

QI et al.: DOUGH MANIPULATION 3

B. Model-free deformable object manipulation

As opposed to learning a dynamics model, another way

is to learn a policy that directly outputs the actions. Wu et

al. [36] and Matas et al. [22] learn a policy via Reinforcement

Learning (RL). However, in our experiments with a Soft Actor

Critic (SAC) [7] agent, we discover that RL with high dimen-

sional input results in unmeaningful behavior. We include it

as a baseline. Seita et al. [31] and Lin et al. [19] perform

Imitation Learning (IL) with either an algorithmic supervisor

or a trajectory optimizer that has access to privileged state

information. Comparing to Seita et al. [31], which uses a

algorithmic supervisor to a specific problem, our approach is

more general. Similar to Lin et al. [19], we train our policy via

Behavioral Cloning (BC) from the demonstrations generated

by a trajectory optimizer, but our point cloud representation

as policy input allows us to perform sim2real transfer with no

fine-tuning.

C. Differentiable simulators for trajectory optimization

As deformable object manipulation becomes increasingly

popular, the need for training data results in many high-quality

simulators [8, 11, 12, 21]. We choose PlasticineLab [12],

which uses Material Point Method [10] to model elastoplastic

material. Built on top of the DiffTaichi system [11], it supports

differentiable physics that allows us to perform gradient-based

trajectory optimization.

There exists many prior works on non-convex trajectory

optimization. Differential Flatness [24] exploits the fact that

sometimes a dynamical system’s state and control variables

can be represented purely as a function of the system’s output

and its derivatives, and thus the state and control variables

can be solved efficiently. Iterative LQR [17] performs a linear

and quadratic approximation to the system’s dynamics and

cost function and iteratively refines the trajectory. However,

with a large state space, finding a differentially flat system

or approximating a nonlinear dynamics are both difficult. On

the other hand, the differentiable simulator has the ability

to compute the gradient information of the next state with

respect to the previous state and action. Thus, using the

backpropagation technique in neural network training, one

can optimize a trajectory within the differentiable simulator

with gradient descent [12]. However, as pointed out in Li

et al. [16], this type of trajectory optimization suffers from

local optima in slightly more complicated tasks, and they

mitigate this issue via contact point discovery. Our approach

is orthogonal to [16] and can be used in combination with

contact point discovery to find better reset poses. Most relevant

to our work is DiffSkill [19], which divides a long-horizon

problem into simpler subproblems and leverages learned action

primitives for long-horizon planning. However, DiffSkill uses

more complex planning method and has only been shown to

work in simulation with RGB-D images, which makes it hard

to transfer to the real world. In contrast, our method uses

simple reset poses to get around local optima and inputs partial

point cloud for the policy, enabling easier sim2real transfer.

(a) Naively optimize the entire trajectory.

(b) Optimize multiple trajectories separately with tool resets in b/w.

(c) Optimize the entire trajectory with differentiable reset modules.

Fig. 3: Comparison of different trajectory optimization methods
discussed in IV-A. (3a) suffers from local optima; Gradient in (3b)
cannot propagate from one trajectory to another; (3c) allow us to
optimize a multistage trajectory.

III. PROBLEM FORMULATION

We formulate our dough manipulation task into a Partially

Observable Markov Decision Process (POMDP) with state

space S , action space A, observation space Ω, deterministic

transition dynamics T : S × A → S , and mapping from

states to observations O : S → Ω. In our simulation, we

have access to the ground truth state information s, which

includes the ground-truth dough particles P d ¦ R3 as well

as the pose of the tool Xt ∈ SE(3). The robot observation

ot := P̂
d

t ·P t
t is the partial point cloud of the dough captured

by a depth camera (P̂
d

t) concatenated with the ground-truth

point cloud of the tool (P t
t), which we obtain from our prior

knowledge of the tool shape and the end-effector position. The

robot also observes the target dough point cloud P̂
d

g specified

by a human. We assume that our transition function T is

differentiable, which can be achieved using either a learned

dynamics model [18] or a differentiable simulator, such as

PlasticineLab [12].

IV. METHOD

Our pipeline consists of three main components: generating

demonstrations via a novel trajectory optimizer, training a

point-cloud based policy, and transferring the policy to the

real world. For our trajectory optimizer, we leverage a reset

module that avoids local optima and allows the gradient to

back-propagate from one end of an episode to the other.

We then use the demonstrations generated by the trajectory

optimizer to train a policy that takes in partial point clouds

as input. Last, we transfer the policy by mapping the action

space from simulation to the real world. We discuss each of

the components below in detail.

QI et al.: DOUGH MANIPULATION 5

D. Implementation details

Our trajectory optimizer runs Adam Optimizer [14] for 1000
steps with a learning rate of 0.005. We use a single reset mod-

ule with a total of 100 rolling timesteps for our task because

results in Section V-C suggests this combination is the most

effective. For other tasks, one can adjust the number of resets

and time horizon accordingly. We use our trajectory optimizer

to generate 150 demonstration trajectories uniformly sampled

over 125 initial and target configurations with different sizes

and locations of the dough. We then train our policy using

behavior cloning and add Gaussian noise ϵ ∼ N (0, 0.01) to

the partial point clouds during training to prevent overfitting.

Our policy consists of a standard PointNet++ [27] encoder

followed by a MLP. Details on the policy architecture can be

found in Appendix A-A.

V. EXPERIMENTS

Our experiments aim to demonstrate the effectiveness of our

pipeline for dough manipulation. Specifically, we show that

our trajectory optimizer outperforms the existing alternatives

and produces high-quality demonstrations in simulation. We

then evaluate our policy that uses partial point clouds as input,

in both simulation and the real world.

A. Experiments setup

Task. We conduct our simulation experiments in Plas-

ticineLab [12], which provides a differentiable simulator that

can simulate elastoplastic materials such as dough. Given a

dough in a spherical shape, our task is to use a cylindrical

roller to flatten the dough into a circular shape. We actuate the

roller in simulation using a 4-dimensional continuous action

space, as described in Fig. 4. The actions input to the simulator

aim to specify the infinitesimal rigid transformation of the

roller at every simulation step. We vary the initial and target

dough locations, initial roller location, as well as the volume

of the dough. An example of a trajectory in our simulation

environment is shown at the top of Fig. 2.

Evaluation metric. We use the normalized final Earth

Mover’s Distance (EMD) as our performance metric in simu-

lation, defined as:

DEMD(P d
0
, P d

g)−DEMD(P d
T , P

d
g)

DEMD(P d
0
, P d

g)
(4)

where P d
0

, P d
T , P d

g are the ground-truth dough point clouds at

initialization, final timestep, and the target, respectively.

Baselines. We consider several baselines in simulation.

First, we compare our policy with a model-free RL baseline

trained with partial point clouds as input: Soft Actor Critic

(SAC) [7]. Both the actor and the critic in SAC use the same

inputs and the same encoder as our method. We train the SAC

agent for 1 million timesteps and average the performance over

4 random seeds. Second, we compare our trajectory optimizer

with the Cross Entropy Method (CEM). Both optimizers (our

optimizer and the CEM baseline) operate on the ground-truth

state. Details on the hyperparameters used in our experiments

are shown in Appendix A-B.

B. Simulation experiments

We evaluate all methods on 10 held-out configurations.

The results are shown in Fig. 5a. First, we see that our

trajectory optimizer (“Diff-Reset (Ours)”) outperforms the

CEM baseline by a wide margin, highlighting the advantage

of our reset module and the gradient information. We also

see that our policy (“Diff-Reset-BC (Ours)”), trained using

behavior cloning on the demonstration data (generated from

trajectory optimization), outperforms the SAC agent trained

using model-free RL.

To further demonstrate the generalization power of our

policy, we show the performance of our policy on a larger

set of held-out configurations in Fig. 6. The convex hull

of the training data is shown in dotted grey lines, and the

evaluation configurations are circles whose colors correspond

to the normalized performance. As the result suggests, our

policy can extrapolate to unseen configurations, despite a few

failure cases where the target size is too small compared to

the dough size.

C. Ablation studies

We first investigate the effects of rolling timesteps and the

number of reset modules used in our task. For a fixed horizon

T = 100, we vary the number of reset modules from 0 to 3
and divide the trajectory into equal numbers of timesteps for

rolling, i.e. treseti = + 100

Nreset

, · i. Table I shows the normalized

performance of using different number of resets in a trajectory.

Most trajectories with resets outperform the one without any

reset, highlighting the importance of multiple initializations,

and two-stage rolling with one reset in between performs the

best for our task. We Also consider the following ablations

TABLE I: Effect of the number of resets in a fixed-horizon trajectory
evaluated on 10 held-out configurations.

No-Reset 1-Reset 2-Reset 3-Reset

0.48± 0.15 0.70 ± 0.05 0.57± 0.05 0.42± 0.01

to our novel trajectory optimizer:

• No-Reset: optimize the whole trajectory without reset.

• Sep-Reset: optimize multiple rolling trajectories sepa-

rately with a (non-differentiable) reset of tools in b/w.

• Learn-Reset: instead of using the reset module, try to

learn the actions that moves the tool back via a reset loss

Lreset
t = D(Xtool

t , Xreset
i).

We compare the performance of our method and the ablations

over the held-out trajectories in Fig. 5a and include the loss

curves of an example trajectory in Fig. 5b. As the result

suggests, No-Reset (optimization without reset) gets stuck

in local optima due to the complexity of our task. Sep-

Reset (optimizing the rolling trajectories separately) results

in the dough being broken in half, showing the importance

of propagating gradient information from one trajectory to

another. Learn-Reset tries to optimize for two loss functions,

one for rolling and the other for resetting the roller. Since the

two losses have conflicting gradient directions, one usually

dominates the other, and the roller either ignores the reset

action or doesn’t performing rolling at all. Please see our

website for visualizations of the baselines.

QI et al.: DOUGH MANIPULATION 7

(a) Above: Performance of the baseline policy SAC

(b) Above: Performance of Diff-Reset-BC (Ours)

Fig. 8: Example rollouts of SAC (8a) and our policy (8b) with goal distance in 6 ∼ 9 cm. The top-down view of the initial observation
and final observation is added to the start and end of the rollouts. The goal shape and normalized performance are overlayed in red.

0 ∼ 3 cm 3 ∼ 6 cm 6 ∼ 9 cm

Human 0.72± 0.02 0.63± 0.10 0.67± 0.02

SAC 0.52± 0.04 0.41± 0.06 0.11± 0.20

Heuristic 0.43± 0.03 0.27± 0.25 0.19± 0.10

Open-loop 0.59± 0.04 0.26± 0.41 −0.08± 0.45

Diff-Reset-
BC (ours)

0.62 ± 0.07 0.45 ± 0.06 0.51 ± 0.04

TABLE II: Rolling performance over different target distances. Each
entry is evaluated on 4 sampled targets.

grouped based on the distance between the initial and final

dough configurations. Our policy Diff-Reset-BC outperforms

the non-human baselines and ablation in all configurations,

and it has the largest improvement over the baselines when

the goal is far from the initial location of the dough. Our

human baseline is the most dexterous and discovers novel tool

uses such as pushing the overextended dough back into the

goal region. This highlights the fact that dough manipulation

requires a complex action space. Example rollouts for the

SAC agent and Diff-Reset-BC are shown in Fig. 8. Last, we

demonstrate the robustness of our policy by varying the size

of the dough. We consider 3 different sizes quantified by the

weight of the dough, and we scale the radius of the target shape

based on the initial dough size. Table III shows the quantitative

results. Diff-Reset-BC outperforms the non-human baselines

for all dough sizes and retains a high performance across

different sizes. Although the SAC baseline performs on par

with our method for small dough, its performance degrades

quickly as the dough size increases. Finally, we perform paired

samples t-tests [32] to statistically compare the performances

of our closed-loop policy and each baseline. After applying

Bonferroni correction [29] with ³ = 0.013, we find significant

differences in performance between Diff-Reset-BC (M=0.51,

SD=0.11) and:

• SAC (M=0.30, SD=0.28); t(19) = 3.6, p = 1e−3

Small(240g) Medium(360g) Large(480g)

Human 0.64± 0.01 0.72± 0.02 0.71± 0.01

SAC 0.44 ± 0.12 0.34± 0.21 0.0± 0.36

Heuristic 0.33± 0.10 0.31± 0.13 0.21± 0.38

Open-loop 0.35± 0.35 0.26± 0.41 0.29± 0.36

Diff-Reset-
BC (ours)

0.44 ± 0.09 0.53 ± 0.09 0.51 ± 0.17

TABLE III: Rolling performance over different dough sizes. Each
entry is evaluated on 4 sampled targets.

• Heuristic (M=0.30, SD=0.21); t(19) = 5.6, p = 2e−5
• Human (M=0.66, SD=0.08); t(19) = −4.3, p = 3e−4

as well as marginally significant differences between ours and

Open-loop (M=0.28,SD=0.39); t(19) = 2.7, p = 0.013.

VI. CONCLUSION

We introduce a system for closed-loop dough manipulation

from high dimensional inputs. Our novel gradient-based tra-

jectory optimizer leverages a differentiable reset module and

can optimize an entire multistage trajectory to avoid local

optima. We use the trajectory optimizer to generate high-

quality demonstration data in a differentiable simulator, which

we later use to train a policy via Behavioral Cloning. Our

policy trained on partial point cloud is directly transferred

to the real world without any fine-tuning. In both simulation

and real world experiments, we demonstrate that our method

outperforms other approaches and generalizes to different

dough sizes and configurations.

REFERENCES

[1] M. Bollini, S. Tellex, T. Thompson, N. Roy, and D. Rus, “Interpreting
and executing recipes with a cooking robot,” Jan. 2013.

[2] S. Calinon, T. Alizadeh, and D. G. Caldwell, “On improving the
extrapolation capability of task-parameterized movement models,” in
2013 IEEE/RSJ International Conference on Intelligent Robots and

Systems, 2013, pp. 610–616.

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. JULY, 2022

[3] T. Chen, J. Xu, and P. Agrawal, “A system for general in-hand object
re-orientation,” Conference on Robot Learning, 2021.

[4] M. Fey and J. E. Lenssen, “Fast graph representation learning with
PyTorch Geometric,” in ICLR Workshop on Representation Learning

on Graphs and Manifolds, 2019.
[5] N. Figueroa, A. L. Pais Ureche, and A. Billard, “Learning complex

sequential tasks from demonstration: A pizza dough rolling case study,”
in The Eleventh ACM/IEEE International Conference on Human Robot

Interaction, ser. HRI ’16, Christchurch, New Zealand: IEEE Press,
2016, pp. 611–612.

[6] H. Ha and S. Song, “Flingbot: The unreasonable effectiveness of
dynamic manipulation for cloth unfolding,” in Conference on Robot

Learning, PMLR, 2022, pp. 24–33.
[7] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-

policy maximum entropy deep reinforcement learning with a stochastic
actor,” 2017.

[8] E. Heiden, M. Macklin, Y. S. Narang, D. Fox, A. Garg, and F. Ramos,
“DiSECt: A Differentiable Simulation Engine for Autonomous Robotic
Cutting,” in Proceedings of Robotics: Science and Systems, Virtual, Jul.
2021.

[9] R. Hoque, D. Seita, A. Balakrishna, A. Ganapathi, A. Tanwani, N.
Jamali, K. Yamane, S. Iba, and K. Goldberg, “Visuospatial foresight
for multi-step, multi-task fabric manipulation,” Jul. 2020.

[10] Y. Hu, Y. Fang, Z. Ge, Z. Qu, Y. Zhu, A. Pradhana, and C. Jiang,
“A moving least squares material point method with displacement
discontinuity and two-way rigid body coupling,” ACM Transactions

on Graphics, vol. 37, no. 4, p. 150, 2018.
[11] Y. Hu, L. Anderson, T.-M. Li, Q. Sun, N. Carr, J. Ragan-Kelley,

and F. Durand, “Difftaichi: Differentiable programming for physical
simulation,” ICLR, 2020.

[12] Z. Huang, Y. Hu, T. Du, S. Zhou, H. Su, J. B. Tenenbaum, and
C. Gan, “Plasticinelab: A soft-body manipulation benchmark with
differentiable physics,” in International Conference on Learning Rep-

resentations, 2021.
[13] J.-T. Kim, F. Ruggiero, V. Lippiello, and B. Siciliano, “Planning

framework for robotic pizza dough stretching with a rolling pin,” in
Robot Dynamic Manipulation, Springer, 2022, pp. 229–253.

[14] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
International Conference on Learning Representations, Dec. 2014.

[15] E. Levina and P. Bickel, “The earth mover’s distance is the mallows
distance: Some insights from statistics,” in Proceedings Eighth IEEE

International Conference on Computer Vision. ICCV 2001, vol. 2,
2001, 251–256 vol.2.

[16] S. Li, Z. Huang, T. Du, H. Su, J. B. Tenenbaum, and C. Gan, “Con-
tact points discovery for soft-body manipulations with differentiable
physics,” in International Conference on Learning Representations,
2022.

[17] W. Li and E. Todorov, “Iterative linear quadratic regulator design for
nonlinear biological movement systems.,” vol. 1, Jan. 2004, pp. 222–
229.

[18] Y. Li, J. Wu, R. Tedrake, J. B. Tenenbaum, and A. Torralba, “Learning
particle dynamics for manipulating rigid bodies, deformable objects,
and fluids,” in ICLR, 2019.

[19] X. Lin, Z. Huang, Y. Li, D. Held, J. B. Tenenbaum, and C. Gan,
“Diffskill: Skill abstraction from differentiable physics for deformable
object manipulations with tools,” in International Conference on

Learning Representations, 2022.
[20] X. Lin, Y. Wang, Z. Huang, and D. Held, “Learning visible connectivity

dynamics for cloth smoothing,” in Conference on Robot Learning,
2021.

[21] X. Lin, Y. Wang, J. Olkin, and D. Held, “Softgym: Benchmarking
deep reinforcement learning for deformable object manipulation,” in
Conference on Robot Learning, 2020.

[22] J. Matas, S. James, and A. J. Davison, “Sim-to-real rein-
forcement learning for deformable object manipulation,” ArXiv,
vol. abs/1806.07851, 2018.

[23] C. Matl and R. Bajcsy, “Deformable elasto-plastic object shaping
using an elastic hand and model-based reinforcement learning,” 2021

IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pp. 3955–3962, 2021.
[24] R. M. Murray, M. Rathinam, and W. Sluis, “Differential flatness

of mechanical control systems: A catalog of prototype systems,” in
Proceedings of the 1995 ASME International Congress and Exposition,
1995.

[25] A. Nagabandi, K. Konolige, S. Levine, and V. Kumar, “Deep dynamics
models for learning dexterous manipulation,” in Conference on Robot

Learning, PMLR, 2020, pp. 1101–1112.

[26] P. R. Pagilla and B. Yu, “Robotic Surface Finishing Processes:
Modeling, Control, and Experiments,” Journal of Dynamic Systems,

Measurement, and Control, vol. 123, no. 1, pp. 93–102, Oct. 1999.
[27] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical

feature learning on point sets in a metric space,” arXiv preprint

arXiv:1706.02413, 2017.
[28] F. Ruggiero, J.-T. Kim, A. Gutierrez-Giles, A. C. Satici, A. Donaire,

J. Cacace, L. R. Buonocore, G. A. Fontanelli, V. Lippiello, and B.
Siciliano, “Nonprehensile manipulation control and task planning for
deformable object manipulation: Results from the rodyman project,” in
International Conference on Informatics in Control, Automation and

Robotics, Springer, 2018, pp. 76–100.
[29] G. Rupert Jr et al., Simultaneous statistical inference. Springer Science

& Business Media, 2012.
[30] S. S. M. Salehian and A. Billard, “A dynamical-system-based ap-

proach for controlling robotic manipulators during noncontact/contact
transitions,” IEEE Robotics and Automation Letters, vol. 3, no. 4,
pp. 2738–2745, 2018.

[31] D. Seita, A. Ganapathi, R. Hoque, M. Hwang, E. Cen, A. K. Tanwani,
A. Balakrishna, B. Thananjeyan, J. Ichnowski, N. Jamali, K. Yamane,
S. Iba, J. Canny, and K. Goldberg, “Deep Imitation Learning of
Sequential Fabric Smoothing From an Algorithmic Supervisor,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), 2020.
[32] Student, “The probable error of a mean,” Biometrika, pp. 1–25, 1908.
[33] R. Tedrake, Underactuated Robotics, Algorithms for Walking, Running,

Swimming, Flying, and Manipulation. 2022.
[34] S. Tokumoto and S. Hirai, “Deformation control of rheological food

dough using a forming process model,” in Proceedings 2002 IEEE

International Conference on Robotics and Automation (Cat. No.

02CH37292), IEEE, vol. 2, 2002, pp. 1457–1464.
[35] Z. Wang, Y. Torigoe, and S. Hirai, “A prestressed soft gripper: Design,

modeling, fabrication, and tests for food handling,” IEEE Robotics and

Automation Letters, vol. 2, no. 4, pp. 1909–1916, 2017.
[36] Y. Wu, W. Yan, T. Kurutach, L. Pinto, and P. Abbeel, “Learning to

Manipulate Deformable Objects without Demonstrations,” in Proceed-

ings of Robotics: Science and Systems, Corvalis, Oregon, USA, Jul.
2020.

[37] W. Yan, A. Vangipuram, P. Abbeel, and L. Pinto, “Learning predictive
representations for deformable objects using contrastive estimation,”
CoRL, 2020.

QI et al.: DOUGH MANIPULATION 9

APPENDIX A

EXPERIMENT DETAILS

A. Network Architectures

Our policy consists of a standard PointNet++ [27] en-

coder and a three-layer MLP with hidden dimensions

[1024, 512, 256] and ReLU activations. Before the points are

inputted to the encoder, we use a one-hot encoding to differen-

tiate points that belong to the tool v.s. points that belong to the

current dough observation v.s. points that belong to the target

dough shape. We use PyTorch Geometric’s [4] implementation

of PointNet++ and use the following modules in our encoder.

SAModule(0.5,0.05,MLP([3+3,64,64,128]))

SAModule(0.25,0.1,MLP([128+3,128,128,256]))

GlobalSAModule(MLP([256+3,256,512,1024]))

B. Hyperparameters

We perform a grid search over the different hyperparameters

used in our SAC [7] and CEM baselines. The results are

denoted in Table A-B. The numbers in a list denotes the values

that we search over, and the bolded numbers are the ones used

in generating the final results.

TABLE IV: Hyperparameters used in SAC and CEM.

Parameters Values

α 0.2

Tune alpha [True, False]

σ 0.1

lr [3e-3, 3e-4, 3e-5]

Batch size [5, 10]

γ 0.99

τ 0.005

λcontact [1e-3, 10, 20]

Training steps 1000000

Parameters Values

Horizon [1, 5, 10, 20]

Pop. size [50, 100]

Max iter [10, 20]

Elites 10

	I INTRODUCTION
	II RELATED WORK
	II-A Model-based approaches for dough manipulation
	II-B Model-free deformable object manipulation
	II-C Differentiable simulators for trajectory optimization

	III Problem formulation
	IV METHOD
	IV-A Demonstrations from non-local trajectory optimization
	IV-B Point-cloud policy learning via imitation learning
	IV-C Sim2real transfer
	IV-D Implementation details

	V EXPERIMENTS
	V-A Experiments setup
	V-B Simulation experiments
	V-C Ablation studies
	V-D Real world experiments

	VI CONCLUSION
	Appendix A: Experiment Details
	A-A Network Architectures
	A-B Hyperparameters

