. Our method does not require a checkerboard

background or a scale. Finally, some approaches forgo a

separate module for transparent liquid perception and learn

an end-to-end policy for pouring transparent liquid [23].

However, so far such approaches have only been shown to

work in simulation due to the sample complexity of learning

a sensorimotor policy.

III. METHOD

We describe our method for transparent liquid segmenta-

tion when liquids are placed within transparent containers

(see Figure 2 for an overview). First, we collect a dataset of

colored liquid and another (unpaired) dataset of transparent

liquid. We then use an image translation method to learn

to translate an image of colored liquid into a synthetically

generated image of transparent liquid that is identical to

the input image, except that the liquid is now transparent.

Next, we use background subtraction to find the colored

liquid pixels in the colored liquid dataset. We treat the

colored liquid segmentation as a ground-truth label for the

synthetically generated transparent liquid. We then train a

network to segment transparent liquid, using paired samples

of the synthetically generated transparent liquid and colored

liquid ground-truth labels.

A. Learning to translate colored liquid to transparent liquid

To train a model for transparent liquid segmentation, most

standard supervised segmentation learning methods require

a dataset of labeled images of transparent liquids. However,

labeling such a dataset is tedious. Instead, we make use of

an image translation method to synthetically generate the

desired labels.

We collect one dataset of colored liquids in transpar-

ent containers Dcolor and a second dataset of transparent

liquids in transparent containers Dtransparent. Importantly,

these datasets are unpaired, meaning that there is no explicit

alignment or correspondence between examples across the

datasets, and thus each can be collected totally independently.

Given these two datasets, we learn an image translation

model from colored to transparent liquids. To do so, we

use Contrastive Unpaired Translation (CUT) [24], which we

train to convert an image of a colored liquid into an image

of a transparent liquid.

We briefly describe CUT and how we adapt it for our

method. The backbone of CUT is a generator that translates

an image of the source domain into an image of the target

domain. To encourage this translation, three loss terms are

used. First, a standard adversarial GAN loss is used to

encourage the generator to output images that are visually

similar to those in the target domain:

LGAN = Ey∼Y [logD(y)]+Ex∼X [log(1−D(G(x)))] (1)

where G,D, denote the generator and the discriminator

respectively, and X , Y denote the source domain and the

target domain, respectively. The generator G is divided into

an encoder Genc and a decoder Gdec, such that the output is

ŷ = G(x) = Gdec(Genc(x)), for an image x from the source

domain.

Additionally, CUT uses a patch-wise contrastive loss [25]

to encourage corresponding patches between the input and

output images to be similar to each other in feature space.

Specifically, given an image x from the source domain X ,

the image is translated into an image y of the target domain

Y . The patch-wise contrastive loss, LPatchNCE(G,H,X),
maximizes the mutual information between H(Genc(x))
and H(Genc(y)), where H is a small multi-layer percep-

tron (MLP). The generator is also trained with an identity

loss LPatchNCE(G,H, Y ) to help regularize the encoder and

minimize unnecessary modifications to a source image. The

combined loss is:

LCUT = LGAN + λXLPatchNCE(G,H,X)

+ λY LPatchNCE(G,H, Y )
(2)







2) Visual Translation: We show representative examples

of the image translation achieved by our CUT-based model in

Figure 4. We observe that the network is able to translate the

input image containing green-colored water pixels into im-

ages of clear water while still capturing the same background

and refraction patterns as those in the source image. Most

importantly, the transparent liquid in the generated images

is in the same location as the colored liquid in the original

images. This property allows us to apply the background

mask from the colored liquids as the ground-truth label for

the synthetic images of transparent liquids.

3) Segmentation Performance: To evaluate the segmen-

tation performance of the method for transparent liquids,

we compute the Intersection over Union (IoU) of predicted

segmentations compared to the ground-truth. Our results for

transparent liquid segmentation can be found in Table I (top

row) as well as qualitatively in Figure 5 (bottom row). Our

method generally succeeds at segmenting the transparent

liquid pixels in the image, achieving high IoU scores across

the test set. Qualitatively, some of the predicted regions in

Figure 5 are missing small patches on the interior, corre-

sponding to turbulent or bubbly regions of the liquid that

reflect the dynamic nature of the dataset.

Method\IOU ↑ Low Medium High All

Ours 0.56 0.78 0.84 0.72

Ablation 1

Color Jitter 0.02 0.04 0.06 0.03

Ablation 2

Supervised (10%) 0.61 0.91 0.86 0.79
Supervised (1%) 0.52 0.54 0.38 0.50

Ours (10%) 0.56 0.80 0.78 0.71
Ours (1%) 0.38 0.60 0.53 0.51

TABLE I: Average Intersection over Union (IoU) scores on

a test set of transparent liquid images, each filled with water

to varying amounts. We show the performance for subsets

of images with varying amounts of liquid in the cup (Low,

Medium, and High) as well as an average over all images.

See Section IV-C for descriptions of each of the ablations.

Transparent Liquid

Ours (RMSE)

Colored Liquid

Background Subtraction (RMSE)

0% → 25% 1.00± 0.43% 8.46± 2.14%

0% → 50% 0.82± 0.67% 1.86± 0.71%

0% → 75% 1.18± 0.74% 1.57± 0.50%

25% → 75% 0.75± 0.49% 1.61± 0.65%

All 0.94± 0.61% 3.38± 3.18%

TABLE II: Percent error of the pouring system on both

transparent and colored liquids. For transparent liquid pour-

ing, we use our learned segmentation model; for colored

liquid pouring, we use background subtraction. Contrary to

expectations, our system performs better with transparent

segmentation than with colored segmentation.

4) Pouring Performance: We conduct two sets of real-

world robotic experiments to evaluate how our perception

system performs on a real pouring task. We choose four

different initial fill-levels and target fill-levels (see Table

II ), and we conduct 20 pouring trials for each fill-level.

We measure the level of liquid achieved upon the controller

Input

Color

Jitter

Ours

Fig. 5: Representative segmentations of our method (bottom)

compared to a model trained on images of colored liquid with

color jitter augmentation (“Color Jitter”), which is unable to

accurately segment the transparent liquid.

reaching the final NotPouring state, and we report the

average error across each fill-level, as well as across all trials.

We first evaluate with transparent water, using our transparent

liquid segmentation system; and second with green-colored

water, using the background-subtraction method described

in the supplementary materials. Given the high accuracy of

background subtraction, we feel this second task represents

system performance with near-perfect segmentation.

Results can be found in Table II. In the case of pouring

transparent liquids, we are able to achieve the desired ratio

ltarget with an average accuracy of 0.94%, which corresponds

to a roughly 0.13 cm error on average. Surprisingly, in the

case of colored liquid (where background subtraction yields

high-fidelity segmentation), pouring accuracy is worse, with

an average error of 3.38% or 0.47 cm. When observing the

system, we noticed that the bounding box computation is

sensitive to segmentations with splashing/sloshing: in these

cases, the bounding box overestimates the amount of liquid

in the cup and terminates pouring earlier than it should.

Segmentations from our model pick up less of this transient

liquid and thus outperform the segmentation obtained from

background subtraction, when evaluated on the pouring task.

B. Visual Generalization

In this section, we explore the potential of our method to

segment transparent liquids in more diverse settings.

1) Diverse containers: We first train a segmentation

model on an image dataset consisting of a single cup in a

single scene with varying heights of liquids. We then evaluate

on 7 transparent cups (73 images) with different shapes and

different fill levels of transparent liquid. As can be seen in

Figure 6a and in Table III, the model generalizes reasonably

to other cups, indicating that it has learned to detect relevant

liquid features invariant to a specific container.
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APPENDIX

A. Background Subtraction

Obtaining liquid vs non-liquid labels from RGB images

usually requires human annotations; however, such anno-

tations are tedious to obtain. Instead, we propose to auto-

matically generate ground truth annotations for segmentation

using background subtraction.

To do so, we record a set of images of an empty cup

(Fig 7a); on these images, we train a background sub-

traction model. Specifically, we use a Gaussian Mixture

Model (GMM) that automatically estimates the number of

components for each pixel [31]. Then, without moving the

cup, we fill the cup with colored liquid (Fig 7d). We apply

the background subtraction model to estimate the visual

difference between the empty and full cup (of colored liquid).

This difference provides a ground-truth segmentation label

(Fig 7e) for the location of the colored liquid in the cup.

We will refer to this segmentation label as Igt. We will later

use this segmentation mask to learn to segment transparent

liquid.

If we wish to segment transparent liquids, one might ask

that why we don’t apply background subtraction directly to

the images of transparent liquid? As observed in Fig 7c,

background subtraction is not able to detect the transparent

liquid pixels between Fig 7a & Fig 7b. This is because the

GMM detects if the difference from the background model

exceeds a threshold. Transparent liquids do not offer suffi-

cient visual difference in the image to exceed this threshold;

reducing the threshold too low will lead to noisy foreground

estimation. Instead, we perform background subtraction only

on images of colored liquids, which is relatively easy and

accurate, as shown in Fig 7d and e.

B. Transparent Liquid Segmentation

We train a transparent liquid segmentation model from

scratch to classify liquid pixels in an image. We use paired

samples of synthetic transparent liquid images and ground

truth obtained from background subtraction to train the seg-

mentation model. The segmentation model is trained using

the Binary Cross Entropy loss between the predicted liquid

segmentation mask and the ground truth. We use a UNet

style architecture with four downsampling blocks followed

by four upsampling blocks and has about 13 million trainable

parameters. We use stochastic gradient descent to train the

network with learning rate 1e-3, momentum 0.9 and weight

decay 5e-4. It takes us 5 hours to train both the image

translation and segmentation model sequentially.

The input to each downsampling block is passed through

a 2D MaxPool operator followed by two convolutional

layers. The output from each convolutional layer is batch

normalized and passed through a ReLU activation function.

Each upsampling block takes a concatenated input of bilinear

interpolation from the previous upsampling layer and a skip

connection from the downsampling layer.

C. Vision System

For our cup detection method we use Translab [13] with

scale width option to keep the aspect ratio same for all input

images. We detect the target cup location at the beginning

of the pour and do not change it’s position during and after

the pour.

We crop the image around the target cup using OpenCV’s

minAreaRect function along with a padding of 10 pixels

to allow some background information to the network. The

cropped image is segmented using the UNet network at

10 Hz on an Nvidia 2080 Ti GPU. We use OpenCV’s

morphological expansion filter (erosion + dilation) with an

identity kernel of size 5 to remove noise from the resulting

segmentation mask. In order to pour to a target height we

require information about the volume of water that has

already reached the cup and not water present in the pouring

stream, for this we use OpenCV to find the largest contour in

the liquid segmentation mask and retain water pixels within

this region. We usually start the liquid segmentation method

2 seconds after pouring has started to ensure that there is

some water in the target cup.

The post-processed liquid segmentation mask is then used

to detect water height using OpenCV’s minAreaRect func-

tion. The top edge of the detected bounding box becomes

the predicted water height (process variable) for our control

algorithm.

D. Generalization

In order to evaluate our method’s capacity to generalize

to diverse situations lying outside the training distribution,

we design experiments to test the the trained segmentation

models on scenes with 1) various transparent containers filled

with water to different heights, and 2) same transparent

container filled with water to different heights in front of

different backgrounds.

1) Diverse containers: We train our method using 128 im-

ages of a single cylindrical cup filled with water to different

heights and test on 73 images of 7 different containers filled

to different heights of water. The containers used for testing

have different shapes, sizes and spouts; this causes them to

produce various refraction patterns. We also test with cups

placed in different locations of the scene to verify that the

model does not overfit to a particular cup pose.

We observe that the model is able to segment clear water

within the transparent container in most cases as shown in

Fig 8.

2) Diverse Backgrounds: We collect two datasets of 2000

images (sampled from 20 vidoes) each of transparent and

colored liquid placed in front of diverse backgrounds. We are

able to generate diverse backgrounds by placing a computer

monitor playing random youtube videos behind the cup. We

then manually pour water and record images with different

amounts of static water in the cup. We follow the same

pipeline as described in Section III of the main text., i.e train

an image translation model to translate colored liquid images

to transparent liquid and then use the translated images for

segmentation.



(a) (b) (c) (d) (e)

Fig. 7: Background subtraction for automatic ground truth annotation of colored liquid: (a) Empty cup from which we build

the background model (b) Cup filled with transparent liquid (c) Background subtraction for transparent liquid; note that this

mask is not accurate and hence our method does not rely on background subtraction of transparent liquid (d) Cup filled with

colored liquid (e) Background subtraction for colored liquid; this mask is much more accurate than the one in (c), hence we

use this mask to train the transparent liquid segmentation model, trained on synthetically generated images of transparent

liquid.

Our evaluation procedure utilizes 500 images sampled

from 5 random youtube vidoes. Segmentation results can be

found in Fig 9.
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