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Abstract— Robotic manipulation of cloth has applications
ranging from fabrics manufacturing to handling blankets and
laundry. Cloth manipulation is challenging for robots largely
due to their high degrees of freedom, complex dynamics, and
severe self-occlusions when in folded or crumpled configu-
rations. Prior work on robotic manipulation of cloth relies
primarily on vision sensors alone, which may pose challenges
for fine-grained manipulation tasks such as grasping a desired
number of cloth layers from a stack of cloth. In this paper,
we propose to use tactile sensing for cloth manipulation; we
attach a tactile sensor (ReSkin) to one of the two fingertips of
a Franka robot and train a classifier to determine whether the
robot is grasping a specific number of cloth layers. During
test-time experiments, the robot uses this classifier as part
of its policy to grasp one or two cloth layers using tactile
feedback to determine suitable grasping points. Experimental
results over 180 physical trials suggest that the proposed method
outperforms baselines that do not use tactile feedback and has
better generalization to unseen cloth compared to methods that
use image classifiers. Code, data, and videos are available at
https://sites.google.com/view/reskin-cloth.

I. INTRODUCTION

Cloth manipulation remains an active research area in

robotics with significant real world applications, including

folding laundry [8, 31], assistive dressing [10–12, 55], bed-

making [41], and manufacturing fabrics [48]. Cloth manip-

ulation is challenging because it is difficult to infer the

complete configuration of the cloth from robot observations

when the cloth is in a crumpled or folded state, due to the

high degrees of freedom and self-occlusions [3, 39].

In light of these challenges, researchers have recently

proposed numerous data-driven methods for canonical cloth

manipulation tasks such as smoothing [42, 52] and fold-

ing [25, 33, 51]. While showing promising results, many

prior works focus on top-down grasping of one cloth. Such

grasping may be ineffective for manipulation tasks involving

multiple cloths, such as picking a desired number of layers of

a stack of cloth, because performance is extremely sensitive

to the height of the gripper when it grasps. Indeed, a common

failure case reported in prior work [13, 51] is picking the

wrong number of layers. Yet, manipulating a specific number

of cloth layers is common in daily life, such as in folding

and unfolding tasks, or handling piles of stacked clothing in

stores. How, then, can robots achieve accurate grasping of

multiple layers of cloth?

Incorporating tactile sensing is an under-explored direc-

tion for deformable object manipulation. While there has
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Fig. 1: We present a tactile-based cloth manipulation system. The
robot utilizes a ReSkin [2] sensor attached to the lower one of
its two fingertips, which is visualized in more detail in the upper
right inset. We train a classifier to distinguish among grasping
different numbers of cloth layers from tactile feedback (no images
are provided as input). The robot then uses this classifier at test
time to determine suitable grasping points for obtaining a desired
number of cloth layers.

been recent work on optical-based tactile sensors such as

GelSight [56] and DIGIT [24], these sensors have primarily

been applied to cloth perception [28, 57] instead of cloth

manipulation. Recent work on magnetometer-based sensors

such as ReSkin [2] have benefits over optical sensors, such

as lower-dimensional sensor readings, more direct measure-

ments of normal and shear forces, and a compact form factor.

However, research into the applications of magnetometer-

based sensors for deformable object manipulation is cur-

rently limited.

In this paper, we study the application of magnetometer-

based tactile sensing for deformable cloth manipulation. We

focus on precisely grasping and lifting layers of stacked

cloth; due to the flexibility of cloth and unpredictable crum-

pling behavior, this task is challenging while being a well-

defined manipulation problem. Furthermore, precise grasping

of layers of cloth is a prerequisite for many downstream

manipulation tasks (e.g., folding cloth in half twice).

We present a robotic system consisting of a 7-DOF Franka

arm, a mini-Delta gripper [32], and a Reskin [2] sensor on the

gripper finger to perform precise cloth grasping (see Fig. 1).

The system uses a tactile classifier as feedback for a grasping

policy. We show that simple approaches to both classifying

tactile data and incorporating feedback into the policy (e.g.,

as a termination condition) work surprisingly well.
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This paper makes the following contributions:

1) A robot hardware system which incorporates ReSkin

tactile sensors for cloth manipulation.

2) A training procedure for developing a classifier based

on this hardware to use in a grasping policy.

3) Experiments showing success on the task of grasping

a desired number of cloth layers.

II. RELATED WORK

Manipulation of deformable objects such as cloth has a

long history in robotics; see Yin et al. [54] and Zhu et al.

[59] for representative surveys.

A. Cloth Manipulation Policies

In early research on cloth manipulation, a common strat-

egy was to utilize a bimanual robot to grip cloth in midair to

smooth it using gravity. This standardizes the configuration

of cloth and exposes its corners, which can then facilitate

planning subsequent manipulation tasks such as smoothing

and folding [8, 31]. Other researchers have relied on using

geometric features of cloth, such as by fitting polygon con-

tours to clothing [34]. While these works showed impressive

results, such approaches may be time-consuming or require

strong assumptions on cloth configurations.

With the rise of deep learning, researchers have recently

employed data driven techniques to obtain large amounts

of interaction data with cloth to learn manipulation policies

using powerful function approximators, often with the help

of simulators [27, 47]. These works tend to learn quasi-

static pick-and-place policies, which allow the cloth to

settle between robot actions [13, 17, 26, 29, 36, 42, 43,

51–53]. Other researchers have learned continuous servoing

policies [33], dynamic policies [15] or have explored learning

cloth manipulation from purely real world interaction [25].

In contrast to these works which employ vision-

manipulation policies, we focus on tactile sensing for cloth

grasping.

B. Grasping for Cloth Manipulation

Perhaps the most important part of cloth manipulation

tasks is cloth grasping, since a suitable grasp is necessary for

subsequent actions such as dragging or lifting. Defining and

identifying ideal cloth grasps remains challenging and is the

subject of extensive research [3]. Early cloth manipulation

research focused on vertically smoothing via gravity. A

common such grasping strategy to reliably standardize cloth

was to hold it with one gripper while iteratively grasping the

lowest hanging corner with the other gripper [4, 21, 22, 31].

Other cloth grasping techniques do not require assuming

that the cloth is lifted in midair. For example Ramisa et al.

[38] and Sun et al. [45] determine suitable grasping points

for cloth on a flat table by detecting wrinkles and edges

using depth and classical computer vision techniques. Other

applications of cloth manipulation may utilize specialized

gripper designs [23] or may simplify the process by assuming

that cloth is gripped in advance of the task [18].

Recently, Qian et al. [37] study how to robustly grasp

cloth using dense segmentation of images to distinguish

between edges and interior creases. Their method involves

a self-supervised labeling procedure and a sliding grasp.

Nonetheless, robustly grasping cloth remains challenging,

particularly when the goal is to generalize to a wide variety

of types and configurations of cloth. Prior work has reported

that a typical failure cases is grasping the wrong number

of cloth layers, particularly when unfolding [33, 42, 51].

Furthermore, many works employ heuristics such as hand-

tuning the gripper design and grasp depth [13].

Prior work has also investigated learning to grasp one cloth

from a stack using grasping and scooping actions from vision

input only [5], as well as designing a robot system to turn a

single book page using vision and force sensing [14]. In this

work, we consider the novel task of grasping more than one

cloth layer, and show the benefits of tactile sensing without

requiring vision.

C. Tactile Sensor Hardware

The robotics community has developed numerous tactile

sensors. Examples of sensors include the class of optical-

based sensors such as GelSight [56], GelSlim [7], and

DIGIT [24], which have been used for cloth perception. For

example, Yuan et al. [57] demonstrate how to use active

learning to identify where to grasp a garment to classify it

among several categories of clothing, and Yuan et al. [58]

and Luo et al. [28] study how to combine tactile information

with vision to infer properties of cloth. Similarly, Khan et

al. [19, 20] use tactile information to classify single fabrics

into different material and clothing types using piezoelectric

pressure sensors [6]. In addition, Drigalski et al. [9] use tac-

tile sensing and rubbing behavior to classify textiles into one

of 18 categories, and can distinguish between 1 or 2 layers.

In contrast to these works, we focus on cloth manipulation

instead of pure perception, and additionally focus on fine-

grained manipulation which may be challenging with sensors

such as the GelSight due to their relatively large size.

Other types of robotic tactile sensors include BioTac [46]

and stretchable piezoresistive [1] sensors. These sensors are

durable, but remain expensive and may not be easily re-

placeable. Research teams have also explored tactile sensing

using a customized force-torque sensor [35] for manipulating

deformable blocks [40]. To our knowledge, none of these

sensors have been used for cloth manipulation tasks.

Recently, Bhirangi et al. [2] proposed the ReSkin, a

class of magnetic sensors which is well suited to machine

learning due to its low cost, durability, form factor, ability to

cover a large area, and ease of replacement. The researchers

demonstrate ReSkin on robotic grasping tasks that involve

handling delicate objects such as blueberries and grapes.

Due to these advantages and existing applications, we use

the ReSkin for novel cloth manipulation tasks that involve

fine-grained manipulation of cloth layers.



Fig. 2: The proposed tactile-based cloth manipulation pipeline. A 7-DOF Franka robot uses a mini-Delta [32] gripper with two finger
tips, the lower one of which has a ReSkin [2] sensor (see yellow circle and zoomed-in inset). Using this gripper, we collect tactile data
from the ReSkin by performing grasps of different categories: grasping nothing, or pinching 1, 2, or 3 cloth layers (see Fig. 3 for more
examples). The graphs above visualize the tactile time series data. At test time, the robot uses the trained tactile-based classifier to grasp
a desired number of cloth layers.

III. PROBLEM STATEMENT

We study the task of grasping a desired number of layers

from a stack of cloths. Given a set of at least 3 cloth layers

stacked on each other, the goal is to grasp the top k ∈ {1, 2}
cloth layers. For each trial (a given instance of the task),

we specify a target value for k. We assume a robot has a

two-finger gripper where one of the gripper tips is equipped

with a tactile sensor. We assume each trial begins with the

robot’s tactile sensor facing a set of edges from a stack of

cloth layers, as shown in Fig. 1. A trial is a success when

the robot grasps exactly k cloth layers and is able to lift its

gripper upwards by 4 cm while preserving its grasp of the k

layers.

IV. METHOD

This proposed system for tactile sensing involves de-

signing hardware with tactile data (Sec. IV-A), training a

classifier to distinguish grasping cloth layers (Sec. IV-B),

then using this classifier for a grasping policy (Sec. IV-C).

See Fig. 2 for the overall pipeline.

A. Hardware

The proposed system uses a ReSkin [2] sensor, which

comprises of a soft magnetized skin and a circuit board with

a 5-magnetometer array (see bottom-left inset of Fig. 2).

The board sits beneath the skin, and any deformations

caused by normal/shear forces are read via distortions in

magnetic fields. For each of the 5 magnetometers, 3 magnetic

flux values 〈BX , BY , BZ〉 are reported, corresponding to

flux in the X-, Y-, and Z- magnetometer coordinate axes.

Concatenating these values for a single time step t results in

a 15-dim vector B
(t) ∈ R

15. ReSkin publishes these values

at up to 400 Hz.

We attach ReSkin to a finger on a mini-Delta gripper [32].

We use the mini-Delta largely due to its length and form

factor, since it facilitates grasping a layered stack of cloth

folds by approaching it from the side, instead of top-down.

The mini-Delta has 3 DOFs for each finger, and is compliant

due to the 3D-printed soft links (blue component in Fig. 1),

though in this work, we do not rely on the additional DOFs

or on compliance. Our contribution centers on tactile sensing

for grasping of cloth layers, and we leave investigation of

exploiting additional DOFs and compliance for future work.

The gripper and attached sensor are mounted on a 7-DOF

Franka robot.

B. Grasp Classifier Training

We train a classifier to predict the number of cloth layers

grasped to use as part of the grasp policy (Sec. IV-C). The

classifier takes as input a tactile reading from a single time

step B
(t). While analyzing sensory data across a time series

seems natural for the tactile modality, we find that predictions

based on point estimates are surprisingly effective, as we

later show in Sec. VI. We do not take proprioceptive data

as input, as this modality is not currently available with the

mini-Delta gripper: the compliant links can bend from their

commanded position given sufficiently high external force,

and estimating proprioception for these types of compliant

links is an area of active research.

The classifier uses the tactile readings to predict how the

gripper is interacting with the cloth, among 4 classes: (1)

pinching with no cloth between the fingers, (2) pinching 1

cloth layer, (3) pinching 2 cloth layers, and (4) pinching

3 cloth layers. We limit the number of cloth layers under

consideration to 3 to make classification tractable, while also

allowing feedback-based policies to recover if they overshoot

when grasping two layers. We leave classifying an arbitrary

number of layers to future work.

We collect training data in the real world for the classifier

due to the lack of a suitable simulator.1 We define a single

1While there has been progress in developing high-fidelity simulators for
tactile sensors [44, 50] and for deformables [27, 30], simulating both is
challenging and to our knowledge has not yet been shown.



Fig. 3: Examples of collecting data for tactile-based classification, with the ReSkin attached to the bottom gripper finger tip. From left to
right, we show two examples each of collecting data with (1) contact, but without cloth, (2) 1 cloth layer, (3) 2 cloth layers, and (4) 3

cloth layers. The classifier only takes as input the data collected from the ReSkin sensor B(t) at any give time step. The images above are
collected with a webcam and are used both to visualize the tactile data collection, and also are the RGB inputs to the image classifiers
that we train as baselines for comparison. See Sec. IV and Sec. V for further details.

“training episode” as the process of getting a set of tactile

data from one grasp. First, a human stacks several layers of

cloth with edges facing the gripper. The height at which the

robot approaches the cloth is uniformly sampled per attempt

within a ±2mm range to collect a variety of grasps. The

robot then approaches the cloth, closes its fingertips to grasp

firmly, records ReSkin data during the grasp, then releases.

Each training episode lasts roughly 5 seconds and produces

approximately 350 sensor readings of 15 values each (3 per

magnetometer). We visually inspect videos from the recorded

data to determine the number of grasped cloth layers, and

we label all points from a training episode with the same

label, speeding up annotation time and effort. See Fig. 3 for

example visualizations of training episodes for all classes.

We then use this collected data to train a classifier to distin-

guish the numbers of layers grasped from the tactile readings.

We experimented with various types of classifiers, including

k-Nearest Neighbor (kNN), SVM, Logistic Regression, and

Random Forests, and we found the performance to be fairly

similar across classifiers. For simplicity, we use a k-Nearest

Neighbor (kNN) classifier with k = 10 neighbors.

C. Proposed Grasp Policy

Next we describe how we use the above trained classifier

to enable the robot to grasp the desired number of layers.

We divide the robot trajectory into three parts. First, the

gripper moves vertically down by a distance dvert, then

horizontally towards the cloth stack by a distance dslide, then

lifts up by a distance dlift, then closes its gripper tips (see

Fig. 4 for a visualization). At this point, we record tactile

data and classify the number of layers that are grasped. If

the predicted number of grasped layers (according to the

classifier) matches the target number of grasped layers, it

lifts the gripper further by 4 cm to indicate the end of the

trial; otherwise, it resets the gripper back to the starting

position and tries again (see below for details). The values

of dslide and dlift are tuned and fixed ahead of time by a

human operator, while dvert is determined by the policy, as

explained below.

The grasping policy uses the output of the grasp classifier

(Sec. IV-B) to determine the vertical distance that the gripper

lowers before grasping, dvert. For a target number of layers

k to grasp, the robot begins at some height with the grippers

open, moves towards the cloth stack, and attempts a grasp.

If the grasp classifier determines that it has not grasped the

correct number of layers, then the robot releases, moves back,

and adjusts the gripper height (dvert). If the classifier predicts

that it has grasped too many layers, dvert is decremented by

a small value to decrease the grasp height; if it has grasped

too few, dvert is incremented by a small value. The policy

continues until either the classifier determines that it has

grasped the desired number of layers and ends the trial, or

until the maximum number of grasp attempts is reached.

During each grasp attempt on the physical system, the

classifier starts predicting the class once the gripper closes,

and stops predicting after the robot lifts by dvert. This results

in a set of about 160 separate predictions. We use the mode

of all the predictions as the final prediction to determine



Fig. 4: The proposed grasp policy parameterization (described in Sec. IV-C), visualized with a frame-by-frame overview of an example
trial from the experiments. Each row, consisting of four frames, shows one action. The first part of an action (shown in frames 1 and 5)
adjusts the initial gripper height by dvert, possibly from prior tactile feedback. The second part of an action (shown in frames 2 and 6)
moves towards the cloth stack by some distance dslide. Then, the third part (frames 3 and 7) lifts upwards by dlift and closes the grippers.
At this point, the robot queries the classifier and may decide to release and re-attempt the grasp (frames 4 and 5) or the robot concludes
that it has grasped the correct number of layers and further lifts the cloth to end the trial (frame 8).

whether to raise or lower the grasp height.

V. PHYSICAL EXPERIMENTS

We evaluate the methods using the physical system de-

scribed in Sec. IV-A. The experiments are designed to answer

the following questions:

• Can magnetometer-based tactile sensing with ReSkin

sensors provide sufficient information about grasping a

target number of cloth layers?

• What are the benefits of the proposed method that uses

tactile-based feedback to adjust the gripper height?

• Can a classifier trained on tactile feedback generalize

to different cloths?

A. Experiment Protocol

We train our tactile classifier on a gray cloth; we then

evaluate our system on the gray training cloth and on two

other unseen cloths to measure the generalization of our

method to new cloths (see Fig. 6). We use the same training

data from the gray cloth for all of the tactile-based method

variations described in Sec. V-B. The tactile data collection

results in a total of 18,838 such B
(t) readings. We train a

classifier on 95 % of the training episodes (to allow for a

small validation set). We normalize the tactile data so that

each of the 15 features has mean 0 and variance 1 in the

training set.

We perform two sets of experiments, in which we set

the desired number of cloth layers to grasp as one layer

and two layers, respectively. Each trial begins with a human

arranging folded cloths on the workspace with edges exposed

and facing the robot gripper. The number of folded cloths is

the same across trials, but variations in the depth of the layers

up to 1.5 mm can occur due to slight differences in the initial

cloth configuration. We initialize the robot’s gripper at an

angle (30°) which increases the likelihood that a horizontal

motion can slide the robot finger tips in between layers of

cloth.

Each experiment set consists of comparing several grasp-

ing methods (see Sec. V-B). When running experiments, we

randomly sample the method to run in the given trial after the

cloths have been set, to reduce potential human bias in the

data initialization. The robot employs the selected method

to grasp the appropriate number of cloth layers. The robot

is allowed up to T = 10 actions per trial, though it can

terminate earlier if the classifier estimates that it has grasped

the appropriate number of layers. Upon termination, the robot

lifts the gripper by 4 cm and a human measures this as a

success if the correct number of layers are still grasped. All

other cases result in the trial as a failure.

We categorize failures into two types, prediction and

grasping failures. Prediction failures are a result of mis-

predictions by the trained classifier, where it either: (1)

incorrectly predicts that the robot has grasped the desired

number of layers and terminates the trial prematurely, or (2)

the classifier incorrectly predicts that the robot has grasped

the wrong number of layers, causing unnecessary regrasps

and leading to the robot reaching the max number of attempts

for the trial. Grasping failures are due to either failing to

grasp the desired number of layers at the last time step in

a trial, or failing to robustly grasp the cloth, such that cloth

layers slip out of the robot’s control when lifting (see Fig. 5).

B. Methods and Baselines

We evaluate the following methods for grasping 1 and 2

cloth layers:

1) Fixed-Open-Loop: Initialize the gripper at a fixed

height, manually tuned for grasping 1 or 2 cloth layers:



Fig. 5: An example grasping failure case of the task. Due to an
insufficiently robust grasp when lifting (left), the layers may slip
out of the robot’s control during the lifting portion (right).

Fig. 6: The cloths we use for experiments. We use the gray towel
(left) for training, and test on all 3 cloths for evaluation. The white
towel and patterned cloth test generalizing to novel cloths. The
cloths have thicknesses between 3-5 mm and variation in surface
texture and stiffness.

d
(1)
vert and d

(2)
vert respectively. This method terminates

after a single trial as it has no access to feedback.

2) Random-Tactile: Randomly try different gripper

heights within the range
[

d
(2)
vert − 2 mm, d

(1)
vert + 2 mm

]

until the tactile classifier determines that the correct

number of layers have been grasped.

3) Random-Image: Same as Random-Tactile, but uses

an image classifier (instead of a tactile classifier) to

determine when the correct number of layers has

been grasped. The image classifier is an 18-layer

ResNet [16] pre-trained on ImageNet and finetuned

on the images (see Figure 3) from the same training

episodes used to train the tactile classifier.

4) Feedback-Image: Same as Feedback-Tactile (our

method, below) except with the image classifier.

5) (Ours) Feedback-Tactile: Initialize the gripper height

to d
(1)
vert + 2 mm; use the grasp policy described in

Sec. IV-C to adjust the height per grasp (±2 mm) based

on the tactile classifier predictions.

VI. RESULTS

We first present results from training a classifier on ReSkin

data followed by physical experiment results in which we run

10 trials for each method and condition.

A. The Tactile Classifier

To better understand the kNN performance, we perform

100 folds of cross-validation and average the validation

performance. Each entire training episode is assigned to

either the training or validation set.

Table I demonstrates the average normalized confusion

matrix obtained from these 100 cross-validation runs, and

Class \ Prediction 0 1 2 3

0 (0 Layers) 1.000 0.000 0.000 0.000
1 (1 Layer) 0.000 0.999 0.000 0.001
2 (2 Layers) 0.030 0.003 0.866 0.100
3 (3 Layers) 0.128 0.256 0.138 0.478

TABLE I: The average normalized confusion matrix from the cross-
validation training results for the k-nearest neighbor classifier we
use for tactile-based experiments.

also reports the average per-class accuracy. We also com-

puted the average balanced accuracy metric [49] to consider

the data imbalance and obtain 0.84± 0.06. Inspecting the

confusion matrix, we find that the tactile classifier can

classify classes 0 (i.e., pinching with no cloth between the

fingers) and 1 (i.e., pinching 1 cloth layer) with extremely

high effectiveness. Results for classes 2 and 3 suggest that

identifying 2 and 3 cloth layers is more challenging.

B. Grasping 1 Cloth Layer

In the first set of physical experiments, we report the

success and failures of methods on grasping and lifting the

top layer of cloth from a stack. See Table II for results. Our

method, Feedback-Tactile, succeeds at grasping one layer of

cloth in all 10 trials, whereas all competing ablations have

lower success rates. Methods with the tactile classifier out-

perform those using the image classifier, with most failures

attributed to mis-prediction rather than poor grasping.

The fixed-height open loop method (Fixed-Open-Loop)

poorly handles variations in the initial cloth configuration.

There can be up to 1.5 mm variation in the height of the

cloth stack based on how they are placed at the start of the

trial, which can lead to failures in the open loop grasping

method. Both random grasping approaches, Random-Image

(5/10) and Random-Tactile (6/10) have lower success rates

compared to using feedback-based height adjustment with

Feedback-Image (8/10) and Feedback-Tactile (10/10).

For testing generalization, Feedback-Tactile significantly

outperforms Feedback-Image on the white towel and pat-

terned cloth. Feedback-Tactile obtains 8/10 and 7/10 success

rates for the white towel and patterned cloth, respectively,

while Feedback-Image only succeeds in 3/10 and 2/10 trials.

We have analyzed the failure types of each method in

Table II. Grasping failures are rare for most methods on 1-

layer grasping; grasping failures can occur if the robot does

not robustly grip the cloth, and cloth slips out of the grasp

when the robot lifts it (see Fig. 5). Our method (Feedback-

Tactile), also has few prediction failures when generalizing

to unseen cloths compared to Feedback-Image.

C. Grasping 2 Cloth Layers

In the next set of experiments, we evaluate grasping and

lifting the top two layers of cloth. The results in Table III

suggest that the methods achieve success rates similar to 1-

layer grasping (Table II) for the gray towel, but performance

is lower on the unseen cloths. While Feedback-Image per-

forms slightly better than Feedback-Tactile on the gray towel,

Feedback-Tactile performs slightly better on unseen cloths.



Cloth Type Method
Success Prediction Grasp

Attempts ↓
Rate ↑ Failure Failure

Gray Towel (Train)

Fixed-Open-Loop 6/10 - 4/10 1 (fixed)
Random-Image 5/10 5/10 0/10 1.8±0.7
Random-Tactile 6/10 3/10 1/10 4.8±2.8
Feedback-Image 8/10 2/10 0/10 2.3±0.8
Feedback-Tactile 10/10 0/10 0/10 3.1±1.0

White Towel (Generalization)
Feedback-Image 3/10 5/10 2/10 1.6±0.5
Feedback-Tactile 8/10 0/10 2/10 2.3±0.8

Patterned Cloth (Generalization)
Feedback-Image 2/10 8/10 0/10 5.1±4.3
Feedback-Tactile 7/10 2/10 1/10 4.6±3.2

TABLE II: Results for the first set of physical experiments described in Sec. VI-B with grasping at 1 cloth layer. We run all methods for
10 trials each and report the success rate, the failure types (grasping and prediction), and the average number of grasp attempts per trial.

Cloth Type Method
Success Prediction Grasp

Attempts ↓
Rate ↑ Failure Failure

Gray Towel (Train)

Fixed-Open-Loop 7/10 - 3/10 1 (fixed)
Random-Image 6/10 1/10 3/10 5.3±3.0
Random-Tactile 4/10 4/10 2/10 6.0±3.0
Feedback-Image 9/10 0/10 1/10 4.7±0.9
Feedback-Tactile 7/10 1/10 2/10 6.4±2.6

White Towel (Generalization)
Feedback-Image 0/10 8/10 2/10 9.2±1.8
Feedback-Tactile 4/10 2/10 4/10 5.0±3.4

Patterned Cloth (Generalization)
Feedback-Image 0/10 10/10 0/10 10.0±0.0
Feedback-Tactile 1/10 3/10 6/10 6.4±3.6

TABLE III: Experimental results for grasping at the top 2 cloth layers as described in Sec. VI-C. Besides the change of 1 to 2 layers, the
results are formatted in the same way as in Table II.

Fig. 7: A qualitative example of how the task is challenging,
particularly with grasping two layers. Because of the horizontal
motion of the gripper, layers of cloth can be pushed apart (left),
creating air pockets between the top and second layer after the
action has finished (right). This gap makes it easier to grasp the
top layer but harder to grasp the top two layers, due to a smaller
gap between the second and third layers (see overlaid yellow circle).

Table III shows that both prediction and grasping failures

lead to errors for our method (Feedback-Tactile), though

grasping failures are more common (accounting for 2/3 of

our total failures). The higher incidence of grasp failures by

our method in this experiment suggests that 2-layer grasping

is more difficult than 1-layer grasping. Fig. 7 highlights some

challenges with grasping two layers; for example, we observe

that failures tend to occur due to crumpling the fabric when

attempting to grasp 2 layers. Furthermore, the top layer of

cloth can push downwards on the layer below it, which

reduces the gap between the second and third layers; this

reduced gap can make it difficult to grasp 2 layers. These

observations and results suggest that further innovation on

grasp policies may be necessary to improve 2-layer grasp

performance on unseen cloths.

VII. CONCLUSION

In this paper, we present a robotic system that uses

magnetometer-based tactile sensing for precisely grasping

layers of cloth. We train a classifier on tactile sensor readings

from a ReSkin sensor. At test time, the classifier determines

the number of layers of cloth grasped, which informs the

policy to adjust the height of the gripper for subsequent grasp

attempts. The system obtains strong results with grasping the

top 1 or 2 cloth layers out of a stack of cloth, and generalizes

to unseen cloth. We hope this work motivates future research

on tactile-based robotic policies that can manipulate a wide

variety of complex objects.
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APPENDIX I

RESKIN DATA DETAILS

In Section IV-B, we describe the real-world procedure

for collecting a training dataset of ReSkin sensor readings.

Each training episode lasts for about 5 seconds to complete

the approach, grasp, and release cycle. The grasp stage

lasts for 1 second, resulting in approximately 350 sensor

readings of 15 values each (3 per magnetometer). We filter

out training episodes where no cloth was grasped. Combining

all episodes into a dataset results in a total of 18,838 ReSkin

tactile sensor readings, each of which is 15-D. The readings

in the dataset are separated into training and validation sets,

grouped by episode to prevent data leakage. Thus, all time

steps in one episode are either all in training or all in

validation. We train classifiers taking individual readings as

input and found that this input outperformed our baselines on

the cloth singulation task; classification on time-series inputs

are a promising area of future work.

APPENDIX II

IMAGE CLASSIFIER DETAILS

In Section V-B, we introduce the Random-Image and

Feedback-Image baseline methods. These use images in-

stead of tactile data, but the objective is the same: to predict

the number of cloth layers grasped. When collecting tactile-

based data, we simultaneously collect image data, so the data

collection time for image data is the same as the time that

was spent on collecting the Reskin data. We mount a webcam

approximately 30 cm away from the starting position of

the ReSkin, which queries images of the robot when it is

collecting data. See Fig. 3 for examples of what the RGB

images look like.

The image classifier is an 18-layer ResNet [16]. We use an

off-the-shelf ResNet-18 from PyTorch which has been pre-

trained on ImageNet, and change the last layer to output

4 dimensions instead of 1000. This results in a total of

11,178,564 trainable parameters. The RGB input images are

first cropped to 360 × 360 such that the ReSkin sensor is

located roughly in the middle, then images are further resized

to 224× 224 before being passed as input to the ResNet.

There is about 7-8X more tactile data compared to image-

based data because the ReSkin can query data much faster

than the webcam. This may be an inherent advantage of

the ReSkin sensor over most commercial webcams. To

strengthen the image-based baseline, we use data augmenta-

tion (which the tactile classifiers do not use). In training, we

employ random crops by selecting random 224× 224 crops

within the 360× 360 image. We also use random horizontal

flips. At test time, we only use center crops for consistency.

We train for 30 epochs, use a batch size of 64, and optimize

using Adam with learning rate 0.001.
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