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Visual Haptic Reasoning: Estimating Contact Forces
by Observing Deformable Object Interactions

Yufei Wang, David Held, and Zackory Erickson

Abstract—Robotic manipulation of highly deformable cloth
presents a promising opportunity to assist people with several
daily tasks, such as washing dishes; folding laundry; or dressing,
bathing, and hygiene assistance for individuals with severe motor
impairments. In this work, we introduce a formulation that
enables a collaborative robot to perform visual haptic reasoning
with cloth—the act of inferring the location and magnitude
of applied forces during physical interaction. We present two
distinct model representations, trained in physics simulation, that
enable haptic reasoning using only visual and robot kinematic
observations. We conducted quantitative evaluations of these
models in simulation for robot-assisted dressing, bathing, and
dish washing tasks, and demonstrate that the trained models can
generalize across different tasks with varying interactions, human
body sizes, and object shapes. We also present results with a real-
world mobile manipulator, which used our simulation-trained
models to estimate applied contact forces while performing
physically assistive tasks with cloth. Videos can be found at our
project webpage.1

Index Terms—Physically Assistive Devices; Deep Learning for
Visual Perception; Perception for Grasping and Manipulation

I. INTRODUCTION

ROBOTIC manipulation of highly deformable cloth

presents a promising opportunity to assist people with

many tasks, such as assisting an older adult with muscle atrophy

or a physical disability to get dressed [1], bathing and hygiene

assistance with a washcloth or towel [2], cleaning dishes with

a dish towel, folding laundry [3], [4], or bed making [5], [6].

In each of these scenarios, it can be helpful for a robot to

infer how cloth interacts with and applies forces to objects it

makes contact with. For example, the applied force between

a gown and human body can inform a robot if the gown is

getting caught during assistive dressing, and the force between

a washcloth and the cleaning surface can tell if the dirt on

the surface is successfully removed during assistive bathing

or dish cleaning. Besides inferring such task execution status,

knowing the applied force is also vital to prevent harm and

discomfort during physical interactions between robots and

humans in these tasks.
In this paper, we introduce methods that enable collaborative

robots to perform haptic reasoning with cloth by using only

point cloud observations and robot kinematics. As shown in

Fig. 1, haptic reasoning consists of inferring the distribution of
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Fig. 1. An illustration of the predicted contact force distributions by the
proposed visual haptic reasoning model as a deformable gown physically
interacts with a manikin in the robot-assisted dressing task. Note that the
model is trained entirely in physics simulation.

applied forces as cloth physically interacts with other objects.

Prior work has introduced methods for estimating contact

forces purely from visual feedback as rigid objects undergo

contact with robot end-effectors or human hands at a few

discrete points [7]–[9]. In contrast, cloth lacks a succinct

state representation, has inherently high-dimensional non-linear

dynamics, and has contacts with objects over large surface areas,

which collectively presents unique challenges for estimating

the location and magnitude of applied forces as cloth interacts

with other objects in the environment.
To overcome these challenges, we take a data-driven

approach with physics simulation to model the physical

interactions between cloth and other objects. We present two

model formulations for doing haptic reasoning during cloth

manipulation. The first introduces a graph neural network

(GNN) [10] architecture that encodes the local interactions

between the cloth and object in contact, whereas the second

approach uses a PointNet++ [11] architecture. Both models

form a mapping from a point cloud observation of the task

to a 3D representation of the applied forces on an object.

We conduct quantitative evaluations in physics simulation

and contrast the predicted force distributions of both model

formulations during robot-assisted dressing, bathing, and dish

washing tasks. We perform ablation studies on these models

and evaluate generalization performance as cloth interacts

with a wide distribution of human body sizes and object

shapes. Finally, through cloth manipulation studies in the real

world, we demonstrate that haptic reasoning models trained in

physics simulation can be transferred to a real-world mobile

manipulator to infer applied contact forces.
In summary, we make the following contributions:

• We introduce model formulations for visual haptic reason-

ing, which enable a robot with visual sensing to infer the

force distributions that cloth applies onto other objects

during manipulation.

• We performed analysis of these haptic reasoning models

in physics simulation across a number of tasks including

robot-assisted dressing, bathing, and dish washing.

• We evaluate haptic reasoning in the real world and
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demonstrate these models with a mobile manipulator

performing physically assistive tasks.

II. RELATED WORK

A. Deformable cloth manipulation for robotic assistance

Several assistive robotic tasks involve manipulating de-

formable objects like cloth around the human body. Examples

include dressing assistance with hospital gowns, jackets,

scarfs [1], [2], [12]–[14]; bathing assistance with a towel [2],

[15], picking and placing garments on hangers [16], [17],

laundry folding [3], [4], [18]–[25], and bedding assistance [5],

[6]. Prior work [26] has showed how a robot could predict if

an end effector trajectory would succeed in dressing a hospital

gown sleeve onto a person by leveraging force measurements at

the end effector. In contrast to these prior works, we introduce

a methodology for an assistive robot to infer the location and

magnitude of the forces that cloth applies onto the human body

using point cloud observations.

B. Estimating Contact from Vision

Several previous works [7]–[9], [27]–[32] have explored

estimating contact points and forces between objects in contact

purely from vision using RGB, RGB-D or thermal images.

Most of them focus on interactions between human hands and

non-deformable objects [7], [9], [30], or between a rigid robot

end effector and a non-deformable object [8], [27], [33], or

between a rigid robot tool and a deformable organ [31], [32],

where there are only a few points of contact. In contrast to these

prior works, our work focuses specifically on estimating contact

forces when manipulating deformable cloth around other rigid

objects, which results in hundreds of points of contact and

applied forces across a human body or object surface. Zhu et

al. [28] are able to predict contact forces on every human mesh

vertex when the human sits on a chair from RGB-D images, by

using Finite Element Method (FEM) and modeling the human

as a soft body. This approach is intractable for a collaborative

robot that must make predictions in real time when physically

interacting with people. We instead use neural network models

trained entirely in physics simulation to predict the force that

cloth applies onto other objects, which is much faster as it

only needs a single forward pass of the network.

C. Estimating Contact Force during Interaction Involving

Deformable Objects

One prior work [29] most relevant to ours estimates the

contact forces between a hospital gown and human limbs

during assistive dressing. The trained models rely on manual

discretization of the human limb into a fixed set of contact

locations, which limits generalization. In a following work [1]

the estimated forces are used in model predictive control for

assistive dressing. Instead, by using point cloud observations,

we need no such discretization for the object and our trained

model generalizes across different assistive tasks, human shapes

and object sizes. Clever et al. [34] used physics simulation to

compute the pressure of a human lying on a deformable bed,

and trained a neural network model for estimating human pose

in bed. We also use physics simulation to get high-resolution

force distributions, but we focus on estimating the forces

applied by deformable cloth to other objects in tasks such

as robot-assisted dressing and bathing, instead of the forces

applied from a lying rigid human to a deformable bed.

III. PROBLEM FORMULATION

Given a robot manipulation scenario where deformable cloth

interacts with another fixed object (e.g., helping a person dress

a garment), we aim to learn a model that predicts the applied

normal forces between the cloth and the object based on a

point cloud observation of the scene. Formally, given a depth

image I ∈ RH×W (where H and W are the height and width

of the image) of the scene, we transform the depth image to a

point cloud PPP ∈ RH×W×3 using the camera’s intrinsic matrix.

We then segment the point cloud to obtain a set of points

associated with the cloth PPPC ⊆ PPP and a set of object points

PPPO ⊆ PPP. In simulation, the classification and segmentation of

points is provided directly by the simulator. In the real world,

we use color thresholding on the RGB image of the scene to

perform the segmentation. We aim to learn a haptic reasoning

model that can predict the magnitude of the contact normal

force fi ∈ R that cloth applies to each point pppiii ∈ PPPO on the

object.

We make the following assumptions for this problem. First,

we assume the object remains static during the interaction.

This assumption helps address the visual occlusion of the

object caused by cloth during the interaction, as with this

assumption we can obtain the object point cloud PPPO before the

cloth occludes the object. Future work can investigate methods

such as capacitive sensing [1], [13] to track the pose of an

object or human limb under visual occlusion. In addition, we

assume the critical contact areas between cloth and an object

are observable through a partial point cloud. Future work could

incorporate 3D model inference [35], [36] and force/torque

sensing to predict force distributions over the full 3D model

of an object.

IV. CLOTH MODELING AND CONTACT FORCE

COMPUTATION VIA PHYSICS-BASED SIMULATION

We use physics-based simulation to compute the contact

force between cloth and other objects, which are used as the

ground-truth labels for training our proposed visual haptic

reasoning models. Specifically, we choose NVIDIA FleX as

our simulator, which uses position-based dynamics [37] for

cloth simulation. We describe briefly here how position-based

dynamics models cloth and how contact forces are computed,

and refer the readers to [37]–[39] for full details. We also note

that the proposed framework is orthogonal to the simulation

techniques used to compute the contact forces.

In position-based dynamics, objects are represented using

particles and constraints between them. A cloth can be created

from a triangular mesh. A particle is created for each vertex

in the mesh, and a stretching constraint is created for each

edge [37], [38], which models a spring that tries to maintain its

rest length. A bending constraint and a shearing constraint

are created for pairs of adjacent triangles. Three stiffness

parameters kstretch, kbending and kshare are used to model how

strong these constraints are. At each simulation step, after the

positions of the particles are updated due to external forces

such as gravity, the particle positions are projected to obey the

constraints using a Guassian-Sidel algorithm.

Each particle in the cloth can have contacts with other objects,

e.g., represented using another triangular mesh. The contact

forces are solved using the classic Lagrangian dynamics, with

a contact constraint in the form: c(ppp) = nnnT (ppp− qqq)− d ≥ 0,
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The nodes V of the graph simply consist of all the points in

P̃PP. For edges, we connect an edge e jk between a node j and

node k when the following criteria are satisfied: 1) the distance

between nodes is below a threshold α , i.e. ||xxx j − xxxk||2 < α ,

where xxx j denotes the position of node j, and 2) at least one

node is a point on the cloth. Intuitively, message passing along

the edges of the GNN can simulate the propagation of force

from the gripper to the cloth, within the cloth itself, and from

the cloth to the object.

C. Force Prediction Model

We describe two different instantiations for the force

prediction model h f orce, which is capable of predicting the

forces that cloth applies onto objects in contact. The first

instantiation uses a PointNet++, which can be directly applied

to the cropped point cloud P̃PP. The input includes the position

xxx of each point ppp ∈ P̃PP and a feature vector associated with

each point ppp. The feature vector consists of robot gripper

velocity vvv and a 3-dimensional one-hot encoding vector

[1ob ject(ppp),1cloth(ppp),1gripper(ppp)] indicating the type of the

point (where 1y(ppp) is 1 if ppp belongs to y and 0 otherwise).

We normalize the positions of the point to be zero-mean so

that the model is invariant to translations of the point cloud.

To model force predictions with a GNN, the input to the

force model is the graph built from the point cloud, as described

in Section V-B. We use the GNS architecture [22], [41] for the

GNN model. The features for each node in the graph include the

one-hot encoding vector [1ob ject(ppp),1cloth(ppp),1gripper(ppp)] and

the gripper velocity vvv. The edge feature of an edge connecting

node i and node j includes the distance vector xxxi − xxx j and its

L2 norm ||xxxi−xxx j||2. By using only relative distance in the edge

features, the GNN model is also invariant to translations of the

point cloud in Cartesian space. We do not include positions

in the node features since the edge features are sufficient to

capture the relative relationship between nodes.

As described in Section V-A, the output of the force

prediction model h f orce is the estimated magnitude of the

contact normal force f̂i for every point pppiii ∈ P̃PPOOO. We train the

force model using a Mean Squared Error loss between the

predicted contact force f̂i and the ground-truth contact force

fi, which can be obtained in simulation and computed using

Eq (1). We mask the loss to be computed only on points that

are having contact during the interaction, i.e., for points whose

contact force fi is greater than 0.

D. Contact Prediction Model

When training both PointNet++ and GNN models for contact

prediction, we remove the gripper point pppgripper from the point

cloud and reduce the point/node features to include only a

1-dim one-hot encoding Iob ject(p). A PointNet++ for contact

prediction still includes normalized point positions as part of

its input, and a GNN for contact prediction uses the same edge

features as presented in Section V-C.

The output of the contact model hcontact is the probability mi

of each point pppi ∈ P̃PPOOO being in contact with the cloth. We train

it with a Binary Classification Loss, where the ground-truth

contact information can be obtained in simulation. For each

point pppi ∈ P̃PPO, the ground-truth label is 1 if it has non-zero

contact force fi (computed using Eq (1)), otherwise the label

is 0. At test time, we combine the predictions of the contact

Fig. 3. Visuals of the 4 simulation tasks. From left to right: assistive dressing,
assistive bathing, dish washing, and primitive shapes.

and the force prediction model to compute the final contact

normal force magnitude of a point pppi:

f
pred
i =

{

f̂i if mi > β
0 Otherwise

, (3)

where β is a decision threshold.

VI. TASKS AND DATASET COLLECTION

As described in Sec. IV, we use the NVIDIA FleX wrapped

in SoftGym [42] as our physics simulation. As shown in Fig. 3,

we build three representative robotic assistive and manipulation

tasks that involve physical interactions between cloth and other

objects: 1) Assistive dressing, where a robot must dress a

hospital gown onto a person’s right arm; 2) Assistive bathing,

where the robot manipulates a washcloth to clean a person’s

arm; 3) Dish washing, where the robot uses a washcloth

to clean the surface of a dish. To further evaluate visual

haptic reasoning between cloth interacting with arbitrary rigid

objects, we build a task where the robot pulls a rectangular

towel over random combinations of objects with primitive

shapes, including cylinders, cubes and spheres (referred to

as the primitive shape task). In all tasks, we use a point

grasp (visualized as a small white sphere), and the grasping is

simulated by creating rigid anchors between the point grasp

and the closest particles on the cloth.

We add the following variations for these tasks. For assistive

dressing and bathing, we use the SMPL-X [43] model to

generate 100 human body meshes varying in body shape and

size. For dish washing, we randomly select 3 plates from the

ShapeNet dataset [44]. For primitive shape, we vary the number

of primitive shapes between 1 to 3, use a random selection of

chosen shapes (cylinder, sphere, or cube), and vary the size

and pose of each shape. For all tasks, we generate the gripper

movement trajectories by linearly interpolating between some

way points, where the way points are chosen differently for

each task. For the dressing and bathing task, the waypoints

consist of the fingertip, wrist, elbow, and shoulder of the human

arm, with random deviation uniformly sampled from [−5,5]cm

added to these waypoints. For dish washing, we randomly

sample way points on the surface of the plate. For primitive

shape, we randomly sample waypoints on the surface contour

of the combination of the primitive objects. For all tasks, we

vary the gripper movement velocity across different trajectories.

Depending on the gripper velocity and the waypoint locations,

each simulated cloth manipulation trajectory can have between

200 to 800 time steps, where at each time step we store the

point cloud, gripper velocity, and ground-truth contact normal

forces between the cloth and the object as a data point for

training. For assistive dressing, assistive bathing, and dish

washing, we collect 600, 60, and 30 trajectories for training,

validation and test, while due to the large task variation of

primitive shape task, we collect 1800, 200, and 90 trajectories

for training, validation, and test. The exact number of data
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Assistive
Dressing

Assistive
Bating

Dish
Washing

Primitive
Shapes

Training size 81379 187568 258624 624724

Validation size 7948 17978 24003 69413

Test size 3977 8989 11853 33889

average # cloth points 2361 79 76 353

average # object points 267 114 130 370

TABLE I
STATISTICS OF THE COLLECTED DATASET.

points for the collected datasets is summarized in Table I. The

average number of object points and cloth points that will be

inputted to our model, i.e., size of P̃PPO and PPPC, are also reported

in Table I.

VII. EXPERIMENTAL RESULTS

A. Evaluation Metrics and Baselines

For evaluation metrics, we use Mean Absolute Error (MAE)

in Newtons for force prediction in relation to the ground-

truth contact forces, and F1 score for contact prediction. For

all learning methods, we search over the contact prediction

decision threshold (β in Eq. (3)) on the validation dataset, and

use the threshold that produces the highest F1 score.

We compare the proposed GNN and PointNet++ learning

methods with the following baselines: MLP, where we trained

two separate Multilayer Perceptrons that take as input a

vectorized point cloud, one for contact prediction and one for

force prediction. As the number of points in the point cloud

can vary across tasks and trajectories, we take the maximum

number of points as the fixed input dimension and pad the

observation with 0 when it has fewer dimensions. Constant

Force Prediction, a force prediction baseline which predicts a

constant force for every point in contact. The constant force is

chosen to be the median force on the training dataset which

gives the lowest MAE on the training dataset. Neighborhood

Contact Prediction, a contact prediction baseline that predicts

a point on the object to be in contact if its distance to the

closest point in the cloth is below a threshold. We perform

a grid search over the threshold on the training dataset and

evaluate with the one that results in the best F1 score.

For GNN, PointNet++, and MLP, we train two variants: the

first is the task-specific model that is trained with data only from

a single task, and the second is the task-agnostic model that

is trained with data from all three assistive dressing, assistive

bathing, and dish washing tasks. We hold out the primitive

shape task and use it to evaluate the generalization performance

of our task-agnostic models. In all evaluation tables, we use

the suffix ‘-S’ to denote the task-specific models, the suffix

‘-A’ to denote the task-agnostic models, and we use bold text

to denote the best result, and underlined text to denote the

second best result.

B. Implementation Details

For PointNet++, we use the standard segmentation type of

architecture in the original paper [11]. For GNN, we use the

standard GNS [41] architecture. More details about the network

architectures can be found on our project website. For the MLP

baseline, we use a MLP of [1024,512,256,512,1024] neurons

and ReLU activation. We train the PointNet++, GNN and MLP

models using the Adam [45] optimizer, with a learning rate

of 0.0001 and batch size of 8. We train all models until they

converge on the training dataset, and pick the model that has

Method
Task Assistive

Dressing
Assistive
Bating

Dish
Washing

Primitive
Shapes

GNN-S 0.200 0.028 0.064 0.931

GNN-A 0.192 0.035 0.063 1.460

PointNet++-S 0.188 0.029 0.066 1.073

PointNet++-A 0.189 0.034 0.065 1.398

MLP-S 0.640 0.057 0.134 1.503

MLP-A 0.696 0.057 0.122 1.502

Constant Force 0.555 0.059 0.118 1.367

TABLE II
FORCE PREDICTION MAE (IN NEWTONS) ON TEST DATASET.

the lowest loss on the validation dataset for evaluating on the

test dataset. For NVIDIA FleX simulator, the particle radius in

the simulator is 0.625cm. Due to different sizes of cloth used

in different tasks, we tune the stiffness of the stretch, bending,

and shear constraints to ensure stable simulation behaviours of

cloth for different tasks. The stiffness of these constraints are

set to be [1.7,1.7,1.7] for assistive dressing, and [1.0,0.9,0.8]
for the other three tasks. We set the threshold for contact (d in

Sec. IV) to be 5mm. For hyper-parameters described in Sec.V,

the value of ε used in Eq.(1) is set to be 3.12cm, the voxel

size we used to voxelize the point cloud is 1.56cm, the value

of τ in Eq.(2) is 6.25cm, and the value of α for determining

the edge connection for GNN is 3.75cm.

C. Simulation Results

1) Force Prediction Result: The force prediction MAE

of all methods over all tasks in simulation are shown in

Table II. As shown in the first 3 columns, for assistive dressing,

assistive bathing, and dish washing, for either task-agnositic

or task-specific models, both GNN and PointNet++ models

achieved significantly lower error than the constant force

prediction baseline and the MLP baseline. Both GNN and

PointNet++ models achieved similar performance overall, with

GNN performing slightly better on bathing and dish washing,

while PointNet++ achieved lower error for the assistive dressing

task. Interestingly, for both GNN and PointNet++, the task-

agnostic models achieved similar prediction errors compared

with the task-specific models, indicating we can train a single

model on multiple tasks instead of one for each task. When

compared to task-specific models trained on primitive shapes,

we observe from the 4th column of Table II that task-agnostic

force prediction models do not generalize as well to the

primitive shape task, due to the large distribution shift. In

addition, a task-specific GNN performs better than task-specific

PointNet++ for inferring applied forces during the primitive

shapes task, indicating that GNN architectures may be better

suited for tasks with very large variations. We also report the

percentage of error, i.e., the ratio between the force prediction

MAE and the mean value of the ground-truth force of the

dataset, for the best methods on each dataset. For assistive

dressing, the PointNet++-S has an error percentage of 33.1%,

for assistive bathing, the GNN-S has an error percentage of

34.0%, for dish washing, the GNN-A model has an error

percentage of 43.2%, and for primitive shapes, the GNN-S

model has an error percentage of 68% due to the large variation

for this task. We later show in Fig. 6 that the force predictions

are good enough for potential downstream tasks. On a NVIDIA

3090 GPU, the inference time for the GNN force model is

∼10ms, and the inference time for the PointNet++ force model

is ∼20ms.
2) Contact Prediction Result: Table III shows the contact

prediction F1 score of different methods on all tasks in
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Algorithm
Task Assistive

Dressing
Assistive
Bating

Dish
Washing

Primitive
Shapes

GNN-S 0.888 0.910 0.955 0.930

GNN-A 0.890 0.912 0.954 0.872

PointNet++-S 0.933 0.953 0.956 0.949

PointNet++-A 0.930 0.946 0.948 0.866

MLP-S 0.790 0.748 0.902 0.781

MLP-A 0.788 0.728 0.888 —

Neighborhood 0.740 0.844 0.873 0.843

TABLE III
CONTACT PREDICTION F1 ON TEST DATASET.

Method
Task Assistive

Dressing
Assistive
Bating

Dish
Washing

Primitive
Shapes

GNN-S 0.200 0.028 0.064 0.931

GNN-S-particle 0.160 0.026 0.059 0.622

PointNet++-S 0.188 0.029 0.066 1.073

PointNet++-S-particle 0.193 0.029 0.067 0.734

GNN-A 0.192 0.035 0.063 1.460

GNN-A-particle 0.178 0.030 0.055 1.444

PointNet++-A 0.189 0.034 0.065 1.398

PointNet++-A-particle 0.194 0.034 0.034 1.431

TABLE IV
FORCE PREDICTION MAE: POINT CLOUD VS. CLOTH PARTICLES.

simulation. For all three assistive tasks shown in the first

3 columns, both GNN and PointNet++ achieved substantially

higher F1 scores than the Neighborhood Contact Prediction

and the MLP baselines. For contact prediction, PointNet++

is consistently better than GNN, for both task-agnostic and

task-specific models. We also observe similar F1 scores for

both task-agnostic and task-specific contact prediction models,

indicating that we are able to train a single model on multiple

tasks. In contrast to force prediction, the task-agnostic GNN and

PointNet++ models generalized well to predicting cloth-object

contact for the primitive shape task. The task-agnostic MLP

model is unable to generalize due to its limiting way of handling

point cloud data. The inference time for the GNN contact model

is ∼10ms, and the inference time for the PointNet++ contact

model is ∼20ms.

3) Visualizations of Contact and Force Predictions: Fig. 4

compares the predicted contact and force distributions from

the task-agnostic PointNet++ model with the ground-truth for

assistive dressing, assistive bathing, and dish washing tasks in

simulation. As shown, the predicted contact areas and force

magnitudes are qualitatively similar to ground-truth. In assistive

dressing, the model accurately predicts large forces around the

finger, elbow, and shoulder when the gown gets caught at those

regions, and in bathing and dish washing, the model accurately

predicts a spherical shape force distribution that decays from

the center of the contact. More visuals on varying trajectories,

human body shapes, and plate sizes can be found on the project

webpage.

4) Comparison to Using Ground-truth Cloth Particles:

We investigate how haptic reasoning models perform when we

replace the cloth point cloud with ground-truth cloth particles in

FleX simulation. Intuitively, since the cloth particles perfectly

represent the underlying cloth mesh and its deformation, we

would expect using particles to result in lower force prediction

error and higher contact prediction accuracy. The object is still

represented using point cloud.

Table IV shows the force prediction result with particles,

and Table V shows the contact prediction result. Interestingly,

we find that for both force and contact prediction, using

particles with GNN models resulted in higher performance,

yet using ground-truth particles did not improve performance

Method
Task2 Assistive

Dressing
Assistive
Bating

Dish
Washing

Primitive
Shapes

GNN-S 0.888 0.910 0.955 0.930

GNN-S w/ particles 0.944 0.961 0.970 0.973

PointNet++-S 0.933 0.953 0.956 0.949

PointNet++-S w/ particles 0.932 0.950 0.954 0.961

GNN-A 0.890 0.912 0.954 0.872

GNN-A w/ particles 0.945 0.962 0.970 0.898

PointNet++-A 0.930 0.946 0.948 0.866

PointNet++-A w/ particles 0.932 0.950 0.954 0.893

TABLE V
CONTACT PREDICTION F1: POINT CLOUD VS. CLOTH PARTICLES.

with PointNet++ models. We attribute this to the message

passing scheme in GNN, which may leverage the particle

representations better compared with the abstraction layers

in PointNet++. We also note that for both contact and force

prediction, among all compared methods and for all tasks,

the best-performing method is always a GNN with access to

ground-truth cloth particles. This finding suggests an interesting

direction for future work in tracking the underlying mesh

particles of deformable cloth in the real world.
5) Sensitivity to Noise in Point Cloud: Since point clouds

obtained in the real world are usually noisy, we test the

sensitivity of our method to noise in the point cloud in

simulation. We manually inject different levels of noise to

the point cloud positions, which are modeled as Gaussian

distributions with different standard deviations (Std) [46]. We

test the GNN-A model on the assistive dressing task. The force

model is robust up 3mm of noise, where the MAE slightly

increases from 0.189 to 0.253, while the contact model is

robust up to 10mm of noise, with the contact F1 score drops

slightly from 0.889 to 0.808. The project website details more

experiments on the models’ sensitivity to noise.

D. Real World Results

1) Experimental Setup: We evaluated our model trained

purely in simulation on the same three tasks in the real world

with a Stretch RE-1 mobile manipulator. For assistive bathing,

we use a medical manikin lying on a hospital bed for the human

body. For assistive dressing, we use a silicone torso and arm

model that is posed similar to human models in simulation.

For dish washing, we pick a common dinner plate. Fig. 5

visualizes these three tasks. We use the same type of control

trajectories as we used in simulation. An Intel D435i camera is

used to capture a depth image of the scene, and we use color

thresholding on the RGB image to segment the cloth and the

object. Due to the challenge of sensorizing these environments

with high-resolution force sensing arrays, we provide qualitative

results of the contact and force predicted by our trained models

in these three tasks. We conduct an additional experiment to

illustrate the accuracy of the trained models. As shown in

Fig. 6, we command the Stretch RE-1 robot to clean the blue

powder on a black plate, and we use the trained model to

predict which regions are cleaned after the robot action. A

point on the plate is assumed to be cleaned if the predicted

force magnitude is above a chosen threshold. Such predictions

can be potentially used for downstream control tasks to clean

specific area of the plate.
2) Qualitative Results: As shown in Fig. 5, the various

haptic reasoning models trained entirely in simulation produce

qualitatively reasonable contact and force distribution predic-

tions for all three tasks. As the gripper and washcloth move

over the edge of the plate during dish washing, our trained
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human body sizes and object shapes. We also transferred

simulation-trained models to a real environment and evaluated

visual haptic reasoning with a mobile manipulator performing

physically assistive tasks with cloth.
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