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ARTICLE INFO ABSTRACT

Keywords: Experimental manipulations of testosterone have advanced our understanding of the hormonal control of traits
Androgens across vertebrates. Implants are commonly used to supplement testosterone and other hormones to organisms, as
Endocrinology they can be readily scaled to produce desired hormone levels in circulation. Concerns about pharmacological (i.e.
E:frff‘?v:; hormone unnatural) doses of traditional silastic implants led to innovation in implant methods, with time-release pellets
Zebra finch and beeswax implants proposed as solutions. A study comparing silastic, time-release pellets, and beeswax im-

plants found the latter to be most effective in delivering a physiologically relevant dose. One proposed advantage
to subcutaneous beeswax implants is that they are expected to degrade within the body, thus removing the
obligation to recapture implanted individuals in the field. However, few studies have reported on dosage and no
published literature has examined the assumption that beeswax implants readily degrade as expected. Here we
present time-release androgen data in relation to implants containing varying levels of testosterone from four
separate implant studies. In addition, we report long-term persistence of subcutaneous implants, including two
cases of implants being retained for > 2 years. Finally, we offer recommendations on the composition and
implementation of beeswax implants to aid the pursuit of minimally invasive and physiologically relevant ma-
nipulations of circulating hormones.

1. Introduction supplemented testosterone to determine if the trait is recovered (Adkins-
Regan, 2005; Adkins, 1977, 1975; Balthazart et al., 1983; Berthold and
Quiring, 1944). These studies typically delivered a pharmacological (i.e.

unnatural) dose of testosterone, for example via injection of the hor-

The androgen testosterone has pleiotropic effects on morphology and
behavior, and can integrate multiple inter-linked traits underlying

phenotypes (Cox et al., 2016; Fuxjager et al., 2018; Hau, 2007; Hau and
Goymann, 2015; Lipshutz et al., 2019). Much of what we know about the
functions of testosterone has been learned through manipulations
whereby hormone signaling is suppressed or enhanced in captive or wild
vertebrates. Illustrating that a trait changes when testosterone signaling
is blocked or enhanced indicates it is under androgenic control. Early
studies in captive animals used castration of males to remove natural
testosterone production to determine if the trait is lost and then

mone, and illustrated which traits are sensitive to the hormone. How-
ever, to determine whether a trait is regulated by testosterone under
natural conditions, one must deliver a physiologically relevant dose
(Fusani, 2008; Goymann and Davila, 2017; Quispe et al., 2015).

For several decades subcutaneous testosterone implants using silastic
tubing have been used in wild animals to determine which traits are
sensitive to enhanced testosterone circulation (Balthazart et al., 1983;
Boersma et al., 2020; Cordero, 2008; Enbody et al., 2022; Fusani, 2008;
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Lahaye et al., 2014; Lindsay et al., 2016, 2011; Muck and Goymann,
2018; Sandell, 2007). Yet, two challenges of testosterone implants
endure today: 1) ensuring the dose is physiologically relevant, and 2)
designing minimally invasive implants that do not require recapture and
removal. Scaling testosterone implants to deliver a physiological dose in
wild organisms is challenging because one must first establish natural
variation in testosterone circulation across and within individuals and
then finely scale implants to mimic natural circulation. Often when
implants are scaled to deliver a physiological dose of testosterone,
sampling shortly after implantation reveals pharmacological peaks
(Goymann and Wingfield, 2014; Quispe et al., 2015). In bird studies,
testosterone contained within silastic tubing has been the most common
form of implant (Balthazart et al., 1983; de Jong, 2017; Fusani, 2008;
Gerlach and Ketterson, 2013; Lindsay et al., 2011; Moore, 1984; Peters,
2007; Podmokla et al., 2018; Siefferman et al., 2013; Sperry et al.,
2010). However, these implants require removal, which can be a major
challenge for studies of wild birds. Time-release pellets are a more recent
innovation that do not require removal because the matrix containing
the hormone is thought to be steadily digested (Fusani, 2008; Quispe
et al., 2015). An initial study found these commercially available pellets
also seem to deliver a more consistent dose over time when compared to
silastic implants, thus allowing appropriately scaled implants to main-
tain a physiological dose absent pharmacological peaks of testosterone
(Fusani, 2008). However, a subsequent study found testosterone peaked
beyond physiological levels for 1-2 weeks before leveling off for the rest
of the 90-day manipulation period (Edler et al., 2011). Another draw-
back to these pellets is that they are relatively expensive and cannot be
readily scaled by experimenters as doses are set by the manufacturer
(Fusani, 2008).

Implants using beeswax mixed with peanut oil as the carrier matrix
for the hormone are an attractive alternative to silastic implants and
commercial time-release pellets, as they are cost-effective, can be scaled
to deliver desired doses, and are thought to be readily digestible by the
implanted organism (Quispe et al., 2015). When comparing such im-
plants to time-release pellets and silastic implants for testosterone sup-
plementation, Quispe et al. (2015) found that they were most effective at
delivering a consistent physiological dose for <2 weeks. Since this initial
beeswax/oil implant study, these implant methods have been employed
in several birds (Beck et al., 2016; Boersma et al., 2020; Khalil et al.,
2020; McQueen et al., 2021) and at least one mammal species (Matas
et al., 2020). However, information on time-release of varying dosage is
sparse apart from one corticosterone beeswax implant study by Beck
et al., (2016), which reported that 12 of 24 implanted birds had dis-
solved implants 35 days after implantation. Here we show androgen
levels resulting from three testosterone dosage levels of implants
composed of a beeswax/peanut oil matrix and administered to four bird
species. In addition, we report on unexpected long-term retention of the
beeswax and peanut oil matrix and offer considerations for future
innovation.

2. Materials and methods
2.1. Study timeline and general framework

We combined data collected across separate studies spanning from

Table 1
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2015 to 2019 in four Australian endemic passerine species (Table 1): a)
male red-backed fairy-wren (Malurus melanocephalus; (Khalil et al.,
2020)), b) male superb fairy-wren (Malurus cyaneus; (McQueen et al.,
2021)), c) male and female white-shouldered fairy-wren (Malurus
alboscapulatus; Boersma et al., 2020), and d) captive female zebra finch
(Taeniopygia guttata; Goymann and Schwabl, unpublished data). Each
study used similar beeswax and peanut oil implants following Quispe
et al. (2015). Implants were prepared in batches of 200 by vortexing
melted beeswax and peanut oil, loading into a 1 ml plastic syringe, then
dispensing a string of the hardened beeswax/oil mixture and cutting into
20 mg fragments. Control implants contained only beeswax and peanut
oil, and testosterone implants had a dose of crystalline testosterone
dissolved in 100 % ethanol mixed in. Proportions of beeswax and peanut
oil varied slightly as did the dose of dissolved testosterone across studies
(Table 1). We used the same batch of implants for red-backed and most
white-shouldered fairy-wrens though we slightly modified the fraction
of beeswax to peanut oil following an initial white-shouldered fairy-
wren pilot study. Implants were stored in phosphate buffered saline
(PBS) until deployment. We inserted implants subcutaneously above the
left thigh and sealed the incision site with VetBond™ (3 M).

2.2. Androgen sampling and measurement

In most cases a blood sample was taken on the day of implantation
(day 0) for later hormone analysis, and post-implantation blood sam-
pling regimen varied across studies (Figs. 1 and S1). Male red-backed
and female white-shouldered fairy-wrens were consistently sampled
6-14 days after implantation to collect pin feathers molting in response
to testosterone (Boersma et al., 2020; Khalil et al., 2020). Superb fairy-
wrens were sampled opportunistically for several months after implan-
tation, and captive zebra finches were resampled 1, 12, and 19 days after
initial implantation. Blood samples were stored on ice in the field for
red-backed and superb, but not white-shouldered fairy-wren, and for
captive zebra finches blood samples were immediately processed after
bleeding. Across studies, blood samples were spun in a centrifuge to
separate plasma for androgen analysis. Plasma was frozen in all studies
except in white-shouldered fairy-wren, in which plasma was transferred
to a 1.5 ml Eppendorf™ containing 400 ul of 100 % ethanol following
the procedures of Goymann et al. (2007).

Red-backed and white-shouldered fairy-wren samples were assayed
for total androgens following the same radioimmunoassay protocol in a
lab at Washington State University (full details in Enbody et al., 2018;
Lindsay et al., 2009). Zebra finch plasma was assayed for total andro-
gens using an established radioimmunoassay protocol at the Max Planck
Institute for Ornithology, Seewiesen following the procedures detailed
in Apfelbeck and Goymann (2011). The detection limit of the zebra finch
assay was 0.43 pg/tube. All zebra finch samples (N = 64) were assayed
in one assay with an intra-assay coefficient of variation of 1.9 %. In all
but superb fairy-wrens, hormone levels reflect total androgens due to
using an antibody (Wien Laboratories T-30003, Flanders, NJ, USA) that
cross-reacts with closely related steroids, particularly 5a-dihi-
drotestosterone (DHT). In the superb fairy-wren study, an enzyme
immunoassay kit was used to measure testosterone following Crino et al.
(2018). Androgen measurements that were below the standard curve in
were assigned a value of 1.95 pg/tube in white-shouldered and red-

Composition of implant matrix (proportion of beeswax and peanut oil), testosterone dose, and number of implanted individuals across four bird species. Number of
implanted birds shows total (number of individuals implanted with either a testosterone or control implant. Different proportions and sample sizes in white-shouldered
fairy-wren show information across two study years. Captive zebra finches were given one of two testosterone doses.

Species % beeswax % peanut oil Testosterone dose # implanted Study

red-backed fairy-wren 75 25 0.5 mg 39 Khalil et al., 2020
superb fairy-wren 80 20 1 mg 47 McQueen et al., 2021
white-shouldered fairy-wren 80|75 20 | 25 0.5 mg 16 | 22 Boersma et al., 2020
zebra finch 80 20 1 mg; 2 mg 16 unpublished
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backed fairy-wren (n = 30 samples), and 177.34 pg/ml in superb fairy-
wren (n = 5 samples). The 3 non-detectable zebra finch samples were
assigned individual detection limits that depended on the respective
amount of plasma and extraction recovery (values were 23.3, 27.9, and
40.7 pg/ml). Due to variability in sample storage and assay protocols we
do not provide any comparative analyses of androgen levels across
species.

2.3. Long-term implant retention

State of implants was assessed upon opportunistic recapture of 88
individual red-backed, superb, and white-shouldered fairy-wrens. We
checked for signs of infection and noted whether implants were present.
No signs of infection were noted in superb or red-backed fairy-wrens,
and we noted one case of local inflammation in white-shouldered fairy-
wrens. All individuals were monitored for several weeks after implant-
ing and showed no signs of irritation or impairment. In rare cases (n = 3
across species), failure to seal the incision site properly led to implants
being lost within several days of initial capture. Post-implant recaptures
ranged from 18 to 400 days in red-backed fairy-wren, 6 — 499 days after
implantation in superb fairy-wren, and 7 — 828 days in white-shouldered
fairy-wren.

2.4. Statistical analysis

We first filtered all androgen samples to only include individuals
sampled within 4 weeks of implanting with a testosterone or control
implant. For all three fairy-wren species, we assessed whether
testosterone-implanted individuals had elevated androgens during this
time period using generalized additive models in R (<https://www.r-
project.org > ) version 3.6.1, using package mgcv (Wood, 2011). A
continuous days post-implant variable was included as a smoothed fixed
effect, with testosterone and control-implanted individuals separated. In
white-shouldered fairy-wren we included sex as a fixed effect due to
having samples from males and females. For zebra finch samples, we
compared each time point using package lme4 (Bates et al., 2015) to
build a linear mixed model with dose (1 mg or 2 mg) and sampling day
(0,1, 12, and 19), and the interaction between dose and sampling day as
fixed effects. Individual ID was included as a random effect in white-
shouldered fairy-wren and zebra finch due to repeated measures.

2.5. Ethical note

For each species testosterone implant and capture protocols were
approved by ethical oversight committees. Red-backed fairy-wren work
was approved by the Tulane University Institutional Animal Care and
Use Committee (IACUC 2019-1715), Cornell University IACUC
(2009-0105), Washington State University IACUC (ASAF #04573), the
James Cook University Animal Ethics Committee (A2100) and under a
Queensland Government Department of Environment and Heritage
Protection Scientific Purposes Permit (WISP15212314). Superb fairy-
wren work was conducted with approval from the Monash University
Animal Ethics Committee (BSCI/2013/10, BSCI/2016/03), Department
of Environment, Land, Water and Planning (permit no. 10007370), and
the Australian Bird and Bat Banding Scheme (authority nos. 2230,
3288). For white-shouldered fairy-wren, implant work was approved
under IAUCUC protocol #0395 and ASAF #04573, and the Conservation
and Environment Protection Authority (CEPA) in Papua New Guinea.
Finally, housing and implants in captive zebra finch was conducted
under the auspices of the Government of Upper Bavaria (permit no.
55.2-1-54-2531-107-10).

3. Results

Testosterone implantation led to marginally non-significant eleva-
tion of androgens in male red-backed (Fy5; = 14.86, P = 0.08) and
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testosterone in male superb fairy-wren (Fy 28 = 3.83, P = 0.06), likely
due to low sample sizes within 2 weeks of implantation (Fig. 1a,b).
Androgens were elevated following implantation in white-shouldered
fairy-wren (F3 35 = 8.71, P < 0.001), with the highest levels measured
7-11 days after implanting (Fig. 1¢); and sexes did not differ (F; = 0.39,
P = 0.53). In captive female zebra finch (Fig. 1d), 1 mg and 2 mg doses
did not differ in plasma androgens x2% = 0.21, DF = 1, P = 0.54), but
there was a marginally non-significant interaction between dose and
sampling day (X? = 6.49, DF = 3, P = 0.09). Summary statistics for zebra
finch androgens across doses and sampling days are shown in Table 2a.
Testosterone was significantly elevated relative to pre-implant (day 0)
levels on days 1 and 12, but not 19 (Table 2b). Androgens sampled from
31 days to the end of sampling in all three fairy-wren species are shown
in Fig. S1. The minimum percentage of implanted individuals who
retained implants across the fairy-wren studies is shown in Fig. 2.

4. Discussion

Exogenous testosterone studies have been integral to establishing
which traits are under androgenic control. Though effects of pharma-
cological (i.e. unnaturally high) doses can reveal important information
about hormone response mechanisms (Ketterson, 2014; Ketterson et al.,
2005), physiologically-relevant manipulations are needed to establish
which traits are sensitive to androgens under natural settings (Fusani,
2008; Goymann and Wingfield, 2014; Quispe et al., 2015). Delivering a
physiological rather than pharmacological dose is an enduring challenge
in hormone manipulation studies. We combined data collected across
four separate implant studies using beeswax and peanut oil implants
scaled to deliver 3 separate doses of testosterone. As reported in the
initial paper introducing beeswax and peanut oil implants in female
Japanese quail (Quispe et al., 2015), androgens peaked within a week of
implanting and remained elevated for approximately 2 weeks (Fig. 1).
This elevation period appeared to hold both for males and females,
despite exogenous testosterone often causing declining androgen levels
in males with intact testes due to negative feedback (Brown and Follett,
1977; Fusani, 2017; Turek et al., 1976). However, we note that most of
our androgen measurements were from female white-shouldered
fairywren and zebra finch, so cannot exclude the possibility that some
males exhibited negative feedback following implantation (but see male
response in Fig. 1a-b). Finally, in captive female zebra finch, 1 mg and 2
mg doses did not result in differences in plasma androgen levels. The
dosage and time-release information we report here should provide a
valuable reference for researchers aiming to deliver a physiological dose
of testosterone to their respective study organisms, especially studies of
small passerine bird species.

One proposed benefit of using implants composed of beeswax and
peanut oil in wild organisms is that these materials should be readily
dissolved, thus not requiring recapture and removal (Quispe et al.,
2015). However, we found that implants were retained in many in-
dividuals for several months and even years in some cases, with two
individual white-shouldered fairy-wrens captured with intact implants
> 2 years after implantation. At a bare minimum, ~50 % of implants
were retained six months after manipulation, and > 25 % remained after
one year (Fig. 2). Documentation of long-term implant retention was not
a motivation of any of the studies we combine here, so we only have
information from opportunistic recaptures in each fairy-wren species.
Hence the percentages we report in Fig. 2 are surely an underestimation
of how many individuals retained implants at each time point. In some
cases of implants being retained for 6 months or more, implants were
notably smaller than their initial size, but not fully dissolved (n = 5 of
16). That implants were diminished over time in these cases coupled
with the fact that several individuals showed no implants within 6
months suggests that implants can be digested. Importantly, we
excluded individuals who were suspected to have lost implants through
improper sealing of the implant site, so individuals recaptured without
implants presumably digested implants as expected. Given that wax is
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Fig. 1. Plasma androgen concentrations (ng/ml) measured within 30 days of implantation with a control (blank) or testosterone (approx. doses = 0.5 mg, 1 mg, and
2 mg) implant across four species. A. red-backed fairy-wren (RBFW; n = 7 males), B. superb fairy-wren (SUFW; n = 12 males), C. white-shouldered fairy-wren
(WSFW; n = 9 males, 43 females), D. captive zebra finch (ZEFI; n = 63 females). Individual hormone levels starting on day of implantation (day 0) are shown with
loess lines showing the trend for each implant type.

Table 2 1004
Plasma androgen concentration of zebra finch by dose and sampling day (a), and
post-hoc Tukey comparisons of sampling day (b). Bold values reflect significant 904
different concentrations in androgens between sampling days. B 80-
c
a) Plasma androgens by ZEFI implant dose % 70
4
Dose Day  Mean (ng/ Std. dev. 2 404
ml) §
1mg 0 0.10 0.16 g 50
2 0 0.04 0.02 o
ms R 40+
1mg 1 3.78 2.42 €
2mg 1 4.84 3.34 3 a0-
1mg 12 285 451 £
2mg 12 0.28 0.21 S 20+
1mg 19 0.18 0.16
2mg 19 058 0.76 109
b) Post-hoc comp. across ZEFI androgen 0 d i s J d !
sampling days 1 3 6 12 18 28
Comparison 5 SE 2 P Months post-implant
Ovs1 3.68 1.10 3.36  <0.01 Fig. 2. Minimum percentage of implants retained across months of study of
Ovs 12 276  1.10 251 <0.05 free-living fairywrens. Implant retention was assessed on recapture of 88 in-
0vs 19 0.09 110 0.08 0.94 dividual red-backed, superb, and white-shouldered fairy-wrens. Only 16 of 88
lvsl12 —0.93 113 ~0.82 0.83 implanted individuals were confirmed to have fully dissolved implants during
1vs19 -360 113 -317 <001 the study. Minimum percentage of implants retained reflects recaptures of in-
12vs 19 ~267 113 -236  0.06 Y- P 8 P P

dividuals with visible implants at each time interval accounting for the running
total of individuals who lost implants. Actual percentage of retained implants is
poorly water soluble, we suspect that the beeswax fraction of implants likely to be considerably higher than what is shown here. Two white-
took the longest to degrade. Replacing beeswax with a more water sol- shouldered fairy-wren females were recaptured at the end of our study > 27

uble, but still moldable material should shorten implant degradation months (823 and 828 days) after implantation, with implants ~ 1/2 the orig-
. inal size.
time.
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We altered the fraction of beeswax to peanut oil slightly from 80:20
to 75:25 between field seasons in our white-shouldered fairy-wren study
(Table 1). This was done to reduce crumbling of implants that often
occurred when pinched with forceps during setting in our pilot season.
Increasing the oil fraction of implants improved their solidity and we
noted fewer cases of crumbling in our second field season. Because the
delivered dose of testosterone is determined by the size and shape of the
implant, any crumbling should result in implants being discarded and
replaced to ensure delivery of the desired dose. We did not note any
difference in dissolution of these two implant batches in the field, and
due to inconsistent recapture and rare cases of dissolution we cannot
adequately compare how different proportions of beeswax and peanut
oil affected rate of dissolution (n = 1 dissolved implant of 7 recaptured
from 80:20 beeswax:oil batch, and 4 dissolved of 23 recaptured from
75:25 batch).

5. Conclusions

Beeswax/peanut oil implants are a cost-effective tool for delivering a
scalable dose of hormones for around two weeks. However, our long-
term field studies suggest the implants take considerably longer to
fully degrade than previously suspected. While retained implants do not
appear to affect physiology and behavior, their continued presence
might pose a challenge for researchers interested in manipulating hor-
mones in subsequent seasons. Replacing the beeswax fraction with a
more readily digestible material should improve the rate at which im-
plants degrade. Such modifications of the matrix should be validated for
the hormone levels they result in. Implants should also be checked for
hormone levels they produce in males and females as one cannot
necessarily assume that sexes metabolize and excrete exogenous hor-
mones in the same way. Continued innovation in hormone manipulation
and delivery methods is important to optimize approaches that are cost-
effective, minimally invasive, and mimic natural dynamics of hormone
release as much as possible.
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