Renewable and Sustainable Energy Reviews 162 (2022) 112413

Contents lists available at ScienceDirect

Renewable and Sustainable Energy Reviews

.r:%jﬂ,
ELSEVIER journal homepage: www.elsevier.com/locate/rser

heck for

Recent advancements in sustainable upcycling of solid waste into porous @&
carbons for carbon dioxide capture

Xiangzhou Yuan b Junyao Wang “, Shuai Deng 4 Manu Suvarna °, Xiaonan Wang y
Wei Zhang'g,_d_Sara Triana Hamilton b Ammar Alahmed’, Aqil Jamal’, Ah-Hyung Alissa Park ",
Xiaotao Bi” , Yong Sik Ok ™

@ Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University,
Seoul, 02841, Republic of Korea

Y R&D Centre, Sun Brand Industrial Inc, Jeollanam-do, 57248, Republic of Korea

€ School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China

d Key Laboratory of Efficient Utilization of Low and Medium Grade Energy (Tianjin University), Ministry of Education of China, Tianjin, 300350, China

€ Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore

f Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China

8 Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education,
Guangzhou University, Guangzhou, 510006, China

1 Department of Earth and Environmental Engineering and Department of Chemical Engineering, And the Lenfest Center for Sustainable Energy, The Earth Institute,
Columbia University, New York, NY, 10027, USA

i Research and Development Center, Saudi Aramco, Dhahran, 31311, Saudi Arabia

J Department of Chemical and Biological Engineering and Clean Energy Research Centre, The University of British Columbia, 2360 East Mall, Vancouver, British
Columbia, V6T 1Z3, Canada

ARTICLE INFO ABSTRACT
Keywords: Carbon capture technologies have been extensively investigated as indispensable tools for reducing CO, emis-
Life-cycle assessment sions. In particular, COy capture using solid waste-derived porous carbons (SWDPCs) has attracted significant

Machine learning

- research attention as one of the most promising and sustainable approaches to simultaneously mitigate climate
Sustainable development goal

change and address solid waste management challenges. Considerable research has recently been conducted on
Low carbon technology . . .. .
Carbon neutral the thermal and chemical treatments of solid waste for upcycling into porous carbons (PCs) for effective and
Circular economy selective CO; capture. In this review, we discuss the synergistic benefits of employing SWDPCs for CO, capture
and introduce innovative approaches for converting solid waste into PCs with the desired physical and chemical
properties. The performance of SWDPCs for CO; capture is comprehensively discussed in terms of the synthesis
route, COy capture capacity, process cyclability, and sample optimization guided by machine learning.
Furthermore, the mechanisms of CO, capture on PCs are discussed based on pore structures and incorporated
surface functional groups. The life-cycle environmental impact of the PCs synthesized from solid waste and their
practical applications for CO5 capture are also evaluated. The overall environmental benefits of the proposed
SWDPC-based CO; capture approach are analyzed in relation to the United Nations Sustainable Development

Abbreviations: BET, Brunauer-Emmett-Teller; CCUS, CO, capture, utilization, and sequestration; CED, cumulative energy demand; COF, covalent organic
framework; COVID-19, coronavirus disease 2019; DL, deep learning; DNN, deep neural network; ESA, electricity swing adsorption; FU, functional unit; GBDT,
gradient boosting decision trees; GCMC, grand canonical Monte Carlo; GWP, global warming potential; HTC, hydrothermal carbonization; IAST, ideal adsorbed
solution theory; IL, ionic liquid; IPCC, Intergovernmental Panel on Climate Change; LCA, life-cycle assessment; LGB, light gradient boost; MDA, mean decrease in
accuracy; ML, machine learning; MOF, metal-organic framework; MSW, municipal solid waste; NETL, National Energy Technology Laboratory; NOHM, nanoparticle
organic hybrid material; PC, porous carbon; PET, polyethylene terephthalate; PSA, pressure swing adsorption; SEPAC, specific energy penalty of avoided CO,;
SWDPCs, solid waste-derived porous carbons; TGA, thermogravimetric analysis; TMP, thermodynamic molecular pump; TSA, temperature swing adsorption; UN
SDG, United Nations Sustainable Development Goal; VSA, vacuum swing adsorption; VTCSA, vacuum/temperature/concentration swing adsorption; WMO, World
Meteorological Organization; XGB, extreme gradient boost.
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Goals. Furthermore, the remaining challenges in upcycling solid waste into high-performance CO, adsorbents are
discussed, and potential solutions are proposed.

1. Introduction
1.1. Climate change and carbon capture, utilization, and storage

Excessive greenhouse gas (such as CO5) emissions, one of the most
intractable environmental issues, have attracted the attention of both
academia and industry. The ever-increasing atmospheric CO5 concen-
tration has exceeded 410 ppm [1], which is directly associated with
fossil fuel combustion, and is considered to be the primary anthropo-
genic climate change driver [1-4]. With fossil fuels being the main en-
ergy source worldwide, atmospheric COy concentration is predicted to
continue increasing, potentially reaching a dangerous level of 550 ppm
by 2050 [4,5]. In the absence of effective control, a typical 500 MW
coal-fired power plant annually emits approximately 3 million tonnes of
CO; into the atmosphere [5]. Moreover, the World Meteorological Or-
ganization (WMO) reported that the socioeconomic impacts of climate
change are accelerating, and the physical manifestations of climate
change are becoming more evident as unprecedented greenhouse gas
concentrations drive global temperatures toward increasingly
dangerous levels [6]. The Intergovernmental Panel on Climate Change
(IPCC) has also reported the expected adverse impacts of a global tem-
perature rise of 1.5 °C above pre-industrial levels [7], calling for more
effective and efficient actions to prevent the threats arising from climate
change due to anthropogenic activities. Moreover, in March 2021, the
United Nations reported that human beings are running out of time to
deliver the Paris Agreement and 2030 Agenda for Sustainable Devel-
opment [8]. Therefore, CO, capture, utilization, and sequestration
(CCUS) has been recognized as an indispensable approach in reducing
CO emissions from large point sources into the atmosphere. In addition
to the paradigm shift to a renewable-energy-driven carbon-neutral so-
ciety, the rapid deployment of CCUS is urgently needed to meet carbon
neutrality targets. With the current coronavirus disease 2019
(COVID-19) pandemic, the world is experiencing unusual CO, emission
trends [9], and post-pandemic industrial and economic recovery may
significantly impact global greenhouse gas emissions. Considering that
the quantity of CO, removed to carbon neutrality far exceeds that of
current CCUS technologies, the large-scale implementation of CCUS
technologies should be considered as an effective approach to avoid the
unpredictable consequences of climate change.

Pre-combustion, post-combustion, and oxy-fuel combustion are the
three main routes to capture CO; from large point emission sources, with
post-combustion capture being the most promising and cost-effective
route to date [10]. However, owing to the relatively low CO2 concen-
tration in post-combustion flue gases (e.g., 8-15%), the main challenge
in this process is to develop a green and cost-effective COy capture
method. For post-combustion CO, capture, well-commercialized ab-
sorption processes (e.g., the regenerative amine process) are still
considered expensive and pose issues, including solvent loss, critical
corrosion, and environmental toxicity [11,12]. Although research is
ongoing to address the challenges associated with amine-based solvents,
attempts have also been made to develop novel solvents, including
water-less and water-lean solvents, such as ionic liquids (ILs) and
nanoparticle organic hybrid materials (NOHMs) [13-16]. In addition to
solvent-based technologies, the development of low-cost membranes
with high CO, permeability to capture CO; from flue gas is in progress.
However, these technologies are unavailable for affordable commercial
application.

CO3 adsorption by solid adsorbents is also considered a promising
carbon capture method because of its advantages of cost-effectiveness,
well-developed pore structure, low energy requirement for regenera-
tion (regeneration can be accomplished even by low-grade renewable

solar thermal energy), and excellent cyclic stability [2,3,5,17-20]. In
particular, solid waste-derived porous carbons (SWDPCs) are considered
promising candidates for post-combustion CO; capture, and the upcy-
cling of solid waste into value-added porous carbons (PCs) with
high-performance CO5 capture can significantly reduce the investment
in carbon precursors for CO, adsorbents. Furthermore, such an approach
could mitigate climate change caused by CO2 emissions and environ-
mental pollution resulting from inappropriate solid waste management.

1.2. Upcycling carbonaceous solid waste into CO»-capture materials

An estimated 2.01 billion tonnes of solid waste is generated annually,
which is expected to increase to 3.40 billion tonnes by 2050. Further-
more, the COz-equivalent greenhouse gas emissions generated by solid
waste are expected to increase to 2.60 billion tonnes by 2050 [21]. The
predominant sources of solid waste include construction and demoli-
tion, commercial and industrial waste, and municipal solid waste (MSW)
[22]. An assessment of the global waste composition in 2018 revealed
that the three largest waste categories were food and green waste (44%),
paper and cardboard (17%), and plastic waste (12%) [21]. Such solid
waste materials are carbon-rich resources and can be used as potential
carbon precursors for carbon-based CO; adsorbents. Therefore,
numerous researchers have valorized solid waste into PCs to mitigate
CO2 emissions, which is beneficial for achieving sustainable waste
management guided by the concept of circular economy [23].

Herein, the application of major solid waste sources, such as food
waste, plastic waste, MSW, forestry and agricultural waste, sewage
sludge, animal waste, and industrial waste, in the development of CO4
adsorbents is comprehensively discussed. Environmental pollution
caused by plastic waste, such as micro- and nano-plastics, has recently
attracted increasing attention [24-30], and all findings suggest that
significant efforts should be dedicated to prevent this problem from
escalating further [31]. This ubiquitous plastic pollution, particularly
exacerbated by COVID-19 [32], has been labeled as an important driver
of global environmental change owing to the very high levels of energy
and resources utilized to synthesize plastic polymers, inevitable
biogeochemical cycling of used plastic products, and subsequent direct
and indirect impacts of micro- and nano-plastics on ecosystems [25].
Considering the plastic cycle proposed by Bank et al. [25] and the major
types of particulate plastics (cosmetic microbeads and fragments derived
from the breakdown of large plastic debris) in most ecosystems [33],
upcycling plastic waste into PCs could be an effective and sustainable
method for preventing the generation of microplastics from plastic
debris. Therefore, the upcycling of solid plastic waste into CO, adsor-
bents is highlighted in this review with the aim of understanding and
designing solid waste-derived CO5 adsorbents and sustainable waste
management by researchers in relevant fields, thereby promoting the
development of solid waste-based technologies for practical
applications.

1.3. Challenges and opportunities

As presented in Table 1, in 2012, Olivares-Marin and Maroto-Valer
[2] published the first review on the synthesis and use of CO, adsorbents
derived from waste precursors, such as coal byproducts (fly ash, bottom
ash, and unburned carbon in fly ash), biomass products (agricultural
residues), water treatment byproducts (sludge cake), and household
residues (packaging waste). Since then, this topic has attracted
increasing attention. Wang et al. reviewed solid COy adsorbents based
on their working temperatures (i.e., low temperature [< 200 °C], in-
termediate temperature [200-400 °C], and high temperature [>
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400 °C]) in 2014 [3]; in 2019, they reviewed solid waste-derived CO5
adsorbents (i.e., carbon-based, silica-based, silicate-based, calcium--
based) [18]. In 2020, Dissanayake et al. [34] summarized and evaluated
the potential of using pristine and engineered biochar as COz capture
media, factors influencing the CO5 adsorption capacity of biochar, and
issues related to the synthesis of biochar-based CO2 adsorbents. Further
studies are recommended to develop cost-effective and sustainable
biochar-based composites for large-scale CO, capture. As summarized in
Table 1, previous reviews have primarily focused on biomass and in-
dustrial waste-derived CO, adsorbents prepared by carbon-
ization/activation and related surface modifications, which were only
evaluated from the perspective of CO; adsorption performance (i.e., CO2
uptake, cyclic stability, selectivity, and adsorbent regeneration).

Solid waste is considered to provide a versatile and efficient platform
for the synthesis of PCs. This has led to a considerable shift in research
interest toward different potential applications of solid waste, including
CO; capture. Fig. 1 shows a scientometric visualization of the top 300
keywords of 2187 peer-reviewed publications within the database of
“Web of Science Core Collection,” using “CO5 capture” and “waste” as
the search keywords (topic). The results from such studies imply that a)
adsorption has been widely considered a promising route for CO; cap-
ture, and b) compared to zeolite-, cellulose-, and CaO-based sorbents,
solid waste-derived activated carbons/PCs have been extensively
applied for synthesizing CO2 adsorbents in the last few years. As shown
in Fig. 2a, a solid waste-based CO, capture route has been commonly
developed, including the synthesis of PC and CO2 adsorption from the
perspectives of both isotherms and kinetics, suggesting that it is time-
consuming without considering the sustainability of the entire process.
Moreover, current data-driven approaches such as machine learning
(ML) have been applied to guide and optimize the synthesis of high-
performance SWDPCs for CO; capture [42]. The environmental impact
and feasibility of SWDPC-based CO, capture processes are still unclear
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with regard to industrial applications and should be comprehensively
evaluated to clarify whether these processes are closed carbon loops and
beneficial for achieving carbon neutrality. Therefore, it is necessary to
provide a timely and comprehensive review of SWDPCs for CO; capture,
including the advanced synthesis of high-quality PCs from solid waste,
detailed SWDPC-based CO; capture performance evaluations and po-
tential adsorption mechanisms, ML-guided optimization of SWDPCs for
COy capture, systematic environmental impact assessment from a
life-cycle perspective, and concluding remarks and future perspectives
(Fig. 2b). This review sheds light on the design and optimization of solid
waste-based adsorbents and ultimately promotes their large-scale
deployment for CO2 capture, which may be beneficial to researchers
and policymakers working in the areas of sustainable waste manage-
ment, climate change mitigation, and carbon circular economy. To
achieve the United Nations Sustainable Development Goals (UN SDGs)
by 2030, solid waste management and climate change mitigation should
be performed in a sustainable manner based on the takeaways from this
comprehensive review.

2. Technological advancements in upcycling solid waste into
porous carbons

The conversion of solid waste to PCs with excellent CO5 adsorption
performance has recently been investigated, with a focus on optimizing
the textural properties and increasing the CO2 selectivity via activation
and surface modification, respectively (Fig. 2b).

2.1. Production of biochars and hydrochars from carbonaceous solid
waste

Thermochemical conversion methods, including pyrolysis, hydro-

thermal carbonization (HTC), gasification, and ionothermal
Table 1
Overview of solid waste-derived CO, adsorbents in previous reviews.
Major solid carbon waste Porous carbon synthesis Performance evaluation System Environmental
optimization impact
Biomass Plastic Industrial Carbonization Surface CO,, adsorption Cyclic Al (i.e., ML, Life-cycle
waste waste waste and activation modifications performance” performance” DL)" assessment
Olivares-Marin and v v v 4 4
Maroto-Valer
(2012) [2]
Kaithwas et al. v v 4 4
(2012) [35]
Wang et al. (2014) v v v v
[3]
Lee et al. (2015) [36] v v v v
Rashidi et al. (2016) v v v v
[371
Creamer etal. (2016) v v v
[19]
Zhao et al. (2018) v v 4 v v
[38]
Singh et al. (2019) v v v v
[39]
Wang et al. (2019) v v v v v
[18]
Dissanayake et al. v v v
(2020) [34]
Ochedi et al. (2020) v v v v
[17]
Zhou et al. (2020) v v v
[40]
Li et al. (2021) [41] v 4 v v v
This review v v v v v v v v v

@ CO, adsorption performance was evaluated with respect to CO, uptake, cyclic stability, selectivity, and adsorbent regeneration.

b Cyclic performance was evaluated via temperature swing adsorption (TSA), pressure swing adsorption (PSA), electricity swing adsorption (ESA), and temperature/
vacuum swing adsorption (TVSA) using key indicators (purity, recovery, productivity, and working capacity).

¢ AL, ML, and DL represent artificial intelligence, machine learning, and deep learning, respectively.
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Fig. 1. Scientometric visualization of the top 300 keywords of all peer-reviewed publications released from 1995. A total of 2187 publications were retrieved from
the Web of Science with “CO, capture” and “waste” as the search keywords (topic). The “Web of Science Core Collection” was the selected database. Collected data
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occurrence of each keyword.

carbonization, can be used to convert solid waste into PCs, followed by
physical or chemical activation [43-45]. Pyrolysis and HTC are
considered the most promising methods for solid waste valorization [46,
47]; they are environment-friendly and cost-effective [19,43,44], and
hence, they have attracted the interest of many researchers. Biochar and
hydrochar are typically generated via pyrolysis and HTC, respectively,
and PC is upgraded from biochar/hydrochar via physical and/or
chemical activation. Additional details are presented in Table 2. Pyrol-
ysis is an important method for the reduction and valorization of solid
waste into value-added products, such as biochar, bio-oil, and
bio-syngas, over a wide temperature range (e.g., 300-900 °C).

Depending on the heating rate, residence time, and heating type,
pyrolysis can be classified into slow, fast, flash, and microwave-assisted
processes [48-52]. Pyrolysis presents two major advantages: a) it can be
optimized for the desired products; specifically, slow pyrolysis (heating
rate < 50 °C min~') increases the biochar yield, whereas fast pyrolysis is
more suitable for producing bio-oils; and b) it is flexible as it can be used
for different feedstock types and is operational under a wide range of
conditions [48]. HTC is considered a promising alternative route to dry
thermochemical processes (e.g., pyrolysis and gasification) because it
does not require drying pretreatment, is cost-effective, and requires mild
operating conditions (180-265 °C) [53]. Owing to the different reaction
media used in pyrolysis and HTC, the physical and chemical properties
of biochar and hydrochar are significantly different [54,55].

2.2. Surface activation of chars to prepare porous carbon with optimal
porosity

Because biochar and hydrochar are associated with poor textural

properties (low surface area, undeveloped pore structure, and unspeci-
fied functional groups; see Table 2), their performance in specific ap-
plications is limited. Therefore, both physical and chemical activations,
as well as surface modification of biochar and hydrochar to further
improve their physical and chemical properties and expand their
application areas, have attracted increasing attention [56-59]. SWDPCs
obtained after activation and/or surface modification are considered
cost-effective and environment-friendly carbon materials with high
porosity and effective functional groups, which are beneficial to CO,
adsorption [39,57,60,61].

Physical and chemical activations at high temperatures are consid-
ered as effective and efficient approaches for producing PCs with high
porosity. Steam, COj, air, or mixtures of these are widely used as
physical activation agents [57,62]. COy is the most commonly used
activation agent and is based on theoretical thermodynamic calculations
of the Boudouard reaction (Eq. (1)); the operating temperature exceeds
700 °C. Fang et al. [63] reported that the surface area and pore volume
of biochar increase with increasing operating temperature and activa-
tion time. Physical activation is relatively green but commonly operates
in the high-temperature range of 500-900 °C, particularly when steam is
combined with a purging gas, and the corresponding PC yield is low,
which causes the number of O-containing functional groups on the
surface of PCs to decrease [64]. The chemical reactions that occur
during CO; or steam activation can be described by Egs. (1)-(3) [43],
indicating that physical activation occurs at high temperatures. In
addition, the surface area of some PCs can be smaller than 1000 m? g
and the PC material yield can be lower than 30% after physical
activation.

C+ CO, - 2C0O, AH = 159 kJ mol™" (€D
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C + H,0— CO + H,, AH = 117 kJ mol™" 2
CO+H,0— CO, + H,, AH = 41 kJ mol™" 3

where AH is the enthalpy of reaction.

H3PO4, KOH, NaOH, K5COs, and ZnCl, are the typical chemical
activation agents. Owing to its low operating temperature and short
duration, chemical activation involves lower energy consumption and
produces a higher yield of PCs with well-developed pore structures than
physical activation [65-67]. KOH is considered the most promising and
effective chemical activation agent for developing ultra- and micro-pore
structures. The detailed mechanism for increasing the porosity via KOH
activation is as follows [43,66].

2KOH + CO, — K,COs + H,0 4

2C +2KOH—2CO + 2K + H, 5)
K,COs + C—K,0 +2CO (6)
K>0+C —2K + CO @

Sun et al. [68] reported that the specific surface area and total pore
volume of sunflower-derived PC activated by KOH are 3072 m? g ! and
1.77 em® g7}, respectively. Wei et al. [69] reported that the specific
surface area and total pore volume of a water chestnut-based PC acti-
vated by KOH were 3401 m? g~! and 2.50 cm® g™}, respectively. These
results suggest that chemical activation plays a significant role in the
synthesis of high-quality PCs. The porosity of the synthesized PCs de-
pends not only on the activation routes and operating conditions but also
on the properties of solid waste used. Chemical activation has been
widely recommended for preparing high-quality PCs owing to its short



X. Yuan et al.

Table 2
Solid waste-derived products from various preparation methods.

Solid waste Biochar/ Porous carbon
hydrochar
Carbon content 15-80 40-90 80-95
(%)
Preparation Drying Pyrolysis or Pyrolysis or
method pretreatment hydrothermal hydrothermal process
process followed by physical or
chemical activation
Effective few few numerous
functional
groups
Surface area n.a. < 800 > 1000
(m? g™
Total pore n.a. <0.3 >0.5
volume (cm®
g

reaction time and low operating temperature. However, equipment
corrosion and wastewater treatment should be carefully considered
because of the use of chemical agents.

2.3. Functionalization of porous carbon for CO2 capture

Surface modification has been widely considered as one of the most
effective and promising routes to enhance the CO, capture capacity and
selectivity over other gases (i.e., Ny co-existing in flue gas) because
effective surface functional groups can provide more active sites for the
adsorption of CO5 molecules [42,39,45]. Heteroatom doping (e.g., with
nitrogen, oxygen, and sulfur) and metal doping (e.g., with metal oxides,
metal hydroxides, and metal oxyhydroxides) are widely used for surface
modification to create more basic and/or active sites on the surfaces of
the synthesized PCs.

2.3.1. N-doping treatment

Among the functional groups mentioned, nitrogen (N) is the most
promising and widely used for synthesizing CO2 adsorbents. Ammonia,
zinc nitrate, sodium amide, urea, and melamine are commonly used to
increase the N content of PCs. Ammonia, a common nitrogen source, has
been extensively explored in recent decades for preparing nitrogen-
containing PCs via thermal treatment (commonly called amination) to
improve the adsorption performances [70-72]. During amination, NH3
serves as both the activating agent and N source [71,72]. Specifically,
ammonia decomposes at high temperatures to form radicals such as
NH,, NH, and H, which may react with the surface carbon to form
functional groups such as -NH,-, —-CN, pyridinic, pyrrolic, and quater-
nary nitrogen [73,74]. Liu et al. [60] performed a single-step sodium
amide (NaNH) activation process to improve the N functional groups in
hazelnut shell-derived CO, adsorbents. In this single-step process,
NaNHj; acted as both an activator and nitridation, circumventing tedious
and time-consuming processes for preparing N-doped PCs, making this
kind of CO; adsorbent more cost-effective. Pyrrolic N, which has been
verified as the most favorable N species for CO5 adsorption, is the most
functional N group compared to pyridinic N and quaternary nitrogen.
Yuan et al. [66] investigated N-doping treatment using urea as the N
source through one-pot synthesis; KOH and urea were used as the acti-
vator and nitridation source, respectively, to prepare high-quality CO2
adsorbents at an activation temperature of 700 °C. The oxygen (O)
content was increased during this one-pot synthesis, such as carbonyl
oxygen atoms in esters and oxygen atoms in hydroxyls or ethers, which
offer Lewis basic sites that are beneficial for CO5 binding. Moreover, O
atoms typically combine with C atoms to form acidic or basic functional
groups on the surface. Notably, the decomposition of O-containing
acidic functional groups can occur at a temperature of 800 °C [75].
Nitric acid (HNOg), sulfuric acid (HSO4), and hydrogen peroxide
(H203) are widely used to generate O-rich functional groups on the
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surface of PCs [39].

2.3.2. Dual-doping treatment

In addition to single-doping treatment, dual-doping treatment has
also been investigated to enrich surface functional groups. Nazir et al.
[76] used thiourea as the N and S co-provider to prepare N and S
co-doped PC from corn starch waste (Fig. 3a), reaching 4.6 at% of N and
2.3 at% S in the produced PC. Rehman et al. [77] used urea and thiourea
to synthesize cellulose-based PCs (Fig. 3b) with varying contents of O
(4.8-17.1 at%), N (3.2-10.1 at%), and S (1.9-3.6 at%) under different
operating conditions. Moreover, several typical SWDPCs demonstrate
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Fig. 3. a) Schematic of the step-by-step synthesis of undoped/N, S co-doped
potassium salt-activated starch-derived microporous carbons (Reproduced
with permission from Ref. [76]), b) synthetic protocol for N, S-doped micro-
porous carbons for efficient CO, capture (Reproduced with permission from
Ref. [77]), and c¢) schematic of the synthesis of mesoporous carbon stabilized
magnesium oxide (MgO) nanoparticles (NPs) for CO, capture (Reproduced with
permission from Ref. [84]).
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high functional groups owing to their natural element availability; for
example: 2.86 wt% N in shrimp shell-derived PC [78], 4.16 wt% N in
pueraria-derived PC [79], 7.90 wt% N in celery-derived PC [80], 4.62 wt
% N and 2.56 wt% S in willow catkin-derived PC [81], 4.94 wt% N and
1.12 wt% S in human hair-derived PC [82], and 1.5 wt% N, 0.5 wt% S,
and 5.0 wt% O in ant powder-derived PC [83].

2.3.3. Metal-doping treatment

In continuing efforts to improve the CO, adsorption performance,
metal-doping treatment has been considered because metal oxides, hy-
droxides, and oxyhydroxides are generally basic and tend to bond with
acidic CO5 molecules [85]. Lahijani et al. [85] reported that the incor-
poration of basic metal sites into walnut shell-based PCs effectively
enhances CO3 capture in the following order: Mg > Al > Fe > Ni > Ca >
raw biochar > Na. The Mg-loaded sorbent was prepared using magne-
sium nitrate hexahydrate (Mg(NO3)2-6H20), which underwent endo-
thermic dehydration to anhydrous Mg(NOs3), at approximately
110-190 °C. Anhydrous Mg(NO3); decomposes to magnesium oxide
(MgO) at temperatures above 400 °C. The formation of basic MgO sites
favors the adsorption of CO5 via interactions with the basic 02~ ions of
the OZ'Mg2+ bonds, which facilitates the formation of carbonates [86,
84]. Liu et al. [84] applied seawater, which is naturally abundant, in
MgCl, (~0.45%) to synthesize the Mg-doped PCs (Fig. 3c) from sawdust
with Mg loading contents of 19.4-21.1 wt%.

Thermochemical treatments, described in Sections 2.1, 2.2, and 2.3,
can lead to secondary pollution; for example, heavy metal pollution
occurs when ZnCl, and Zn(NOs)2 are used as chemical activation and
surface modification agents, respectively, because washing with 10%
HCl and/or distilled water is unavoidable after treatment with these
compounds. Moreover, CO, emissions are inevitable from these ther-
mochemical processes, implying that increasing attention should be
paid to fully assess the life-cycle environmental impact of PC synthesis
from solid waste.

2.4. CO3 capture mechanisms of porous carbons

CO, adsorption on SWDPCs can occur via physical or chemical
routes; however, the mechanism of CO; capture is largely dependent on
the textural properties and surface chemistry [42,87]. The heat of
adsorption (Qs) has been widely considered as a key indicator for dis-
tinguishing physisorption- or chemisorption-dominated CO5 adsorption;
the Qs is lower than 40 kJ mol ™! for physisorption, whereas it is higher
than 40 kJ mol ! (up to 800 kJ mol™ ) for chemisorption [88]. For
regular PC (without surface modification), the results from existing
studies indicate that the main mechanism for CO5 adsorption is phys-
isorption, primarily driven by van der Waals forces, implying the critical
role of textural properties in the CO5 capture process [19]. For example,
Yuan et al. [67] and Choi et al. [89] reported that CO, adsorption on
SWDPCs at 0.15 bar and 1 bar was primarily related to the pore volumes
of narrow pores less than 0.6 nm and 0.8 nm in diameter, respectively.
This suggests that there is no linear relationship between CO» uptake
and total pore volume or between CO5 uptake and specific surface area.
Moreover, CO, molecules can be adsorbed on SWDPCs at low temper-
atures (lower than 75 °C) and high pressures and are desorbed at high
temperatures (up to 150 °C) and low pressures, suggesting a low energy
consumption for adsorbent regeneration.

In PCs modified with doping treatment (i.e., with surface activation),
CO4 adsorption could be governed by both chemisorption and phys-
isorption, owing to the existence of effective functional groups. Surface
chemistry is a critical factor in providing more active sites for CO5
capture via chemisorption through effective bonding between CO, and
the adsorbent surface (i.e., Lewis acid-base interactions). In the het-
eroatom (N, O, and S) doping treatment, the basic O functional groups of
—-OH and -COOH [67,90], N functional group of pyrrolic N [66], and S
functional groups of oxidized S [91] are considered the most effective
functional groups for improving the CO; adsorption performance. Metal
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(i.e., Mg, Fe, and Al) doping treatment could lead to the formation of
chemical carbonates, causing an increase in COy capture; here, phys-
isorption and acid-base banding interactions play relatively minor roles
in COg2 capture. For example, as presented in Fig. 3c, Liu et al. [84]
synthesized sawdust-derived PC-stabilized MgO nanoparticles
(mPC-MgO) for CO; capture using MgCl, in low concentrations from
seawater as the Mg metal source. In addition to the well-developed
porous structure and basic -OH functional groups, the formation of
MgCO3 enhanced by the MgO crystal structure in a
chemisorption-dominated manner primarily contributes to the excellent
CO, adsorption performance. Moreover, the adsorption-desorption
cycle was conducted at 80 °C to adsorb CO2 molecules and at 500 °C to
desorb CO5 molecules.

3. CO; capture performance of solid waste-derived porous
carbons

An ideal PC for CO; adsorption should exhibit excellent CO,
adsorption capacity, high selectivity, stable recyclability, fast adsorp-
tion/desorption kinetics, and facile regeneration [87] (Fig. 4). These
criteria are widely used to evaluate the CO5 adsorption performance of
PCs derived from solid waste. We summarized the suitable PCs for CO5
adsorption and their performance retrieved from our literature survey in
Table 3.

3.1. COg capture working capacity

CO, adsorption capacity can be classified into dynamic and
isothermal adsorption capacities. For SWDPCs, both CO; isothermal and
dynamic adsorption capacities have been investigated in most existing
studies. ASAP 2020, 2420, and 2460 (Micromeritics), Autosorb-iQ
(Quantachrome), and 3H-2000PS2 (Beshide) sorption analyzers have
been widely used to obtain isothermal CO, adsorption data. Thermog-
ravimetric analysis (TGA) and vertical or horizontal fixed-bed reactors
have been used to obtain dynamic CO; adsorption data. According to the
National Energy Technology Laboratory (NETL) Technical Report, an
adsorbent is applicable and practical for CO, capture when its
isothermal CO, adsorption capacity exceeds 3 mmol g~ at 25 °C and 1
bar [131]. As presented in Table 3, the CO4 adsorption capacities of most
PCs exceeded 3 mmol g ! at 25 °C and 1 bar after effective carboniza-
tion, activation, and/or surface modification. This suggests that the
valorization of solid waste into PCs for CO; capture could be a promising
approach to simultaneously solve two environmental issues: (i) global
warming caused by CO; emissions [28,29] and (ii) environmental
pollution caused by the mismanagement of solid waste [66,67,92]. Yuan
et al. [66,67,93] successfully upcycled waste polyethylene terephthalate
(PET) plastic bottles into CO5 adsorbents. The CO, adsorption capacities
of the COs-activated (PET6-CO5-9), KOH-activated (PET-KOH-973), and
both KOH and Urea-modified (PET6KNope_por) adsorbents reached 3.63
mmol g’l [93], 4.42 mmol g’1 [67], and 4.58 mmol g’1 [66], respec-
tively, at 25 °C and 1 bar. The well-developed microporous structure of
PET-KOH-973 is illustrated in Fig. 5a and Fig. 5b, which shows that
KOH activation was effective for micropore development. The CO5
adsorption isotherms of PET-KOH-973 revealed that PET-KOH-973 is a
promising candidate for CO5 capture owing to its excellent CO, capture
capacity (Fig. 5¢). The CO5 uptake of all the prepared samples exhibited
good linear relationships with the cumulative pore volumes limited by
narrow micropores smaller than 0.8 nm (Vj g; R?=0.975) (Fig. 5d). The
experimental data further indicated that Vj g played a predominant role
in CO5 uptake by waste PET-derived PCs at 25 °C and 1 bar. In addition,
the effect of pore size on CO5 uptake was analyzed using the grand ca-
nonical Monte Carlo (GCMC) simulation (Fig. 5e), and the results were
consistent with the experimental findings that a pore size of less than
0.8 nm is dominant in the CO; adsorption process, and the adsorption of
CO4 molecules increased when the pore size was approximately twice
the kinetic diameter of CO; (i.e., 3.3 A) [67].
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Fig. 4. Major criteria of the desired CO, adsorbents derived from solid waste.

Isotherms and dynamic CO5 adsorption capacities are critical in-
dicators for evaluating the CO; capture performance of the PCs. How-
ever, the applicability of CO, adsorbents in commercial cyclic processes
cannot be directly inferred based on these parameters. Moreover,
obtaining the quantity of CO, that can be sequestrated over a complete
adsorption-desorption cycle is crucial [132]. Therefore, for PCs to be
used in CO» capture units, the working capacity during a complete COy
adsorption—desorption cycle should be analyzed [132], and a detailed
swing analysis of COy capture using PC materials should be carefully
performed. In swing analysis of PC-based CO; capture, the operating
temperature and pressure are commonly considered as two key factors
that significantly affect the working capacity.

The effect of the operating temperature on the working capacity of
PCs with regard to CO; capture was studied. Zhang et al. [133] tested the
CO4 adsorption—desorption performance of PCs at ambient temperatures
with desorption at higher temperatures and determined the working
capacity of PCs for COz capture. They further investigated CO adsorp-
tion at a relatively high temperature, because flue gas is typically
emitted from power plants post-combustion at approximately 75 °C.
Mallesh et al. [134] analyzed the adsorption and desorption of CO5 on
waste Entada rheedii shell-derived PC at 70 °C and 140 °C, respectively,
and reported that the working capacity of the PC was stable (4.4 mmol
g 1. These results indicate that SWDPCs can achieve satisfactory
working capacities in different temperature ranges.

In addition to the operating temperature, the effect of the operating
pressure on the working capacity has also been addressed. The pressure
swing process is considered to be time-saving and plays a major role in
evaluating the CO5 capture performance of the PCs. Plaza et al. [135]
upcycled spent coffee grounds into PC for CO, capture at a constant
temperature of 50 °C and achieved a working capacity of 1.66 mmol g~*
using helium as the purging gas to reduce the CO9 partial pressure.
Overall, these observations indicate that the working capacity is a key
parameter for screening robust CO5 adsorbents and a performance in-
dicator for swing analysis to preliminarily evaluate the CO2 capture
performance of certain SWDPCs.

3.2. COg selectivity

The ideal adsorbed solution theory (IAST) method (Eq. (8)) is most
widely used for calculating the selectivity of CO, over other gases,
particularly Ny, in flue gas. An alternative is the Henry’s law approach

(Eq. (9)) [4]. To predict the adsorption behavior of binary mixtures
using experimental IAST pure-gas isotherms, single-component iso-
therms should be first fitted using a suitable model. There are several
models for isotherm fitting; however, the final choice highly depends on
the mechanism of the specific adsorption behavior and the range of
obtained experimental data. Adsorption isotherms are generally ob-
tained at equilibrium, at a specific pressure and temperature. According
to Eq. (9), the selectivity is calculated using Henry’s constant (Ky) of the
target gases. However, the ratio of the Ky values of the gases can only
reflect the real selectivity of the mixture on the prepared PCs at very low
pressures and low gas loadings. Because volumetric single-gas adsorp-
tion isotherms can be easily obtained, CO, selectivity over N can be
calculated using the IAST and Henry’s law approaches without utilizing
any special equipment for mixed-gas measurements.

Sco, /N, = Xco, / XN, Yeo, / YN, ®

Scos/n, = K (CO2) | K (N2) )

A PET6KUppe_por sample with a CO» adsorption capacity of 4.58
mmol g_l at 25 °C and 1 bar was used for CO5 and N adsorption, and the
results are shown in Fig. 6a [66]. Using the pure-gas isotherms, the IAST
CO4, selectivity over Ny for a 10%C0O2/90%N>, flue gas was calculated as
18, 19, and 28 at 0 °C, 25 °C, and 50 °C, respectively. These values were
similar to or higher than the selectivities of SWDPCs. In addition to the
proper pore size, an effective functional group could enhance COg
selectivity by performing surface modification. The analysis of the N1s
and Ols profiles of the PET-derived N-doped PCs in the full X-ray
photoelectron spectroscopy (XPS) spectrum (Fig. 6b, ¢, and d, respec-
tively) revealed that N and O functional groups were successfully
introduced into the PC. The major peaks in the XPS profiles of the
analyzed samples indicated the presence of different functional groups
(i.e., —H, —OH, ether, and ester) in their structure. To elucidate the effects
of the functional groups, a GCMC simulation was performed, and the
major findings are shown in Fig. 5f [67]. The results suggest that the
—OH functional groups enhance the interactions between the micropo-
rous carbon adsorbents and CO, gas molecules and effectively promote
CO, selectivity over Ny [66,92,136].

Liu et al. [128] prepared hierarchical ultramicro/mesoporous bio-
carbons from low-grade rice husks using a facile one-step method. The
prepared samples exhibited high adsorption capacities of 1.84 mmol g !
and a record-high COy/Ny selectivity value (determined via Henry’s



Table 3
Summary of solid porous carbons derived from plastic and biomass waste and their CO, capture performance. Here, Sgrr and Va1 denote the Brunauer—-Emmett-Teller surface area and total pore volume, respectively.

Precursor Carbonization Activation Surface Sample SgET Viotal 0/C N/C Isothermal CO, Dynamic CO, CO;, selectivity
temp. (°C) modification ratio” ratio” adsorption capacity adsorption capacity ~ over Ny at 25 °C”
T Agent m? cm® % 25°C,1  25°C, 30 °C, 1 bar
°C) gt g ! bar 0.15 bar
mmol g~ !
PET waste bottles [66,67, 700 700 KOH - PET-3-700 1960 0.83 - - - - 2.31 -
92,93] 600 700 KOH - PET-KOH-973 1812 0.98 (9.29) 0 4.42 1.10 3.31 14 (0.15)
600 700 KOH Urea PET6KNne_pot 1162 0.47 (24.11) (4.14) 4.58 1.13 3.51 19 (0.10)
600 900 CO, - PET6-CO2-9 1482 0.607 (13.08) 3.63 1.05 2.68 -
Packing peanuts [94,95] 600 850 KOH - CMS-K3 1354 0.55 (11.73) (0.92) 4.07 1.02 3.48 15 (0.15)
500 700 KOH - WDC-03 1283 0.69 - - 4.24 0.99 - -
Spent coffee ground [96, - 700 K>CO3 - CG700-5 1476 0.61 0 1.82 4.54 1.30 3.29 14 (0.15)
97] 400 600 KOH Melamine KMHC 990 0.55 - - - - 2.67° -
Coca Cola® [98] 200 600 KOH - CMC-3 1405 0.80 (16.89) (4.73) 5.22 1.40 - -
CDs and DVDs [99] 500 700 KOH C-KOH-4 2710 1.27 9.32 8.61 3.30 0.90 - -
Bee pollen [89] 800 800 KOH - K1PDC1 937 0.40 (26.93) (1.99) 3.38 1.18 15 (0.15)
Petroleum coke [100,101] 450 700 KOH - PC-2:1-700 1433 0.60 16.83 0.40 3.68 0.98 3.02 14 (0.15)
500 700 KOH - C500-K 1470 0.60 - - 4.17 1.34 - 16 (0.15)
70% wood chips and 30% - 850 KOH - WCMK 1409 0.83 32.58 0.01 2.92 0.63 1.75 9 (0.15)
chicken manure [102]
Persian ironwood [103] 500 300 H3PO4 Cu(NO3)2-3H,0 HP5/Cu3-1 1954 1.63 - - 6.78 ¢ - - -
Banana stems [104] 700 - - - Banana 1260 0.81 16.67 0 5.00 1.78 - -
fiber-FD-700
Sawdust [84,105,106] 400 700 KOH - ACSD-2700 1830 0.78 18.82 0 4.90 1.10 - -
- 600 MgCl, - mPC-Mg0O-873 306 0.16 37.92 - - - 5.45° -
250 600 KOH - SD2600P 1066 0.59 - - 5.80 2.00 - -
Coconut shell [107-111] 500 600 KOH - C-600-3 1172 0.44 - - 4.23 1.31 - -
800 800 CO, - Cnut-3.5 h 1327 0.65 - - 3.90 1.19
500 600 K2CO3 Urea CN-600-3 1082 0.39 - 3.13 4.70 1.23 - 11 (0.15)
500 650 KOH Urea NC-650-3 1535 0.60 - 1.12 4.80 1.49 - 15 (0.10)
500 650 KOH Ammonia NC-650-1 1483 0.66 - 6.51 4.26 1.28 - -
Argan hard shell [112] 700 850 KOH - ARG-K-Im 1890 0.87 16.81 4.14 5.63 1.62 - -
Hazelnut shell [60] 500 550 NaNH, - HSC-550-1 1099 0.45 - 2.93 4.32 1.48 - 17 (0.10)
Walnut shell [113-115] 150 (H3PO4) 850 KOH Urea HAC-KOH-850 2354 1.26 29.80 1.14 3.08 0.64 - -
500 450 NaNH, - NAC-450-2.5 1687 0.94 - 2.60 3.06 0.68 - -
600 600 KOH Urea KNWS-2-600-120 1315 0.65 - - 7.42 - - -
Shrimp shell [116] 400 700 KOH - SA-1-700 1406 0.72 - - 4.20 1.01 - 23 (0.15)
Water chestnut shell [69, 500 500 NaNH; - WSC-500-1 1416 0.58 - 3.13 4.50 1.32 - 23 (0.10)
117] 500 700 KOH Melamine ANCs-3-700 3401 2.50 - - 4.70 1.97 - 21.5 (0.15)
Pigskin collagen [118] - 600 Ca(NO3)y/ - CPC-600 1165 1.03 35.94 16.07 4.40 1.83 - -
K>CO3
Poplar catkins [119] 400 800 ZnCl, - NHPCT-4-8 1455 0.68 8.64 2.41 4.05 0.92 - -
(7.20) (1.71)
Pineapple waste [120] 210 700 K2C204 - C-K-700 1076 0.08 - 0.38 4.25 1.31 4.22 -
Garlic peel [121] 400 600 KOH - AC-26 947 0.51 - - 4.22 1.21 - -
Fallen leaves [122] 600 700 KOH - LC2-700 1600 0.65 - 1.54 4.41 1.55 - -
Sugarcane bagasse [123] 600 600 KOH Urea UC-15-2-600 1113 0.57 - 2.37 4.80 1.54 4.76 -
Rotten strawberries [124] 180 650 KOH - SC-650-2 1117 0.52 - 6.90 4.49 1.48 - 20 (0.10)
Jujun grass [125] 250 700 KOH - ACGR2700 1512 0.74 - - 4.90 1.50 - -
Camellia japonica [125] 250 700 KOH - ACCA2700 1353 0.67 - - 5.00 1.50 - -
Gelatin and starch [126] 450 700 KOH - GSK1-700 1636 0.51 29.58 4.20 3.84 0.88 - -
(30.17) (4.30)
Rice husk [127,128] 520 710 KOH - PC1-710 1041 0.53 - - 4.16 1.55 - -
200 700 KOH PEI R7-2 T-10PEI 1190 0.78 - - 4.50 1.90 - -
Pinecone [129] 600 700 KOH - PC2-700 1680 0.61 17.99 0.60 4.75 1.50 - -
hickory chips [130] 450 600 FeCl3-6H,0 - FeHC(0.1) - - - - - - 1.18 -

The numbers in parentheses are the partial pressures of COo; § at 35 °C; Pat 80 °C; ¢ at 30 °C and 1 bar.
# Obtained via elemental and X-ray photoelectron spectroscopy analysis.
b Calculated using ideal adsorbed solution theory selectivity.
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Fig. 5. a) Scanning electron micrograph (SEM) and b) transmission electron micrograph (TEM) of potassium hydroxide (KOH)-activated polyethylene terephthalate
(PET-KOH-973). ¢) CO, adsorption isotherms of PET-KOH-x at 25 °C, d) CO, uptake dependence on pore volume at 25 °C and 1 bar, e) CO, adsorption isotherms of
pristine bilayer graphene with 0.6, 0.7, 0.75, 0.8, and 0.9 nm pores, and f) CO; selectivity over N5 in a 0.7 nm pore CO,-N5 (15%/85%) binary mixture system [67].
Here, Vo7, Vo.s, and Vo are the cumulative pore volumes limited by narrow micropores smaller than 0.7, 0.8, and 0.9 nm, respectively.
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law) of up to 212 at 25 °C and 0.15 bar. This was primarily ascribed to
the unique combination of high ultramicropore volumes, narrow
pore-size distribution, and modified surface functional groups by the
enhanced K intercalation as a result of the applied compaction.

For CO, gas separation, the breakthrough data obtained using fixed-
bed reactors can predict CO3 selectivity more accurately than Henry’s
law [4,137] because breakthrough studies are typically performed
under kinetic flow conditions and non-equilibrium settings. Kaur et al.
[137] performed a breakthrough CO, adsorption study on waste PET
plastic-derived nanoporous carbon. The breakthrough curves of the
prepared samples are shown in Fig. 7a. The scanning electron micro-
graphs (SEMs) of the prepared samples (i.e., Act-3-700 (Fig. 7b))
revealed a well-developed pore structure. Moreover, Act-3-700 (BET
surface area of 1690 m? g~ and micropore volume of 0.78 cm® g™1)
exhibited the highest CO adsorption capacity of 1.31 mmol g~! at 30 °C
and a COy concentration of 12.5%. The COy uptake of Act-3-700
changed significantly with the temperature and CO5 concentration of
the target gases (Fig. 7c), most likely because physisorption was the
predominant mechanism during the CO; capture process. The break-
through curves of CO,/Ns at 30 °C and a CO concentration of 12.5% are
shown in Fig. 7d. A hump in the breakthrough curve of N5 was observed
at C/Cp > 1. This high N3 occupancy of vacant sites during the initial
stage was due to the concentration of N3 being higher than that of CO,.
However, over time, N3 was replaced with CO2, which confirmed that
Act-3-700 exhibited greater CO5 selectivity over Nj.
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3.3. Long-term stability

Considering CO5 capture for practical applications, typical adsorp-
tion—desorption cyclic operations are essential. Specific technologies
such as temperature swing adsorption (TSA), pressure swing adsorption
(PSA), and electricity swing adsorption (ESA) can be deployed. How-
ever, appropriate solutions should be screened, tested, and optimized to
obtain the optimal performance of the CO5 adsorption—desorption pro-
cess using PCs to maximize the working capacities. Thus, comprehen-
sively evaluating the cyclic performance of PC materials is necessary.

While the working capacity is considered during swing analysis,
cyclic performance is typically evaluated via cycle analysis, which is
discussed in this section. Practical regeneration techniques include PSA
(desorption at low pressure), vacuum swing adsorption (VSA desorption
using vacuum), and TSA (desorption at high temperature) [138]. TSA
cycles are a promising and practical approach for post-combustion CO5
capture because PCs exhibit excellent CO, adsorption capacity under
ambient conditions, physisorption dominates CO; capture on SWDPCs,
and the energy required for CO; capture can be significantly decreased
by avoiding compression or using vacuum for the large volumes of
low-pressure gaseous streams required for PSA/VSA [132,139].

Appropriate performance indicators are required for generalized
comparisons between different cycle configurations. Typical perfor-
mance indicators, including purity, recovery, and productivity, are
widely applied to evaluate the cyclic performance of solid waste-derived
CO3 adsorbents. Karimi et al. [140] synthesized PC for CO; capture from
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Fig. 7. a) Breakthrough curves of the prepared adsorbents, b) Scanning electron micrograph (SEM) of Act-3-700, c) Changes in the CO, adsorption capacity of
Act-3-700 with the adsorption temperature and CO, concentration, and d) Selectivity of CO2/N, on Act-3-700 for 12.5% CO- at 30 °C. Act-3-700 sample was
obtained at an activation temperature of 700 °C with KOH to carbon mass ratio of 3. Reproduced with permission from Ref. [137].

11



X. Yuan et al.

MSW and evaluated the cyclic performance of the prepared samples in
an in-house PSA unit with a stable working capacity of 2.6 mmol g~ * at
40 °C. Horstmeier et al. [141] numerically simulated a typical VSA cycle
using functionalized PC; purity, recovery, productivity, and electric
power requirements were considered to evaluate the cyclic performance
of the prepared samples. Bahamon et al. [142] used date seed-derived
PCs for their numerical simulation and calculated performance param-
eters, including the working capacity, purity, and energy requirement
for regeneration, to optimize the cycle configuration and comprehen-
sively compare the basic TSA, PSA, and VSA configurations. This study
can be considered as a preliminary investigation of the cyclic perfor-
mance of COz adsorbents derived from solid waste. Hybrid regeneration
techniques have also been proposed for this purpose. Plaza et al. [143]
developed a PC-based vacuum/temperature/concentration swing
adsorption (VTCSA) process for an olive stone-derived CO5 adsorbent
and used the specific energy penalty of avoided CO, (SEPAC) as a cyclic
performance indicator. The application potential of the prepared CO,
adsorbent was evaluated from the viewpoint of cyclic energy con-
sumption. The key advantage of the VTCSA process is its low specific
heat duty, which can be achieved using waste heat.

In summary, the practical application potential of SWDPCs should be
evaluated considering their cyclic performance based on performance
and energy consumption-related indicators. Owing to the lack of unified
energy consumption calculations, a consistent energy efficiency assess-
ment is still lacking, and this aspect needs to be explored in the future.

3.4. Other parameters

In addition to the factors mentioned above, the cost-effectiveness,
isosteric Qg, and moisture tolerance of adsorbents should be thor-
oughly investigated. Cost-effectiveness is an inherent advantage when
upcycling solid waste into CO, adsorbents. Qg is an indicator of the
strength of the interactions between PCs and CO5 molecules, and its
value depends on the PC configuration. A high Q value indicates high
energy consumption for the regeneration of the CO5 adsorbent. Typi-
cally, the Q,; values of PCs range between 20 kJ mol ! and 30 kJ mol ™ };
the values can be higher if the PCs are doped with effective functional
groups [66,67,87]. In addition, high moisture tolerance is considered an
essential parameter for evaluating the performance of CO, adsorbents.
Moisture significantly affects the CO5 adsorption performance of the PCs
and decreases their CO, uptake and CO, selectivity. As a typical case
study, the flue gas from a coal-fired power plant was emitted
post-combustion at a temperature of approximately 75 °C and a COy
partial pressure of approximately 0.15 bar accompanied by moisture.
Zhao et al. [144] proposed a CO2/H20 competitive adsorption model
from the perspective of thermodynamics, emphasizing that the adsorp-
tion entropies and enthalpies were temperature-dependent and would
switch the relative order of Gibbs free adsorption energy between
adsorbed CO» and H50. Zhao et al. [145] proposed a thermodynamic
molecular pump (TMP) to quantitatively resolve the contradictions be-
tween the promotion and impedance of CO2 adsorption by Hz0. This
TMP-guided evaluation demonstrated that the Gibbs free adsorption
energy of HyO is a key indicator of the CO, adsorption performance
owing to its contribution to the total driving energy, providing useful
guidance for effectively screening CO, adsorbents considering the
co-existing HO.

4. Machine learning for the optimization of the synthesis of
solid waste-derived porous carbons

Traditionally, the screening and synthesis of PCs rely on the
knowledge and intuition of researchers to generate a library of prom-
ising candidates, followed by experimental screening using a trial-and-
error approach, also known as the direct approach [146]. An alterna-
tive to the direct approach is in silico screening using ab initio methods,
which involves molecular simulation of promising compounds with
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target properties. However, considering the complexity of the system,
these approaches present significant limitations, as dynamic and mo-
lecular interactions are very demanding in terms of computational
power and duration [147,148]. Therefore, recent developments in the
field of artificial intelligence, specifically applied ML and deep learning
(DL), as well as more widely available and less expensive graphic pro-
cessing units and parallel computing [149,150], are promising methods
for integrating the direct approach and in silico method to accelerate the
discovery and elucidate the reaction mechanisms of target-specific PCs.

Most studies on the application of ML for the analysis of PCs have
focused on developing forward models (i.e., prediction of target fea-
tures) based on a set of input features and on establishing model validity
by achieving suitable or acceptable accuracy levels [146]. This has
typically been followed by feature analysis, wherein the input features
with the highest effect on the target variable, as determined by the
forward model, are deduced using the Pearson correlation matrix,
Shapley values, or related methods [146,151]. Subsequently, these data
are corroborated with expert knowledge to draw conclusions from the
model’s findings. To date, a few ML studies have suitably predicted the
CO4 adsorption capacities of PCs based on their structural and textural
properties and determined the relationships between the CO; adsorption
capacity (using the characteristics of PCs) and corresponding adsorption
conditions, even for nonlinear interpolation.

Zhu et al. [152] modeled the CO, adsorption behavior of 155 PCs
using ML and developed a mapping function for the isothermal CO,
adsorption capacities of these carbon materials based on a set of 10 input
features categorized into textural properties, chemical composition, and
adsorption pressure. A tuned random forest algorithm exhibited a good
prediction ability (R? > 0.9) for the CO, adsorption capacity of the
analyzed PCs. Subsequent feature analysis revealed that the textural
properties of the PCs had a greater effect on the CO5 adsorption capacity
than their chemical composition. Specifically, the mesopore and
micropore volumes of the PCs had significant effects on the COg2
adsorption capacity at low pressure (0.1 bar), and ultramicropores
contributed the most at higher pressures (> 0.6 bar). Owing to the
complexity of the analysis, the effect of chemical composition was not
completely elucidated. However, the authors claimed that the N content
of the PCs was positively correlated with their CO, adsorption capacity.

Wang et al. [153] developed a deep neural network (DNN) frame-
work for the CO, and N; uptake of PCs based on experimentally deter-
mined textural properties such as micropore volume, mesopore volume,
and Brunauer-Emmett-Teller (BET) surface area. Their DNN model was
used to screen high-performance PCs with high CO2 and low N3 uptakes.
The analytical inference of their model revealed that the highest CO5/N,
selectivity was achieved at the lowest N uptake. Low Ny uptake was
attributed to the disruption of Ny adsorption by the mesopores. In
addition, Wang et al. [154] used a convolution neural network to
establish a mapping function between the porosity and gas-separation
performance of PCs. In an unconventional yet novel approach, a
one-dimensional image of an Ny isotherm at —196 °C (which is repre-
sentative of the pressure points and corresponding adsorbed volumes)
was fed into five-layered convolutional networks to extract information
on the porosity of PCs. The extracted information, temperature
(0-50 °C), and pressure (0-1 bar) were fed into three fully connected
input layers and one regression layer to an output neuron, which pre-
dicted the gas-separation performance of PCs using COy/N as a case
study. The model revealed that PCs with a bimodal pore-size distribution
of well-separated mesopores (3-7 nm) and micropores (< 2 nm)
exhibited the most promising CO2/N> selectivity.

More recently (Fig. 8), Yuan et al. [42] presented a systematic study
to show how the concepts of ML can be applied for predictive analytics
and shed valuable insights into CO, adsorption using PC-derived
biomass waste. The authors reviewed 76 peer-reviewed publications
and created a set of 527 data points using the data-imputation method.
They devised ML models to predict biomass waste-based CO2 adsorption
as a function of their textural properties, compositional properties, and
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adsorption parameters of the CO, capture process. They primarily
developed tree-based ML models, including gradient boosting decision
trees (GBDT), extreme gradient boosting (XGB), and light gradient boost
(LGB), where the GBDT had the best predictive performance with R? of
0.98 and 0.84 on the training and test data. They further classified the
dataset into regular PCs and heteroatom-doped PCs; again, the GBDT
model exhibited the best predictive performance. They also evaluated

the significant features using local sensitivity analysis tools, including
mean decrease in accuracy (MDA) and partial dependence plots (PDP),
and concluded that adsorption parameters were most critical to the CO,
adsorption process, followed by textural and compositional properties.

Considering the lack of studies on the use of ML- and DL-based an-
alyses of SWDPCs, research in this domain is still in its infancy. How-
ever, further inspiration can be drawn from related studies on the use of
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zeolites, metal-organic frameworks (MOFs), and covalent organic accelerated discovery of zeolites [157], prediction of the mechanical
frameworks (COFs) for CO, capture and conversion, wherein ML con- properties of zeolites based on their geometry [158], and use of a more
cepts have been adopted and applied. Some notable studies include the generic ML framework for large-scale screening of potential MOFs for
use of advanced ML algorithms to rapidly and accurately recognize high- gas adsorption capacities [147].
performance MOF materials for CO; capture [150,155], employment of Owing to their advantages such as intuitiveness, high computational
a self-tuning automated ML architecture to predict the adsorption ca- prowess, and wide acceptance and application across scientific disci-
pacities of MOFs with few experimental data points (< 100) [156], plines, ML techniques are likely to draw increasing interest in
Table 4
Summary of the life-cycle analysis studies on solid waste-derived CO, adsorbents.

Raw material Product Functional unit System Impact categories* Impact Database Software

boundary assessment
Coconut shell [164] PC 1 tonne PC produced Cradle-to-grave 1-9 Midpoint Ecoinvent v3.0 GaBi 6.0
Exhausted olive-waste PC 1 kg PC produced Gate-to-gate 1-10 Midpoint Ecoinvent v2.2 Simapro 7.3
cakes [165]

Corn pericarp [166] PC 1 kg PC produced Gate-to-gate a-d, f, i Endpoint Ecoinvent v3.1 Simapro 8.0

Woody biomass [167] PC 1 kg PC produced Cradle-to-gate 1-3,5,7,11-14,16 Midpoint N.A. Simapro 8.0

Forest residues [168] Biochar 1 tonne marketable Cradle-to-gate 5 Midpoint N.A. SimaPro 8.5

biochar; 1 tonne forest
residue
Eucalyptus waste [169] PC 1 kg PC produced Cradle-to-gate 1-9,15 Midpoint Ecoinvent 3.4 SimaPro 8.2
Agricultural residues, Biochar 1 tonne dry biomass Cradle-to-grave 5,10 Midpoint N.A. Microsoft
yard waste and Excel

switchgrass energy
corps [170]

Pine sawdust [171] Biochar 1 tonne biochar produced Gate-to-gate 1-9,15 Midpoint European life-cycle OpenLCA
database
Forest harvest residue, PC** 1 GJ energy for propelling  Cradle-to-grave 2, 3, 5, 11-14, 16 Midpoint Ecoinvent GREET***
sawmill residue and an aircraft engine and Simapro
underutilized trees 8.1
[172]
Woody biomass Biochar 1 tonne biochar produced Cradle-to-grave 2,3,5,7,9,12-15, Midpoint Ecoinvent and USLCI Simapro 8.1
processed into wood 17-20
pellet [173]
Woody shrub or Biochar Preparation and Cradle-to-grave  a-h, i Endpoint Ecoinvent 3.2 N.A.
agricultural residue sequestration of 1 kg
[174] biochar
Soybean shells [175] PC 1 kg PC produced Cradle-to-gate 5,a-d, i Endpoint Ecoinvent SimaPro 8.0
3.1
Corn fodder and forest Biochar 1 tonne dry biomass Cradle-to-grave 5 Mid-point N.A. Microsoft
residues [176] Excel
Agriculture residue [177]  Biochar 1 tonne maize produced Cradle-to-grave  a-d, f, i Endpoint Ecoinvent 2.2 N.A.
per year
Ten types of agriculture Biochar** 1 tonne dry feedstock, 1 Cradle-to-grave 5 Midpoint N.A. N.A.
residue available in UK tonne biochar produced, 1
[178] MWh electricity produced,
1 ha (10 000 m?) land used
to produce the feedstock
Sargassum-Horneri PC 1 kg PC produced Cradle-to-gate 5 Midpoint N.A. N.A.
[179]
Pig mature and willow Biochar 1 tone of biochar Cradle-to-grave 2-4,7,9,12-14,18-21,24 Midpoint Ecoinvent 3; ELCD; SimaPro 8.3
woodchips [180] USLCI
Sugarcane [181] Biochar** 1 ha of sugarcane crop for ~ Cradle-to-grave 5 Midpoint Ecolnvent 3.6 SimaPro 9

Sao Paulo state, 1 tonne of
CO;, eq sequestered.
Wood waste [182] Biochar** 1 year of operation of the Cradle-to-grave 2,3,5,7,8,14,17-20,24 Midpoint EcoInvent 3.6 Brightway2
pyrolysis plant (800 kg h ™!
dry wood, 1250 t yr!

biochar)
Perennial grass Biochar 1 tone of biochar Cradle-to-gate 2,3,5,7,11,12-14,16,18 Midpoint / SimaPro
(Miscanthus) [183]
Cattle manure [184] Biochar 1 kg of biochar Cradle-to-grave  1-9 Midpoint AGRIBALYSE and OpenLCA
OpenLCA database
Polyethylene PC 1 kg PC produced, used Cradle-to-grave  1-8, 21-23 Midpoint CLCD-China-ECER-0.8 eFootprint
terephthalate waste and disposed Ecoinvent
bottle [163] 3.1
ELCD 3.0

*Midpoint impact categories: *Abiotic depletion, 2Acidification potential, *Eutrophication, *Freshwater aquatic ecotoxicity, °Global warming potential, *Human
toxicity potential, Ozone layer depletion, Photochemical ozone creation potential, “Terrestrial ecotoxicity, :°Cumulative primary energy demand, 'Smog, '*Car-
cinogenics, '*Non—carcinogenics, “Respiratory effects, 1°Marine aquatic ecotoxicity, ®Ecotoxicity, ”Mineral extraction, ®Non-renewable energy, '°Terrestrial
acidification, 20Ionizing radiations, 21Primary energy demand, 22Water resource depletion, 23particulate matter, and 2* Land occupation.

*Endpoint impact categories: *Fossil depletion, "Ecosystem climate change, “Particulate matter formation, “‘Human health and climate change, ®Land transformation
and occupation, ‘Metal depletion, #0zone depletion, "Human toxicity, ‘Other.

**PC is produced as a byproduct.

***Greenhouse Gases Regulated Emissions and Energy use in Transportation (GREET) software.
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comprehensive investigations pertaining to SWDPCs. Herein, we present
certain guidelines for enabling Al-related technologies to foster the
accelerated screening, design, and synthesis of SWDPCs via closed-loop
life-cycles (Fig. 9).

Although experimental studies on SWDPCs for gas separation and
storage have been prevalent for almost a decade, few dedicated or
structured databases have listed the details of all experimentally syn-
thesized PCs and their specific physicochemical properties. Therefore, a
curated comprehensive database is proposed. Text mining using natural
language processing and associated ML techniques can facilitate
searching the vast literature that contains unstructured data on intrinsic
(i.e., crystallinity, pore size, binding energies, hydrophobicity) and
extrinsic (i.e., feedstock composition and concentration, activating
agents pH, and reaction temperature) synthesis parameters of SWDPCs
and can curate them into a structured format, as recently achieved in the
field of material science [159,160].

Once such curated databases are developed, ML-based forward
models can be devised for screening targeted high-performance SWDPCs
or predicting their performance under a given set of conditions, as dis-
cussed in Section 2. Furthermore, active learning frameworks, using
approaches such as Bayesian optimization, which continuously learn
and adapt as they explore the already curated chemical space, can
expand the development of molecular entities of SWDPCs in regions of
high uncertainty, thereby enabling the discovery of regions of molecular
space with desirable properties under different physical conditions [146,
149]. This combined approach (i.e., using active learning frameworks in
conjunction with ML techniques) could address the challenging
endeavor of screening and expediting the guided synthesis of
high-performance SWDPCs, which depend on various intrinsic and
extrinsic parameters and have been rendered infeasible and nonpractical
via the direct approach.

A gradual extension of the aforementioned methods and concepts,
which are more intuitive and definitive than the conventional trial-and-
error approach, would enable guided experiments for synthesizing high-
performance SWDPCs with the desired properties. Additionally, the
guided synthesis procedures can be subjected to active learning ap-
proaches (which can guide the cycles of experiments from a few sample
points to iterative extensions) and looped with online automated syn-
thesis platforms [161,162] to develop the concept of chemical robotics
for the efficient, direct, and accelerated synthesis of PCs with desired
properties.

5. Life-cycle assessment of CO, capture technology based on
solid waste-derived porous carbons

The evaluation of the environmental performance of SWDPCs and
biochar has attracted increasing interest since 2010. Table 4 presents an
overview of life-cycle assessment (LCA) studies, summarizing the func-
tional units (FUs), system boundaries, impact categories, impact
assessment methods, databases, and software used in the pertinent
studies. Although different types of solid waste can be used as precursors
for CO; adsorbents, existing studies have primarily focused on PC or
biomass waste-derived biochar using different raw materials. Wang
et al. [163] were the first to explore the life-cycle performance of waste
PET plastic-derived PC for CO, capture and its potential to achieve
negative CO, emissions.

5.1. Functional unit and system boundary

The goal and scope definition of LCA studies include three main el-
ements: specifying the aim of the study, defining the functional unit, and
the corresponding system boundaries. Typically, LCA studies on PC or
biochar aim to quantify the potential environmental impacts of associ-
ated production processes. The goals of the reviewed LCA studies can be
subdivided into four categories: single scenario, scenario comparison,
factor comparison, and optimization. Three of the reviewed studies
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comparatively assessed different waste management methods or PC/
biochar production methods: Heidari et al. [169] evaluated the envi-
ronmental impacts of using eucalyptus wood for bioenergy and PC
production; Pierobon et al. [172] performed an LCA of woody
biomass-based bio-jet fuel with PC and lignosulfonate as coproducts and
compared their prepared fuel with petroleum-based jet fuel; and Nie
et al. [185] performed an LCA of transportation biofuels from hydro-
thermal liquefaction of forest residues. Bergman et al. [167] compared
the environmental impacts of syngas-to-electricity and biochar-to-PC
production from woody biomass as well as from natural gas and coal
(commercially available alternatives). Numerous studies have been
conducted to investigate the environmental performance of
waste-to-PC/biochar systems in terms of specific factors, which mainly
include pyrolysis methods [169,174,178], biochar production systems
[168,177,184], types and quality of feedstocks [168,170,180,181],
on-site or off-site biochar utilization [182], and allocation methods
[172]. In addition, using LCA results as an environmental indicator,
Loya-Gonzalez et al. [166] optimized the production process of PC from
corn pericarps.

The FU is a reference parameter for quantifying the performance of
production systems and plays an important role in comparing different
products/processes. As mentioned by Roberts et al. [170], in addition to
PC/biochar production, the biomass waste-to-PC/biochar process can
involve several associated processes such as biomass waste manage-
ment, carbon sequestration, energy generation, and soil amendment.
Therefore, the selection of FU for LCA highly depends on the aim and
scope of the study. In the reviewed studies, the most widely used FU is
the production output, such as the mass of PC/biochar (i.e., 1 kg tonne ™!
of PC/biochar produced). In several studies, FU has been defined as the
mass of waste input (i.e., 1 tonne of processed waste biomass). Three
studies defined more than one FU to elucidate the LCA results. For
example, Puettmann et al. [168] used three FUs, including 1 tonne of
marketable biochar, percentage of fixed C in the biochar, and 1 dry
tonne of forest residue. Similarly, Hammond et al. [178] expressed LCA
results using various metrics, such as 1 dry tonne feedstock, 1 tonne
biochar produced, 1 MWh electricity produced, and 1 ha land used to
produce the feedstock. Moreover, Pierobon et al. [172] used 1 GJ of
energy as the FU for propelling an air engine because PC is the
co-product of the biomass-based bio-jet fuel production process. Spar-
revik et al. [177] selected 1 tonne maize per year as the FU because their
study was conducted from an agricultural perspective and included both
biochar production and soil amendment.

A typical LCA system boundary for different solid waste feedstocks
used for PC production is shown in Fig. 10. Typically, the life-cycle
process can be divided into three stages: raw material preparation,
PC/biochar production, and PC/biochar application. Because PC/bio-
char production is the core of LCA studies, most reviewed studies have
comprehensively analyzed this stage. Specifically, three production
pathways were commonly mentioned in the reviewed studies; these
included two PC production approaches and one biochar production
approach. Not all the literature reviewed herein included the raw ma-
terial preparation process (i.e., biomass/plastic production, collection,
and transportation) in the LCA. Moreover, only four of the reviewed
studies considered biomass production processes [168,175,180,183].
Another notable aspect of LCA studies is the extension of PC/biochar
applications. Because of their well-developed porosity and stable C-rich
content, PC and biochar can be used as soil amendments and for
long-term carbon sequestration [177,182,173]. Therefore, several
studies have investigated the soil application phases of PC/biochar
products. Robbers et al. [170] considered the positive effects of
improving fertilizer efficiency and reducing nitrous oxide (N2O) emis-
sions when biochar was used as a soil amendment.

5.2. Global warming potential and other environmental impacts

The results obtained using the midpoint method and the FU of 1 kg of
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Fig. 10. Typical system boundary for solid waste-to-porous carbon/biochar life-cycle assessment.

PC/biochar produced (1 tonne was converted to 1 kg) are compared in
this section. The representative global warming potential (GWP) of the
three production process pathways (Fig. 10) is shown in Fig. 11 (with
supplementary information in Table 5). For a fair comparison, all pre-
sented data were processed and presented with consistent functional
units and comparable system boundaries. PC products have a relatively
high GWP owing to their complex production processes. The GWP of
biomass waste-derived PC was in the range of 5.5-11.1 kg CO2_¢q/kg PC,
excluding the CO, absorbed during the biomass growth and soil appli-
cation processes. The emissions of PET-derived PC were relatively
higher (but < 14.0 kg CO2_¢q/kg PC) when greenhouse gas emissions
during the PET production phase were included [163]. Puettmann et al.
[168] evaluated the GWP impacts of biochar using the portable systems
developed by Biochar Solutions Inc. (Lafayette, US) and revealed that
the GWP of biochar produced from different forest residues ranged be-
tween 0.2 CO2_¢q/kg biochar and 1.0 CO5_eq/kg biochar. In addition, a
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high GWP of 4.1 kg CO2_¢q/kg biochar produced from organic waste
(primarily pine sawdust) was obtained in the study by Hersh and Mir-
kouei [171]. These four studies also considered atmospheric carbon
sequestration during biomass growth [163,168,183,171]. The overall
results indicated that when the system boundary was expanded to
include biomass production and soil application stages, a negative GWP
could be achieved for biomass waste-to-PC/biochar systems.

In addition to GWP, the negative impacts of cumulative energy de-
mand (CED) and fossil fuel depletion potential have been addressed in
several studies. The reported CED for PC production ranged between
118 and 167 MJ kg_1 of PC produced [169,167,165], and CED was the
main contributor to fossil depletion potential. Arebn et al. [164]
concluded that attention should be paid to freshwater aquatic and
terrestrial ecotoxicity impacts owing to the wastewater generated dur-
ing the carbonization process. Heidari et al. [169] indicated that
terrestrial acidification and marine aquatic ecotoxicity had the greatest
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Fig. 11. Global warming potential (GWP) obtained from different life-cycle assessment (LCA) studies based on the functional unit (FU) of 1 kg porous carbon (PC)/

biochar produced [163,169,167,168,171,165,183,184,179].

Table 5

Supplementary information for Fig. 11.
Point No. Precursors Ref.
1 Woody biomass (natural gas heating) [167]
2 Woody biomass (syngas heating)
3 Eucalyptus waste-ZnCl, [169]
4 Eucalyptus waste-H3PO4
5 Sargassum horneri [179]
6 Exhausted olive-waste cakes [165]
7 Sargassum horneri [179]
8 Polyethylene terephthalate (PET) waste bottle [163]
9 Tops + pulpwood with diesel power-remote production [168]
10 Tops + pulpwood with power pallet-remote production
11 Pulpwood with diesel power-remote production
12 Pulpwood with power pallet -remote production
13 Tops + pulpwood with grid power-in town production
14 Tops + pulpwood with diesel power-in town production
15 Tops + pulpwood with power pallet-in town production
16 Pulpwood with grid power- in town production
17 Pulpwood with diesel power- in town production
18 Pulpwood with power pallet - in town production
19 Pine sawdust [171]
20 Perennial grass (Miscanthus) [183]
21 Cattle mature [184]

impact among the 10 impact categories selected based on normalized
results, which were primarily associated with electricity consumption
and the use of chemical activating agents. Homagain et al. [173] indi-
cated that biochar application may have adverse effects on human
health. Nevertheless, no definitive conclusion on the environmental
impacts of PC/biochar production processes has been reached, and only
a few studies have suggested that among all stages of the analyzed
processes, the pyrolysis and activation stages present the most negative
environmental impacts [163,169,165,179].
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5.3. Novel CO; capture materials derived from solid waste: challenges
and opportunities

Fig. 12 provides an overview of the solid waste-to-PC technology,
including inputs, processing, outputs, potential applications, environ-
mental benefits, and the necessity of LCA studies. The various FUs and
system boundaries considered are the main challenges in comparing the
outcomes of different LCA studies because the biomass waste-to-PC/
biochar process involves multiple product outputs and applications,
including waste management, PC/biochar production, soil application,
and energy generation. In particular, the inclusion of biomass growth
and soil application stages may result in significant changes (i.e., GWP)
in the impacts. Additionally, few studies have provided detailed con-
tributions and hot-spot analyses, and transparent inventory data should
be reported to help readers in effectively understanding the results.
Furthermore, more than half of the product inventory data was gener-
ated using laboratory-scale data because the biomass waste-to-PC/
biochar process is an emerging technology. The LCA results obtained
by extrapolating laboratory-scale to industrial-scale data do not accu-
rately represent environmental impacts. In addition, most studies have
considered the co-production of heat [178,170,176], bio-oil [178,173,
171] and electricity [178,176] via pyrolysis. However, the heat recovery
and co-production potential have rarely been considered in studies on
PC production. Finally, as stated previously, the gases released from the
pyrolysis and activation processes might have significant adverse envi-
ronmental impacts. However, few studies have provided detailed
emission inventories for these life-cycle stages.

6. Concluding remarks and future perspectives

Carbon dioxide emissions, which are considered as the major cause
of human-induced climate change [42,186], have significant impacts on
the environment, including the loss of sea ice, changes in the duration
and intensity of tropical storms, and an increased frequency of wildfires.
Furthermore, ineffective solid waste management has led to the loss of
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Fig. 12. Overview of the sustainable technology pathway and the necessity of LCA studies.

potentially valuable materials and caused significant environmental and
health issues [23,32,187,188]. Therefore, we critically reviewed the
upcycling of solid waste into PCs for CO2 capture, which has been
considered a promising and sustainable approach to simultaneously
resolve these two urgent environmental issues.

First, to effectively valorize solid waste into PCs for CO5 capture, the
microporosity (particularly pore size < 0.8 nm) and surface functional
groups of SWDPCs were identified as crucial factors that could be
effectively enhanced by chemical activation and surface modification.
The adsorption-desorption cyclic performance of CO5 capture using
SWDPCs was reviewed and evaluated through numerical simulations
using several typical performance indicators, such as purity, recovery,
productivity, and energy consumption-related indicators. Owing to the
lack of a unified method for quantifying the energy consumption, further
studies are necessary.

Second, ML-based system optimization for developing SWDPC-based
CO4 adsorption was specifically reviewed to advance CO5 adsorption
technology using solid waste as a carbon precursor. A closed-loop
guideline for synthesizing PCs with excellent CO5 capture performance
was proposed, suggesting that data-driven approaches play a critical
role in optimizing the synthesis of PCs for CO2 adsorption based on the
limited number of studies available thus far. When AI models were used
to analyze laboratory-scale CO, adsorption data, it was revealed that, in
addition to the adsorption conditions, textural properties were impor-
tant factors for achieving high CO5 adsorption performance, suggesting
that both the intrinsic and extrinsic parameters of PCs are worth
investigating with regard to SWDPC-based CO; adsorption. Creating a
uniform database of experimental data is essential for advancing
research on the application of ML to SWDPCs for CO; adsorption. With
research progress in this direction, AI methodologies have the potential
to provide an advanced and efficient platform as chemical robots for
efficient, directed, and accelerated synthesis of PCs with desired prop-
erties. A closed-loop guideline, which includes smart AI techniques,
facilitates the accelerated screening, design, and synthesis of SWDPCs.

Third, the environmental benefits of upcycling solid waste into PCs
for CO, capture were comprehensively assessed via LCA. To perform an
LCA on SWDPC-based CO;, capture, different FUs and system boundaries
were elaborated, and several environmental impacts, such as GWP, CED,
and fossil depletion potential, were critically assessed. In addition to
biomass waste, plastic waste can achieve carbon neutrality or even
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negative carbon emissions from a life-cycle perspective. However, the
laboratory-scale CO» adsorption data used in many LCA studies did not
provide reliable impact assessments of SWDPCs for industrial-scale ap-
plications. In addition, the LCA results were subject to changes in the
system boundaries and FUs. Hence, the environmental impacts (e.g.,
CO4 and toxic emissions and heavy metal pollution) of the PC synthesis
processes over the entire life-cycle of the PC should be judiciously
assessed when its practical applications are considered.

Comprehensive evaluations, including CO, adsorption, cyclic CO4
adsorption—desorption operation, Al-based system optimization for the
synthesis of CO5 adsorbents, and LCA of the entire process, revealed that
SWDPCs are promising sustainable materials for CO, capture that can
address the issue of solid waste management. Future studies should
focus on developing SWDPCs with excellent CO; selectivity, high CO,
uptake at low partial pressures, stable working capacity with long cycle
lifetimes, and good resistance to moisture, which can be applied for
industrial-scale CO4 adsorption. Moreover, thermochemical conversion
during PC production (Fig. 2b®) and intrinsic energy consumption
during CO; capture (Fig. 2b®) resulted in the release of CO,. Syngas
emitted from pyrolysis or gasification can be combusted to obtain
thermal energy or generate electricity, whereas the CO; contained in it
can be captured via SWDPCs. To mitigate CO, emissions caused by
intrinsic energy consumption, viable SWDPC-based CO,-capture ap-
proaches can be driven by hybrid renewable energy technologies (e.g.,
low-grade solar energy) because of their low regeneration temperatures.
These approaches offer the simultaneous benefits of reduced carbon
emissions and industrial-scale carbon neutrality. In addition, as real flue
gases contain water and acidic gases, promising SWDPCs should exhibit
high CO, selectivity and good resistance toward these compounds for
the treatment of these gases from industrial sources.

UN SDGs are a blueprint for achieving a better and more sustainable
future. To achieve these goals by 2030, urgent and effective action is
required. The sustainable upcycling of solid waste into PCs for CO,
capture has multifaceted environmental benefits, including climate
change mitigation and reduction of solid waste volumes in landfills.
Therefore, with a concerted effort to upcycle solid waste into CO4 ad-
sorbents, we are likely to meet the UN SDGs (Fig. 13), specifically Goal
11: Sustainable cities and communities, Goal 12: Responsible con-
sumption and production, Goal 13: Climate action, Goal 14: Life below
water, and Goal 15: Life on land.
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Goal 12:

* Circular solid waste valorization in nature is beneficial. ®

*  Such wood, food, and animal waste was upcycled into
porous carbons for CO, capture and can be used for
soil remediation, achieving zero-waste conversion
and further carbon fixation in soil.

Goal 13:
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Goal 14:

Before flowing into ocean, the solid waste (i.e.,
plastic waste) can be upcycled into value-
added products, mitigating environmental
pollution and saving the life below water,
simultaneously.

and
for

Goal 15:

*  Upcycling solid waste into CO, adsorbents can
mitigate climate change and environmental
pollution issues, rejuvenating the ecosystems
and thereby improving life on land.

Etc.

Fig. 13. Positive impacts of upcycling solid waste into CO, adsorbents with respect to the United Nations Sustainable Development Goals (UN SDGs).
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