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Learning Closed-loop Dough Manipulation Using a
Differentiable Reset Module

Carl Qi!, Xingyu Lin', David Held!

Abstract—Deformable object manipulation has many applica-
tions such as cooking and laundry folding in our daily lives.
Manipulating elastoplastic objects such as dough is particularly
challenging because dough lacks a compact state representation
and requires contact-rich interactions. We consider the task of
flattening a piece of dough into a specific shape from RGB-
D images. While the task is seemingly intuitive for humans,
there exist local optima for common approaches such as naive
trajectory optimization. We propose a novel trajectory opti-
mizer that optimizes through a differentiable ‘“‘reset” module,
transforming a single-stage, fixed-initialization trajectory into a
multistage, multi-initialization trajectory where all stages are
optimized jointly. We then train a closed-loop policy on the
demonstrations generated by our trajectory optimizer. Our policy
receives partial point clouds as input, allowing ease of transfer
from simulation to the real world. We show that our policy
can perform real-world dough manipulation, flattening a ball of
dough into a target shape. Supplementary videos can be found on
our project website: https://sites.google.com/view/dough-manipulation.

Index Terms—Deep Learning in Grasping and Manipulation;
Perception-Action Coupling; Perception for Grasping and Ma-
nipulation

I. INTRODUCTION

EFORMABLE object manipulation allows autonomous

agents to expand their applicability in our daily lives.
Many household tasks such as folding laundry, cleaning
rooms, and cooking food require a substantial amount of
interaction with deformable objects, and recent works [6, 9,
13, 20, 35, 36] have shown great progress towards building a
household robot. However, there are many challenges within
deformable object manipulation that are yet to be solved. For
one, deformable objects lack a compact state representation for
manipulation. The state of rigid objects can often be captured
by their 6D poses [3, 25, 33]. On the other hand, deformable
objects have high degrees of freedom, making them hard to
model. Many prior works rely on hand-designed representa-
tions for deformable object manipulation [5, 13, 23], which
results in task-specific representations that lack generalizabil-
ity. Recent works design more general data-driven methods
to directly learn a policy from RGB-D images [22, 36] or a
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Fig. 1: We use a novel trajectory optimizer to generate demonstration
data in simulation. We then use this demonstration data to train a
closed-loop point cloud based policy using PointNet++ [27] as an
encoder. Our policy can transfer to the real world without any fine-
tuning.

dynamics model [9, 18, 20, 37]. These works often directly
interact with the deformable objects with the robot gripper
and use pick-and-place actions as the primitive. However,
elastoplastic object manipulation is particularly challenging, as
they require rich contact for interacting with the object [28],
often with an external tool. Simple action primitives are not
sufficient in these cases. In this work, we tackle the challenges
of elastoplastic object manipulation without the aid of feature
engineering or action primitives.

Manipulation of elastoplastic objects like dough and clay
has wide application for cooking and art-making, and there
exists a rich list of literature on food manipulation [1, 5,
19, 34, 35]. Similar to other deformable objects, prior works
have proposed action primitives for dough flattening [13, 23,
34]. They parameterize the action space by a few parameters
such as the direction and length of a rolling trajectory, which
limits the flexibility and efficiency of the obtained trajectory.
In contrast, we learn closed-loop control policy by imitating a
trajectory optimizer, allowing the robot to learn more complex
motions without limiting it to one type of manipulation.

Enabled by recent progress on differentiable simulators [8,
11, 12], gradient-based trajectory optimization (GBTO) allows
us to acquire many manipulation skills. However, many tasks
require multistage manipulation and running GBTO from a
fixed state initialization can result in locally optimal solutions.
Solving these multi-stage tasks also require long-horizon rea-
soning. Prior work has proposed learning abstraction of the
skills for planning over multi-stages [19]. In this work, we
propose a simpler method to get around the local optima in
GBTO by adding a differentiable reset module (DRM). Our
key observation is that, we can often identify a few reset poses
for the robot to be in between different stages of manipulation
to help GBTO get around local optima. Consider the task of
flattening a piece of dough into a circle. It is hard to perform
the task with one simple rolling motion, and if one tries to roll
multiple times, overly flattening the dough in early rolls will



(a) Trajectory optimization

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. JULY, 2022

(b) Imitation learning

02 03 04 05 06 07 08

Differentiable Reset Module (DRM
———————————— N

— Forward pass
<+— Backward pass

s Observation

) Z; Goal point cloud
l (c) Sim2real transfer

Fig. 2: An overview of our method. (a) Our trajectory optimizer implements a differentiable module that resets the tool to avoid local
optima and allows gradient information to propagate through the entire trajectory. (b) We perform imitation learning on the demonstration
data generated by the trajectory optimizer. Our policy takes segmented point cloud observations as input. (¢) We use the learned policy to
control a sawyer robot to perform closed-loop rolling in the real world.

cause later rolls to break the dough. As such, this seemingly
easy task actually requires joint optimization of a multi-stage
motion. To tackle these issues, DRM samples a few reset poses
for the roller to be after each stage and differentiate through the
reset motion to joinly optimize the multi-stage motion. Finding
these reset poses is often easy and can significantly improve
the performance of GBTO. We give another such example in
cooking: when seasoning a pizza, the optimal motion requires
tilting the shaker multiple times, each at a different location,
instead of dumping all seasonings in one spot.

Finally, we use our trajectory optimizer in combination
with a differentiable simulator to efficiently perform gradient-
based optimization and generate high-quality demonstrations,
as similarly done in [19]. We can then train a policy via
imitation learning with partial point clouds as input. Our point
cloud based policy is robust to occlusion in the scene and can
effectively flatten a piece of dough in a smooth and closed-
loop fashion. To summarize, in this paper:

¢ We propose a DRM in GBTO that optimizes a multistage
trajectory end-to-end and avoids local optima.

e To the best of our knowledge, we introduce the first
system for closed-loop dough manipulation in the real
world. Our system operates directly from partial point
cloud and does not require any feature engineering or
action primitives.

II. RELATED WORK
A. Model-based approaches for dough manipulation

Many works use a model-based approach for dough manip-
ulation. Tokumoto et al. [34] proposes an analytical dynamics
model for flattening a piece of dough under a specific action
primitive. The rolling primitive is a straight line motion of
the roller with a fixed height and angle, where the height
is predefined at test time, so the task becomes a simple
1D optimization over the rolling direction. Moreover, the

analytical dynamics model is tailored to the rolling primitive,
which makes it unusable for any other action parameterization
or tasks. Recent works [2, 5, 13, 18, 23] also use action
primitives for their tasks but learn a dynamics model in a
data-driven fashion to improve generalization. However, many
rely heavily on feature engineering for the state of the dough:
Kim et al. [13] uses the set of distances between the boundary
points and the center of the dough, Matl et al. [23] uses a
bounding box for the dough, and Calinon et al. and Figueroa
et al. [2, 5] fit an ellipse on the 2D view of the dough.
These manually defined state spaces have limited represen-
tation power and cannot easily transfer to other tasks. Among
them, DPI-Net [18] learns a particle dynamics model that
functions over point clouds and does not require a manually
specified state representation. However, DPI-Net requires full
point cloud observation acquired by moving the robot arm
out of the scene after each action, which significantly slows
down their execution. Furthermore, DPI-Net uses a derivative
free planner that also suffers from the local optima in our
task. To compare with DPI-Net, we evaluate a CEM planner
with ground-truth dynamics and reward in simulation. We also
compare with a “heuristic” baseline that uses a similar action
primitive described in [2, 13, 23, 34] in the real world to
show the advantage of a more flexible action space. Last,
Figueroa et al. [5] does not specify a fixed rolling primitive;
instead, they automatically discover a set of dynamical systems
(DS) from human demonstration, which they later use to
perform rolling. Despite the advantages of DS in contact-rich
interactions [26, 30], a good dynamical system for rolling is
difficult to learn, and as a result, they require a significant
number of rolls (between 12 and 71) to achieve the goal. In
contrast to these works, we do not simplify the control by
specifying a rolling primitive, nor do we manually define a
compact state representation. These choices make the dough
flattening problem significantly harder but meanwhile make
our approach applicable to a general type of manipulation.
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B. Model-free deformable object manipulation

As opposed to learning a dynamics model, another way
is to learn a policy that directly outputs the actions. Wu et
al. [36] and Matas et al. [22] learn a policy via Reinforcement
Learning (RL). However, in our experiments with a Soft Actor
Critic (SAC) [7] agent, we discover that RL with high dimen-
sional input results in unmeaningful behavior. We include it
as a baseline. Seita et al. [31] and Lin et al. [19] perform
Imitation Learning (IL) with either an algorithmic supervisor
or a trajectory optimizer that has access to privileged state
information. Comparing to Seita et al. [31], which uses a
algorithmic supervisor to a specific problem, our approach is
more general. Similar to Lin et al. [19], we train our policy via
Behavioral Cloning (BC) from the demonstrations generated
by a trajectory optimizer, but our point cloud representation
as policy input allows us to perform sim2real transfer with no
fine-tuning.

C. Differentiable simulators for trajectory optimization

As deformable object manipulation becomes increasingly
popular, the need for training data results in many high-quality
simulators [8, 11, 12, 21]. We choose PlasticineLab [12],
which uses Material Point Method [10] to model elastoplastic
material. Built on top of the DiffTaichi system [11], it supports
differentiable physics that allows us to perform gradient-based
trajectory optimization.

There exists many prior works on non-convex trajectory
optimization. Differential Flatness [24] exploits the fact that
sometimes a dynamical system’s state and control variables
can be represented purely as a function of the system’s output
and its derivatives, and thus the state and control variables
can be solved efficiently. Iterative LQR [17] performs a linear
and quadratic approximation to the system’s dynamics and
cost function and iteratively refines the trajectory. However,
with a large state space, finding a differentially flat system
or approximating a nonlinear dynamics are both difficult. On
the other hand, the differentiable simulator has the ability
to compute the gradient information of the next state with
respect to the previous state and action. Thus, using the
backpropagation technique in neural network training, one
can optimize a trajectory within the differentiable simulator
with gradient descent [12]. However, as pointed out in Li
et al. [16], this type of trajectory optimization suffers from
local optima in slightly more complicated tasks, and they
mitigate this issue via contact point discovery. Our approach
is orthogonal to [16] and can be used in combination with
contact point discovery to find better reset poses. Most relevant
to our work is DiffSkill [19], which divides a long-horizon
problem into simpler subproblems and leverages learned action
primitives for long-horizon planning. However, DiffSkill uses
more complex planning method and has only been shown to
work in simulation with RGB-D images, which makes it hard
to transfer to the real world. In contrast, our method uses
simple reset poses to get around local optima and inputs partial
point cloud for the policy, enabling easier sim2real transfer.
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Fig. 3: Comparison of different trajectory optimization methods
discussed in IV-A. (3a) suffers from local optima; Gradient in (3b)
cannot propagate from one trajectory to another; (3c) allow us to
optimize a multistage trajectory.

III. PROBLEM FORMULATION

We formulate our dough manipulation task into a Partially
Observable Markov Decision Process (POMDP) with state
space S, action space 4, observation space (2, deterministic
transition dynamics 7 : & x A — S, and mapping from
states to observations O : & — €. In our simulation, we
have access to the ground truth state information s, which
includes the ground-truth dough particles P¢ C R? as well
as the pose of the tool X’ € SE(3). The robot observation
op 1= ]5? @ P} is the partial point cloud of the dough captured
by a depth camera (Pf ) concatenated with the ground-truth

point cloud of the tool (P}), which we obtain from our prior
knowledge of the tool shape and the end-effector position. The

robot also observes the target dough point cloud PZ specified
by a human. We assume that our transition function 7 is
differentiable, which can be achieved using either a learned
dynamics model [18] or a differentiable simulator, such as
PlasticineLab [12].

IV. METHOD

Our pipeline consists of three main components: generating
demonstrations via a novel trajectory optimizer, training a
point-cloud based policy, and transferring the policy to the
real world. For our trajectory optimizer, we leverage a reset
module that avoids local optima and allows the gradient to
back-propagate from one end of an episode to the other.
We then use the demonstrations generated by the trajectory
optimizer to train a policy that takes in partial point clouds
as input. Last, we transfer the policy by mapping the action
space from simulation to the real world. We discuss each of
the components below in detail.



A. Demonstrations from non-local trajectory optimization

To generate expert demonstrations for rolling, we leverage
a gradient-based trajectory optimization (GBTO) with the
differentiable simulator. We write our trajectory optimization
in Direct Shooting form [33] with all the constraints captured
by the dynamics of the environment. Thus, given the initial

state sg, the objective is: T
: _ roll contact
o min Lira; = E L™ + ALy (D
where s;41=T (s¢,a¢) t=0
where L™ measures the FEarth Mover’s Distance

(Degymp) [15] between the current and target dough
shapes. Lc°™act measures the distance from the tool to
the closest particle to encourage the tool to approach the
dough and A weighs the different loss terms. This is the
same objective used for dough manipulation in prior work
DiftSkill [19].

With differentiable dynamics, we can back-propagate the
gradient of the loss w.r.t the actions as follows:

T b (L:OH + )\L%:ontact> ast/
aSt/ aat

aLtraj _
8at

2

t'=t+1

where L7°! and L§ontact are differentiable w.r.t. s;. A straight-
forward approach used by many others [12] is to use gradient
descent to directly update the actions, as shown in Fig. 3a.
However, gradient descent is a local optimization method, and
the resulting action sequence will fall into a local optimum;
specifically, the contact loss Lot will cause the tool to
stay in close contact with the dough, which will cause the
policy to perform only one rolling action (even if multiple
rolling actions are needed to achieve the goal). Instead of using
complex planning methods [19], we notice that a simpler ap-
proach is to divide an episode into multiple rolling trajectories
with tool resets in between. Each trajectory has its own tool
initialization and would be optimized separately w.r.t. L;,q;.
These reset poses break out of the local optima resulted from a
fixed initialization of the tool. However, as mentioned earlier,
flatting a piece of dough requires joint optimization of multiple
rolls. As shown in Fig. 3b, simply dividing up an episode will
break the gradient flow from one rolling trajectory to another,
which will lead to a suboptimal solution.

Ideally, we would like to reset the tool in between different
rolls and jointly optimize these rolls. To do so, we propose
a novel trajectory optimization method that implements a
differentiable reset module (DRM), as illustrated in Fig. 3c.
The DRM can replace any action within a trajectory with a tool
reset. We then can pick a set of timesteps {¢7°¢*, ..., t7¢5¢*} for
DRM to move tool to a set of reset poses { X7¢5¢¢, ..., X eset},
Effectively, the timesteps separated by the DRMs are the
different stages of rolling, and the DRMs provide multiple
initializations of the tool in a trajectory. During trajectory
optimization, we keep the rest of the gradients the same
but do not back-propagate the gradient from the reset poses,
ie. we set % 0,vi € {1,...,k}. For the dough
flattening task, we find that it is easy to get around the local
optima by specifying a few reset poses inspired by a human
rolling dough. In general, our method is also useful to other
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Fig. 4: Action space of the simulation environment.

tasks where it can be easy to specify a few intermediate
reset poses. Using this approach, we transform a single-
stage, fixed-initialization trajectory into a multistage, multi-
initialization trajectory where all stages are optimized jointly.
Our optimizer avoids local optima and produces synergistic
behaviors between multiple rolls, as later shown in Section V.
A detailed illustration of our trajectory optimizer is shown in
Fig. 2.

B. Point-cloud policy learning via imitation learning

We deploy the above trajectory optimization method to
generate demonstration trajectories, which we will use to
train a policy from partial point clouds, as described in
this section. Specifically, we use the trajectory optimization
method described above to create a demonstration dataset
D = {o(i),a(i),fDZ }i, where ¢ indexes over trajectories.
We use this data to train a goal-conditioned policy with
hindsight relabeling via imitation learning [19]. Our policy
a; = (o, PZ) takes in the partial point cloud of the dough
and ground-truth point cloud of the tool o, as well as the
partial point cloud of the target dough shape 15;[, and outputs
the action a;. Using a point cloud as input to our policy can
help minimize the sim2real gap when transferring the policy
to the real world. We train our policy using standard behavior
cloning (BC) with the following loss:

d.
Lpc=E la —mg(0, Py)]?

3)

Details on our policy architecture are discussed in Ap-
pendix A-A.

(o,a,,PZ)ND

C. Sim2real transfer

To transfer the policy to the real world, we parameterize
the action space to abstract away the low-level controller.
Specifically, given the policy output a; in simulation, we use
the environment’s forward dynamics 7 to compute the target
pose of the tool X ++1 and then apply a transformation on
the coordinate system to obtain the real world target pose

~ real

X1 - Then we solve for the target robot joint angles with
inverse kinematics and perform position control. We obtain
the segmented dough point cloud by color thresholding and
obtain the tool pose from the proprioceptive information of
the robot. We then sample points uniformly on the surface of
the tool to obtain the tool point cloud. More details on our
real world setup in detail can be found in Section V-D.
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D. Implementation details

Our trajectory optimizer runs Adam Optimizer [14] for 1000
steps with a learning rate of 0.005. We use a single reset mod-
ule with a total of 100 rolling timesteps for our task because
results in Section V-C suggests this combination is the most
effective. For other tasks, one can adjust the number of resets
and time horizon accordingly. We use our trajectory optimizer
to generate 150 demonstration trajectories uniformly sampled
over 125 initial and target configurations with different sizes
and locations of the dough. We then train our policy using
behavior cloning and add Gaussian noise € ~ A(0,0.01) to
the partial point clouds during training to prevent overfitting.
Our policy consists of a standard PointNet++ [27] encoder
followed by a MLP. Details on the policy architecture can be
found in Appendix A-A.

V. EXPERIMENTS

Our experiments aim to demonstrate the effectiveness of our
pipeline for dough manipulation. Specifically, we show that
our trajectory optimizer outperforms the existing alternatives
and produces high-quality demonstrations in simulation. We
then evaluate our policy that uses partial point clouds as input,
in both simulation and the real world.

A. Experiments setup

Task. We conduct our simulation experiments in Plas-
ticineLab [12], which provides a differentiable simulator that
can simulate elastoplastic materials such as dough. Given a
dough in a spherical shape, our task is to use a cylindrical
roller to flatten the dough into a circular shape. We actuate the
roller in simulation using a 4-dimensional continuous action
space, as described in Fig. 4. The actions input to the simulator
aim to specify the infinitesimal rigid transformation of the
roller at every simulation step. We vary the initial and target
dough locations, initial roller location, as well as the volume
of the dough. An example of a trajectory in our simulation
environment is shown at the top of Fig. 2.

Evaluation metric. We use the normalized final Earth
Mover’s Distance (EMD) as our performance metric in simu-
lation, defined as:

Dpyp(P, PY) — Dpnp (PR, PY)
Dpup(P§, P3)

“4)

where Pg, P4, Pgd are the ground-truth dough point clouds at
initialization, final timestep, and the target, respectively.

Baselines. We consider several baselines in simulation.
First, we compare our policy with a model-free RL baseline
trained with partial point clouds as input: Soft Actor Critic
(SAC) [7]. Both the actor and the critic in SAC use the same
inputs and the same encoder as our method. We train the SAC
agent for 1 million timesteps and average the performance over
4 random seeds. Second, we compare our trajectory optimizer
with the Cross Entropy Method (CEM). Both optimizers (our
optimizer and the CEM baseline) operate on the ground-truth
state. Details on the hyperparameters used in our experiments
are shown in Appendix A-B.

B. Simulation experiments

We evaluate all methods on 10 held-out configurations.
The results are shown in Fig. 5a. First, we see that our
trajectory optimizer (“Diff-Reset (Ours)”) outperforms the
CEM baseline by a wide margin, highlighting the advantage
of our reset module and the gradient information. We also
see that our policy (“Diff-Reset-BC (Ours)”), trained using
behavior cloning on the demonstration data (generated from
trajectory optimization), outperforms the SAC agent trained
using model-free RL.

To further demonstrate the generalization power of our
policy, we show the performance of our policy on a larger
set of held-out configurations in Fig. 6. The convex hull
of the training data is shown in dotted grey lines, and the
evaluation configurations are circles whose colors correspond
to the normalized performance. As the result suggests, our
policy can extrapolate to unseen configurations, despite a few
failure cases where the target size is too small compared to
the dough size.

C. Ablation studies

We first investigate the effects of rolling timesteps and the
number of reset modules used in our task. For a fixed horizon
T = 100, we vary the number of reset modules from 0 to 3
and divide the trajectory into equal numbers of timesteps for
rolling, i.e. 75" = LLOtJ -4. Table I shows the normalized
performance of using different number of resets in a trajectory.
Most trajectories with resets outperform the one without any
reset, highlighting the importance of multiple initializations,
and two-stage rolling with one reset in between performs the
best for our task. We Also consider the following ablations
TABLE I: Effect of the number of resets in a fixed-horizon trajectory
evaluated on 10 held-out configurations.

No-Reset
0.48 £0.15

2-Reset
0.57 £0.05

3-Reset
0.42 £0.01

1-Reset
0.70 £ 0.05

to our novel trajectory optimizer:

« No-Reset: optimize the whole trajectory without reset.

o Sep-Reset: optimize multiple rolling trajectories sepa-
rately with a (non-differentiable) reset of tools in b/w.

o Learn-Reset: instead of using the reset module, try to
learn the actions that moves the tool back via a reset loss
L:eset — D(Xgool7xg'eset).

We compare the performance of our method and the ablations
over the held-out trajectories in Fig. 5a and include the loss
curves of an example trajectory in Fig. 5b. As the result
suggests, No-Reset (optimization without reset) gets stuck
in local optima due to the complexity of our task. Sep-
Reset (optimizing the rolling trajectories separately) results
in the dough being broken in half, showing the importance
of propagating gradient information from one trajectory to
another. Learn-Reset tries to optimize for two loss functions,
one for rolling and the other for resetting the roller. Since the
two losses have conflicting gradient directions, one usually
dominates the other, and the roller either ignores the reset
action or doesn’t performing rolling at all. Please see our
website for visualizations of the baselines.
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Fig. 5: Results of simulation experiments. (5a) shows the performances of our method comparing to all baselines and ablations. (5b) shows
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Fig. 7: Real world workspace setup.

D. Real world experiments

Our real world setup is shown in Fig. 7 which includes
a Sawyer robot, two Azure Kinect cameras, a tool mount, a
roller, and a cutting board. We use Kinetic Sand! as a proxy
for “dough.” The set of target dough configurations consists

Ihttps://kineticsand.com/

of 16 different locations, divided into 3 categories based on
the distance between the goal location and the initial location.
Since computing the volume of dough in the real world is
difficult, we define each of the goal shape to be a flat disk
with height zero on the top surface of the cutting board. This
results in slight decrease in performance for all the methods
because the thickness of the goal shape is not considered. The
initial and target configurations of the dough are set in the
following way: we reset the dough by manually rubbing it into
a spherical shape and place it in the center of the cutting board.
We then sample a goal from the predefined goal set. Last, we
input to our policy observations from the side-view camera and
execute the current policy until the episode completes. Using
the above procedure, our closed-loop policy is able to achieve
a control frequency of 2Hz and finish a trajectory in under 1
minute. To evaluate our method, we compute the normalized
Chamfer Distance (CD) between the final point cloud and the
goal (captured by the top-down camera), similar to Equation 4.
We use Chamfer Distance (CD) rather than EMD for the real-
world evaluation because EMD requires an equal number of
points between the two point clouds, which does not occur for
point clouds in the real world.

We consider three baselines and one ablation in our real
world experiments. First, we compare to the SAC agent with
the best-performing random seed. Second, we compare to a
“Heuristic”: we do a grid search over the rolling depth and
rolling length from the initial point cloud observation and
execute the same rolling primitive used in prior works [13, 34].
For a fair comparison, we repeat the rolling primitive twice
with the tool reset used by our policy. Third, we compare
with a human that observes the overlayed target in real time
and is given unlimited time. We also compare to an ablation
(“Open-loop”) which is an open-loop policy trained on the
same demonstration data as our method, but it takes in the
initial observation og and outputs the entire action sequence
{ao,...,ar—1} in the episode as opposed the action in the
next timestep. Table II shows the performance of all methods,
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Fig. 8: Example rollouts of SAC (8a) and our policy (8b) with goal distance in 6 ~ 9 cm. The top-down view of the initial observation

(b) Above: Performance of Diff-Reset-BC (Ours)

and final observation is added to the start and end of the rollouts. The goal shape and normalized performance are overlayed in red.

0~ 3cm 3~ 6cm 6~ 9cm
Human 0.72 £0.02 0.63£0.10 0.67 £0.02
SAC 0.52 + 0.04 0.41 + 0.06 0.11 £ 0.20
Heuristic 0.43 +0.03 0.27+0.25 0.19£0.10
Open-loop 0.59 + 0.04 0.26 + 0.41 —0.08 4+ 0.45
Diff-Reset- 0.62 + 0.07 | 0.45 + 0.06 | 0.51 £ 0.04
BC (ours)

TABLE II: Rolling performance over different target distances. Each
entry is evaluated on 4 sampled targets.

grouped based on the distance between the initial and final
dough configurations. Our policy Diff-Reset-BC outperforms
the non-human baselines and ablation in all configurations,
and it has the largest improvement over the baselines when
the goal is far from the initial location of the dough. Our
human baseline is the most dexterous and discovers novel tool
uses such as pushing the overextended dough back into the
goal region. This highlights the fact that dough manipulation
requires a complex action space. Example rollouts for the
SAC agent and Diff-Reset-BC are shown in Fig. 8. Last, we
demonstrate the robustness of our policy by varying the size
of the dough. We consider 3 different sizes quantified by the
weight of the dough, and we scale the radius of the target shape
based on the initial dough size. Table III shows the quantitative
results. Diff-Reset-BC outperforms the non-human baselines
for all dough sizes and retains a high performance across
different sizes. Although the SAC baseline performs on par
with our method for small dough, its performance degrades
quickly as the dough size increases. Finally, we perform paired
samples t-tests [32] to statistically compare the performances
of our closed-loop policy and each baseline. After applying
Bonferroni correction [29] with av = 0.013, we find significant
differences in performance between Diff-Reset-BC (M=0.51,
SD=0.11) and:

e SAC (M=0.30, SD=0.28); t(19) = 3.6, p = le—3

Small(240g) Medium(360g) Large(480g)
Human 0.64 £0.01 0.72 £0.02 0.71 £0.01
SAC 0.44 +0.12 0.34 £0.21 0.0 +0.36
Heuristic 0.33+£0.10 0.31£0.13 0.21 +£0.38
Open-loop 0.35+0.35 0.26 £ 0.41 0.29 +0.36
Diff-Reset- 0.44 +£0.09 | 0.53 £0.09 | 0.51 £+ 0.17
BC (ours)

TABLE III: Rolling performance over different dough sizes. Each
entry is evaluated on 4 sampled targets.

 Heuristic (M=0.30, SD=0.21); ¢(19) = 5.6, p = 2e—5

o Human (M=0.66, SD=0.08); ¢(19) = —4.3, p = 3e—4
as well as marginally significant differences between ours and
Open-loop (M=0.28,SD=0.39); ¢(19) = 2.7, p = 0.013.

VI. CONCLUSION

We introduce a system for closed-loop dough manipulation
from high dimensional inputs. Our novel gradient-based tra-
jectory optimizer leverages a differentiable reset module and
can optimize an entire multistage trajectory to avoid local
optima. We use the trajectory optimizer to generate high-
quality demonstration data in a differentiable simulator, which
we later use to train a policy via Behavioral Cloning. Our
policy trained on partial point cloud is directly transferred
to the real world without any fine-tuning. In both simulation
and real world experiments, we demonstrate that our method
outperforms other approaches and generalizes to different
dough sizes and configurations.
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APPENDIX A
EXPERIMENT DETAILS

A. Network Architectures

Our policy consists of a standard PointNet++ [27] en-
coder and a three-layer MLP with hidden dimensions
[1024, 512, 256] and ReLU activations. Before the points are
inputted to the encoder, we use a one-hot encoding to differen-
tiate points that belong to the tool v.s. points that belong to the
current dough observation v.s. points that belong to the target
dough shape. We use PyTorch Geometric’s [4] implementation
of PointNet++ and use the following modules in our encoder.

SAModule (0.5,0.05,MLP ([3+3,64,64,128]))
SAModule (0.25,0.1,MLP ([128+43,128,128,256]))
GlobalSAModule (MLP ([256+3,256,512,10241))

B. Hyperparameters

We perform a grid search over the different hyperparameters
used in our SAC [7] and CEM baselines. The results are
denoted in Table A-B. The numbers in a list denotes the values
that we search over, and the bolded numbers are the ones used
in generating the final results.

TABLE IV: Hyperparameters used in SAC and CEM.

Parameters Values

a 0.2

Zune alpha [Trueo, False] Parameters Values

Ir (3, 3e4, 3e5] | |norizon 1 [1. 5. 10. 20]
- Pop. size [50, 100]

Batch size [5, 10] Max iter (10, 20]

7 0.99 Elites 10

T 0.005

Acontact [1e-3, 10, 20]

Training steps 1000000
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