

tions, including a self-supervised test-time opti-

mization procedure.

2) a cloth manipulation system that plans over the

reconstructed cloth mesh and can perform both

cloth flattening and cloth canonicalization.

II. RELATED WORKS

A. Perception for Cloth Manipulation

There has been a long history of work on cloth

perception for manipulation. We refer to Jimenez et

al. [15] for a comprehensive overview.

Earlier works usually estimate specific visual features

of the cloth for manipulation. These include detect-

ing edges and corners for re-grasping [2] or grasping

and un-folding [16, 17, 18], or detecting wrinkles for

smoothing [1]. If the cloth is loosely extended, simplified

models such as the parameterized shape model [19] or

the polygonal model [20] can also be used for folding.

Other works also detect category-specific features such

as collars and hemlines [21]. These features have been

used with hand-designed controllers and strategies; in

this work, we aim to learn mesh reconstruction and a

cloth dynamics model that we can use to plan a cloth

manipulation action sequence.

There are also prior works on more generic pose

estimation for clothes. One line of works tries to estimate

the pose of on-body clothing from video by leveraging a

human body shape prior [22, 23, 24, 25, 26, 27, 28]. An-

other line of works assumes the initial configuration of

the cloth is known and uses tracking to estimate the full

configuration of the cloth under occlusion [29, 30, 31].

In contrast, we assume that the cloth may be initially

crumpled on a table in an unknown initial configuration.

Some other works [6, 7, 8, 9, 10, 11, 12] simplify the

problem by lifting up the cloth using the robot gripper for

the purpose of easier pose estimation; lifting up the cloth

significantly reduces the set of possible poses and simpli-

fies the reconstruction task. After lifting the cloth, Kita et

al. [6] deform a set of predefined representative shapes

to fit the observed data. Other works create a dataset

of clothes grasped at different locations and retrieve the

observed pose at test-time by classification [7, 8, 10, 11]

or using nearest neighbor [9]. In contrast, our method

can estimate the cloth directly from a crumpled state

on the table, which enables our method to continually

re-estimate the cloth state throughout a manipulation

sequence.

Recently, GarmentNets [12] performed categorical

cloth 3D reconstruction by mapping the cloth point

cloud into a normalized canonical space (NOCS) defined

for each cloth category [32]. However, like the above

methods, GarmentNets also requires grasping and raising

the cloth into the air and obtaining four different camera

views to reduce the amount of occlusion. In contrast,

our perception module only requires a single view of

the cloth crumpled on the table. Further, we find that

the reconstructions produced by GarmentNets are not

sufficient for accurate cloth manipulation. Also, unlike

GarmentNets that only considers the perception task,

we demonstrate a full cloth manipulation system and

show the effectiveness of our perception method for

manipulation.

B. Data-driven Methods for Cloth manipulation

Prior works in data-driven cloth manipulation can

be categorized as model-free or model-based. Model-

based methods train a policy that outputs actions for

cloth manipulation. The policies are trained by either

reinforcement learning [33, 34], imitation learning [35],

or by learning a value function [36]. Alternatively, the

policies can be learned as a one-step inverse dynamics

model [37, 38].

The second approach is to learn a dynamics model

and then plan over the model to find the robot actions.

Hoque et al. directly learn a video prediction dynamics

model [3] and Wilson et al. learn a latent dynamics

model with contrastive losses [4]. These models do not

explicitly reason about the cloth structure, making gen-

eralization difficult. Recent work (VCD) trains a mesh

dynamics model [5] over the visible points. However,

without reasoning about the occluded regions, the plan-

ner will often fail to find the optimal smoothing actions.

In contrast, our approach plans over a full reconstructed

mesh dynamics model.

C. Test-time Optimization

Test-time optimization has been widely used for view-

synthesis [39, 40], 3D particle reconstruction [41] and

3D scene flow [42]. For example, Chen et al. [41]

trained a network to predict an object point cloud that is

consistent with a set of object masks in different camera

views. However, these approaches have not been applied

to cloth reconstruction or robot manipulation tasks.

III. BACKGROUND

A. Problem Formulation

We consider the task of manipulating clothes in a

planar workspace with a single robot arm. A cloth at

time t is represented by a mesh M t = (V t, Et) with

vertices V t = {vi}i=1...N and mesh edges Et. Each

vertex consists of a position xi and velocity ẋi that

will change with the cloth configuration. The ground-

truth configuration of the cloth M t is unknown, and

the robot only observes the RGB-D image It, which

includes severe self-occlusions for crumpled garments

(though our method only uses the color to segment the

cloth from the background). Given the camera intrinsics

and the segmentation mask, we can also back-project It

architecture is no longer able to provide reasonable

estimates of the cloth configuration, as we will show.

Instead, we use an architecture designed for depth im-

ages. In particular, we find that PointNet++ is not able

to distinguish whether a piece of cloth is folded above or

folded below the rest of the cloth. Differentiating these

two cases requires noticing the subtle depth changes

at the boundary where two layers meet. Therefore, we

replace Pointnet++ with a High Resolution Network

(HRNet) [45] which is a convolutional architecture that

specializes in producing a high-resolution and spatially

precise representation.

Relative predictions: We found that the reconstruction

model sometimes inaccurately estimates the configura-

tion of the cloth in observation space, but it often predicts

the canonical shape reasonably well (see Figure 2 for

a visualization of these two spaces). Thus, we learn

to predict the delta between the position of a point

in canonical space and its corresponding location in

observation space. Specifically, given the predicted mesh

in canonical space, M̃ c = (Ṽ c, Ẽc), Ṽ c = {ṽi}i=1...n,

where the coordinate of each vertex in canonical space

is x̃c
i , we predict a 3-dimensional residual vector f̃i for

each point i. The predicted coordinates in the observation

space x̃o
i are obtained by

x̃o
i = x̃c

i + f̃i (1)

As shown in the ablation experiments in Table I, both

modifications described above are important for the

performance of the method.

B. Test-time finetuning

Estimating the complete structure of cloth is inherently

challenging due to the high degrees of freedom and the

ambiguity induced by occlusion. As a result, the network

described above still has significant prediction errors, as

shown in Fig. 3.

To tackle this issue, we design a test-time finetuning

scheme that further optimizes the predicted mesh using

self-supervised losses that can be computed without

knowledge of the ground-truth cloth state. We deform

the predicted mesh by optimizing the location of each

vertex to optimize an objective consisting of the sum of

two loss terms: unidirectional Chamfer loss and mapping

consistency loss.

Unidirectional Chamfer loss. The first self-supervised

loss term penalizes any deviations between the predicted

mesh and the observed cloth surface (depth image) so

that geometric details are preserved. Since the obser-

vation only contains information about the visible sur-

face, optimizing the mesh with a standard bi-directional

Chamfer loss will result in undesirable results, i.e., the

predicted mesh will move entirely to the visible surface

and no part of the mesh will remain in the occluded

region. Therefore, we use a unidirectional Chamfer loss

as described below.

Suppose at timestep t, the point cloud observation of

the cloth is P t = {pi}i=1..L and the predicted mesh in

observation space is M̃ t = (Ṽ t, Ẽt). The coordinate of

each vertex is specified by a 3-dimensional vector. Then

the loss term is formulated as:

LC(Ṽ
t;P t) =

1

|P t|

∑

pi∈P t

min
ṽj∈Ṽ t

d(pi, ṽj) (2)

where d(·, ·) can be any distance metric, and we use

Euclidean distance. In other words, for each point in the

observed point cloud, we find the distance to the nearest

point in the predicted mesh and minimize the sum of

such distances.

Mapping consistency loss. Since we don’t know the ex-

act correspondence between the predicted mesh and the

partial point cloud, only optimizing the uni-directional

Chamfer loss above may lead to a local minimum. To

alleviate this issue, we observe that the mapping from

the observation space to canonical space and then back

to observation space (see Figure 2, top) creates a cycle;

thus we add a loss that, for each visible point, this cycle

should end at the location where it started.

Let P t be the point cloud observation of the cloth;

let f be the learned mapping from each observation

point to a location in the canonical space; and let g be

a learned mapping from each location in the canonical

space to a position back in the observation space (shown

in Figure 2, top). Note that g operates on the predicted

completed cloth surface which includes both observed

and occluded points. The mapping consistency loss term

can be expressed as:

LM(P t) =
1

|P t|

∑

pi∈P t

d(g(f(pi)), pi) (3)

In other words, this loss penalizes the distance between

the original location of each observed point pi and its

predicted location g(f(pi)).
Optimization. We use gradient descent with the Adam

optimizer [46] to optimize the losses above. The opti-

mization is divided into two phases. In the first 50 steps,

we optimize the mesh using the Chamfer loss together

with mapping consistency loss; then we optimize the

mesh using the Chamfer loss alone for another 50

iterations.

We do not perform a joint optimization throughout the

optimization process because multiple pixels in the depth

image might be mapped to the same voxel in the canon-

ical space. Enforcing mapping consistency throughout

the optimization process will create implausible meshes

whose vertices converge to a set of clusters. Instead,

we use the mapping consistency loss to provide a good

initialization (beyond the initial network prediction), and

(a)

Trousers Jumpsuit Skirt

Shirt Dress

(b)

Fig. 4: Flattening (i.e. maximizing the covered area of the cloth) may
not always give us a good starting point for folding. Left: Undesirable
results of actions that optimize for the flattening task (maximizing the
coverage). Right: Examplar goal poses for canonicalization of each
category.

it compare to methods that operate only on the

visible points?

2) Does test-time finetuning improve the quality of

predicted mesh as well as the performance in cloth

manipulation tasks?

3) Can our method work on a physical robot?

A. Tasks

Flattening. Our goal is to flatten a crumpled cloth, that

is, spreading it on the table. Following prior works [5],

we compute the coverage of the cloth as the objective

for planning and evaluation.

Canonicalization. Usually, flattening is the first step

of a cloth manipulation pipeline [9, 10, 11, 8, 51],

which makes the subsequent tasks such as folding easier.

However, for certain types of clothing, such as skirts or

unbuttoned shirts, the flattening objective can produce

undesirable results, as shown in Figure 4a, in which

the robot maximizes the area covered by the cloth in

a manner that is not conducive for downstream folding.

Therefore, we also evaluate our method on a task

that we call “cloth canonicalization,” where the goal is

to manipulate the cloth and align it with the flattened

canonical pose, as shown in Figure 4b. To account for

the ambiguity due to rotation and reflection symmetries,

we define a set of symmetries for each type of cloth.

Using these symmetries, we define a canonical goal set

of flattened poses G = {GN×3

i }i=1...A for each cloth

instance, where A is the number of valid canonical poses.

For example, for Trousers, we can rotate the canonical

pose by 180 degrees to obtain another valid goal. The

cost is computed as the minimum of the average pairwise

distance to each of the possible canonical poses. Suppose

that the current configuration of the cloth in the simulator

is V ∈ R
N×3, where N is the number of vertices. Then

the cost is computed as

Costcanon = min
Gi∈G

1

N

N−1∑

j=0

(gj − vj)
2 (4)

Note that Gi and V have the same number of vertices

because both refer to the simulated cloth in different

configurations. In this work, we allow for our method

to canonicalize the cloth without penalizing for errors

with respect to a rigid transformations; this is because,

for the task of cloth folding, the rotation and translation

of the cloth is of lesser importance. To evaluate this, we

first align the goal with the current state by computing

an optimal rigid transformation using the Kabsch algo-

rithm [52], and then we compute the cost by Equation 5.

B. Simulation Experiments

1) Baselines: We compare our method to 4 baselines,

including two state-of-the-art cloth manipulation meth-

ods:

• VisuoSpatial Foresight (VSF) [3]. This baseline

learns a visual dynamics model in the RGB-D

observation space. It is trained on each category

separately.

• Visible Connectivity Graph (VCD) [5]. Similar

to our method, VCD learns a particle-based dy-

namics model. However, unlike our method, VCD

only operates on the visible points on the cloth,

without explicitly reasoning about occlusions. An

edge GNN is used to infer the mesh structure on the

partial point cloud. To make a fair comparison with

our method, the edge GNN is trained in a category-

specific manner, while the dynamics model is only

trained on Trousers (similar to our approach).

• GarmentNets [12]. In this baseline, we use the

original implementation of GarmentNets for mesh

reconstruction, which processes a partial point

cloud with PointNet++ [43] and doesn’t use relative

prediction. For planning, we evaluate this baseline

with the same mesh-based dynamics model as our

method.

• MEDOR-no-finetuning. This is a variant of our

method that removes the test-time finetuning step

(Section IV-B).

• MEDOR. This is our full method, which is essen-

tially a modified version of GarmentNets with test-

time finetuning.

For VSF and VCD, we provide the ground-truth RGB-

D image and the ground-truth mesh (respectively) in

the canonical pose to use for the reward computation.

Note that our method does not have access to this

information. More details on the baselines can be found

in the Supplement.

2) Results: For each task, we show the normalized

improvement (NI) of each method, where 0 indicates no

change from the initial state and 1 is the best possi-

ble performance. For flattening, we use the normalized

improvement metric defined in previous work [5]; for

Method Normalized
Improvement

GarmentNets [53] 0.320 ± 0.146
No Mesh Reconstruction (VCD [5]) 0.391 ± 0.174

No Finetuning and no Relative Prediction 0.560 ± 0.163
No Finetuning 0.585 ± 0.171

Joint Optimization 0.614 ± 0.157
No Consistency Loss 0.623 ± 0.148

Replace GNN by GT Dynamics 0.631 ± 0.161
Ours w/ Partial Reward 0.462 ± 0.210

Ours (full method) 0.651 ± 0.138

GT Mesh + Learned Dynamics 0.800 ± 0.096
GT Mesh + GT Dynamics 0.870 ± 0.076

TABLE I: Ablation experiments.

of the VCD dynamics model (on the partial mesh) is

64.2% higher than the rollout error on the reconstructed

mesh. This demonstrates the importance of using the

reconstructed mesh for accurate cloth dynamics.

To further this analysis, we also perform an experi-

ment in which we use the full reconstructed mesh for

the dynamics model but use only the partial mesh for

the reward computation (Ours w/ Partial Reward). If we

compare the performance of this version to the 2nd row

(No Mesh Reconstruction (VCD [5])) we see the benefits

of using the full reconstructed mesh for the dynamics

model instead of the partial mesh (0.462 vs 0.391).

How much does test-time finetuning help? Are

both losses necessary? When other components remain

unchanged, we see that finetuning with only the Chamfer

loss (No Consistency Loss) already improves the per-

formance over no finetuning (No Finetuning) by 6.5%.

Adding the Mapping Consistency Loss further boosts

the performance from 0.623 (No Consistency Loss) to

0.651 (Ours (full method)); the combined improvement

is 11.3%. Also, we find that without the 2-stage op-

timization scheme (Joint Optimization), the mapping

consistency loss hurts the performance (comparing No

Consistency Loss vs Joint Optimization).

HRNet [45] vs PointNet++ [43]: Looking at Table I,

the only difference between the methods in the first and

third row is the use of HRNet instead of PointNet++.

The huge difference in performance shows the benefits

of the HRNet architecure for this task.

Does Relative Prediction help? Comparing the per-

formance of No Finetuning and No Relative Prediction

with No Finetuning, we see that this simple modification

(described in Section IV-A) improves performance.

Do we need to learn the dynamics model instead

of using the ground-truth dynamics model from the

simulator? Once we reconstruct the full cloth mesh, one

option is to plan using the physics-based dynamics of

Nvidia Flex simulator, as similarly done in [41]. This

ablation is shown as Replace GNN by GT Dynamics in

Table I. We can see that this ablation yields a slight

performance drop compared to our full method. We

speculate that this is because the analytical dynamics

model is more sensitive to mesh prediction errors than

the learned dynamics model. As an additional point,

planning with a simulator is 1.4 times slower than using

a GNN dynamics model even after heavy parallelization

(247 seconds vs. 103 seconds for 500 rollouts).

Where are the remaining gaps in performance?

As we can see in the last two rows, using the ground-

truth mesh (instead of a learned mesh reconstruction)

improves the performance by 23.1%. We can improve

performance another 7% by also using the ground-truth

dynamics model. The remaining errors come from the

sampling-based planner itself, which might fail to sample

good actions.

D. Physical Experiments

We also evaluate our method in the real world by

deploying it on a 7-DOF Franka Emika Panda robot.

We mount an Azure Kinect depth sensor on the end-

effector of the robot. When taking the depth image, the

end-effector will move to be centered above the cloth.

To obtain a valid plan for pick and place actions, we use

MoveIt! [54].

We evaluate our method on Trousers (3 instances) and

Dress (2 instances) on the cloth flattening task. For each

article of clothing, we run 5 trajectories with at most

10 pick-and-place actions each. The trajectories will

be terminated if the normalized improvements exceed

95%. We obtain random configurations by performing a

random drop three times. We compare our method with

two baselines. Random is a heuristic policy that performs

random pick-and-place actions. The picked points are

biased towards contour of the cloth and the place points

are always outside the cloth region. VCD [5] is a prior

method that plans with a partial point cloud instead of

reconstructing the full mesh. As shown in Fig. 7, our

Observation Reconstructed mesh

(Top view)

Reconstructed mesh

(Bottom view)

Sampled action

(Good, bad)

Fig. 6: Example reconstruction results in the real-world, after test-time
fine-tuning. In the 1st row, the trousers are successfully reconstructed,
including the occluded legs and wrinkles on the surface. The planner
(right column) is able to distinguish good actions from bad ones given
the reconstructed mesh. In the 2nd row, our model failed to capture
the left-bottom corner which is folded under the visible layer. As such,
the planner failed to choose actions to reveal the occluded part.

Fig. 7: We evaluate our method of 5 pieces of clothing. Please refer to our website for videos.

(a)

(b)

Fig. 8: Grasping failures: In (a), the cloth is deformed when the gripper
moves down, resulting in missed grasping. In (b), the robot is supposed
to grasp the upper layer and unfold it, but it mistakenly grasps the
bottom layer as well.

Random VCD [5] MEDOR (Ours)

Trousers 0.044 0.562 0.647

Dress 0.036 0.361 0.468

TABLE II: Results of physical robot experiments.

model can efficiently smooth the clothes by only a few

pick-and-place actions. The performance of our method

compared to the baselines is shown in Table II.

We do observe a gap between the performance in

simulation and in the real-world. The first source of error

is the reconstruction error. Since the model is trained in

simulation, it suffers from a distribution shift resulting

from the difference in modeling the cloth physics and

material properties, e.g., stiffness, thickness. In Figure 6,

we show a successful and a failed reconstruction result.

Another source of error comes from the grasp execution,

which mostly occur when multiple layers of cloth are

stacked together. There are two main failure modes: (1)

The robot gripper deforms the cloth, causing a failed

grasp; (2) The robot grasps the wrong number of cloth

layers. Figure 8 illustrates the two cases.

VI. CONCLUSIONS

We introduce a cloth manipulation system that ex-

plicitly reasons about the occluded regions of cloth. At

test-time, we optimize the predicted mesh with self-

supervised losses. Then we use a learned mesh-based

dynamics model to plan over the predicted mesh and

find optimal actions for cloth manipulation. We compare

against state-of-the-art cloth manipulation methods that

do not account for partial observability and show signifi-

cant improvements from explicit occlusion reasoning and

test-time fine-tuning. We also demonstrate the efficacy of

our method in real world experiments.

Acknowledgments

This work was supported by LG Electronics, Na-

tional Science Foundation (NSF) CAREER Award (IIS-

2046491) and NSF Smart and Autonomous Systems

Program (IIS-1849154).

REFERENCES

[1] Li Sun, Gerarado Aragon-Camarasa, Paul Cock-

shott, Simon Rogers, and J Paul Siebert. A

heuristic-based approach for flattening wrinkled

clothes. In Conference Towards Autonomous

Robotic Systems, pages 148–160. Springer, 2013.

1, 2

[2] Jeremy Maitin-Shepard, Marco Cusumano-Towner,

Jinna Lei, and Pieter Abbeel. Cloth grasp point

detection based on multiple-view geometric cues

with application to robotic towel folding. In 2010

IEEE International Conference on Robotics and

Automation, pages 2308–2315. IEEE, 2010. 1, 2

[3] Ryan Hoque, Daniel Seita, Ashwin Balakrishna,

Aditya Ganapathi, Ajay Tanwani, Nawid Jamali,

Katsu Yamane, Soshi Iba, and Ken Goldberg. Visu-

oSpatial Foresight for Multi-Step, Multi-Task Fab-

ric Manipulation. In Robotics: Science and Systems

(RSS), 2020. 1, 2, 3, 6, 7, 14

[4] Wilson Yan, Ashwin Vangipuram, Pieter Abbeel,

and Lerrel Pinto. Learning predictive representa-

tions for deformable objects using contrastive esti-

mation. In Conference on Robot Learning (CoRL),

2020. 1, 2

[5] Xingyu Lin, Yufei Wang, Zixuan Huang, and David

Held. Learning visible connectivity dynamics for

cloth smoothing. In Conference on Robot Learning,

pages 256–266. PMLR, 2022. 1, 2, 3, 5, 6, 7, 8, 9,

14, 17

[6] Yasuyo Kita, Toshio Ueshiba, Ee Sian Neo, and

Nobuyuki Kita. Clothes state recognition using

3d observed data. In 2009 IEEE International

Conference on Robotics and Automation, pages

1220–1225. IEEE, 2009. 1, 2

[7] Yinxiao Li, Chih-Fan Chen, and Peter K Allen.

Recognition of deformable object category and

pose. In 2014 IEEE international conference on

robotics and automation (ICRA), pages 5558–5564.

IEEE, 2014. 1, 2

[8] Ioannis Mariolis, Georgia Peleka, Andreas Kar-

gakos, and Sotiris Malassiotis. Pose and category

recognition of highly deformable objects using

deep learning. In 2015 International conference on

advanced robotics (ICAR), pages 655–662. IEEE,

2015. 1, 2, 6

[9] Yinxiao Li, Yan Wang, Yonghao Yue, Danfei Xu,

Michael Case, Shih-Fu Chang, Eitan Grinspun, and

Peter K Allen. Model-driven feedforward predic-

tion for manipulation of deformable objects. IEEE

Trans. Autom. Sci. Eng., 15(4):1621–1638, October

2018. 1, 2, 6

[10] Yinxiao Li, Yonghao Yue, Danfei Xu, Eitan Grin-

spun, and Peter K Allen. Folding deformable

objects using predictive simulation and trajectory

optimization. In 2015 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS),

pages 6000–6006. IEEE, 2015. 1, 2, 6

[11] Yinxiao Li, Yan Wang, Michael Case, Shih-Fu

Chang, and Peter K Allen. Real-time pose esti-

mation of deformable objects using a volumetric

approach. In 2014 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems, pages

1046–1052. IEEE, 2014. 1, 2, 6

[12] Cheng Chi and Shuran Song. Garmentnets:

Category-level pose estimation for garments via

canonical space shape completion. ICCV, 2021.

1, 2, 3, 5, 6, 7, 14, 15

[13] Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-

Gonzalez, and Peter W Battaglia. Learning mesh-

based simulation with graph networks. In Inter-

national Conference on Learning Representations,

2021. 1, 5

[14] Alvaro Sanchez-Gonzalez, Jonathan Godwin, To-

bias Pfaff, Rex Ying, Jure Leskovec, and Peter

Battaglia. Learning to simulate complex physics

with graph networks. In International Conference

on Machine Learning, pages 8459–8468. PMLR,

2020. 1, 5, 17

[15] P Jiménez. Visual grasp point localization, classifi-

cation and state recognition in robotic manipulation

of cloth: An overview. Rob. Auton. Syst., 92:107–

125, June 2017. 2

[16] Eiichi Ono, N Kits, and Shigeyuki Sakane. Un-

folding folded fabric using outline information with

vision and touch sensors. Journal of Robotics and

Mechatronics, 10:235–243, 1998. 2

[17] Bryan Willimon, Stan Birchfield, and Ian Walker.

Model for unfolding laundry using interactive per-

ception. In 2011 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems, pages

4871–4876. IEEE, 2011. 2

[18] Jianing Qian, Thomas Weng, Luxin Zhang, Brian

Okorn, and David Held. Cloth region segmentation

for robust grasp selection. In 2020 IEEE/RSJ

International Conference on Intelligent Robots and

Systems (IROS), pages 9553–9560. IEEE, 2020. 2

[19] Stephen Miller, Mario Fritz, Trevor Darrell, and

Pieter Abbeel. Parametrized shape models for

clothing. In 2011 IEEE International Conference

on Robotics and Automation, pages 4861–4868.

IEEE, 2011. 2

[20] Jan Stria, Daniel Prusa, and Vaclav Hlavac. Polyg-

onal models for clothing. In Conference To-

wards Autonomous Robotic Systems, pages 173–

184. Springer, 2014. 2

[21] Arnau Ramisa, Guillem Alenya, Francesc Moreno-

Noguer, and Carme Torras. Learning rgb-d descrip-

tors of garment parts for informed robot grasping.

Engineering Applications of Artificial Intelligence,

35:246–258, 2014. 2

[22] Boyi Jiang, Juyong Zhang, Yang Hong, Jinhao Luo,

Ligang Liu, and Hujun Bao. Bcnet: Learning

body and cloth shape from a single image. In

European Conference on Computer Vision, pages

18–35. Springer, 2020. 2

[23] R Daněřek, Endri Dibra, Cengiz Öztireli, Remo

Ziegler, and Markus Gross. Deepgarment: 3d

garment shape estimation from a single image. In

Computer Graphics Forum, volume 36, pages 269–

280. Wiley Online Library, 2017. 2

[24] Chaitanya Patel, Zhouyingcheng Liao, and Gerard

Pons-Moll. Tailornet: Predicting clothing in 3d as

a function of human pose, shape and garment style.

In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages

7365–7375, 2020. 2

[25] Shunsuke Saito, Jinlong Yang, Qianli Ma, and

Michael J Black. Scanimate: Weakly supervised

learning of skinned clothed avatar networks. In

Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pages 2886–

2897, 2021. 2

[26] Gerard Pons-Moll, Sergi Pujades, Sonny Hu, and

Michael J Black. Clothcap: Seamless 4d clothing

capture and retargeting. ACM Transactions on

Graphics (ToG), 36(4):1–15, 2017. 2

[27] Fangzhou Hong, Liang Pan, Zhongang Cai, and

Ziwei Liu. Garment4d: Garment reconstruction

from point cloud sequences. Advances in Neural

Information Processing Systems, 34, 2021. 2

[28] Zhaoqi Su, Tao Yu, Yangang Wang, and Yebin Liu.

Deepcloth: Neural garment representation for shape

and style editing. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 2022. 2

[29] Cheng Chi and Dmitry Berenson. Occlusion-robust

deformable object tracking without physics simula-

tion. In 2019 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), pages

6443–6450. IEEE, 2019. 2

[30] Yixuan Wang, Dale McConachie, and Dmitry

Berenson. Tracking partially-occluded deformable

objects while enforcing geometric constraints. In

2021 IEEE International Conference on Robotics

and Automation (ICRA), pages 14199–14205.

IEEE, 2021. 2

[31] Te Tang and Masayoshi Tomizuka. Track de-

formable objects from point clouds with structure

preserved registration. The International Journal

of Robotics Research, page 0278364919841431,

2018. 2

[32] He Wang, Srinath Sridhar, Jingwei Huang, Julien

Valentin, Shuran Song, and Leonidas J Guibas.

Normalized object coordinate space for category-

level 6d object pose and size estimation. In

Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pages 2642–

2651, 2019. 2, 3

[33] Jan Matas, Stephen James, and Andrew J Davison.

Sim-to-real reinforcement learning for deformable

object manipulation. Conference on Robot Learn-

ing (CoRL), 2018. 2

[34] Wilson Wu, Yilin adn Yan, Thanard Kurutach,

Lerrel Pinto, and Pieter Abbeel. Learning to manip-

ulate deformable objects without demonstrations.

Robotics Science and Systems (RSS), 2020. 2, 3

[35] Daniel Seita, Aditya Ganapathi, Ryan Hoque,

Minho Hwang, Edward Cen, Ajay Kumar Tanwani,

Ashwin Balakrishna, Brijen Thananjeyan, Jeffrey

Ichnowski, Nawid Jamali, Katsu Yamane, Soshi

Iba, John Canny, and Ken Goldberg. Deep Im-

itation Learning of Sequential Fabric Smoothing

From an Algorithmic Supervisor. In IEEE/RSJ

International Conference on Intelligent Robots and

Systems (IROS), 2020. 2

[36] Huy Ha and Shuran Song. Flingbot: The unrea-

sonable effectiveness of dynamic manipulation for

cloth unfolding. In Conference on Robot Learning,

pages 24–33. PMLR, 2022. 2

[37] Thomas Weng, Sujay Man Bajracharya, Yufei

Wang, Khush Agrawal, and David Held. Fab-

ricflownet: Bimanual cloth manipulation with a

flow-based policy. In Conference on Robot Learn-

ing, pages 192–202. PMLR, 2022. 2

[38] Ashvin Nair, Dian Chen, Pulkit Agrawal, Phillip

Isola, Pieter Abbeel, Jitendra Malik, and Sergey

Levine. Combining self-supervised learning and

imitation for vision-based rope manipulation. In

2017 IEEE international conference on robotics

and automation (ICRA), pages 2146–2153. IEEE,

2017. 2

[39] Ben Mildenhall, Pratul P Srinivasan, Matthew Tan-

cik, Jonathan T Barron, Ravi Ramamoorthi, and

Ren Ng. Nerf: Representing scenes as neural

radiance fields for view synthesis. In European

conference on computer vision, pages 405–421.

Springer, 2020. 2

[40] Alex Yu, Sara Fridovich-Keil, Matthew Tancik,

Qinhong Chen, Benjamin Recht, and Angjoo

Kanazawa. Plenoxels: Radiance fields without

neural networks. arXiv preprint arXiv:2112.05131,

2021. 2

[41] Siwei Chen, Xiao Ma, Yunfan Lu, and David Hsu.

Ab initio particle-based object manipulation. arXiv

preprint arXiv:2107.08865, 2021. 2, 8

[42] Jhony Kaesemodel Pontes, James Hays, and Simon

Lucey. Scene flow from point clouds with or

without learning. In 2020 International Conference

on 3D Vision (3DV), pages 261–270. IEEE, 2020.

2

[43] Charles R Qi, Li Yi, Hao Su, and Leonidas J

Guibas. Pointnet++: Deep hierarchical feature

learning on point sets in a metric space. arXiv

preprint arXiv:1706.02413, 2017. 3, 6, 8

[44] Alec Jacobson, Ladislav Kavan, and Olga Sorkine-

Hornung. Robust inside-outside segmentation using

generalized winding numbers. ACM Transactions

on Graphics (TOG), 32(4):1–12, 2013. 3, 15

[45] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang.

Deep high-resolution representation learning for

human pose estimation. In Proceedings of the

IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 5693–5703, 2019. 4,

8, 15

[46] Diederik P Kingma and Jimmy Ba. Adam: A

method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014. 4

[47] Kok-Lim Low and Tiow-Seng Tan. Model simpli-

fication using vertex-clustering. In Proceedings of

the 1997 symposium on Interactive 3D graphics,

pages 75–ff, 1997. 5, 17

[48] Franco Scarselli, Marco Gori, Ah Chung Tsoi,

Markus Hagenbuchner, and Gabriele Monfardini.

The graph neural network model. IEEE transac-

tions on neural networks, 20(1):61–80, 2008. 5

[49] Xingyu Lin, Yufei Wang, Jake Olkin, and David

Held. SoftGym: Benchmarking deep reinforcement

learning for deformable object manipulation. In

Conference on Robot Learning, 2020. 5, 13, 16

[50] Hugo Bertiche, Meysam Madadi, and Sergio Es-

calera. Cloth3d: Clothed 3d humans. In European

Conference on Computer Vision, pages 344–359.

Springer, 2020. 5, 13, 14, 16, 17

[51] Aditya Ganapathi, Priya Sundaresan, Brijen

Thananjeyan, Ashwin Balakrishna, Daniel Seita,

Jennifer Grannen, Minho Hwang, Ryan Hoque,

Joseph Gonzalez, Nawid Jamali, Katsu Yamane,

Soshi Iba, and Ken Goldberg. Learning Dense

Visual Correspondences in Simulation to Smooth

and Fold Real Fabrics. In ICRA, 2021. 6

[52] K Somani Arun, Thomas S Huang, and Steven D

Blostein. Least-squares fitting of two 3-d point

sets. IEEE Transactions on pattern analysis and

machine intelligence, (5):698–700, 1987. 6

[53] Dian Chen, Brady Zhou, Vladlen Koltun, and

Philipp Krähenbühl. Learning by cheating. In Con-

ference on Robot Learning, pages 66–75. PMLR,

2020. 8

[54] Sachin Chitta, Ioan Sucan, and Steve Cousins.

Moveit![ros topics]. IEEE Robotics & Automation

Magazine, 19(1):18–19, 2012. 8

[55] Özgün Çiçek, Ahmed Abdulkadir, Soeren S

Lienkamp, Thomas Brox, and Olaf Ronneberger.

3d u-net: learning dense volumetric segmentation

from sparse annotation. In International conference

on medical image computing and computer-assisted

intervention, pages 424–432. Springer, 2016. 15

[56] C. G. Harris and M. Stephens. A combined corner

and edge detector. In Alvey Vision Conference,

1988. 16

[57] William E Lorensen and Harvey E Cline. Marching

cubes: A high resolution 3d surface construction

algorithm. ACM siggraph computer graphics,

21(4):163–169, 1987. 16

[58] Zhengyou Zhang. Iterative point matching for

registration of free-form curves and surfaces. In-

ternational journal of computer vision, 13(2):119–

152, 1994. 17

VII. EXPERIMENTS SETUP

A. Simulation Setup

We conduct all simulation experiments in Soft-

gym [49], a simulation environment for deformable

objects built on the particle-based simulator, Nvidia

Flex. We model a flying gripper as a spherical picker

that can move freely in the 3D space. When a cloth

particle is ”picked”, it will move rigidly with the gripper.

The simulation parameters of softgym can be found

in Table. III. We obtained the 3D cloth models from

CLOTH3D dataset [50]. Considering the physical exper-

iments, we rescale the cloth models so that they could

fit in the workspace of our real robot. Also, to make

the GNN dynamics computationally feasible, we create

a downsampled version of the cloth models. During

data collection, we still use the original dense mesh in

softgym, but register the downsampled mesh onto the

dense mesh by finding the nearest neighbor of each ver-

tex. Therefore, we obtain the trajectory of downsampled

mesh and use that for dynamics learning. The detailed

specifications of the preprocessed CLOTH3D dataset can

be found in Table. V. We use a top-down camera and it’s

placed at a fixed height of 0.65 m. The valid workspace

is 0.53 m × 0.53 m.

Flattening For flattening task, the goal is to maximize

the coverage of the cloth in the current configuration. To

compute the coverage, we treat each node on the graph as

a sphere with a radius of 0.005 and compute the covered

area when projected to the ground plane.

Canonicalization In CLOTH3D, the canonical pose

of the cloth is defined to be the pose of cloth when

Simulation parameters Value

Camera view Top-down
Camera position [0, 0.65 m, 0]
Field of view 90
Picker radius 0.01 m
Picker threshold 0.00625 m
dt 0.01 second
Damping 1
Dynamic friction 1.2
Particle friction 1
Stiffness (strech, bend, shear) [1.2, 0.6, 1]
Mass 0.0003
Particle radius 0.005
Gravity -9.8

TABLE III: Hyper-parameters of softgym.

Trousers Shirt Dress Skirt Jumpsuit

2 1 2 12 2

TABLE IV: Order of rotation symmetry of different types of cloth.
The order of rotation symmetry is the times the shape fits onto itself
when rotating for 360 degrees. An order of 2 means that the shape
remains unchanged when rotating for 180 or 360 degrees. We use it
to construct goal sets for cloth canonicalization task.

wore by a T-pose human. However, since we are con-

sidering cloth manipulation on a planar surface, it is not

achievable and cannot be used as the goal pose directly.

Therefore, we use gravity (10 times the gravity on Earth)

to obtain a flattened version of the canonical pose.

Another thing that needs to be handled is the ambiguity

caused by reflection symmetry and rotation symmetry.

For example, trousers are approximately 180◦ rotation

symmetry, which means that the shapes before and after

rotating around the center axis for 180◦ are the same.

Therefore, during the evaluation of cloth canonicaliza-

tion, we define a canonical goal set G = {GN×3

i }i=1...A,

for each type of cloth. A is the number of valid canonical

poses. The cost is computed as the minimum of average

pairwise distance to each of the possible canonical poses.

Suppose that the current configuration of the cloth is

V N×3, where N is the number of vertices, gj and vj is

the j-th vertex of the mesh, the cost is computed as

Costcanon = min
Gi∈G

N∑

j=n

(gj − vj)
2

N
(5)

The rotation symmetry of each category is described

in Table. IV. It should be noted that since we maintain a

discrete set of plausible goal pose, although skirt has in-

finite order of rotation symmetry, we cannot iterate over

all possible cases. Instead, we make an approximation

that the order of rotation symmetry of skirt is 12. The

order of rotation symmetry is the times the shape fits

onto itself when rotating for 360 degrees. An order of 2

means that the shape remains unchanged when rotating

for 180 or 360 degrees.

VIII. ADDITIONAL RESULTS

A. Simulation Experiments

The full results of simulation are shown in the Ta-

ble. VI, best performance within each category is bolded.

We also show several trajectories of cloth canonicaliza-

tion in Fig. 9.

B. Physical Experiments

Some additional results of physical experiments are

shown in Fig. 10 and Fig. 11.

IX. IMPLEMENTATION DETAILS OF MEDOR

A. GarmentNets-style Mesh Reconstruction Model

As described in the main paper, we employ a

GarmentNets-style model to reconstruct the mesh from

depth image. GarmentNets formulates the pose estima-

tion problem of clothes as a shape completion task in the

canonical space. By doing so, the model learns meaning-

ful correspondence between There are several advantages

about GarmentNets: 1) it reconstructs the occluded part

of the clothes due to self-occlusion; 2) it estimates the

Trousers Shirt Dress Skirt Jumpsuit

No. of Meshes 1691 1111 2037 468 2279
Avg. No. of Vertices 7050± 1954 5308± 996 8030± 2159 4643± 1225 10686± 2572

Avg. No. of Vertices (downsampled) 278± 87 214± 59 291± 99 190± 80 215± 58

Rescaling Factor 0.42 0.36 0.29 0.28 0.28
Avg. X (m) 0.29± 0.03 0.32± 0.10 0.24± 0.07 0.20± 0.05 0.19± 0.08

Avg. Y (m) 0.12± 0.02 0.11± 0.02 0.15± 0.05 0.15± 0.05 0.09± 0.02

Avg. Z (m) 0.27± 0.08 0.19± 0.04 0.31± 0.06 0.18± 0.05 0.31± 0.06

TABLE V: The statistics of the CLOTH3D dataset [50] after pre-processing.

Task Flattening Canonicalization

Number of Pick-and-Place 1 2 3 1 2 3

Trousers

VSF [3] 0.09 ± 0.13 0.15 ± 0.07 0.14 ± 0.13 0.02 ± 0.02 0.03 ± 0.04 0.05 ± 0.05
VCD [5] 0.34 ± 0.15 0.41 ± 0.14 0.53 ± 0.24 0.22 ± 0.14 0.26 ± 0.17 0.46 ± 0.16

GarmentNets [12] 0.27 ± 0.15 0.37 ± 0.14 0.53 ± 0.16 0.14 ± 0.06 0.21 ± 0.09 0.33 ± 0.14
MEDOR (no fine-tuning) 0.41 ± 0.14 0.57 ± 0.16 0.72 ± 0.08 0.48 ± 0.16 0.64 ± 0.10 0.77 ± 0.10

MEDOR 0.52 ± 0.12 0.69 ± 0.12 0.79 ± 0.10 0.59 ± 0.13 0.73 ± 0.10 0.77 ± 0.07

Shirt

VSF [3] 0.12 ± 0.07 0.15 ± 0.08 0.20 ± 0.09 0.01 ± 0.02 0.01 ± 0.03 0.03 ± 0.04
VCD [5] 0.39 ± 0.14 0.51 ± 0.23 0.70 ± 0.20 0.10 ± 0.20 0.14 ± 0.23 0.22 ± 0.21

GarmentNets [12] 0.34 ± 0.21 0.47 ± 0.17 0.55 ± 0.22 0.08 ± 0.12 0.10 ± 0.14 0.11 ± 0.16
MEDOR (no fine-tuning) 0.59 ± 0.17 0.78 ± 0.26 0.94 ± 0.22 0.46 ± 0.26 0.60 ± 0.12 0.62 ± 0.24

MEDOR 0.59 ± 0.22 0.77 ± 0.19 0.96 ± 0.13 0.53 ± 0.26 0.56 ± 0.12 0.61 ± 0.09

Dress

VSF [3] 0.12 ± 0.07 0.15 ± 0.08 0.20 ± 0.09 0.02 ± 0.03 0.03 ± 0.03 0.04 ± 0.04
VCD [5] 0.39 ± 0.14 0.51 ± 0.23 0.70 ± 0.20 0.18 ± 0.17 0.25 ± 0.16 0.34 ± 0.19

GarmentNets [12] 0.38 ± 0.16 0.51 ± 0.22 0.57 ± 0.16 0.07 ± 0.10 0.13 ± 0.13 0.21 ± 0.19
MEDOR (no fine-tuning) 0.43 ± 0.15 0.63 ± 0.19 0.69 ± 0.18 0.36 ± 0.17 0.53 ± 0.22 0.65 ± 0.15

MEDOR 0.50 ± 0.14 0.65 ± 0.11 0.80 ± 0.17 0.51 ± 0.14 0.60 ± 0.08 0.72 ± 0.09

Skirt

VSF [3] 0.25 ± 0.13 0.32 ± 0.19 0.27 ± 0.24 0.06 ± 0.04 0.07 ± 0.05 0.10 ± 0.07
VCD [5] 0.56 ± 0.13 0.67 ± 0.15 0.87 ± 0.12 0.19 ± 0.14 0.20 ± 0.14 0.21 ± 0.19

GarmentNets [12] 0.46 ± 0.16 0.59 ± 0.13 0.70 ± 0.13 0.12 ± 0.10 0.20 ± 0.12 0.25 ± 0.16
MEDOR (no fine-tuning) 0.56 ± 0.16 0.63 ± 0.19 0.73 ± 0.16 0.39 ± 0.14 0.41 ± 0.17 0.46 ± 0.21

MEDOR 0.58 ± 0.12 0.78 ± 0.14 0.91 ± 0.13 0.42 ± 0.14 0.47 ± 0.18 0.56 ± 0.21

Jumpsuit

VSF [3] 0.12 ± 0.06 0.15 ± 0.07 0.19 ± 0.10 0.02 ± 0.03 0.03 ± 0.03 0.04 ± 0.05
VCD [5] 0.36 ± 0.10 0.45 ± 0.15 0.64 ± 0.19 0.23 ± 0.09 0.19 ± 0.11 0.45 ± 0.19

GarmentNets [12] 0.33 ± 0.12 0.41 ± 0.12 0.55 ± 0.14 0.13 ± 0.15 0.18 ± 0.14 0.33 ± 0.21
MEDOR (no fine-tuning) 0.45 ± 0.17 0.65 ± 0.14 0.78 ± 0.19 0.59 ± 0.14 0.67 ± 0.09 0.76 ± 0.08

MEDOR 0.53 ± 0.17 0.73 ± 0.17 0.82 ± 0.10 0.57 ± 0.14 0.74 ± 0.09 0.81 ± 0.05

TABLE VI: Normalized Improvement (NI) of cloth flattening and cloth canonicalization, for varying numbers of allowed pick and place actions.

Fig. 9: Examplar trajectories of canonicalization task in simulation. As we can see, our method is able to quickly unfold the cloths from
extremely crumpled configurations in a few steps.

correspondence between clothes in canonical space and

observation space; 3) it estimates the pose of the clothes

(per-vertex location).

1) Model Architecture: We build our mesh recon-

struction model based on GarmentNets [12] with some

decisive modifications to make it fit in our setup. Here,

Observation Reconstructed mesh

(Top view)

Reconstructed mesh

(Bottom view)

Sampled action

(Good, bad)

Fig. 10: Reconstruction results in real world.

we give a brief description of the reconstruction pipeline

and the modifications we made. For details, please refer

to GarmentNets [12].

Canonicalization Given the observation at current

state, we first use canonicalization model to map it to

canonical space by conducting pixel-wise canonical co-

ordinate prediction. We don’t pick up the clothes for state

estimation, because it may disrupt the configuration of

partially folded or almost smooth clothes. We use depth

images captured by a top-down camera as the obser-

vation and High-Resolution Network (HRNet-32) [45]

as the backbone of canonicalization model. HRNet is a

convolutional architecture that specializes in producing

high-resolution and spatially precise representations. It

uses smaller convolutional kernels and avoids overly

downsampling the feature map. This is critical for our

task because our model needs to infer the structure of

crumpled clothes by subtle changes at the contour of

different layers. The architecture change improves the

performance on cloth smoothing and canonicalization

tasks for 75%. Following GarmentNets [12], we formu-

late the prediction problem as a classification task by

dividing each axis into 64 bins and use Cross-entropy

loss for training. Feature Scattering Given the predicted

canonical coordinate, we scattered the features of each

pixel to corresponding locations in the canonical space.

The aggregated feature volume is further transformed by

a 3D UNet [55], which is trained by shape completion

and flow prediction.

Shape Completion Before estimating the pose of

occluded surface, we first perform volumetric shape

completion in the canonical space, which helps capture

the shared structure within the same category. Since

the structure of clothes are thin and non-watertight,

GarmentNets [12] proposes to use Winding Number

Field [44] as the shape representation. The shape com-

Fig. 11: Rollout of cloth flattening in real world.

pletion network is instantiated as an implicit network.

It takes the dense feature produced by 3D UNet and

a canonical coordinate and output the winding number

field in that coordinate.

Predicting pose in the observation space After we

complete the shape of clothes in the canonical space, we

estimate the pose of the clothes in observation space. We

cast it as a 3D flow prediction problem by predicting per-

vertex flow that transforms the clothes from canonical

space to observation space.

x̃o
i = x̃c

i + f̃i (6)

2) Training and Testing Details: . Now we describe

how we train and test the model.

Dataset collection. Our model is category-specific,

so we collect a dataset for each category separately

in Softgym [49]. We obtained 3D clothes models from

CLOTH3D dataset [50].

Each dataset contains 4,000 trajectories of length 5

for training and 400 for testing. The At the beginning

of each trajectory, we randomly sample a clothes mesh

and initialize it by random drop or flattened pose with

equal probability. Then we disrupt the clothes with

random pick-and-place actions. Random actions are bi-

ased towards picking corners (obtained by Harris corner

detection[56]) 90% of the time, otherwise it is sampled

uniformly on the clothes. The distance between the pick

point and the place point is uniformly sampled between

[25, 150] pixels.

Training details The model is trained in two-stage.

In the first stage, we train the canonicalization network

with Cross-entropy loss till convergence. In the second

Model parameter Value

Canonicalization Network

Backbone HRNet-32
Dimension of output feature 489

3D CNN

Backbone 3D Unet
Level 4
Feature maps 32
Dimension of output feature 128

Implicit Shape Completion Network

Backbone MLP
Number of hidden layers 3
Size of hidden layers 512

Implicit Shape Completion Network

Backbone MLP
Number of hidden layers 3
Size of hidden layers 512

Training parameters Value

Optimizer Adam
Learning rate 0.0001
Gaussian noise std 0.005
Random rotation [-180, 180]

TABLE VII: Hyper-parameters of mesh reconstruction model

stage, we freeze the canonicalization network and train

the rest of the models for shape completion and flow

prediction by Mean-square error.

Inference details At test-time, given a depth image,

we first use canonicalization network and 3D UNet to

obtain dense feature volume in the canonical space. Then

we discretize the canonical space into 128x128x128 grid

and evaluate shape completion network at every cell. To

retrieve the mesh, we compute the Gaussian derivatives

for the predicted winding number field and run Marching

Cube algorithm [57].

B. Dynamics Model

Similar to VCD [5], we use a learned GNN-based

dynamics model proposed in GNS [14]. The differ-

ence between VCD and ours is that we don’t have a

GNN edge model because edges are estimated by our

mesh reconstruction model. The original mesh models

in CLOTH3D [50] (see Table. V) are too dense that the

rollout becomes computationally infeasible. Therefore,

we downsample the mesh by using Vertex Cluster-

ing [47] with a voxel size of 0.025m. For the complete

list of hyperparameters of the GNN dynamics model,

please refer to Table VIII.

C. Planning

The planning algorithm is outlined in Algorithm 1.

We plan in the space of pick-and-place primitive with

horizon equal to 1. To simulate the effect of each pick-

and-place, we divide them into low-level actions and roll

out by the dynamics model in parallel. Following [5], the

action is encoded into the input mesh by directly modi-

fying the position and picked point, and the displacement

will be propagated to the rest of mesh during message

passing.

Action sampling during planning For both cloth

flattening and canonicalization, we bias the actions sam-

pling toward the contour of the cloth. More specifically,

we first obtain the bounding box of the cloth in current

observation and expand it by 30 pixels in each direction.

Then we randomly sample picked points within the the

bounding box region. For points that are not on the cloth,

we map them to the nearest point on the cloth. The

place direction is uniformly sampled in all directions and

place distance is sampled uniformly from [0.05, 0.2]. A

dummy action which corresponds to ”no action” is added

to the list of candidate actions. We sample 500 pick-n-

place actions at each timestep.

Reward computation For flattening, we treat each

mesh vertex as a sphere of radius 0.01, and the total

reward is the covered area of the projection of all

vertices to the ground plane. For canonicalization, we

rotate the predicted canonical pose according to the

predefined rotation symmetry (see Table. IV). For each

valid canonical pose, we input it into the simulator to

flatten by gravity, which constitutes a predicted goal set.

The reward is computed as negative of smallest distance

to goals in goal set. We use pairwise l2 distance.

X. IMPLEMENTATION DETAILS OF BASELINES

A. VisuoSpatial Forsight (VSF)

We use the official codebase of VSF1. Image: we

train the model with RGB-D images of size 56 x56

pixels, according to the original paper. To reproduce the

1https://github.com/ryanhoque/fabric-vsf

performance of the original paper, we collected 7115

trajectories with 15 pick-and-place actions for each cat-

egory. In total, it amounts to 100,000 environment steps,

which is 5 times the data compared to our methods.

Action sampling We use a similar action sampling

strategy as MEDOR for VSF, that is, bounding box

sampling IX-C. We use a smaller padding size (6 pixels)

because of the smaller image size.

Reward computation For flattening, we use color

thresholding to compute the coverage of cloth. For

canonicalization, we project the predicted and goal RGB-

D image into 3D rgb point cloud. The RGB values are

scaled to be similar to the coordinate values. Then we

run ICP [58] for 5 iterations to align the predicted point

cloud with the goal point cloud.

B. Visible Connectivity Dynamics (VCD)

We use the official code of VCD, with modifications

so that it works well on our dataset.

Given point cloud and mesh, the original VCD con-

duct bipartite matching to map point cloud to mesh

nodes. If the corresponding mesh nodes are connected

by mesh edges, we also construct mesh edges for the

point cloud points. We found that this approach is highly

sensitive to density of point cloud and mesh. Imagine

the mesh is denser than the point cloud, there might

be many mesh vertices between two adjacent points on

point cloud. Thus they are not connected although they

should.

To solve this issue, we design a more robust approach

for mesh edges construction that is agnostic to the

density of mesh. First, for each point on the point cloud,

we find the nearest mesh vertex. Then we compute the

distance between neighboring points on point cloud by

the pairwise geodesic distance of corresponding mesh

vertices. A mesh edge is constructed if the geodesic

distance is below a threshold.

Training To makes a fair comparison, we train the

edge GNN dataset of different categories separately.

Each dataset contains 20,000 envrironment steps, which

is same as the dataset used for training the mesh re-

consctruction model of MEDOR. For dynamics model,

similar to MEDOR, we train a single model on Trousers

dataset but use it for all categories at test-time.

Planning Same as MEDOR, except that we run

ICP [58] for 5 iterations to align the predicted point

cloud with the goal point cloud before computing the

cost function for canonicalization task.

Model parameter Value

Encoder(same for both node encoder and edge encoder)

Number of hidden layers 3
Size of hidden layers 128

Processor

Number of message passing steps 10
Number of hidden layers in each edge/node update MLP 3
Size of hidden layers 128

Decoder

Number of hidden layers 3
Size of hidden layers 128

Training parameters Value

Number of trajectories 5000
Learning rate 0.0001
Batch size 16
Training epoch 120
Optimizer Adam
Beta1 0.9
Beta2 0.999
Weight decay 0

Others Value

dt 0.05 second
Particle radius 0.005 m
Vertex clustering voxel size 0.025 m
Neighbor radius R 0.036 m

TABLE VIII: Hyper-parameters of GNN dynamics model.

Algorithm 1: Planning pipeline of MEDOR

input : Depth Image D, partial point cloud P , mesh reconstruction Model φ, dynamics GNN Gdyn,

number of sampled actions K
output: pick-and-place action a = {xpick, xplace}
Estimate the full mesh of clothes by mesh reconstruction model: M̃init = φ(D)
Perform test-time fine-tuning: M̃0

tuned = finetune(M̃init) = (Ṽ 0, ẼM).
for i← 1 to K do

Sample a pick-and-place action xpick, xplace

Compute low-level actions ∆x1, ...,∆xH

Get picked point vpicked from xpick

Pad historic velocities with 0: x0 ← Ṽ 0, ẋ−m...0 ← 0

for t← 0 to H do

Build collision edges Et
C with xt

Move picked point according to gripper movement by :

xu,t ← xu,t +∆xt, ẋu,t ← ∆xt/∆t
Predict accelerations using Gdyn: ẍt ← Gdyn(xt, ẋt−m...t, EM , Et

C)
Update point cloud predicted positions & velocities:

ẋt+1 = ẋt + ẍt∆t, xt+1 = xt + ẋt+1∆t
Readjust picked point according to gripper movement by

xu,t ← xu,t +∆xt, ẋu,t ← ∆xt/∆t
end

Compute reward r based on final mesh nodes position xH

end

return pick and place action with maximal reward

	I Introduction
	II Related works
	II-A Perception for Cloth Manipulation
	II-B Data-driven Methods for Cloth manipulation
	II-C Test-time Optimization

	III Background
	III-A Problem Formulation
	III-B GarmentNets

	IV Approach
	IV-A Estimating the pose of a cloth
	IV-B Test-time finetuning
	IV-C Planning with GNN-based dynamics model
	IV-D Implementation details

	V Experiments
	V-A Tasks
	V-B Simulation Experiments
	V-B1 Baselines
	V-B2 Results

	V-C Ablations
	V-D Physical Experiments
	VI Conclusions
	VII Experiments Setup
	VII-A Simulation Setup

	VIII Additional results
	VIII-A Simulation Experiments
	VIII-B Physical Experiments

	IX Implementation details of MEDOR
	IX-A GarmentNets-style Mesh Reconstruction Model
	IX-A1 Model Architecture
	IX-A2 Training and Testing Details

	IX-B Dynamics Model
	IX-C Planning
	X Implementation Details of Baselines
	X-A VisuoSpatial Forsight (VSF)
	X-B Visible Connectivity Dynamics (VCD)

