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For a mixing shift of finite type, the associated automorphism group has a rich algebraic

structure, and yet we have few criteria to distinguish when two such groups are

isomorphic. We introduce a stabilization of the automorphism group, study its algebraic

properties, and use them to distinguish many of the stabilized automorphism groups.

We also show that for a full shift, the subgroup of the stabilized automorphism group

generated by elements of finite order is simple and that the stabilized automorphism

group is an extension of a free abelian group of finite rank by this simple group.

1 Distinguishing Automorphism Groups

1.1 Automorphism groups and stabilized automorphism groups

Let (X, σ ) be a shift over a finite alphabet A, that is, X ⊂ AZ is closed and invariant

under the left shift σ : AZ → AZ. The automorphism group Aut(X, σ ) of the shift is

the collection of homeomorphisms φ : X → X such that φ ◦ σ = σ ◦ φ. For many

shifts with complicated dynamical behavior, including any mixing shift of finite type,

the associated automorphism group is known to have a rich algebraic structure, for

example, containing isomorphic copies of any finite group, the countably infinite direct

sum of copies of Z, and the free group on two generators (see [6, 11]). In contrast to
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Stabilized Automorphism Group of a Subshift 17113

shifts of finite type, numerous results show that for many zero entropy shifts, the

automorphism group is more constrained (see, e.g., [8–10]).

In spite of much attention, several natural and simple to state questions remain

open. Boyle et al. [6] raised the question of distinguishing (up to isomorphism) the

automorphism groups of full shifts (Xn, σn) for various n (meaning Xn = AZ and the

alphabet A has n symbols). They ask if the automorphism group of the full shift on

2 symbols is isomorphic to the automorphism group of the full shift on 3 symbols,

and more generally, for which p and q the groups Aut(Xp, σp) and Aut(Xq, σq) are

isomorphic as groups. For some choices of p and q, such as when q = p2 for a prime

p, one can show that the associated automorphism groups are not isomorphic (this was

explicitly pointed out for 2 and 4 in [6], and we make note in Theorem 2.5 of the natural

generalization using their method). But for general p and q, this problem remains open.

While many groups are known to embed into the automorphism group of a shift

of finite type, the subgroup structure of the automorphism groups cannot be used to

distinguish them, as shown by a result of Kim and Roush [16]. Namely, they showed

that the automorphism group of any full shift can be embedded into the automorphism

group of any other full shift (in fact, it can be embedded into the automorphism group of

any mixing shift of finite type). Thus, any strategy for distinguishing two automorphism

groups relying on finding some subgroup of one that does not lie in the other must fail.

Taking a new approach to this problem, we define a certain stabilization

of the automorphism group and show that many of these stabilized groups can be

distinguished (up to isomorphism) based only on the alphabet size. To simplify notation,

we suppress the associated space in the notation for the automorphism group, writing

Aut(σX) instead of Aut(X, σX). We make a slight abuse of notation for the full shift on n

symbols, writing Aut(σn) for its automorphism group.

For a subshift (X, σX), we define the stabilized automorphism group Aut(∞)(σX)

to be

Aut(∞)(σX) =
∞⋃

k=1

Aut(σ k
X).

Passing from the non-stabilized automorphism group to the stabilized setting offers

certain advantages, and some of our results are analogous to what happens in the realm

of algebraic K-theory. Given a ring R, one defines the stabilized general linear group

GL(R) by taking the union of the finite general linear groups GLn(R). An important

subgroup of GLn(R) is En(R), the subgroup generated by elementary matrices (matrices

that differ from the identity in at most one coordinate), and in 1950, Whitehead [38]
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17114 Y. Hartman et al.

proved that the commutator of GL(R) coincides with the stabilized subgroup of

elementary matrices E(R). One way to interpret this result is that, by stabilizing,

a certain abstract subgroup that is defined group-theoretically (in this case the

commutator) may be identified with a concrete naturally occurring subgroup: the group

of stabilized elementary matrices. In the setting where (X, σX) is a shift of finite type,

stabilizing produces analogous results. While the commutator of Aut(σX) is not very well

understood, we prove in Theorem 3.14 that, at the stabilized level, the abelianization of

Aut(∞)(σX) coincides with the abelianization of a certain explicit quotient of Aut(∞)(σX):

the dimension representation (see Section 3.4 for definitions). Thus, in many cases (e.g.,

when (X, σX) is a full shift), the commutator subgroup of Aut(∞)(σX) coincides with a

certain naturally occurring subgroup (the subgroup of stabilized inert automorphisms).

Illustrating the stronger tools available in the stabilized setting, we are able

to distinguish many stabilized automorphism groups for which there are currently no

techniques to distinguish the (non-stabilized) counterparts. In particular, in Section 3.5,

we show that the stabilized automorphism groups of full shifts on alphabets with

different numbers of prime factors cannot be isomorphic.

Theorem 1.1. Assume that (Xm, σm) and (Xn, σn) are the full shifts on m and n

symbols for some integers m, n ≥ 2, and assume that the stabilized automorphism

group Aut(∞)(σm) on m symbols and the stabilized automorphism group Aut(∞)(σn)

on n symbols are isomorphic. Then, m and n have the same number of distinct prime

divisors.

In particular, this means that the stabilized automorphism groups on 2 symbols

and 6 symbols are not isomorphic; the analog of this result for the (non-stabilized)

automorphism groups on 2 and on 6 symbols remains open. However, our results do

not distinguish the stabilized automorphism groups with 2 and 3 symbols or those

with 6 and 12 symbols, and another method is needed to address this question (see

Question 3.23).

After the results in this article were proven, the 3rd author [34] has proven

a stronger result, showing that the stabilized groups Aut(∞)(σm) and Aut(∞)(σn) are

isomorphic if and only if mk = nj for some k, j ≥ 1.

In Section 3, we prove various properties of the stabilized automorphism group

and compare them with the (non-stabilized) automorphism group of the shift. It is

easy to check that, as for the automorphism group, the stabilized automorphism

group is countable. We also prove that, like the automorphism group, the stabilized
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Stabilized Automorphism Group of a Subshift 17115

automorphism group is not finitely generated; in contrast, though, the proof is quite

different from the proof for the non-stabilized case.

However, differences between the (non-stabilized) automorphism group and the

stabilized group appear quickly. For example, while Ryan’s [32, 33] theorem states that

the center of the automorphism is exactly the powers of the shift, in Proposition 3.8, we

show that the stabilized automorphism group has a trivial center.

A mixing shift of finite type (XA, σA) has a dense set of periodic points, and

as a result, the action of the automorphism group on XA is far from minimal and has

many invariant measures. However, it follows from a result of Boyle et al. [6] that the

Aut(∞)(σA)-action on the space XA is minimal and uniquely ergodic. We discuss this in

Section 3.3.

An important tool for studying Aut(σX) when (X, σX) is a shift of finite type

is the dimension representation, a certain homomorphism from Aut(σX) to the group

of automorphisms of an ordered abelian group associated with (X, σX). The kernel of

this dimension representation, known as the subgroup of inert automorphisms, is a

large, algebraically rich subgroup of Aut(σX); for example, in the case of a full shift,

the automorphism group is an extension of a finitely generated free abelian group by

the inert subgroup. However, in general the inert subgroup is not well understood. In

Section 3, we show that the dimension representation extends naturally to a stabilized

dimension representation and that the abelianization of the group Aut(∞)(σX) factors

through this stabilized dimension representation. Similar to the non-stabilized group

Aut(σX), the kernel of the stabilized dimension representation, which we refer to as the

group of stabilized inerts, constitutes the core combinatorial part of Aut(∞)(σX). In the

classical (non-stabilized) setting, the inert subgroup Inert(σX) ⊂ Aut(σX) is residually

finite, and hence (since Inert(σX) is infinite) is far from simple. In stark contrast to this,

in Section 5, we prove the following theorem.

Theorem 1.2. For any n ≥ 2, the group of stabilized inert automorphisms of the full

shift (Xn, σn) is simple.

In some sense, the stabilized automorphism groups capture different infor-

mation about the shift system than the non-stabilized automorphism groups. For

example, the stabilized automorphism groups for the full shift on 2 symbols and on

4 symbols are isomorphic, whereas for the automorphism groups this is essentially

the only case in which these groups can be distinguished. However, there is often an

advantage in working with a stabilized object involving sufficiently high powers of the
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17116 Y. Hartman et al.

transformation, rather than the original object. Examples of success in solving problems

in the stabilized setting, but which are still open in the non-stabilized setting, are

Wagoner’s [36] Finite Order Generation Theorem for stabilized inert automorphisms,

the classification [14, 39] of shifts of finite type up to topological conjugacy, and the

characterization [7] of the existence of a closing factor map between equal entropy

mixing shifts of finite. Some of these results, in turn, have shed light on problems in

the non-stabilized setting, such as the use of shift equivalence to address the problem

of classification of shifts of finite type up to conjugacy.

In this direction, we use our results on the stabilized automorphism group to

address a question about the (non-stabilized) automorphism group. As part of our anal-

ysis in the stabilized setting, we make key use of a particularly important class of inert

automorphisms, introduced by Nasu [28], called simple automorphisms. Wagoner [36]

asked whether the group of inert automorphisms is always generated by simple

automorphisms. Kim and Roush [17] answered Wagoner’s question by constructing a

particular shift of finite type that has an inert automorphism that is not a product

of simple automorphisms. Our methods (together with the realization results in [19, 20])

also show that the same result holds for a wide class of shifts of finite type; for example,

any shift of finite type having at least three fixed points and no points of least period

two (we note this can also be deduced using some results from [3], though our methods

are quite different). However, we do not know if this phenomena is even more general,

and it is possible that the same result holds for any shift of finite type (including the

full shift). A related problem is posed in Question 3.19.

In Section 4, we prove a stabilized version of the Kim–Roush Embedding

Theorem; namely, we show the stabilized automorphism group of any full shift embeds

into the stabilized automorphism group of any mixing shift of finite type. We use this

to show that, unlike the classical automorphism group, the stabilized automorphism

group of a mixing shift of finite type is never residually finite. We also prove along

the way that the stabilized group contains divisible subgroups, highlighting another

difference with the classical setting.

1.2 Guide to the paper

In Section 2, we give an overview of the tools we need from the classical setting of (non-

stabilized) automorphism groups. Most of these results appear scattered throughout

the literature, and we present them with the goal of generalizing and adapting these

results for the setting of stabilized automorphisms. Along the way, in Theorem 2.5, we
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Stabilized Automorphism Group of a Subshift 17117

write down the natural generalization of the observation made by Boyle et al. [6] that

Ryan’s theorem may be used to distinguish the automorphism groups of the full 2 shift

and the full 4 shift.

In Section 3, we introduce the stabilized automorphism group. The basic prop-

erties are small variations on the classical setting, allowing us to set up and study the

stabilized versions of the center, the dimension representation, and the inert subgroup.

The innovations arise when we turn to studying the commutator subgroup of the

stabilized automorphism group. The key ingredient used throughout this section that

is not available in the classical setting is Wagoner’s theorem, which shows that the

stabilized inert automorphisms are generated by simple automorphisms. Our analysis

in particular leads to Theorem 3.17, which, in conjunction with the constructions in

[19, 20], gives a method to detect, in the classical non-stabilized setting, the difference

between the subgroup of inerts and the subgroup generated by simple automorphisms.

In Section 3.6, we study the abelianization of the stabilized automorphism group. Using

our characterization of the commutator, we show how the abelianization can be used to

distinguish many automorphism groups in the stabilized setting.

Section 4 continues the extension of various properties from the classical setting

to the stabilized automorphism group. In particular, we prove a stabilized version of

the Kim–Roush Embedding Theorem. The proof adapts the original construction used

by Kim and Roush, with some necessary modifications.

The most difficult arguments of the paper are in Section 5, where we show that

the group of stabilized inert automorphisms of a full shift is simple. For a given shift

of finite type presented by a labeled graph #, the group of stabilized inerts contains

a certain locally finite subgroup of stabilized simple graph automorphisms associated

with the presenting graph #. In the case of a full shift, this locally finite subgroup turns

out to be simple. By a result of Boyle, this locally finite subgroup, together with the

shift, generates all of the stabilized inert subgroup. The key ingredient for us then is

Lemma 5.2, which shows that any nontrivial normal subgroup of the stabilized inert

automorphisms must have nontrivial intersection with the subgroup of stabilized sim-

ple graph automorphisms. The proof of Lemma 5.2 occupies the majority of the section.

2 Background and Notation

2.1 Symbolic dynamics

Assume that A is a finite set endowed with the discrete topology; we call A the alphabet.

The space AZ, endowed with the product topology, is a compact, metrizable space. An
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17118 Y. Hartman et al.

element x ∈ AZ is a bi-infinite sequence over the alphabet A, and we write x = (xi)i∈Z
with each xi ∈ A. It is easy to check that the left shift σ : AZ → AZ defined by

(σx)i := xi+1 is a homeomorphism of AZ to itself, and the dynamical system (AZ, σ )

is called the full A-shift. While the choice of symbols in the alphabet is irrelevant, we

often want to distinguish different full shifts by the size of the alphabet A, and so to

emphasize the size of the alphabet, we write the full shift as (Xn, σn) when |A| = n.

A subshift X ⊂ AZ is a closed, σ -invariant set X, and we use the shorthand shift

to refer to a subshift. We write (X, σX) for this system.

If w = w1 . . . wn ∈ An, then we call w a word of length n. If w is a word of length

n, then the set [w] defined by

[w] = {x ∈ AZ : xi = wi for i = 1, . . . n}

is the cylinder set determined by w. If (X, σX) is a subshift, then the language L(X) of

X is defined by

L(X) = {w ∈
∞⋃

n=1

An : [w] ∩ X )= ∅}.

The collection of sets
{
σ k

X([w]) : w ∈ L(X) and k ∈ Z
}

generate the topology of the

space X.

If x ∈ X and k, m ∈ Z with m > k, then x[k,m] denotes the word xkxk+1 . . . xm of

consecutive entries in x. Analogously, x(−∞,m] denotes the infinite word . . . xm−1xm, and

we similarly define x[k,∞).

A shift (X, σX) is irreducible if for all words u, v ∈ L(X), there exists some

w ∈ L(X) such that uwv ∈ L(X), and the shift is mixing if for all u, v ∈ L(X), there

exists N ∈ N such that for all n ≥ N, there is a word w ∈ L(X) of length n such that

uwv ∈ L(X). Irreducibility of the shift (X, σX) is equivalent to the system (X, σX) being

transitive: there exists some x ∈ X such that the orbit closure {σn
X x}n∈N is all of X.

Two systems (X, σX) and (Y, σY) are (topologically) conjugate if there exists a

homeomorphism h : X → Y such that h ◦ σX = σY ◦ h and we refer to the map h as

a conjugacy. It follows from the Curtis–Hedlund–Lyndon theorem [11] that any such

conjugacy is given by a sliding block code, meaning there exists some radius r ∈ N
such that for all x ∈ X, the value h(x)i only depends on the entries xi−r . . . xi . . . xi+r. For

example, the shift σX is given by a sliding block code with r = 1.

A shift of finite type is a subshift whose language consists of all words (over

some finite alphabet) which do not contain some given finite list of words. Alternatively,
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Stabilized Automorphism Group of a Subshift 17119

a shift of finite type can be defined by a κ × κ adjacency matrix A = (ai,j) over Z+ as

follows. Given A, we define #A to be a graph with κ vertices and ai,j edges between

vertices i and j. Labeling the set of edges, the associated shift of finite type, which we

denote by (XA, σA), consists of bi-infinite walks through edges in #A. Any shift of finite

type (X, σX) is conjugate to a shift of finite type (XA, σA) for some Z-matrix A. We use #n

to denote the graph consisting of one vertex with n edges.

A shift of finite type (X, σX) is mixing if and only if it is conjugate to a shift of

finite type (XA, σA) for which the Z+-matrix A is primitive, meaning there exists J such

that every entry of AJ is positive. A shift of finite type (X, σX) is irreducible if and only

if it is conjugate to some (XA, σA) for which A is an irreducible matrix, meaning that for

any entry Ai,j in A there exists J such that AJ
i,j is positive.

Standing assumption. Unless otherwise noted, we always assume that any shift

of finite type (X, σX) has positive entropy htop(σX): in terms of the language, this means

that

htop(σX) = lim
n→∞

log |{w ∈ L(X) : |w| = n}|
n

> 0.

In terms of a matrix presentation, if A is an irreducible matrix and (X, σX) is conjugate

to (XA, σA), then h(σX) = h(σA) = log λA where λA is the Perron–Frobenius eigenvalue of

the matrix A.

2.2 Automorphism groups

Given a compact space X, let Homeo(X) denote the group of all homeomorphisms from

X to itself (with group operation given by composition). It is obvious that for a shift

system (X, σX) one has σX ∈ Homeo(X), and the centralizer of σX in Homeo(X) is called

the automorphism group of the subshift (X, σX). As we consider various shift spaces,

we denote the group (under composition) of all automorphisms of a subshift (X, σX) by

Aut(X, σX), and when the shift is clear from the context, we write this as Aut(σX). In a

slight abuse of notation, we denote the automorphism group of the full shift on n letters

by Aut(σn).

A topological conjugacy h : (X, σX) → (Y, σY) between shift spaces (X, σX) and

(Y, σY) induces an isomorphism h∗ : Aut(X, σX) → Aut(Y, σY) defined by

h∗(φ) = h ◦ φ ◦ h−1.
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17120 Y. Hartman et al.

For any subshift (X, σX), the subgroup 〈σX〉 generated by the shift always lies,

by definition, in the center Z(Aut(σX)) of the automorphism group Aut(σX); when X is

infinite, the subgroup generated by σX is isomorphic to Z. For an irreducible shift of

finite type, this subgroup is the whole center.

Theorem 2.1 (Ryan [32, 33]). If (X, σX) is an infinite irreducible shift of finite type, then

Z(Aut(σX)) = 〈σX〉.

As observed in [6], this has an immediate application to distinguishing auto-

morphism groups of full shifts, using arithmetic properties of the size of the alphabet.

A general result along these lines is given in Theorem 2.5, but we briefly recall the

following corollary, which can be proven by elementary means.

Corollary 2.2. For any prime p, Aut(σp) is not isomorphic to Aut(σpp).

Proof. Fix a prime p. It is easy to check that σpp ∈ Aut(σpp) has a pth root, meaning

there exists φ ∈ Aut(σpp) such that φp = σpp (e.g., one can construct such an φ using the

fact that (Xpp , σpp) and (Xp, σp
p ) are topologically conjugate).

If Aut(σp) and Aut(σpp) are isomorphic, then any isomorphism maps the center

isomorphically onto the center. By Ryan’s theorem, this means that σp ∈ Aut(σp) is

mapped to σ±1
pp ∈ Aut(σpp). Since σpp has a pth root, this implies either σp or σ−1

p has

a pth root. However, we claim that neither σp nor σ−1
p does. Indeed, suppose there exists

ψ ∈ Aut(σp) such that ψp = σp or ψp = σ−1
p ; we suppose ψp = σp, as the other case is

similar. The system (Xp, σp) has pp −p points of least period p, and hence pp−1 −1 orbits

of length p. Since p does not divide pp−1 − 1, there exist some 1 ≤ i < p, 0 ≤ j < p, such

that ψ i(x) = σ
j
p(x) for some period p point x. But this implies

σ i
p(x) = ψpi(x) = σ

pj
p (x) = x,

which, since i < p, is a contradiction. !

2.3 The dimension representation

Krieger [21, 22] defined a dimension triple (GA, G+
A , δA) associated with a shift of finite

type (XA, σA), where GA is an abelian group, G+
A is a positive cone in GA (meaning it is a

subsemigroup of GA containing 0 that generates GA), and δA is a group automorphism

of the pair (GA, G+
A ). A conjugacy between shifts of finite type induces a corresponding
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Stabilized Automorphism Group of a Subshift 17121

isomorphism of their respective dimension triples; since each element of Aut(σA) is a

conjugacy from (XA, σA) to itself, this gives rise to the dimension representation

πA : Aut(σA) → Aut(GA).

To define this representation precisely in the manner suitable for our purposes, we

briefly outline two definitions of the dimension triple (GA, G+
A , δA); the 1st is an intrinsic

definition given by Krieger and the 2nd is more algebraic. These two definitions produce

isomorphic objects and this is described in [25, Section 7.5]; our presentation closely

follows the one given there.

Assume that A is an irreducible κ × κ matrix with entries in Z+, and let (XA, σA)

denote the associated shift of finite type. We further assume that (XA, σA) has positive

topological entropy htop(σA) > 0, and note that htop(σA) = log λA where λA denotes the

Perron–Frobenius eigenvalue of A. The eventual range R(A) of A is the subspace of Qκ

defined by

R(A) =
∞⋂

j=1

QκAj

(throughout, we assume the matrices act on row vectors). The dimension triple

(GA, G+
A , δA) associated with A consists of the abelian group GA, the semigroup G+

A ⊂ GA,

and the automorphism δA of GA, where

(i) GA = {x ∈ R(A) : xAj ∈ Zκ for some j ≥ 0},
(ii) G+

A = {x ∈ R(A) : xAj ∈ (Z+)κ for some j ≥ 0},
(iii) δA(x) = xA.

When A = (n), we usually simply write (Gn, G+
n , δn) instead of (G(n), G

+
(n), δ(n)).

We now describe the intrinsic definition of the dimension triple. An m-ray is

defined to be a subset of XA of the form

R(x, m) = {y ∈ XA : y(−∞,m] = x(−∞,m]}

for some x ∈ XA and m ∈ Z, and an m-beam is a finite union of m-rays. A ray is defined

to be an m-ray for some m ∈ Z, and a beam is an m-beam for some m ∈ Z. Note that

if U is an m-beam for some m ∈ Z, then U is also an n-beam for any n ≥ m. Recall

that #A denotes the graph associated with the edge shift of finite type (XA, σA). Given an

m-beam

U =
j⋃

i=1

R(x(i), m),
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17122 Y. Hartman et al.

let vU,m ∈ Zκ denote the vector whose Jth component is the cardinality of the set

{x(i) ∈ U : the edge corresponding to x(i)
m ends at state J}.

Beams U and V are said to be equivalent if there exists some m ∈ Z such that vU,m =
vV,m, and we use [U] to denote the equivalence class of a beam U. Since A is irreducible

and 0 < htop(σA) = log λA, given beams U, V, there exist beams U ′, V ′ such that

[U] = [U ′], [V] = [V ′], and U ′ ∩ V ′ = ∅.

Let D+
A denote the abelian semigroup whose elements are equivalence classes of beams

endowed with the operation defined by

[U] + [V] = [U ′ ∪ V ′].

Letting DA denote the group completion of D+
A (thus, elements of DA are formal

differences [U] − [V]), the map dA : DA → DA induced by

dA([U]) = [σA(U)]

is a group automorphism of DA. This defines Krieger’s dimension triple (DA, D+
A , dA).

An automorphism φ ∈ Aut(XA, σA) induces an automorphism

φ∗ : (DA, D+
A , dA) → (DA, D+

A , dA)

by setting

φ∗([U]) = [φ(U)], [U] ∈ D+
A .

Here, by a morphism of a triple, we mean a morphism preserving all the relevant data

given by the group, the subsemigroup, and the group automorphism associated with

DA or GA. For example, an automorphism ) ∈ Aut(GA, G+
A , δA) is a group automorphism

) : GA → GA taking G+
A onto G+

A such that ) ◦ δA = δA ◦ ).

The relation between these two definitions is settled by the following.

Proposition 2.3 (see [25, Theorem 7.5.13]). Assume (XA, σA) is a shift of finite type and

A is κ × κ. The map θ : D+
A → G+

A induced by the map

θ([U]) = δ−κ−n
A (vU,nAκ),

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/21/17112/6344682 by N
orthw

estern U
niversity user on 05 M

arch 2023



Stabilized Automorphism Group of a Subshift 17123

where U is an n-beam, is a semigroup isomorphism, and its completion is a group

isomorphism θ : DA → GA such that

θ ◦ dA = δA ◦ θ .

In other words, this proposition means that θ induces an isomorphism of triples

θ : (DA, D+
A , dA) → (GA, G+

A , δA).

For φ ∈ Aut(σA), let Sφ : (GA, G+
A , δA) → (GA, G+

A , δA) denote the automorphism of

the dimension triple such that the diagram

commutes. We can now define the dimension representation

πA : Aut(σA) → Aut(GA, G+
A , δA)

by setting πA(φ) = Sφ .

2.4 An application of the dimension representation

As usual, ω(n) denotes the number of distinct prime divisors of n (counted without

multiplicity).

The following result appears implicitly in [6].

Proposition 2.4. For a full shift (Xn, σn), we have

Aut(Gn, G+
n , δn) ∼= Zω(n).

Moreover, the dimension representation πn : Aut(σn) → Aut(Gn, G+
n , δn) is surjective.

In the proof and in the sequel, if H ⊂ R is a subgroup and n ≥ 1, we use the

notation mn to refer to the map from H to itself given by a 3→ n · a.

Proof. For a full shift (Xn, σn), it follows quickly from Proposition 2.3 that there is an

isomorphism of triples

(Gn, G+
n , δn) ∼= (Z[ 1

n ], Z+[ 1
n ], mn).
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17124 Y. Hartman et al.

Then, it is straightforward to check that

Aut(Z[ 1
n ], Z+[ 1

n ], mn) ∼= Zω(n)

is generated by the maps {mp : pis a prime dividing n}.
For the 2nd part, we write the prime factorization of n as n = ∏ω(n)

i=1 pai
i with

pi prime. There exists a conjugacy h : (Xn, σn) →
(∏ω(n)

i=1 Xpi
,
∏ω(n)

i=1 σ
ai
pi

)
and we let

h∗ : Aut(σn) → Aut(
∏ω(n)

i=1 σ
ai
pi ) denote the induced isomorphism of automorphism groups.

For each i, let φi denote the automorphism of
(∏ω(n)

i=1 Xpi
,
∏ω(n)

i=1 σ
ai
pi

)
that acts by σpi

in

the ith coordinate and the identity in the other coordinates. Then, the images of the

automorphisms h−1
∗ (φi) under the map πn generate Aut(Gn, G+

n , δn). !

For a ∈ N, let R(a) = {k ∈ N : a1/k ∈ N} denote the non-negative integral roots of

a. To the authors’ knowledge, the only known method for distinguishing automorphism

groups of full shifts relies on Ryan’s [32] theorem, which characterizes the center of the

group of Aut(σA). This technique was explicitly mentioned in [6] for the full shifts on 2

and 4 symbols. The following result, a natural generalization of this, is not altogether

new; we include it since it could not be found explicitly in the literature. Our argument

uses the dimension representation; an alternative proof may be given using [24,

Theorem 8].

Theorem 2.5. Let m, n ≥ 2, and suppose Aut(σm) ∼= Aut(σn). Then, R(m) = R(n). In

particular, for any prime p and k ≥ 2, Aut(σp) and Aut(σpk) are not isomorphic.

Proof. Let k ∈ R(m), so there exists a ∈ N such that ak = m. Then, (Xm, σm) is

topologically conjugate to (Xa, σ k
a ), and in particular, there exists φ ∈ Aut(σm) such

that φk = σm. Suppose , : Aut(σm) → Aut(σn) is an isomorphism, and let φ′ = ,(φ).

By Ryan’s theorem (Theorem 2.1), ,(σm) = σ±1
n , so (φ′)k = σ±1

n . Applying the dimension

representation, we have the equality

k(πn(φ′)) = πn((φ′)k) = πn(σ±1
n ) = ±





v1

v2
...

vr




∈ Zω(n).

Since πn(φ′) ∈ Zω(n), each vi must be divisible by k. Let wi = vi
k . Writing n = ∏ω(n)

i=1 pvi
i

for some primes pi, it follows from Proposition 2.4 that n =
(∏ω(n)

i=1 pwi
i

)k
so k ∈ R(n).

Thus, R(m) ⊂ R(n), and the same argument shows R(n) ⊂ R(m). Thus, R(m) = R(n). !
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Stabilized Automorphism Group of a Subshift 17125

In particular, it follows that the group Aut(σ9) is not isomorphic to the group

Aut(σ27), as R(9) )= R(27).

2.5 Inert and simple automorphisms

An automorphism φ ∈ Aut(σA) is said to be inert if it lies in the kernel of the

dimension representation, and we denote the subgroup of inert automorphisms by

Inert(σA). A particularly important collection of inert automorphisms is the class of

simple automorphisms, first introduced by Nasu [28]. We recall the definition.

If # is a directed graph, we call a graph automorphism of # that fixes every

vertex a simple graph symmetry of the graph #. We use the term graph symmetry

instead of graph automorphism to avoid confusion between automorphisms of a graph

and automorphisms of a shift.

Let (XA, σA) be a shift of finite type presented by a matrix A over Z+ with

associated directed labeled graph #A, and suppose τ is a simple graph symmetry of

#A. Then, τ induces an automorphism τ̃ ∈ Aut(σA) given by a 1-block code, and any

automorphism in Aut(σA), which is induced by such a graph symmetry is called a simple

graph automorphism. An automorphism φ ∈ Aut(σA) is called simple if there exists

a shift of finite type (XB, σB), a conjugacy h : (XA, σA) → (XB, σB), and a simple graph

automorphism τ̃ ∈ Aut(XB, σB) such that

φ = h−1
∗ (τ̃ ) = h−1 ◦ τ̃ ◦ h.

Note that, by construction, any simple automorphism is of finite order. It is straightfor-

ward to check that the subgroup of Aut(σA) generated by simple automorphisms forms

a normal subgroup contained in Inert(σA), and we denote this subgroup by Simp(σA).

There exist irreducible shifts of finite type (XA, σA) for which Simp(σA) is a

proper subgroup of Inert(σA); see [17]. In general, the difference between Simp(σA) and

Inert(σA) for an irreducible shift of finite type is not well understood; for example, it is

not known whether for a full shift (Xn, σn) the groups Simp(σn) and Inert(σn) agree.

However, Wagoner [36] showed that, upon passing to sufficiently large powers

of the shift, inert automorphisms can be written as products of simple automorphisms

(an alternate proof was given by Boyle [2]).

Theorem 2.6 (Wagoner [36]). If φ is an inert automorphism of a mixing shift of finite

type (XA, σA), then there exists M such that for all m ≥ M, φ can be written as a product

of simple automorphisms lying in Aut(XA, σm
A ).
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17126 Y. Hartman et al.

3 The Stabilized Automorphism Group

3.1 1st properties

For a subshift (X, σX), let Aut(k)(σX) denote the centralizer of σ k
X in the group Homeo(X).

Thus, Aut(k)(σX) is precisely Aut(X, σ k
X) and Aut(k)(σX) is a subgroup of Aut(km)(σX) for

all k, m ≥ 1.

Definition 3.1. If (X, σX) is a subshift, define the stabilized automorphism group

Aut(∞)(σX) to be

Aut(∞)(σX) =
∞⋃

k=1

Aut(k)(σX),

where the union is taken in Homeo(X).

For the full shift (Xn, σn) on n symbols, we denote the stabilized automorphism

group by Aut(∞)(σn).

It is straightforward to verify the following.

Lemma 3.2 (Stabilized Curtis–Lyndon–Hedlund theorem). Let (X, σX) be a shift with

alphabet A, and let φ ∈ Aut(k)(σX). Then, there exists a non-negative integer r and k

block maps βi : A2r+1 → A for i = 0, 1, . . . , k − 1 such that

φ(x)z = βzmod k(xz−r, . . . , xz, . . . , xz+r).

Note that, the case that all βi are identical yields an element that commutes

with σX .

One concludes, either from the definition or using Lemma 3.2 that Aut(∞)(σX) is

a countable group that contains the automorphism group Aut(σX).

For some subshifts, nothing new arises in the stabilized automorphism group.

Example 3.3. Let (X, σX) be a minimal shift associated with an irrational rotation: for

example, such a shift can be defined by fixing an irrational α ∈ (0, 1), considering

T(x) = x + α (mod 1),

and using the coding of the orbit of 0 defined by setting the nth entry to be 0 if

Tn(x) ∈ [0, α) and 1 if Tn(x) ∈ [α, 1). This gives rise to a Sturmian shift (see, e.g., [31,

Chapter 6] for background on Sturmian shifts), and Aut(σX) ∼= Z is generated by the

shift σX (see [30]).
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Stabilized Automorphism Group of a Subshift 17127

The system (X, σX) has a single pair of asymptotic orbits O1, O2, and for each

k ≥ 1 the system (X, σ k
X), then has k pairs of asymptotic orbits given by the collection

{σ i
X(O1), σ i

X(O2)}k−1
i=0 . Using [10, Lemma 2.3], it follows that any automorphism in Aut(σ k

X)

is of the form σ
j
X for some j ∈ Z, and hence

Aut(σ k
X) = 〈σX〉 ∼= Z.

Thus, in this case, we have that Aut(∞)(σX) = Aut(σX) ∼= Z.

However, for a shift of finite type, each inclusion in the definition of the

stabilized automorphism group is strict.

Lemma 3.4. If (XA, σA) is an infinite irreducible shift of finite type, then for any k ∈ N
and any m ≥ 2, the subgroup Aut(k)(σA) is a proper subgroup of Aut(km)(σA).

Proof. By Ryan’s theorem (Theorem 2.1), the center of Aut(km)(σA) = Aut(σ km
A ) is

exactly 〈σ km
A 〉. Thus, there exists some φ ∈ Aut(km)(σA) such that φ does not commute

with σ k
A. !

In Proposition 3.8, we make further use of Ryan’s theorem and prove a stronger

result, showing that for an irreducible shift of finite type (X, σA), we have that Aut(σA)

is not abstractly isomorphic to Aut∞(σA).

The following proposition follows immediately from the definition of the

stabilized automorphism group.

Proposition 3.5. For any shift (X, σX) and k ≥ 1, Aut(∞)(σ k
X) = Aut(∞)(σX).

It is well known that if two shifts are conjugate, then their automorphism

groups are isomorphic, and the same holds true for their stabilized automorphism

groups. In fact, a stronger result holds in the stabilized setting, and to make

this precise, we define a weaker notion that suffices for the associated groups to

be isomorphic.

Recall that (X, σX) and (Y, σY) are eventually conjugate if there exists some

K ∈ N such that for all k ≥ K, (X, σ k
X) and (Y, σ k

Y) are conjugate. We define a weaker

notion: we say that the systems (X, σX) and (Y, σY) are rationally conjugate if there

exist j, k ≥ 1 such that the systems (X, σ j
X) and (Y, σ k

Y) are conjugate. For example, the

systems (X2, σ2) and (X4, σ4) are rationally conjugate but are not eventually conjugate.
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17128 Y. Hartman et al.

Proposition 3.6. If the systems (X, σX) and (Y, σY) are rationally conjugate, then

Aut(∞)(σX) and Aut(∞)(σY) are isomorphic.

Proof. If h : (X, σ j
X) → (Y, σ k

Y) is a conjugacy, then h∗ gives rise to an isomorphism

h∗ : Aut(∞)(σ
j
X) → Aut(∞)(σ k

Y).

By Proposition 3.5, this implies Aut(∞)(σX) and Aut(∞)(σY) are isomorphic. !

In particular, since (X4, σ4) is conjugate to (X2, σ 2
2 ), it follows that Aut(∞)(σ2) and

Aut(∞)(σ4) are isomorphic, in contrast to the non-stabilized setting, where Aut(σ2) and

Aut(σ4) are not isomorphic (see Theorem 2.5).

Recall that two matrices A and B with entries in Z+ are said to be shift

equivalent (over Z+) if there exists an integer m ≥ 1 and matrices R and S over Z+
such that

AR = RB, SA = BS, Am = RS, and Bm = SR.

If A and B are irreducible Z+-matrices which are shift equivalent, then the systems

(XA, σA), (XB, σB) are eventually conjugate, and Kim and Roush [14] showed the converse

holds. We use this to show the following proposition.

Proposition 3.7. Suppose (XA, σA) and (XB, σB) are irreducible shifts of finite type

defined by Z+-matrices A, B. If A and B are shift equivalent, then Aut(∞)(σA) and

Aut(∞)(σB) are isomorphic.

Proof. By Kim and Roush [14, 15], matrices A and B are shift equivalent if and only if

the systems (XA, σA) and (XB, σB) are eventually conjugate. The result then follows from

Proposition 3.6. !

3.2 The center

Ryan’s theorem (Theorem 2.1) shows that for any irreducible shift of finite type, the

center is exactly the powers of the shift. In contrast, the center is trivial in the stabilized

automorphism group.

Proposition 3.8. Suppose (XA, σA) is an infinite irreducible shift of finite type. Then,

the center Z(Aut(∞)(σA)) of Aut(∞)(σA) is trivial, and the group Aut(∞)(σA) is not finitely

generated.
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Stabilized Automorphism Group of a Subshift 17129

Proof. Suppose φ ∈ Z(Aut(∞)(σA)), and choose k ≥ 1 such that φ ∈ Aut(k)(σA). Then,

φ ∈ Z(Aut(k)(σA)), so by Ryan’s theorem, we have φ = σ km
A for some m ∈ Z. However, if

σ km
A = φ ∈ Z(Aut(∞)(σA)), then σ km

A ∈ Z(Aut(2km)(σA)) = 〈σ 2km
A 〉, so m = 0.

For any irreducible shift of finite type (XA, σA), any finitely generated subgroup

of Aut(∞)(σA) has nontrivial centralizer (as each finitely generated subgroup is included

in Aut(k)(σA) for some k, for which σ k
A would be in the centralizer). By the previous part,

it follows that for any infinite irreducible shift of finite type, the group Aut(∞)(σA) is

not finitely generated. !

3.3 The Aut(∞)(σA)-action on XA

Let (XA, σA) be a mixing shift of finite type, and let P(XA) denote the set of σA-periodic

points in XA. Then, both Aut(σA) and Aut(∞)(σA) act on the set P(XA). While the action

of Aut(σA) on P(XA) is far from transitive (since any φ ∈ Aut(σA) must preserve the

order of a σA-periodic point), it follows from [5, Theorem 3.6] that Aut(∞)(σA) acts highly

transitively on the σA-periodic points of XA (recall an action of a group G on a countable

set X is said to be highly transitive if for all k ≥ 1 it is transitive on the set of ordered

k-tuples of distinct elements in X).

It is straightforward to check that the action of Aut(σA) on XA is not minimal,

since there are periodic points. Similarly, there are many Aut(σA)-invariant probability

measures, including atomic measures supported on periodic points, and the measure

of maximal entropy. However, the minimal components and Aut(σA)-invariant measures

are essentially classified in [6, Sections 9 and 10]. Using this, we deduce the following

proposition.

Proposition 3.9. If (XA, σA) is a mixing shift of finite type, then Aut(∞)(σA) acts highly

transitively on the set of σA-periodic points in XA, and the action of Aut(∞)(σA) on XA

is minimal and uniquely ergodic. Moreover, the unique Aut(∞)(σA)-invariant probability

measure is given by the measure of maximal entropy for the system (XA, σA).

Proof. For the full shift on (Xn, σn) is easy to see that Aut(∞)(σn) acts highly

transitively on the set of periodic points of σn: any permutation of fixed points σm
n may

be implemented by a simple graph automorphism. Then, the minimality, the unique

ergodicity, and the claim regarding the measure of maximal entropy follow from [6,

Theorem 9.2 and Corollary 10.2].

For the general case of a mixing shift of finite type (XA, σA), to apply this same

result it suffices to show that Aut(∞)(σA) acts highly transitively on the set of periodic

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/21/17112/6344682 by N
orthw

estern U
niversity user on 05 M

arch 2023



17130 Y. Hartman et al.

points of σA. Suppose Q = {x1, . . . , xl} is a set of σA-periodic points and τ is some

permutation of the set Q. Let y1, y2 be a pair of σA-periodic points not contained in

Q and choose m large enough that the set of fixed points of σm
A contains Q ∪ {y1, y2}.

If τ is an even permutation, then it follows from [19, Main Theorem] that there exists

ατ ∈ Inert(σA) such that ατ acts on Q via τ . If τ is odd, define τ ′ to be the permutation

of Q ∪ {y1, y2}, which acts by τ on Q and by an involution on {y1, y2}. Then, τ ′ is an even

permutation, so again [19, Main Theorem] implies there exists some ατ ′ such that the

action of ατ ′ on Q is given by τ ′. It follows that Aut(∞)(σA) acts highly transitively on

the σA-periodic points of XA. The statement now follows in the same way as for the full

shift. !

3.4 The stabilized dimension representation

Let A be a Z+-matrix, and recall we have defined the dimension representation

πA : Aut(σA) → Aut(GA, G+
A , δA).

For any k ≥ 1, we also have a homomorphism

π
(k)
A : Aut(σ k

A) → Aut(GAk , G+
Ak , δAk).

Note that in general, we have (GA, G+
A ) = (GAk , G+

Ak) for all k ∈ N, and δAk = δk
A.

However, the dimension triples (GA, G+
A , δA) and (GAk , G+

Ak , δAk) are not isomorphic, as

there is no isomorphism that intertwines the maps δA and δAk . For each k ≥ 1 the map

π
(k)
A : Aut(k)(σA) → Aut(GAk , G+

Ak , δAk) sends σ k
A to δAk = δk

A, and the image of π
(k)
A lands in

the centralizer of δk
A, so in fact, we have a homomorphism

π
(k)
A : Aut(k)(σA) → Aut(GA, G+

A , δk
A).

It follows from the definitions that for all k ≥ 1, Aut(GA, G+
A , δA) can be viewed

naturally as a subgroup of Aut(GA, G+
A , δk

A), and we can define the stabilized group of

automorphisms of the dimension triple by setting

Aut(∞)(GA, G+
A , δA) =

∞⋃

k=1

Aut(GA, G+
A , δk

A).

Equivalently, Aut(∞)(GA, G+
A , δA) is the union of the centralizers of δk

A in the group of

automorphisms of the pair (GA, G+
A ), that is, all automorphisms of the group GA, which

preserve G+
A .
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Stabilized Automorphism Group of a Subshift 17131

Furthermore, as remarked in [6, p. 87], for k ≥ 1, the restriction of the map

π
(k)
A : Aut(k)(σA) → Aut(GAk , G+

Ak , δk
A) = Aut(GA, G+

A , δk
A)

to Aut(σA) ⊂ Aut(σ k
A) coincides with the map πA : Aut(σA) → Aut(GA, G+

A , δA). We can thus

define the stabilized dimension representation

π
(∞)
A : Aut(∞)(σA) → Aut(∞)(GA, G+

A , δA).

In what follows, we use the shorthand notation Aut(∞)(GA) to refer to the group

Aut(∞)(GA, G+
A , δA).

Example 3.10. Consider the case of the full 3-shift, presented via the matrix A = (3).

For all k ∈ N, we have G3 = G3k = Z[ 1
3 ]. In this case, Aut(G3k) = Aut(G3) ∼= Z for any k, and

π
(k)
3 : Aut(k)(σ3) → Aut(G3) ∼= Z

with π
(k)
3 (σ3) = δ3.

Recall ω(n) denotes the number of distinct prime factors of n, and the maps mp

are defined by mp(x) = p · x.

Proposition 3.11. For the full shift (Xn, σn), we have

Aut(∞)(Gn) ∼= Aut(Gn, G+
n , δn) ∼= Zω(n)

is generated by the maps {mp : pis a prime dividing n}.

Proof. The statement follows immediately from Proposition 2.4, and the fact that the

maps mp generate Aut(Z[ 1
n ], Z+[ 1

n ], δn) ∼= Zω(n). !

For an example where the stabilized group of automorphisms of the dimension

group is non-abelian; see Example 3.24.

In the case of a full shift (Xn, σn), the classical dimension representation

πn : Aut(σn) → Aut(Gn)
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17132 Y. Hartman et al.

is surjective (see Proposition 2.4). However, in the general setting of mixing shifts of

finite type, the dimension representation need not be surjective: Kim et al. [18] give

an example of a mixing shift of finite type for which the dimension representation is

not surjective, and in the general setting of mixing shifts of finite type, the question

of when the dimension representation is surjective remains open. In the stabilized

setting, however, the question has a satisfying answer, as shown in [6] (our terminology

is different, but this is an immediate translation of their result).

Theorem 3.12 (Boyle et al. [6, Theorem 6.8]). For any mixing shift of finite type (XA, σA),

the stabilized dimension representation

π
(∞)
A : Aut(∞)(σA) → Aut(∞)(GA)

is surjective.

As in the standard setting, we define the group of stabilized inert automor-

phisms to be the kernel of π
(∞)
A , and we denote this group by

Inert(∞)(σA) = ker π
(∞)
A .

It follows immediately from the definitions that

Inert(∞)(σA) =
∞⋃

k=1

Inert(σ k
A).

Similarly, we define the simple automorphisms in the stabilized automorphism

group to be the union of the simple automorphisms at each of the finite levels.

We show later that one of the many differences between stabilized and standard

automorphism groups lies in the structure of their corresponding inert subgroups. In

particular, in Section 5, we prove that, in the case of a full shift, Inert(∞)(σn) is always

simple. This is in stark contrast to the classical inert subgroup Inert(σn), which is

residually finite. Using the stabilized version of the Kim–Roush embedding proved

in Section 4, it follows that for any mixing shift of finite type (XA, σA), Inert(∞)(σA)

always contains an infinite simple group; in particular, Inert(∞)(σA) is never residually

finite (Section 4.2). We note that, as a consequence, Inert(∞)(σA) and Inert(σA) are not

isomorphic as groups (in fact, it follows that Inert(∞)(σA) does not even embed into

Inert(σA)).

Rewriting Wagoner’s theorem (Theorem 2.6) in our terminology, we have the

following theorem.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/21/17112/6344682 by N
orthw

estern U
niversity user on 05 M

arch 2023



Stabilized Automorphism Group of a Subshift 17133

Theorem 3.13 (Wagoner (Theorem 2.6 rephrased)). If (XA, σA) is a mixing shift of finite

type, then Inert(∞)(σA) is generated by simple automorphisms in Aut(∞)(σA).

3.5 The commutator subgroup

For a group G, we write [g, h] = g−1h−1gh for the commutator of the elements g, h ∈ G and

for subgroups H1, H2 ⊂ G, we let [H1, H2] denote the group generated by all commutators

[h1, h2] with h1 ∈ H1 and h2 ∈ H2. The goal of this section is to prove the following

theorem.

Theorem 3.14. Let (XA, σA) be a mixing shift of finite type. Then, we have

Inert(∞)(σA) ⊆ [Aut(∞)(σA), Aut(∞)(σA)].

If Aut(∞)(GA) is abelian, then equality holds. In particular, for a full shift on n letters

we have

Inert(∞)(σn) = [Aut(∞)(σn), Aut(∞)(σn)].

Note that, in the case where Aut(∞)(GA) is torsion-free (e.g., a full shift),

Wagoner’s theorem as phrased in Theorem 3.13 characterizes the dynamical object

given by the group of stabilized inert automorphisms via an abstract property of the

group: the subgroup generated by the elements of finite order. Theorem 3.14 gives a

general relation between an abstract group property, this time the commutator and the

dimension representation of the symbolic system.

The following lemma is the technical tool needed for the proof of Theorem 3.14.

Lemma 3.15. Let (XA, σA) be a shift of finite type, and let τ be a simple graph symmetry

of the graph #A, which permutes two distinct edges e and f between the vertices i

and j. Let τ̃ denote the automorphism of (XA, σA) induced by τ . Then, we have τ̃ lies

in [Aut(σ 2
A), Aut(σ 2

A)].

Proof. We consider (XA, σ 2
A) as a shift on the alphabet

(
a0

a1

)

where a0a1 is an

admissible word in XA. Define the zero-block code φ0 in Aut(σ 2
A) by

φ0 :

(
a0

a1

)

3→
(

τ (a0)

a1

)

.
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17134 Y. Hartman et al.

Note that since τ is a simple graph automorphism, it follows that φ0 is an

automorphism of (XA, σ 2
A). Then, in Aut(σ 2

A), we have

τ̃ = φ0σAφ−1
0 σ−1

A . (1)

!

For a set X, let Sym(X) denote the group of all permutations of the set X.

Theorem 3.16. Let (XA, σA) be a shift of finite type, and let φ ∈ Aut(σA) be a simple

automorphism. Then, we have φ ∈ [Aut(σ 2
A), Aut(σ 2

A)].

Proof. Since φ is simple, there exists some shift of finite type (XB, σB) and a conjugacy

h : (XA, σA) → (XB, σB) such that h∗(φ) is a simple graph automorphism. Set τ̃ = h∗(φ).

Since h also induces an isomorphism between Aut(σ 2
A) and Aut(σ 2

B ), it suffices to show

that τ̃ ∈ [Aut(σ 2
B ), Aut(σ 2

B )].

Let Ei,j denote the set of edges between vertices i, j in the graph #B. There exist

permutations τi,j ∈ Sym(Ei,j) such that τ̃ is induced by the simple graph symmetry
∏

i,j τi,j. For each pair i, j, the permutation τi,j is given by a product of transpositions

in Sym(Ei,j). By Lemma 3.15, the automorphism induced by each of these transpositions

lies in [Aut(σ 2
B ), Aut(σ 2

B )], so τ̃ lies in [Aut(σ 2
B ), Aut(σ 2

B )] as well. !

We now use Theorem 3.16 to complete the proof of Theorem 3.14.

Proof of Theorem 3.14. Theorem 3.16 implies that any simple automorphism lies

in the commutator. By Theorem 3.13, the group Inert(∞)(σA) is generated by simple

automorphisms, proving the 1st part.

To check the 2nd statement, when Aut(∞)(GA) is abelian, the dimension repre-

sentation

π
(∞)
A : Aut(∞)(σA) → Aut(∞)(GA)

factors through the abelianization of Aut(∞)(σA). Thus,

[Aut(∞)(σA), Aut(∞)(σA)] ⊆ Inert(∞)(σA).

The statement about full shifts follows from Proposition 3.11. !
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Stabilized Automorphism Group of a Subshift 17135

As a 2nd corollary of Theorem 3.16, we can in some cases show that, in the non-

stabilized automorphism group Aut(σA), a particular inert automorphism can not lie in

the subgroup generated by simple automorphisms. Such results can also be deduced

from [3, Theorem 2], where the possible actions of simple automorphisms on finite

subsystems of the shift were classified. Together with the powerful realization result

in [19, 20], this provides a large class of examples where the answer to Wagoner’s

Question 3.17 is no.

Theorem 3.17. Let (XA, σA) be a shift of finite type, and suppose there exists odd k ∈ N
such that XA has no σA-periodic points of least period 2k, and further assume that there

are at least three distinct orbits of least period k. Then, the group generated by simple

automorphisms is a proper subgroup of Inert(σA).

Proof. By [19, 20, Main Theorem], there exists φ ∈ Inert(σA) such that the action of φ

on the σA-orbits of length k consists of a 3-cycle. We show that φ cannot be written as a

product of commutators in Aut(σ 2
A) of the form given in (1). By Theorem 3.16, it follows

that φ )∈ Simp(σA).

Suppose γ ∈ Aut(σ 2
A). Since k is odd, σ 2

A maps length k σA-orbits to themselves.

Furthermore, since there are no σA-periodic points of least period 2k, it follows that

Aut(σ 2
A) induces a well-defined action on the set of σA-orbits of length k. Since σA acts

trivially on the set of σA-orbits of length k, the commutator γ σAγ −1σ−1
A acts trivially on

the set of length k σA-orbits. Thus, since φ acts nontrivially on the σA-orbits of length k,

φ cannot be written as a product of such commutators. !

For a concrete example of the phenomena exhibited in this corollary, consider

the primitive matrix

A =





1 1 1 0

0 1 0 1

0 1 1 0

1 0 1 0




. (2)

Since the system (XA, σA) has three fixed points and no points of least period 2, by

Theorem 3.17, Inert(σA) )= Simp(σA).

Remark 3.18. Considering the matrix A in (2), it can be shown using [4, Theorem 1]

that there exists a product of finite order inert automorphisms in Aut(σA) whose action
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17136 Y. Hartman et al.

on the set of fixed points in (XA, σA) is a 3-cycle. Letting Fin(σA) denote the subgroup of

Inert(σA) generated by elements of finite order, in light of Theorem 3.17, for this matrix

A we have the following proper containments:

Simp(σA) ! Fin(σA) ! Inert(σA).

In general, we do not know if Simp(σA) is always finite index in Inert(σA). Based

on Theorems 3.16 and 3.17, as a way to approach this question, we ask the following.

Question 3.19. Assume (XA, σA) is a shift of finite type. Is

Inert(σA) ∩ [Aut(σ 2
A), Aut(σ 2

A)]

finite index in Inert(σA)?

3.6 The abelianization of Aut(∞)(σA) and Theorem 1.1

For a group G, we let Gab denote its abelianization. We write AbσA
for the abelianization

map Aut(∞)(σA) →
(
Aut(∞)(σA)

)
ab, and AbGA

for the abelianization map Aut(∞)(GA) →
(
Aut(∞)(GA)

)
ab. With the previous results in hand, we can now show that the abelian-

ization of Aut(∞)(σA) for a general mixing shift of finite type (XA, σA) coincides with the

abelianization of its dimension representation.

Theorem 3.20. Suppose (XA, σA) is a mixing shift of finite type. Then, we have an

isomorphism of the abelianizations:

Aut(∞)(σA)ab
∼= Aut(∞)(GA)ab.

Proof. Consider the following diagram:

(3)

By Theorem 3.14, Inert(∞)(σA) ⊂ [Aut(∞)(σA), Aut(∞)(σA)], and by Theorem 3.12, the map

π
(∞)
A is surjective, so the map f is well defined. Since f factors through the abelianization
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Stabilized Automorphism Group of a Subshift 17137

of Aut(∞)(GA), the map g exists. Moreover, since AbσA
is surjective, f is surjective, and

hence g is surjective.

We claim that the map g is also injective. Suppose a ∈ ker g. Since the map AbGA

is surjective, we can find b ∈ Aut(∞)(GA) such that AbGA
(b) = a, and hence f (b) = Id. By

Theorem 3.12, π
(∞)
A is surjective, so there exists c ∈ Aut(∞)(σA) such that π

(∞)
A (c) = b.

Then, c lies in the kernel of the map AbσA
, which implies that c is a commutator. Thus,

π
(∞)
A (c) = b is also a commutator, and hence a = AbGA

(b) = Id. !

Corollary 3.21. If n ≥ 2, then we have Aut(∞)(σn)ab
∼= Zω(n).

Proof. This follows immediately from Theorem 3.20 and Proposition 3.11. !

This allows us to complete the proof of Theorem 1.1, via the following theorem.

Theorem 3.22. If Aut(∞)(σn) and Aut(∞)(σm) are isomorphic, then ω(n) = ω(m).

Proof. If Aut(∞)(σn) and Aut(∞)(σm) are isomorphic, then their abelianizations are

isomorphic. The result then follows from Corollary 3.21. !

Toward a converse of Theorem 3.22, observe that by Proposition 3.5, if m, n

satisfy mk = nj for some k and j, then Aut(∞)(σm) ∼= Aut(∞)(σn).

In general, we ask the following question.

Question 3.23. For integers m, n ≥ 2, when are Aut(∞)(σm) and Aut(∞)(σn) isomorphic?

We end this section with an example showing how Theorem 3.20 can be used

to compute the abelianization Aut(∞)(σA)ab of the stabilized automorphism group. In

the example, Aut(∞)(σA)ab has nontrivial torsion, and it follows (by Corollary 3.21) that

Aut(∞)(σA) is not isomorphic to Aut(∞)(σn) for any n ∈ N.

Example 3.24. Consider the matrix

A =





5 2 2

4 1 4

0 6 3





(this matrix appears in [6, Example 6.7]). By Theorem 3.20, in order to compute

Aut(∞)(σA)ab, it suffices to compute the abelianization of the stabilized automorphism

group of the dimension group.
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17138 Y. Hartman et al.

As shown in [6], the matrix A has eigenvalues −3, 3, 9 and can be conjugated

over Z[ 1
3 ] to a diagonal matrix. For any k, A2k, then has eigenvalues 9k, 9k, 81k, and

can be conjugated over Z[ 1
3 ] to the matrix U2k =





81k 0 0

0 9k 0

0 0 9k



. It follows that

Aut(GA2k) = Aut(GA2(k+1) ) ∼= GL1(Z[ 1
3 ]) ⊕ GL2(Z[ 1

3 ]), and so Aut(∞)(GA, G+
A ) ∼= Z ⊕ GL2(Z[ 1

3 ])

and Aut(∞)(GA, G+
A )ab is isomorphic to Z ⊕ GL2(Z[ 1

3 ])ab. By Theorem 3.20, the dimension

representation is surjective and coincides with the abelianization of Aut(∞)(σA).

The remainder of this example is devoted to computing GL2(Z[ 1
3 ])ab. Consider

the determinant map

det : GL2(Z[
1
3

]) → Z[
1
3

]×,

where Z[ 1
3 ]× denotes the group of units. This map is a split surjection with kernel

SL2(Z[ 1
3 ]), with the splitting coming from embedding Z[ 1

3 ]× = GL1(Z[ 1
3 ]) ↪→ GL2(Z[ 1

3 ]).

Hence, GL2(Z[ 1
3 ]) is isomorphic to the semidirect product SL2(Z[ 1

3 ]) " Z[ 1
3 ]×.

In general, the abelianization of a semidirect product H " G is given by (Hab)G ×
Gab, where the subscript G denotes the coinvariants of the G-action on Hab (arising from

the G-action on H). Since Z[ 1
3 ]× is abelian, the abelianization of the semidirect product

SL2(Z[ 1
3 ]) " Z[ 1

3 ]× has the form

(SL2(Z[
1
3

])ab)Z[ 1
3 ]× × Z[

1
3

]×.

This leaves us with computing (SL2(Z[ 1
3 ])ab)Z[ 1

3 ]× .

The abelianization of SL2(Z[ 1
3 ]) is SL2(Z[ 1

3 ])ab
∼= Z/4, as computed by Serre [35]

(see also [1]). Thus, we only need to determine the coinvariants of the induced Z[ 1
3 ]×-

action on this copy of Z/4.

The ring map Z[ 1
3 ] → Z/4 given by a

3k 3→ a mod 4 induces a surjection mapping

SL2(Z[ 1
3 ]) to SL2(Z/4). The group SL2(Z/4) has a normal subgroup N of order 12 (this is

its commutator subgroup), which is generated by the matrices

(
2 3

3 1

)

and

(
3 1

3 0

)

.

Thus, SL2(Z/4) factors onto an abelian group G of order 4. Let π denote the composition

of the two maps given by

SL2(Z[
1
3

]) → SL2(Z/4) → G.
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Stabilized Automorphism Group of a Subshift 17139

One can check directly that the matrix

(
1 1

0 1

)

and its square do not lie in the normal

subgroup N and hence do not lie in the kernel of π . Thus, π(

(
1 1

0 1

)

) has order 4, and

π(

(
1 1

0 1

)

) is a generator for G and hence also pushes down to a generator for the

abelianization.

To compute the coinvariants, we are left with determining the action of Z[ 1
3 ]×

on the matrix

(
1 1

0 1

)

(since it pushes down to a generator of the abelianization). Note

that Z[ 1
3 ]× is generated by −1 and 3. The action of these units on

(
1 1

0 1

)

is given by

(modulo commutators)

−1:

(
1 1

0 1

)

3→
(

1 3

0 1

)

3:

(
1 1

0 1

)

3→
(

1 3

0 1

)

.

It follows that the orbit of a generator for the abelianization under this action is a

subgroup of order 2, and the coinvariants are

(SL2(Z[
1
3

])ab)Z[ 1
3 ]×

∼= Z/2.

Thus, we have that

GL2(Z[
1
3

])ab
∼= Z[

1
3

]× ⊕ Z/2 ∼= Z/2 ⊕ Z ⊕ Z/2

and

Aut(∞)(GA, G+
A )ab

∼= Z ⊕ Z/2 ⊕ Z ⊕ Z/2.

4 Stabilized Kim–Roush Embedding

4.1 Extending the embedding result

The purpose of this section is to extend the following theorem of Kim and Roush to the

stabilized setting.
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17140 Y. Hartman et al.

Theorem 4.1 (Kim–Roush Embedding [16]). Let (XA, σA) be a mixing shift of finite type.

Then, for any n ≥ 2, the group Aut(σn) embeds into the group Aut(σA).

Thus, our goal is to prove the following.

Theorem 4.2. Let (XA, σA) be a mixing shift of finite type. Then, for any n ≥ 2, the

group Aut(∞)(σn) embeds into Aut(∞)(σA).

The proof follows much of the original argument given in [16], with a few mod-

ifications. Before beginning, we briefly indicate the idea. We proceed by constructing

a bijection h from the given shift XA to some other space K. While h is nothing more

than a bijection, the advantage in making use of the 2nd space K is that it admits

a natural faithful Aut(∞)(σn)-action. This action of Aut(∞)(σn) leaves the image of h

invariant, and so upon pulling back by h, we obtain an embedding of Aut(∞)(σn) into

the set of bijections from XA to itself. We then show that this embedding actually lands

in Aut(∞)(σA). The construction of the map h uses markers, as used in [6, 11], and we

review this technique in the proof.

Proof of Theorem 4.2 Let (XA, σA) be a mixing shift of finite type. The proof consists

of multiple steps constructing the embedding.

Finding markers. Assume that there exists a word M ∈ L(XA) (a marker) and a

collection D ⊂ L(XA) of n2 words of some fixed length such that the word M overlaps

MDM, for any D ∈ D, only in the initial and final segments (the data). The existence

of such pairs of marker and a data set of size n2 is guaranteed for any n ∈ N since we

assume that XA is a mixing shift of finite type.

Since there are n2 words in D, we can view them as pairs of words, from some

collection of size n of some other words. Namely, we define an abstract set of n words

W such that each D ∈ D is a pair of two words from W. Since there are n words in W,

we can view the full shift over these words as (Xn, σn), and the stabilized automorphism

group of this shift is the one we realize as a subgroup of Aut(∞)(σA).

It is convenient to consider the elements in D as vertical pairs, viewing them as

D =
(

Wu

Wl

)

,

where Wu, Wl ∈ W. For simplicity of the presentation, we assume that all of the words

D are words of length 1, which is possible after passing via a conjugacy, if needed, to a
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Stabilized Automorphism Group of a Subshift 17141

copy of (XA, σA). Then, for x ∈ XA and some index j, if xj = D we can write

xj =
(

xu
j

xl
j

)

.

Coded stretches in the shift. Fix some R ∈ N. An (R, M, D)-coded stretch in x ∈ XA

is an R-gapped (possibly finite) arithmetic progression C ⊂ Z such that xj ∈ D for all

j ∈ C, and C is maximal with respect to these properties. That is, if max(C) exists then

xmax(C)+R /∈ D, and if min(C) exists, then xmin(C)−R /∈ D.

Note that coded stretches may be finite, two-sided infinite, or one-sided infinite.

Since XA is mixing, there are points x ∈ XA with arbitrarily long-coded stretches

(including infinite ones). Moreover, each word in L(Xn), whether finite or infinite,

appears as a coded stretch of some x ∈ XA. For each x ∈ XA, let Sx ⊂ Z denote the

union of all the coded stretches in x.

Fix some x ∈ XA. Recall that for j ∈ Sx, xu
j and xl

j are two words in W. Again, we

consider elements in {u, l} × Sx as vertical pairs, so if p =
(

ε

j

)

∈ {u, l} × Sx, we write

xp = xε
j ∈ W.

The function next. We define an invertible map nextx : {u, l} × Sx → {u, l} × Sx by

setting

nextx

(
u

j

)

=






(
u

j + R

)
if j + R ∈ Sx

(
l
j

)
if j + R /∈ Sx

and

nextx

(
l

j

)

=






(
l

j − R

)
if j − R ∈ Sx

(
u
j

)
if j − R /∈ Sx

.

Fix

(
ε

j

)

where j ∈ Sx. Repeated application of the next function produces an element in

Xn when starting with an element in XA, by reading the words appearing in the current
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17142 Y. Hartman et al.

coded stretch when applying this function; for example,

. . . ∗ Wu
1 → Wu

2 → Wu
3 ∗ . . .

↑ ↓
. . . ∗ Wl

1 ← Wl
2 ← Wl

3 ∗ . . . .

Let C be a finite or one-sided coded stretch, and let j, j′ ∈ C. Note that starting

to read from

(
ε

j

)

or from

(
ε′

j′

)

yields the same element in Xn, up to a shift. However,

for a two-sided stretch C, the element of Xn read from the u row has nothing to do with

the element read from the l row.

The function read. To maintain the group structure when embedding the group

Aut(∞)(σn), we are forced to keep track of which level an element belongs to (as φ ∈
Aut(k)(σn) applies k different block maps, depending on the index mod k). For this, we

define a read map that depends on the index, in such a way that the word read from(
ε

j

)

and from

(
ε

j′

)

would be identical (where identical means not just up to a shift).

Formalizing this, define readx : Sx → X2
n by setting readx (i) =

(
yu, yl) where

yu⌊
i
R

⌋
+z

= x
(nextx)z




u

i





and yl
−

⌊
i
R

⌋
+z

= x
(nextx)z




l

i





for all z ∈ Z.

We note that this complication does not arise in the original embedding of Kim

and Roush [16] of Aut(σn) in Aut(σA), as one can define the read map without the floor

functions (similarly for the multidimensional version of Hochman [12]).

Let Y = A ∪ X2
n, where A is the alphabet of XA, and consider the set K̄ = ∏

j∈Z Y.

Definition of the map h. Define a map h : XA → K̄ by setting

h(x)j =





readx(j) if j ∈ Sx

xj otherwise
. (4)

Thus, h assigns to every x ∈ XA a sequence in K̄ in the following way. If xj is not included

in any coded stretch, h copies the symbol xj to the j coordinate of the new element in K̄.

If xj is included in a coded stretch, there are two elements in Xn that are read from this

stretch: the one associated with the upper row, and the one associated with the lower

row, and this pair of elements is placed in the j coordinate of the new element in K̄.

Set K = Im(h) ⊂ K̄.
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Stabilized Automorphism Group of a Subshift 17143

The map h is injective. We claim that the map h is injective. To see this, we check

the action of the inverse of h on its image. For any coordinate of a given point in K,

there is either an element from A or there is a pair in X2
n. In the 1st case, h−1 copies

the symbol. In the 2nd case, we (re)-form the pair composed of one symbol from the 1st

element and the other from the 2nd element from X2
n. More precisely, in this case,

h−1(k)j =









((kj)1)−

⌊
j
R

⌋

((kj)2)⌊ j
R

⌋



 if kj ∈ X2
n

kj if kj ∈ A

.

This verifies the claim.

We now make use of the representation of the element x as h(x) by exploiting

the natural associated Aut(∞)(σn) action. On Y, we have a pointwise action of Aut(∞)(σn)

(and trivial action on the A part), and this action naturally extends to a diagonal action

on K̄. In other words, there is a group homomorphism Aut(∞)(σn) → Bijection(K̄).

Stabilized automorphisms keep the set K invariant. Next, we claim that every

element in Aut(∞)(σn) is a bijection that keeps the set K invariant, and the restriction

action of Aut(∞)(σn) on K is faithful. To check this, note that each element of Aut(∞)(σn)

keeps K invariant by the mixing assumption. As K is invariant, we can consider the

restriction of the Aut(∞)(σn)-action to K. Since all words of L(Xn) appear as coded

stretches for some x ∈ XA, every word in Xn appears in some coordinate of some element

in K, and as the action of Aut(∞)(σn) on Xn is faithful (by definition), we conclude that

the action on K is faithful as well. Thus, the claim follows.

In other words, this realizes Aut(∞)(σn) as a subgroup of Bijection(K). Fur-

thermore, the bijection h : XA → K induces a group isomorphism h∗ : Bijection(K) →
Bijection(XA).

Stabilized automorphisms give rise to continuous maps commuting with some

power of the shift. By pushing Aut(∞)(σn) through the injective map h∗, we realize

Aut(∞)(σn) as a subgroup of Bijection(XA). To verify that the image lies in Aut(∞)(σn), we

are left with checking that every φ ∈ Aut(∞)(σn) ⊆ Bijection(K) gives rise to a continuous

h∗φ ∈ Homeo(XA), which commutes with some power of σA.

To do this, we make use of the block map description of the stabilized

automorphism group (Lemma 3.2). Fix some φ ∈ Aut(k)(σn) of radius r. That is, φ can

be represented as k block maps of radius r, where r is some number greater than k.

Now, if x and x′ are two points in XA, which are close, then by definition they agree
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17144 Y. Hartman et al.

on a large number of coordinates around the 0 coordinate. In particular, their coded

stretches (if they exist) in this area coincide. So there exists large s > 0 such that

Sx ∩ [−s, s] = Sx′ ∩ [−s, s]. Since φ is of radius r, h∗φ(x), and h∗φ(x′) agree on [−s + r, s − r],

and hence h∗φ is a continuous map. Finally, to check that h∗φ commutes with a power

of the shift, using the fact that φ ∈ Aut(k)(σn) is induced by a k-tuple of block maps on

Xn, it is easy to check that h∗φ can be modeled by a k · R-tuple of block maps on XA.

This concludes the proof of Theorem 4.2. !

4.2 Residual finiteness and subgroup properties

For a mixing shift of finite type (XA, σA), the classical automorphism group Aut(σA) is

residually finite (see [6, Section 3]). Simplicity of the stabilized inerts for the full shifts

(proved in Section 5), together with the stabilized Kim–Roush Embedding, implies that

the stabilized group Aut(∞)(σA) is never residually finite. In addition, we show below

that Aut(∞)(σA) always contains a divisible group, and hence cannot be residually finite.

Proposition 4.3. Let (XA, σA) be a mixing shift of finite type. Then, Aut(∞)(σA) contains

a divisible subgroup. In particular, the group Aut(∞)(σA) is not residually finite.

Proof. Since any subgroup of a residually finite group is residually finite, and

any nontrivial divisible group is not residually finite, by Theorem 4.2, it suffices

to prove that Aut(∞)(σ2) contains a divisible subgroup. Let m ≥ 2. We show that

Aut(∞)(σ2) contains the divisible group Z[ 1
m ]/Z. We claim that if φ0 ∈ Aut(σ k

2 ) is given

by a 0-block code, then there exists φ1 ∈ Aut(σmk
2 ) such that φm

1 = φ0. The result

then follows by letting φ0 be any 0-block code of order m in Aut(σ j
2) for some j, m,

and induction.

To prove the claim, suppose we have such φ0. We consider the alphabet for the

shift σmk
2 as symbols





a0
...

am−1



 where ai ∈ {0, 1}k. Define 0-block codes in Aut(σmk
2 ) as

follows:

α0(





a0
...

am−1



) =





φ0(a0)

a1
...

am−1




, ai ∈ {0, 1}k
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Stabilized Automorphism Group of a Subshift 17145

and

cm





a0

a1
...

am−1




=





a1

a2
...

a0




.

Then, it is easy to check that

(
α0cm

)m = φ0,

as desired. !

The method used in Proposition 4.3 can also produce embeddings of other

groups into Aut(∞)(σn). Given a prime p ≥ 2, consider the direct limit SLdiag
∞ (Fp) of the

systems (SL2n(Fp), in) where in : SL2n(Fp) → SL2n+1(Fp) is the map given by A 3→ A ⊕ A.

A construction analogous to the one given in the proof of Proposition 4.3 can be used to

produce an embedding of SLdiag
∞ (Fp) into Aut(∞)(σp).

We end this section with an example of how results in the stabilized setting can

be used to study the classical automorphism group Aut(σA).

Lemma 4.4. For a full shift (Xn, σn), the group Aut(σn) embeds into the group Inert(σn).

Proof. For a symbol a, let Ra denote the 0-ray of points x such that xi = a for all

i ≤ 0. Following the proof of the embedding theorem in [16], there exists an injective

group homomorphism f : Aut(σn) → Aut(σn) such that for some symbol a, f (φ)(Ra) is

again a 0-ray. Since we are considering a full shift, for any φ ∈ Aut(σn), the action

of f (φ) on the dimension group Gn is determined by its action on any 0-ray R, since

the equivalence class of any 0-ray rationally generates Gn. Since all 0-rays in (Xn, σn)

are equivalent, this implies that f (φ) acts trivially on the dimension group, meaning

that f (φ) ∈ Inert(σn). !

Theorem 4.5. Let G be a finitely generated group that embeds into Aut(σn). Then, G

embeds (using a possibly different embedding) into [Aut(σn), Aut(σn)].

Proof. Suppose G embeds into Aut(σn). Composing this embedding with a Kim–

Roush embedding f gives an embedding of G into Inert(σn) (by the previous lemma).
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17146 Y. Hartman et al.

In particular, G embeds in Inert(∞)(σn), which, by Theorem 3.14, is a subgroup of

[Aut(∞)(σn), Aut(∞)(σn)]. Since G is finitely generated, it follows that G embeds inside

[Aut(m)(σn), Aut(m)(σn)] for some m ∈ N. We can then apply another Kim–Roush Embed-

ding, this time to embed Aut(m)(σn) (which is isomorphic to Aut(σnm)) into Aut(σn). The

composition of these embeddings takes G into [Aut(σn), Aut(σn)]. !

In [6, Proposition 2.8], Boyle et al. prove that if (XA, σA) is a mixing shift of

finite type, then Aut(σA) contains no finitely generated subgroup with unsolvable word

problem (this argument is attributed to Kitchens). The same proof immediately gives the

following proposition.

Proposition 4.6. Let (XA, σA) be any mixing shift of finite type. Then, any finitely

generated subgroup of Aut(∞)(σA) has a solvable word problem.

We note that this is the only obstruction, of which we are aware, for realization

of a countable group as a subgroup of Aut(∞)(σA).

5 Simplicity of the Stabilized Inerts for Full Shifts

5.1 Simplicity

For a mixing shift of finite type (XA, σA), the classical inert subgroup Inert(σA) has an

abundance of normal subgroups. For example, given φ ∈ Inert(σA) and k ∈ N, φ leaves

invariant the set Pk(σA) of σA-periodic points of period k, and there is a well-defined

homomorphism from Inert(σA) to Sym(Pk(σA)). Moreover, if Id )= φ, then there exists

some k such that φ acts nontrivially on Pk(σA), and it follows from this that the group

Inert(σA) is in fact residually finite (see [6, Section 3] for details).

In contrast, different behavior arises in the stabilized setting, where the inert

subgroup has no nontrivial normal subgroups. The remainder of this section is devoted

to the proof of Theorem 1.2, which we restate for convenience.

Theorem [Theorem 1.2]. For any n ≥ 2, the group of stabilized inert automorphisms of

the full shift (Xn, σn) is simple.

Simplicity of various groups defined via dynamical systems has been shown

in other contexts (see, e.g., [26, 27, 29]). For many of these groups, an important and

useful property is the existence of elements of the group, which act by the identity on

certain regions of the domain space. In contrast to such groups, the action of the group

Inert(∞)(σn) on the shift space is of a very different nature; for example, for any mixing
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Stabilized Automorphism Group of a Subshift 17147

shift of finite type (XA, σA), and in particular any full shift, if Id )= φ ∈ Inert(∞)(σA), then

for any open subset U ⊂ XA, φ )= Id on U (in other words, Inert(∞)(σA) never contains

nontrivial elements with small support).

5.2 Stabilized simple automorphisms

Many of the ingredients in the proof of Theorem 1.2 hold more generally, and so we start

with some preliminaries that hold for more than the full shift.

Assume (XA, σA) is a mixing shift of finite type defined by a κ × κ primitive Z+-

matrix A (note that the full shift on n symbols corresponds to A = (n)). Let #A denote

a directed labeled graph associated with A, and let Simp(#A) denote the subgroup of

simple automorphisms in Aut(σA) induced by simple graph symmetries of #A. Note that

Simp(#A) is contained in Simp(σA), but the converse inclusion does not hold.

Recall that Ei,j denotes the set of edges between vertices i and j in the graph #A.

There is a natural isomorphism

Simp(#A) ∼=
κ∏

i,j=1

Sym(Ei,j), (5)

where we adopt the convention that if Ei,j = ∅ for some choice of i and j, we assume that

Sym(Ei,j) is the trivial group with one element.

We define the subgroup of even simple graph automorphisms Simpev(#A) in

Simp(#A) by pulling back the associated product of alternating subgroups, meaning

the subgroup
∏κ

i,j=1 Alt(Ei,j), via the isomorphism in (5).

Let #
(m)
A denote a graph that presents the shift (XA, σm

A ); thus, Simp(#
(m)
A ) ⊂

Aut(σm
A ). We note the graphs #

(m)
A and #Am differ only up to a choice of labeling. For any

k, m ≥ 1, we have an inclusion map

im,k : Simp(#
(m)
A ) ↪→ Simp(#

(km)
A ), (6)

and by making the natural identifications among the iterates, this homomorphism

agrees with the restriction of the map

Aut(σm
A ) ↪→ Aut(σ km

A )

to Simp(#
(m)
A ).

Proposition 5.1. For any k, m ≥ 1, the map im,k takes Simpev(#
(m)
A ) into Simpev(#

(km)
A ).
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17148 Y. Hartman et al.

Proof. Fix vertices I, J in #
(m)
A , and let τ ∈ Alt(EI,J). Letting τ̃ denote the element

of Simpev(#
(m)
A ) corresponding to τ under the isomorphism in (5), it suffices to show

that im,k(τ̃ ) lies in Simpev(#
(km)
A ). We may write τ̃ as a product of an even number of

transpositions τ̃ = ∏2l
i=1 τ̃i, and for each 1 ≤ i ≤ 2l, since τ̃i is an involution, we may

write im,k(τ̃i) = ∏ri
j=1 cj where each cj is a 2-cycle. It suffices then to show that rp = rq for

any 1 ≤ p, q ≤ 2l. Given some 1 ≤ p ≤ 2l, suppose the involution τ̃p corresponds (under

the isomorphism (5)) to the transposition in Alt(EI,J) that permutes a pair of edges ep, fp

between vertices I and J. Then, the value rp is given by 1
2Mp, where Mp denotes the

number of distinct words w of length k, over the alphabet given by the edge set of #
(m)
A ,

where each word w contains at least one ep or fp. Since the number Mp of such words

is independent of what ep, fp are, it follows that Mp = Mq for any other 1 ≤ q ≤ 2l, as

desired. !

We consider the corresponding stabilized groups, defining the subgroups

Simp(∞)(#A) =
∞⋃

m=1

Simp(#
(m)
A ) ⊂ Aut(∞)(σA)

and

Simp(∞)
ev (#A) =

∞⋃

m=1

Simpev(#
(m)
A ) ⊂ Simp(∞)(#A).

Thus, α ∈ Aut(∞)(σA) lies in Simp(∞)(#A) when α is induced by a simple graph symmetry

of #
(m)
A for some m ≥ 1, and α ∈ Simp(∞)

ev (#A) if for some m ≥ 1, α is induced by a simple

graph symmetry of #
(m)
A that consists of only even permutations on every edge set for

#
(m)
A . We note that it follows from the definitions that

Simp(∞)(#A) ⊂ Inert(∞)(σA).

With this notation, Wagoner’s theorem (Theorem 3.13) states that for a mixing

shift of finite type (XA, σA), Inert(∞)(σA) is generated by the collection of subgroups

,−1
∗ (Simp(∞)(#B)), where , : (XA, σm

A ) → (XB, σm
B ) is any conjugacy and m ≥ 1 is any

integer.

The key lemma in the proof Theorem 1.2 is the following.

Lemma 5.2. Let n ≥ 2, and let N be a nontrivial normal subgroup of Inert(∞)(σn). There

exist m ≥ 0 and Id )= ζ ∈ Simp(∞)(#n) such that σm
n ζσ−m

n ∈ N.
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Stabilized Automorphism Group of a Subshift 17149

The proof of Lemma 5.2 is technical and long, and we postpone it until

Section 5.3. For now, we assume this result and proceed to develop the other tools

needed in the proof of Theorem 1.2.

Lemma 5.3. Assume (XA, σA) is a mixing shift of finite type defined by a primitive

Z+-matrix A. Then, the following hold:

(i) the commutator subgroup of Simp(∞)(#A) is Simp(∞)
ev (#A);

(ii) the group Simp(∞)
ev (#A) is simple;

(iii) if A = (n) for some n ≥ 2, then Simp(∞)(#n) = Simp(∞)
ev (#n).

Proof. For Part (1), clearly Simp(∞)
ev (#A) is contained in [Simp(∞)(#A), Simp(∞)(#A)].

For the other inclusion, consider a commutator αβα−1β−1 ∈ Simp(∞)(#A), where α, β ∈
Simp(∞)(#A). We may assume that both α, β ∈ Simp(#

(m)
A ) for some m ≥ 1. Then, for

each vertex pair i and j in the graph #
(m)
A , the component of αβα−1β−1 in Sym(Ei,j) lies in

Alt(Ei,j). Thus, αβα−1β−1 ∈ Simp(∞)
ev (#A).

For Part (2), let {Id} )= N be a normal subgroup of Simp(∞)
ev (#A). For k ≥ 1 and

a pair of vertices i, j in the graph #
(k)
A , let Alt(k)

i,j denote the subgroup of Simp(∞)
ev (#A)

obtained by pulling back the alternating subgroup contained in the Sym(Ei,j) component

of Simp(k)
ev (#A).

Let Id )= α ∈ N, and choose K ≥ 1 such that α ∈ Simpev(#
(K)
A ). By passing to larger

K if necessary, since A is primitive we may assume that all entries in AK are greater than

or equal to five. We claim that for any i, j ≥ 1 and for all m sufficiently large, we have

N ∩ Alt(Km)
i,j )= {Id}. Since α is nontrivial, for some choice of I, J we have that αI,J , the

component of α in Alt(K)
I,J , is also nontrivial. Choose a path γ of length m ≥ 3 in #

(K)
A such

that γ begins at i, ends at j, and passes through an edge from I to J on which αI,J acts

nontrivially. Then, γ corresponds to an edge in #
(Km)
A starting at vertex i and ending at

vertex j on which iK,m(αI,J) acts nontrivially. It follows that

N ∩ Alt(Km)
i,j (7)

is nontrivial, proving the claim.

Since each entry of AK is at least 5, it follows that Alt(Km)
i,j is simple for all i, j ≥ 1

and m ≥ 3. Moreover, N is normal in Simp(∞)
ev (#A), and so N∩Alt(Km)

i,j is normal in Alt(Km)
i,j .

Thus, since the intersection in (7) is nontrivial, it follows that for all i, j ≥ 1 and m ≥ 3,

we have that Alt(Km)
i,j ⊂ N. Therefore, N contains the subgroup generated by the collection
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17150 Y. Hartman et al.

of subgroups

{
Simpev(#

(Km)
A )

}∞

m=3
.

Given any r ≥ 1, there exists M ≥ 3 such that r divides M, so the subgroup Simp(#
(KM)
A )

contains the subgroup Simp(#
(r)
A ). It follows that Simp(∞)

ev (#A) is contained in the group

generated by the collection

{
Simpev(#

(Km)
A )

}∞

m=3
,

and hence,

Simp(∞)
ev (#A) ⊂ N,

proving Part (2).

For Part (3), let l ≥ 1, and suppose ι ∈ Simp(#
(l)
n ) is an order two automorphism

induced by the simple graph symmetry of #
(l)
n that permutes two edges e and f and leaves

all other edges fixed. We claim il,2(ι) ∈ Simpev(#
(2l)
n ) (recall that the inclusion map il,2 is

defined in (6)). To check this, observe that il,2(ι) is induced by the action of ι on paths of

length two in #
(l)
n of the form ab, where at least one of a or b is either e or f . The action

of il,2(ι) on such pairs of words is given by the composition of 2n−2 transpositions, and

it follows that il,2(ι) ∈ Simpev(#
(2l)
n ), proving the claim. Since such involutions generate

all of Simp(∞)(#n), the equality in Part (3) follows. !

It follows from Parts (2) and (3) of Lemma 5.3 that for a full shift A = (n),

Simp(∞)(#n) is a simple group.

Lemma 5.4. Suppose (XA, σA) is a mixing shift of finite type such that for all m ≥ 1,

Am contains an entry greater than or equal to 3. Then,

(i) for any α ∈ Aut(∞)(σA), the group αSimp(∞)
ev (#A)α−1 is a simple subgroup of

Inert(∞)(σA). Moreover, if N is a normal subgroup in Inert(∞)(σA) such that

αSimp(∞)
ev (#A)α−1 ∩ N )= {Id},

then

αSimp(∞)
ev (#A)α−1 ⊂ N;
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Stabilized Automorphism Group of a Subshift 17151

(ii) if for some m1 ≥ 0,

σ
m1
A Simp(∞)

ev (#A)σ
−m1
A ⊂ N,

then for any m ≥ 0

σm
A Simp(∞)

ev (#A)σ−m
A ⊂ N.

Proof. The 1st part follows immediately from Lemma 5.3. For the 2nd part, by

assumption, we have that A contains an entry greater than or equal to 3. It follows

there exists some γ ∈ Simpev(#A) that commutes with σA, so that

σ
m1
A Simp(∞)

ev (#A)σ
−m1
A ∩ Simp(∞)

ev (#A) )= {Id}.

Then, since

σ
m1
A Simp(∞)

ev (#A)σ
−m1
A ⊂ N,

we have

Simp(∞)
ev (#A) ∩ N )= {Id}.

Part (i) now implies

Simp(∞)
ev (#A) ⊂ N.

Given m ≥ 1, since Am contains an entry greater than or equal to 3, the group

Simpev(#
(m)
A ) is nontrivial. Thus, we have that

σm
A Simp(∞)

ev (#A)σ−m
A ∩ Simp(∞)

ev (#A) )= {Id},

and hence,

σm
A Simp(∞)

ev (#A)σ−m
A ∩ N )= {Id}.

Part (i) then implies that

σm
A Simp(∞)

ev (#A)σ−m
A ⊂ N,

as desired. !

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/21/17112/6344682 by N
orthw

estern U
niversity user on 05 M

arch 2023



17152 Y. Hartman et al.

Finally, we use a lemma of Boyle, which is a stronger version of Wagoner’s

Theorem (Theorem 3.13).

Lemma 5.5 (Boyle [2]). Let (XA, σA) be a mixing shift of finite type, and suppose

α ∈ Inert(∞)(σA). There exist m1, m2 ≥ 1 and ψ1, ψ2 ∈ Simp(#
(m1)
A ) such that

α = ψ1σ
m2
A ψ2σ

−m2
A .

We have now assembled the ingredients to prove Theorem 1.2.

Proof of Theorem 1.2. Since Inert(∞)(σn) ∼= Inert(∞)(σnm) for any m ≥ 1, we may

assume without loss of generality that n ≥ 3. Suppose N is a nontrivial normal subgroup

of Inert(∞)(σn). By Lemma 5.2, there exists m1 ≥ 1 such that

σm1
n Simp(∞)(#n)σ−m1

n ∩ N )= {Id}.

Since Simp(∞)(#n) = Simp(∞)
ev (#n) by Part (3) of Lemma 5.3, we have that

σm1
n Simp(∞)

ev (#n)σ−m1
n ∩ N )= {Id}.

Then, since n ≥ 3, by Lemma 5.4,

σm1
n Simp(∞)

ev (#n)σ−m1
n ⊂ N,

and applying Lemma 5.4 again, it follows that N contains σ−m
n Simp(∞)(#n)σm

n for all

m ≥ 0. By Lemma 5.5, the collection of subgroups σ−m
n Simp(∞)(#n)σm

n , m ≥ 0, generate

Inert(∞)(σn), completing the proof. !

5.3 Proof of Lemma 5.2

5.3.1 Notation

We start with some notation used in the proof of Lemma 5.2, and we maintain this

notation for the remainder of this section.

For m ≥ 1, let E(m)(#n) denote the edge set of #
(m)
n . Label the edges of E(1)(#n) by

{1, 2, . . . , n}. Note that we may label the edge sets E(m)(#n) such that for all m ≥ 2,

E(m)(#n) =
m∏

i=1

E(1)(#n).
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Stabilized Automorphism Group of a Subshift 17153

When working with E(2)(#n) for some #n, we denote points in E(2)(#n) by
(

x1
y1

)

where x1, y1 ∈ E(1)(#n). We refer to rows and columns of E(2)(#n), with the convention

that row i of E(2)(#n) refers to the set of points in E(2)(#n) of the form

{(
i
y

)
: y ∈ E(1)(#n)

}
,

while column i refers to the set of points in E(2)(#n) of the form

{(
x
i

)
: x ∈ E(1)(#n)

}
.

Assume (Xn, σn) is a full shift, and let Aσn
denote the corresponding alphabet for

the shift space. By definition, Aσn
= E(1)(#n). Thus, for m ≥ 1, we identify the alphabet

Aσm
n

with the set of elements of the form





a0
...

am−1



 where ai ∈ Aσn
for i = 1, . . . , m − 1.

Given a point x ∈ X, as usual we write x = (xi)i∈Z. When we need to indicate

where x0 is located, we use a dot to indicate this; thus, the point

x = . . . a
•
bc . . .

has x0 = b.

Given any a ∈ Aσn
, let pa denote the point . . . aaa . . ., which is fixed by σn.

We let Pk(σn) denote the set of k-periodic points for σn, so Pk(σn) consists of all

points x for which σ k
n(x) = x (note that Pk(σn) in general contains, but is not equal to,

the set of points of least period k). We can identify Pk(σn) with E(k)(#n), and similarly,

given m ≥ 1, we can identify Pk(σm
n ) with E(k)(#

(m)
n ).

Thus, for the remainder of this section, we assume (Xn, σn) is a full shift on n ≥ 2

symbols, and without loss of generality, we assume that n ≥ 7. This is not a restrictive

assumption, as in the stabilized setting, Inert(∞)(σn) ∼= Inert(∞)(σm
n ) ∼= Inert(∞)(σnm) for

any m ≥ 1.

Finally, for the remainder of this section, we fix a nontrivial normal subgroup N

of Inert(∞)(σn), and our goal is to prove Lemma 5.2, showing that there exists m ≥ 0 and

Id )= ζ ∈ Simp(∞)(#n) such that σm
n ζσ−m

n ∈ N.

5.3.2 Existence of an inert with additional properties

We start by recording a slightly stronger version of Lemma 5.5.
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17154 Y. Hartman et al.

Lemma 5.6 (Boyle [2]). Suppose α ∈ Inert(∞)(σn). There exists M ≥ 1 such that for all

m ≥ M, there exist ψ
(m)
1 , ψ (m)

2 ∈ Simp(#
(2m)
n ) such that α = ψ

(m)
1 σm

n ψ
(m)
2 σ−m

n .

Proof. This can be deduced from the proof of [2, Theorem, p. 970] (in the notation used

in the proof there, for m large enough, we can choose n = 2p − k + m ≥ 0, so that

t = k + m + n = 2p + 2m = 2(p + m)). !

To avoid overly cumbersome notation, we often suppress the n, writing # and σ

instead of #n and σn, with the understanding that we are still working with a full shift

on n symbols.

Suppose α ∈ Inert(σ ) and that α is induced by a block code hα of range r ≥ 1;

thus, hα : A2r+1
σ → Aσ . We say that

(∗) α satisfies property (*) if there exist distinct a, b, c ∈ Aσ such that

(i) α(pa) = pa;

(ii) hα

(
arabar−1)

)= a ∈ Aσ ;

(iii) For all 0 ≤ i ≤ r, hα(ar−ibar+i) = a and hα(a2r−icai) = a.

Lemma 5.7. Suppose α ∈ Inert(σ ) is induced by a block code hα of range r and satisfies

(*) for some a, b, c ∈ Aσ . Then, there exists m ≥ 1 such that, upon viewing α as an element

of Inert(σ 2m), all of the following hold:

(i) for some ψ
(m)
1 , ψ (m)

2 ∈ Simp(#(2m)), we have α = ψ
(m)
1 σmψ

(m)
2 σ−m;

(ii) α(pa) = pa;

(iii) for w = bam−2c, the point paw = . . . amw
•
aam−1w . . . is a point of least period

two for σm, and in particular, α(paw) ∈ P2(σm);

(iv) the point α(paw) in P2(σm) satisfies
(
α(paw)

)
m−1 )= a and satisfies

(
α(paw)

)
i = a for all m ≤ i ≤ 2m − 1.

Furthermore, using the identification of P2(σm) and E(2)(#(m)), we have the following:

(a) α
(

am

am

)
=

(
am

am

)
;

(b) α
(

am

w

)
=

(
w′
am

)
for some word w′ of length m where w′ )= am.

Proof. By Lemma 5.6, Part (i) holds for all sufficiently large m, so in particular for

some m ≥ 2r + 2. Part (ii) is obvious, and since a, b, c are distinct, Part (iii) follows. To

prove Part (iv), note that since α(pa) = pa, it follows that hα(a2r+1) = a. Since m ≥ 2r+2,
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Stabilized Automorphism Group of a Subshift 17155

we have that m − r − 1 ≥ r + 1, and it follows that

σm−1(paw) = . . . w a . . . a︸ ︷︷ ︸
m−r−1

a . . . a︸ ︷︷ ︸
r

•
aw . . .

Thus,
(
α(paw)

)
m−1 =

(
σm−1α(paw)

)
0 =

(
ασm−1(paw)

)
0 = hα(arabar−1) )= a. Using

Condition (3) of (*), it follows that
(
α(paw)

)
i = a for all m ≤ i ≤ 2m − 1.

Parts (a) and (b) follow immediately by translating the results via the identifica-

tion. !

Given symbols a, b ∈ Aσ , we use the shorthand a ↔ b to denote the 0-block code

involution in Aut(σ ) which permutes the symbols a and b and leaves all other symbols

fixed.

Lemma 5.8. There exists α ∈ N satisfying property (*).

Proof. Suppose Id )= α ∈ N and α ∈ Inert(σ5) for some 5 ≥ 1. By passing to a larger 5 if

necessary, we may assume that α acts nontrivially on P1(σ5). Since Inert(σ5) can induce

any permutation on P1(σ5), and since N is normal, by replacing α with some other α′ ∈ N

if needed, we can assume that α satisfies

α(pA) = pA for some pA ∈ P1(σ5) with A ∈ Aσ5 ;

α(pD1
) = pD2

for some pD1
, pD2

∈ P1(σ5) with D1, D2 ∈ Aσ5 ;

α(pE1
) = pE2

for some pE1
, pE2

∈ P1(σ5) with E1, E2 ∈ Aσ5 ;

and A, D1, D2, E1, E2 are all distinct.

Suppose α is induced by a block code hα of range r. Without loss of generality,

we may assume that r ≥ 1 (if r = 0, the conclusion of Lemma 5.2 already holds).

Set k = 25r + 1. By considering α as an element of Inert(σ k), we may assume that

α is given by a block code h(k)
α of range 1.

Consider the words

vd =





Ak

Dk
1

Ak









Ak

Ak

Ak









Ak

Dk
1

Ak




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17156 Y. Hartman et al.

and

ve =





Ak

Ek
1

Ak









Ak

Ak

Ak









Ak

Ek
1

Ak





of length three over the alphabet Aσ3k . Viewing α as an automorphism lying in Inert(σ 3k),

we have that α is induced by some block h(3k)
α of radius one, and this block code satisfies

h(3k)
α (vd) =





Ak

Ak

Ak



 , h(3k)
α (ve) =





Ak

Ak

Ak



 ,

while

h(3k)
α









Ak

Ak

Ak









Ak

Dk
1

Ak









Ak

Ak

Ak







 =





∗
D2

∗



 )=





Ak

Dk
1

Ak



 , (8)

h(3k)
α









Ak

Ak

Ak









Ak

Ek
1

Ak









Ak

Ak

Ak







 =





∗
E2

∗



 )=





Ak

Ek
1

Ak



 (9)

(note that hα(Dr
1) = D2 )= D1 and hα(Er

1) = E2 )= E1).

Define the words

wd =





Dk
1

Dk
1

Ak









Ak

Ak

Ak









Ak

Dk
1

Dk
1



 , we =





Ek
1

Ek
1

Ak









Ak

Ak

Ak









Ak

Ek
1

Ek
1





and note that h(3k)
α (wd) =





Ak

Ak

Ak



 and h(3k)
α (we) =





Ak

Ak

Ak



.

We set convenient notation for some letters in Aσ3k : given X ∈ Aσk , we define

x =





Xk

Xk

Xk



 .
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Stabilized Automorphism Group of a Subshift 17157

Thus, for example,

a =





Ak

Ak

Ak



 .

Choose b, c ∈ Aσ3k such that a, b, c, d1, d2, e1, e2 are all distinct and such that h(3k)
α (aac) )=

b (this is possible since, e.g., h(3k)
α (aac) contains letters from the original alphabet).

Define the automorphism β1 ∈ Inert(σ 9k) by

β1 = σ 3k (
e1e1e1 ↔ aab

)
σ−3k

(note that this is the conjugacy by σ 3k of the involution e1e1e1 ↔ aab), and let α1 =
β−1

1 αβ1. Then, α1 ∈ N and can be induced by a block code of range 4 on the alphabet

Aσ3k . Furthermore, we have

. . . a4 •
aba3 . . .

β1−→ . . . a3e1
•

e1e1a3 . . .
α−→ . . .

•
e2 . . .

β−1
1−→ . . .

•
e2 . . .

and β1(pa) = pa, and so α1 satisfies conditions (1) and (2) of (*) for the letters a, b.

Define the automorphism β2 ∈ Inert(σ 9k) by β2 = σ 3kβ ′
2σ−3k, where β ′

2 is the 0-

block code involution on the alphabet Aσ3k that performs the following permutation on

symbols:

β ′
2 :






aba ↔ vd

baa ↔ wd

aac ↔ we

aca ↔ ve

(10)

and consider α2 = β−1
2 α1β2. Then, α2 ∈ N, and still satisfies conditions (1) and (2) of (*).

To see that it satisfies condition (3) is a matter of checking case by case. For example,

. . . a3a
•
baa3 . . .

β2−→ . . . a3 •
vda3 . . .

α1−→ . . . ∗ •
a . . .

β−1
2−→ . . . ∗ •

a . . .

since, by (8), ∗ is some word containing D2s. Next,

. . . a3b
•
aaa3 . . .

β2−→ . . . a3 •
wda3 . . .

α1−→ . . . ∗ •
a . . .

β−1
2−→ . . . ∗ •

a . . .
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17158 Y. Hartman et al.

since ∗ also contains some D2s. Furthermore,

. . . a3a
•
caa3 . . .

β2−→ . . . a3 •
vea3 . . .

α1−→ . . . ∗ •
a . . .

β−1
2−→ . . . ∗ •

a . . .

since, by (9), ∗ contains E2s and

. . . a3a
•
aca3 . . .

β2−→ . . . a3 •
wea3 . . .

α1−→ . . . ∗ •
a . . .

β−1
2−→ . . . ∗ •

a . . .

since ∗ contains some E2s. !

Combining Lemmas 5.7 and 5.8, we obtain the existence of an automorphism,

which for convenience we also denote by α, with α ∈ N, such that α satisfies

the conditions in Lemma 5.7 for some m ≥ 1. The automorphism α constructed in

Lemma 5.8 also satisfies an additional property that we note for use in the sequel:

there exists some word z1 (e.g., let z1 = bem−1
1 ) such that, with the symbol a given

by Lemma 5.8, writing α
(

am

z1

)
=

(
x
y

)
, we have x )= am and y )= am.

For ease of notation, for the remainder of the section, we suppress the power m,

and write σ instead of σm, and write ψ1, ψ2 for the simple automorphisms ψ
(m)
1 , ψ (m)

2

produced by Lemma 5.7.

It is convenient to recode the alphabet for our shift, and to do so we choose a

bijection Aσ ↔ {1, 2, . . . , n} such that 1 3→ am, and let {1, 2, . . . , n} be the alphabet of our

shift. Summarizing, we have shown the following lemma.

Lemma 5.9. There exists α ∈ Inert(σ 2) satisfying the following properties:

(i) α ∈ N;

(ii) α = ψ1σψ2σ−1, for some ψ1, ψ2 ∈ Simp(#(2));

(iii) α
(

1
1

)
=

(
1
1

)
;

(iv) α
(

1
u1

)
=

(
u2
1

)
for some 1 )= u1 and some u2 ∈ {1, 2, . . . , n};

(v) there exists u3 ∈ {1, 2, . . . , n} such that neither component of α
(

1
u3

)
is 1.

5.3.3 Constructing a particular subgroup K of Sym(E(2)) × Sym(E(2))

Consider the set

KN = {(φ1, φ2) ∈ Simp(#(2)) × Simp(#(2)) : φ1σφ−1
2 σ−1 ∈ N}. (11)

Lemma 5.10. The set KN defined in (11) is a subgroup of Simp(#(2)) × Simp(#(2)).
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Stabilized Automorphism Group of a Subshift 17159

Proof. Assume φ1σφ−1
2 σ−1, φ3σφ−1

4 σ−1 ∈ N. Then, σφ−1
4 σ−1φ3 ∈ N, and hence,

σφ−1
4 σ−1φ3φ1σφ−1

2 σ−1 ∈ N

and

φ3φ1σφ−1
2 φ−1

4 σ−1 = φ3φ1σ (φ4φ2)−1σ−1 ∈ N.

Lastly, if φ1σφ−1
2 σ−1 ∈ N, then φ−1

1 σφ2σ−1 = φ−1
1 σφ2σ−1φ−1

1 φ1 ∈ N. !

To simplify notation, for the remainder of this section, we write E(m) instead of

E(m)(#). By definition, E(2) is the edge set of #(2), so there is an isomorphism

H : Simp(#(2)) −→ Sym(E(2)), (12)

and hence an isomorphism,

H × H : Simp(#(2)) × Simp(#(2)) −→ Sym(E(2)) × Sym(E(2)).

Define

K = (H × H)(KN), (13)

meaning that K is the image of KN under this isomorphism. Thus, we have

K ⊂ Sym(E(2)) × Sym(E(2)).

Let α ∈ Inert(σ 2) be the element in N given by Lemma 5.9. Maintaining the

notation of that lemma, we have α = ψ1σψ2σ−1, for some ψ1, ψ2 ∈ Simp(#(2)) and so

(ψ1, ψ−1
2 ) ∈ KN .

Defining

γ1 = H(ψ1), γ2 = H(ψ2), (14)

it follows that

(γ1, γ −1
2 ) ∈ K. (15)
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17160 Y. Hartman et al.

Recall we have E(2) = E(1) × E(1), and we write points in E(2) as

(
x

y

)

where

x, y ∈ E(1). We embed Sym(E(1)) × Sym(E(1)) into Sym(E(2)) via the map

(φ1, φ2) 3→
(

φ1

φ2

)

, (16)

where

(
φ1

φ2

) (
x

y

)

=
(

φ1(x)

φ2(y)

)

. Define

xP to be the subgroup of Sym(E(2)) that is the image of this embedding. (17)

Lemma 5.11. For any

(
φ1

φ2

)

∈ P, we have

((
φ1

φ2

)

,

(
φ2

φ1

))

∈ K.

Proof. Let

(
φ̃1

φ̃2

)

∈ Simp(#(2)) be the automorphism induced by the permutation

(
φ1

φ2

)

on the edge set E(2)(#). Thus,

(
φ1

φ2

)

= (H × H)

(
φ̃1

φ̃2

)

. It is straightforward to

check that
(

φ̃1

φ̃2

)

σ

(
φ̃2

−1

φ̃−1
1

)

σ−1 =
(

φ̃1

φ̃2

) (
φ̃−1

1

φ̃−1
2

)

= Id ∈ N,

so

((
φ̃1

φ̃2

)

,

(
φ̃2

φ̃1

))

∈ KN .

!

Define the swapping element s ∈ Sym(E(2)) by

s

(
p

q

)

=
(

q

p

)

. (18)

Recall we can identify period two points for σ with the set E(2). Then, σ induces

an action on E(2), and this action agrees with the action of s on E(2).

Lemma 5.12. For the elements γ1, γ2 defined in Equation (14), we have γ −1
2 )= s−1γ1s.
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Stabilized Automorphism Group of a Subshift 17161

Proof. By Lemma (5.9), α = ψ1σψ2σ−1 for some ψ1, ψ2 ∈ Simp(#(2)). If γ −1
2 = s−1γ1s,

then α acts on E(2) by the permutation

γ1ss−1γ −1
1 ss−1 = γ1γ −1

1 = Id.

But this contradicts Lemma 5.9, as α acts nontrivially on E(2). !

5.3.4 Completion of the proof of Lemma 5.2

To translate properties of K to subgroups of Sym(E(2)), we make use of the following

result.

Lemma 5.13 (Goursat’s lemma (see [23])). Let G1, G2 be groups, and let H be a subgroup

of G1×G2. Then, there exist subgroups H1 ⊂ G1, H2 ⊂ G2, normal subgroups N1!H1, N2!
H2, and an isomorphism , : H1/N1 → H2/N2 such that

H = {(x, y) ∈ H1 × H2 : ,([x]) = [y]}.

Applying Goursat’s lemma to the group K, we obtain the following corollary.

Corollary 5.14. Let K be the subgroup defined in (13). There exist H1, H2 ⊂ Sym(E(2)),

normal subgroups N1 ! H1, N2 ! H2, and an isomorphism , : H1/N1 → H2/N2 such that

K = {(φ1, φ2) ∈ H1 × H2 : ,([φ1]) = [φ2]}.

We turn our attention then to studying the subgroups H1, H2, N1, N2. The key

lemma regarding their structure is the following.

Lemma 5.15. Assume both subgroups N1 and N2 of Corollary 5.14 are trivial. Then, at

least one of the following holds:

(i) H1 = Sym(E(2)) and H2 = Sym(E(2));

(ii) H1 = Alt(E(2)) and H2 = Alt(E(2)).

As the proof of this lemma is lengthy and involves checking multiple cases, we

defer its proof to Section 5.4.

For use in the proof of Lemma 5.2, we recall the following classical theorem.

Theorem 5.16. Suppose |X| > 6, G is either Sym(X) or Alt(X), and , : G → G is an

automorphism. Then, there exists g ∈ Sym(X) such that ,(h) = g−1hg for all h ∈ G.
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17162 Y. Hartman et al.

We have now assembled the tools to prove Lemma 5.2 (modulo the deferral of

the technical statement in Lemma 5.15).

Proof of Lemma 5.2. Let N1, N2 be the subgroups produced in Corollary 5.14, and let

, : H1/N1 → H2/N2 be the isomorphism in the same result.

Assume first that N1 )= {Id}, so there is some φ1 )= Id with φ1 ∈ N1. Then,

,([φ1]) = ,([Id]) = [Id] ∈ H2/N2, so (φ1, Id) ∈ K. This implies that

H−1(φ1)σσ−1 = H−1(φ1) ∈ N.

But since H−1(φ1) ∈ Simp(#), the statement of Lemma 5.2 follows. Likewise, if N2 )= {Id},
then (Id, φ2) ∈ K for some φ2 ∈ N2, and again the result follows. Thus, we are left with

showing that either N1 )= {Id} or N2 )= {Id}.
We proceed by contradiction and suppose that both N1 = {Id} and N2 = {Id}.

Combining Corollary 5.14 and Lemma 5.15, we have that the isomorphism , is either

, : Sym(E(2)) → Sym(E(2))

or

, : Alt(E(2)) → Alt(E(2)).

By Theorem 5.16, we have that , is given by ,(h) = g−1hg for some g ∈ Sym(E(2)).

We claim that g is the swap map s, defined in (18).

To check this claim, note that for any

(
φ1

φ2

)

∈ P, where P is defined in (17), it

follows from Lemma 5.11 that

((
φ1

φ2

)

,

(
φ2

φ1

))

∈ K. Thus,

g−1

(
φ1

φ2

)

g =
(

φ2

φ1

)

,

and hence,

g−1s

(
φ2

φ1

)

s−1g =
(

φ2

φ1

)

(19)
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Stabilized Automorphism Group of a Subshift 17163

for all φ1, φ2 ∈ Sym(E(1)). We now check that this implies that s−1g = Id. If not, there

exists

(
x1

y1

)

,

(
x2

y2

)

∈ E(2) such that s−1g

(
x1

y1

)

=
(

x2

y2

)

and

(
x1

y1

)

)=
(

x2

y2

)

. Either

x1 )= x2 or y1 )= y2; assume x1 )= x2 (the other case is similar). Choose z ∈ E(1) such that

z )= x1, x2, and define φ3 ∈ Sym(E(1)) to be the transposition swapping x2 and z. Then,

(
φ3

Id

)

s−1g

(
φ3

Id

)−1 (
x1

y1

)

=
(

φ3

Id

) (
x2

y2

)

=
(

z

y2

)

)=
(

x2

y2

)

= s−1g

(
x1

y1

)

contradicting (19), thus proving the claim.

Since (γ1, γ −1
2 ) ∈ K (see (15)) we have γ −1

2 = ,(γ1). It then follows from the claim

that γ −1
2 = s−1γ1s. But this contradicts Lemma 5.12, completing the proof. !

5.4 The proof of Lemma 5.15

5.4.1 Preliminary reductions

We are left with showing Lemma 5.15. Recall that Corollary 5.14 gives us the existence

of subgroups H1, H2 ⊂ Sym(E(2)), normal subgroups N1!H1, N2!H2, and an isomorphism

, : H1/N1 → H2/N2 such that

K = {(φ1, φ2) ∈ H1 × H2 : ,([φ1]) = [φ2]}.

The statement of Lemma 5.15 is that when both subgroups N1 and N2 are trivial, at least

one of the following holds:

(i) H1 = Sym(E(2)) and H2 = Sym(E(2));

(ii) H1 = Alt(E(2)) and H2 = Alt(E(2)).

We start with some terminology used to study these subgroups.

For a finite set X, recall that Sym(X) denotes the group of permutations of the

set X. If K ⊂ Sym(X) is a subgroup, a nonempty subset A ⊂ X is called a K-block

if for all g ∈ K either g(A) = A or g(A) ∩ A = ∅. A subgroup K ⊂ Sym(X) is called

primitive if the only K-blocks are singletons and X. We say the subgroup K ⊂ Sym(X)

contains a p-cycle if it contains some element τ ∈ K such that τ consists of a single

p-cycle.

Theorem 5.17 (Jordan ([38, Theorem 13.9])). Suppose K ⊂ Sym(X) is primitive and

contains a p-cycle for some prime p < |X| − 2. Then, K = Alt(X) or K = Sym(X).
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17164 Y. Hartman et al.

Thus, to prove Lemma 5.15, by Jordan’s theorem, since H1, H2 ⊂ Sym(E(2)), it

suffices to show that at least one of H1, H2 is primitive and also contains a p-cycle for

some prime p < |E(2)| − 2.

We start with some technical results on subgroups of Sym(E(2)), then prove

primitivity, and then show how to generate a p-cycle for some prime p < |E(2)| − 2.

5.4.2 Subgroups of Sym(E(2))

To denote the 1st and 2nd components of an element
(

x
y

)
∈ E(2), we write

(
x
y

)

1
= x,

(
x
y

)

2
= y.

We say that an element τ ∈ Sym(E(2)) is

(i) row-preserving if τ
(

x1
y1

)

1
= τ

(
x1
y2

)

1
for all y1, y2 ∈ E(1);

(ii) column-preserving if τ
(

x1
y1

)

2
= τ

(
x2
y1

)

2
for all x1, x2 ∈ E(1);

(iii) free if τ is neither row-preserving nor column-preserving.

For any element τ ∈ Sym(E(2)), there exists a pair of functions τ1, τ2 : E(2) → E(1)

such that

τ
(

x1
y1

)
=




τ1

(
x1
y1

)

τ2

(
x1
y1

)



 .

It follows quickly from the definitions that

(i) τ is row-preserving if and only if τ1

(
x
y

)
is independent of y,

(ii) τ is column-preserving if and only if τ2

(
x
y

)
is independent of x.

It is also easy to check that

(i) the collection of τ ∈ Sym(E(2)) that are row-preserving forms a subgroup;

(ii) the collection of τ ∈ Sym(E(2)) that are column-preserving forms a subgroup;

(iii) any τ ∈ P, where P is the subgroup defined in (17), is both row-preserving

and column-preserving.

In Lemma 5.9, we showed the existence of α ∈ N of the form α = ψ1σψ2σ−1

for some ψ1, ψ2 ∈ Simp(#(2)). The automorphism α acts on P2(σ ), and upon identifying

P2(σ ) with E(2), there is a corresponding permutation of E(2) induced by α, which we

denote by α ∈ Sym(E(2)). (Recall that we are identifying E(2) with E(1) × E(1) and that

E(1) = {1, 2, . . . , n}.)
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Recall that γ1, γ2 are defined in (14) and the swap map s is defined in (18). By

Part (iii) of Lemma 5.9, we have that α(
(

1
1

)
) =

(
1
1

)
. Since the subgroup P (see (17)) acts

transitively on E(2), there exists some φ ∈ P such that γ1φ
(

1
1

)
=

(
1
1

)
. Letting φ̃ denote

the automorphism in Simp(#(2)) corresponding to φ ∈ Sym(E(2)), we have that

α = ψ1σψ2σ−1 = ψ1φ̃φ̃−1σψ2σ−1 = ψ1φ̃σσ−1φ̃−1σψ2σ−1 ∈ N.

Since φ ∈ P, it is straightforward to check that σ−1φ̃−1σ ∈ Simp(#(2)), and hence

(ψ1φ̃, ψ−1
2 σ−1φ̃σ ) ∈ KN . Furthermore (recall that the isomorphism H is defined in (12)),

H(σ−1φ̃σ ) = s−1φs,

and it follows that (γ1φ, γ −1
2 s−1φs) ∈ K. Abusing notation, we replace γ1 and γ −1

2 by γ1φ

and γ −1
2 s−1φs, respectively. Then, γ1

(
1
1

)
=

(
1
1

)
. Since α

(
1
1

)
=

(
1
1

)
and σ

(
1
1

)
=

(
1
1

)
,

it follows that γ2

(
1
1

)
=

(
1
1

)
as well.

By Part (b) of Lemma 5.7, α
(

1
u1

)
=

(
u2
1

)
for some u1 )= 1, u2 )= 1. Since α ∈

Aut(σ ), it follows that α
(

u1
1

)
=

(
1

u2

)
as well. Finally, recall in our notation the action

α of α on E(2) is given by

α = γ1sγ2s−1.

Lemma 5.18. Either γ1 is free or γ2 is free.

Proof. Suppose γ2 is row-preserving. Then, γ2

(
1

u1

)
=

(
1

v1

)
for some v1 ∈ E(1), v1 )= 1,

since γ2 fixes
(

1
1

)
. Then,

(
1

u2

)
= α

(
u1
1

)
= γ1sγ2s−1

(
u1
1

)
= γ1sγ2

(
1

u1

)
= γ1s

(
1

v1

)
= γ1

(
v1
1

)
.

Thus, γ1

(
v1
1

)
=

(
1

u2

)
. Since γ1 fixes

(
1
1

)
, it follows that γ1 is free.

Suppose instead that γ2 is column-preserving. Then, likewise, we have γ2

(
u1
1

)
=

(
v2
1

)
for some v2 ∈ E(1), v2 )= 1, since γ2 fixes

(
1
1

)
. Thus, as in the 1st case, we then

have

(
u2
1

)
= α

(
1

u1

)
= γ1sγ2s−1

(
1

u1

)
= γ1sγ2

(
u1
1

)
= γ1s

(
v2
1

)
= γ1

(
1

v2

)
.
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17166 Y. Hartman et al.

Since γ1 fixes
(

1
1

)
, it again follows that γ1 is free. !

For a subgroup H ⊂ Sym(E(2)), we say H contains the arrangement






(
x1
y1

)
3→

(
x′

1
y′

1

)

...
(

xn
yn

)
3→

(
x′

n
y′

n

)
(20)

if H contains an element φ such that φ maps points as in (20). Note that not all points of

E(2) may be listed, and if a point is not listed, it means we make no claim how φ acts on

that point. Instead of writing
(

x1
y1

)
3→

(
x1
y1

)
, we simply write Id on

(
x1
y1

)
.

Lemma 5.19. Suppose H is a subgroup of Sym(E(2)) and P ⊂ H, where P is the subgroup

defined in (17).

(i) Suppose there exists τ ∈ H such that τ is not row-preserving. Then, at least

one of the following holds:

(a) H contains the arrangement






Id on

(
1
1

)

(
1
2

)
3→

(
2
2

)
;

(21)

(b) H contains the arrangement






Id on

(
1
1

)

(
2
1

)
3→

(
1
2

) . (22)

(ii) Suppose there exists τ ∈ H such that τ is not column-preserving. Then, at

least one of the following holds:

(a) H contains the arrangement






Id on

(
1
1

)

(
2
1

)
3→

(
2
2

)
;

(23)
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(b) H contains the arrangement






Id on

(
1
1

)

(
2
1

)
3→

(
1
2

) . (24)

(iii) If H contains some τ where τ is free, then H contains the arrangement






Id on

(
1
1

)

(
1
2

)
3→

(
2
1

) . (25)

Proof. The proofs of Parts (1) and (2) are similar, so we only prove case (2), assuming

that τ is not column-preserving.

Since τ is not column-preserving, there exist a1, a2, b1 ∈ E(1) such that(
τ
(

a1
b1

))

2
)=

(
τ
(

a2
b1

))

2
. The group P acts transitively on E(2), so there exists φ1 ∈ P

such that φ1τ
(

a1
b1

)
=

(
a1
b1

)
. It follows that φ1τ

(
a2
b1

)

2
)= b1. Choose φ2 ∈ P such that

φ2

(
1
1

)
=

(
a1
b1

)
, let φ3 = φ−1

2 φ1τφ2, and let
(

a3
1

)
= φ−1

2

(
a2
b1

)
. Note that a3 )= 1. We

have φ3

(
1
1

)
=

(
1
1

)
, and setting k = φ3

(
a3
1

)

2
, we have k )= 1 (since φ1τ

(
a2
b1

)

2
)= b1).

Letting φ4 =
(

Id
k ↔ 2

)
φ3, it follows that φ4

(
a3
1

)

2
= 2. Finally, let φ5 = φ4

(
2 ↔ a3

Id

)
, so that

φ5

(
2
1

)
=

(
t
2

)
for some t. Note that we still have φ5

(
1
1

)
=

(
1
1

)
. If t = 1, then φ5 gives

arrangement (24). If t > 1, then letting φ6 =
(

t ↔ 2
Id

)
φ5, φ6 gives arrangement (23).

Turning to Part (3), suppose τ ∈ H and τ is free. By Parts (1) and (2), either H

contains the arrangement






Id on

(
1
1

)

(
2
1

)
3→

(
1
2

) (26)

in which case (upon taking an inverse) we are done, or H contains both arrangements






Id on

(
1
1

)

(
2
1

)
3→

(
2
2

) and






Id on

(
1
1

)

(
1
2

)
3→

(
2
2

)
.

(27)
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17168 Y. Hartman et al.

In the latter case, if φ1, φ2 implement these arrangements, then φ−1
1 φ2 implements the

arrangement






Id on

(
1
1

)

(
1
2

)
3→

(
2
1

)
.

(28)

!

5.4.3 Structures in the subgroups H1, H2

We use pictures to depict the action of elements of Sym(E(2)). Since E(2) = E(1) × E(1),

each point p ∈ E(2) corresponds to an ordered pair p = (p1, p2) ∈ E(1) × E(1); we choose

an ordering on E(1) and may then consider E(2) as a grid of points with respect to the

ordering chosen for E(1). When we say φ ∈ Sym(E(2)) acts by

we mean that φ acts on E(2) as drawn in the picture, with the following conventions:

(i) An arrow drawn from one • (representing a point (p1, q1)) to another •
(representing a point (p2, q2)) indicates the point (p1, q1) is mapped to the

point (p2, q2). A two-headed arrow between two bullets indicates the two

corresponding points are swapped.

(ii) A • associated with no arrow represents a point fixed by φ.

(iii) An x means the point could be mapped anywhere, meaning that we make no

assumption on how that point is mapped by φ.

(iv) Ellipses indicate the type of action continues in that direction. For example,

the use of ellipses following xs means that we make no assumption on

how φ acts on points in that direction. When ellipses are between specified

behavior, we mean a continuation of the same type of action (this is not

relevant until Figure 1b.2 (i).

(v) When no ellipses are present, φ acts by the identity on any unrepresented

points (meaning points in E(2) that do not appear in the picture).
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Stabilized Automorphism Group of a Subshift 17169

Definition 5.20. We say a subgroup H ⊂ Sym(E(2)) is substantial if it contains both of

the following:

(i) a free element;

(ii) an involution implementing at least one of the following arrangements:

Lemma 5.21. At least one of the subgroups H1, H2 in Sym(E(2)) is substantial.

Before the proof, we introduce some notation. Define

CR =
{(

x
y

)
∈ E(2) : either x = 1or y = 1

}
, (29)

and so CR is the union of row one and column one in E(2) (CR stands for column row).

Define

IS = E(2) \ CR (30)

(IS stands for inner square).

Proof. First, suppose H is a subgroup of Sym(E(2)) with P ⊂ H, and suppose φ ∈ H

satisfies both of the following:

(i) φ
(

1
1

)
=

(
1
1

)
;

(ii) φ
(

x1
y1

)
∈ IS for some

(
x1
y1

)
∈ CR.

Note that since φ satisfies both of the above conditions,
(

x1
y1

)
cannot be equal

to
(

1
1

)
. We prove that H contains an involution implementing at least one of the

arrangements in Part (2) of Definition 5.20. Thus, suppose that we have such a φ and
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17170 Y. Hartman et al.

some
(

1
1

)
)=

(
x1
y1

)
∈ CR with φ

(
x1
y1

)
=

(
x2
y2

)
∈ IS. Suppose first that

(
x1
y1

)
is in column

one (so y1 = 1 and x1 > 1, since
(

x1
y1

)
)=

(
1
1

)
). By replacing φ by

(
2 ↔ x1

id

)−1
φ
(

2 ↔ x1
id

)
,

we may assume that x1 = 2. Set

L1 = {
(

x
y

)
∈ E(2) : x > 2 and y > 1}.

Since n is large, there exists some
(

x3
y3

)
∈ L1 such that φ

(
x3
y3

)
∈ IS. Choose some

involution τ1 ∈ P such that τ1

(
1
1

)
=

(
1
1

)
and τ1φ

(
x3
y3

)
=

(
x2
y2

)
. Then,

φ−1τ1φ
(

x3
y3

)
= φ−1

(
x2
y2

)
=

(
x1
y1

)
=

(
2
1

)
.

Thus, φ−1τ1φ is an involution in H fixing
(

1
1

)
that satisfies φ−1τ1φ

(
2
1

)
=

(
x3
y3

)
∈ L1,

and we may choose another involution τ2 ∈ P such that τ2 fixes
(

1
1

)
, and τ2

(
x3
y3

)
=

(
3
2

)
.

Now, the involution τ−1
2 φ−1τ1φτ2 is in H and implements the 1st arrangement. The case

that
(

x1
y1

)
is in row one is similar and produces an involution in H implementing the

2nd arrangement. This completes the proof of the claim.

Recall we have γ1 ∈ H1, γ −1
2 ∈ H2 (see (14)) and both γ1 and γ2 fix

(
1
1

)
. By Lemma

5.18, either γ1 is free or γ2 is free. Suppose then that γ1 is free. If γ1 maps any point

(necessarily not
(

1
1

)
) in CR into IS, then H1 satisfies both parts of Definition 5.20 by the

claim above. Suppose then that γ1 leaves CR invariant. Then, γ1s leaves CR invariant, and

fixes
(

1
1

)
. By condition (v) of Lemma 5.9, α = γ1sγ2s−1 maps the points

(
1

u3

)
and

(
u3
1

)

into IS. Since s leaves CR and hence IS invariant, this means γ2 maps both
(

1
u3

)
and

(
u3
1

)
into IS. Since γ2 fixes

(
1
1

)
, this implies γ2 is neither row-preserving nor column-

preserving and so is free. Furthermore, γ2 maps a point in CR (specifically,
(

1
u3

)
) into

IS. By the claim, this implies H2 satisfies both conditions (1) and (2) of Definition 5.20.

A similar argument shows that if γ2 is free and preserves CR, then H1 satisfies

both conditions (1) and (2) of Definition 5.20, finishing the proof. !

5.4.4 Primitivity

Our goal now is to show that any substantial subgroup of Sym(E(2)), which contains P

is primitive.

We make use of the following lemma from [13].

Lemma 5.22 (See [13, p. 735]). Suppose X is a finite set, K ⊂ Sym(X) is transitive, and

x ∈ X. Then, K is primitive if the only blocks that contain x are {x} and X.
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Stabilized Automorphism Group of a Subshift 17171

Lemma 5.23. Suppose H ⊂ Sym(E(2)) is a subgroup that contains P and is substantial.

Then, H is primitive.

Proof. Since the subgroup P (see (17)) acts transitively on E(2) and P ⊂ H, the subgroup

H also acts transitively on E(2). By Lemma 5.22, it suffices to show that if A is any

H-block containing
(

1
1

)
and at least one other point, then A must be all of E(2).

Let A be an H-block containing
(

1
1

)
and some other point

(
x1
y1

)
. We claim that

if A contains a point in IS (recall that the set IS is defined in (30)), then A = E(2). To check

this, suppose A contains
(

u1
v1

)
∈ IS. If

(
u2
v2

)
is any other point in IS, then there exists

φ ∈ P such that

φ :






Id on

(
1
1

)

(
u1
v1

)
3→

(
u2
v2

)
.

It follows that A contains IS. Now,
(

Id
1 ↔ 2

)
A∩A )= ∅ and

(
Id

1 ↔ 2

)
A contains all of column

1 except
(

1
1

)
, so A contains all of column 1 (since A already contained

(
1
1

)
). Likewise,

(
1 ↔ 2

Id

)
A∩A )= ∅ so A must contain all of row 1. Thus, A must contain all of E(2), proving

the claim.

To finish the proof of the lemma, it suffices then to show that A contains some

point in IS. By assumption, A contains some point
(

x1
y1

)
)=

(
1
1

)
. The only remaining

cases then are that either
(

x1
y1

)
lies in row 1 or

(
x1
y1

)
lies in column 1. We prove the first

case; the 2nd case is analogous.

Assume x1 = 1. Then, for any 1 )= z ∈ E(1),
(

Id
z ↔ y1

)
A ∩ A contains

(
1
1

)
, so A

contains
(

1
z

)
for all such z, and A contains row 1. Let ρ ∈ Sym(E(1)) denote the 3-cycle

mapping 3 3→ 2, 2 3→ 1, 1 3→ 3. Since H is substantial, it contains a free element. Thus,

by Part (iii) of Lemma 5.19, there is some γ̃ ∈ H such that

γ̃ :






Id on

(
1
1

)

(
1
2

)
3→

(
2
1

)
.

Then,
(

Id
ρ−1

)
γ̃
(

Id
ρ

)
∈ H and

(
Id

ρ−1

)
γ̃
(

Id
ρ

)
:






Id on

(
1
2

)

(
1
3

)
3→

(
2
2

)
.
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Since A contains row 1, it contains
(

1
2

)
, so this implies that A contains

(
2
2

)
, completing

the proof. !

5.4.5 Obtaining a p-cycle

The main goal of this subsection is to prove the following lemma.

Lemma 5.24. Let H ⊂ Sym(E(2)) be a subgroup that contains P and is substantial.

Then, H contains a p-cycle for some prime p < |E(2)| − 2.

We start with some notation to aid in describing the arrangements. Define

Ri.j =
{(

i
y

)
: y ∈ E(1)(#)

}
∪

{(
j
y

)
: y ∈ E(1)(#)

}
(31)

and

Ci,j =
{(

x
i

)
: x ∈ E(1)(#)

}
∪

{(
x
j

)
: x ∈ E(1)(#)

}
. (32)

Thus, Ri,j denotes the set of points in E(2) that belong to either row i or j, and Ci,j denotes

the set of points in E(2) that belong to either column i or j.

Given 1 ≤ i, j ≤ n, let φC
i,j denote the involution in P swapping columns i and j,

and let φR
i,j denote the involution in P swapping rows i and j. Given any φ1, φ2 ∈ H1, we

let φ
φ1
2 = φ−1

1 φ2φ1, and for τ , φ ∈ H1, define

τ 7 φ =
(
τφ

)−1
τ = φ−1τ−1φτ .

(While τ 7 φ is usually denoted by [φ, τ ], we find the 7 notation to be more

readable.)

We frequently use the following observation: if c is a cycle whose support does

not intersect Ci,j (respectively, Ri,j), then c 7 φC
i,j = Id (c 7 φR

i,j = Id, respectively).

Let us briefly outline the proof of Lemma 5.24. Suppose H is a substantial

subgroup of Sym(E(2)), which contains P. To show H contains a p-cycle, we begin

by letting γ3 denote some element of H that acts by one of the arrangements in

Definition 5.20; say Arrangement (a). Letting γ4 = γ3 7 φR
1,2, by passing from γ3 to this

γ4, any 2-cycles in γ3 whose support were disjoint from rows one and two vanish.

Moreover, the element γ4 has a distinguished 3-cycle whose support consists of the

points
(

1
1

)
,
(

2
1

)
,
(

3
2

)
, and we use this distinguished cycle to reduce to a collection of

cases, which we then handle. The proof of this occupies the remainder of this section.
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Lemma 5.25. Suppose H is a subgroup of Sym(E(2)) that contains P and any of the

following arrangements.

Then H contains a 3-cycle.

Proof. We prove the lemma for arrangements (1), (2), (3); the proofs for arrangements

(4), (5), (6) are similar.

Suppose the arrangement (1) is implemented by the involution γ3. Then,

γ4 =
(

γ
φR

2,3
3

)
γ3
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acts by the arrangement

and γ3γ
φC

1,3
4 acts by the arrangement

Squaring now produces a 3-cycle.

Suppose now the arrangement (2) is implemented by some γ3. Then, γ4 = γ
φR

3,5
3

acts by the arrangement

Setting γ5 =
(

γ
φR

2,3
4

)
γ4, the element

(
γ4γ

φC
1,3

5

)2

consists of a single 3-cycle.

Suppose now the arrangement (3) is implemented by some γ3. Then, γ4 =(
γ

φR
3,4

3

)
γ3 acts by the arrangement
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Stabilized Automorphism Group of a Subshift 17175

and γ5 = γ
φR

2,4
4 acts by the arrangement

But this is exactly the arrangement in case (2), so the result follows for the

same reason. !

Lemma 5.26. Suppose H is a subgroup of Sym(E(2)) that contains P, and suppose H

contains an involution τ1 that satisfies the following:

(i) τ1 is supported in rows 1, 2, 3, 4 and consists of an even number of 2-cycles

di, i = 1, . . . , 2q for some q ≥ 1;

(ii) each 2-cycle in τ1 has support containing a point in R1,2 and a point in R3,4;

(iii) each 2-cycle in τ1 has a companion 2-cycle, meaning that for each 2-cycle di,

we have di+qmod 2q = d
φR

1,2φR
3,4

i ;

(iv) τ1 has a pair of 2-cycles d1, dq+1 such that d1 =
((

1
1

)
,
(

4
2

))
and dq+1 =

((
2
1

)
,
(

3
2

))
.

Then, H contains a p-cycle for some prime p < |E(2)| − 2.

Proof. We proceed by cases (recall that C1,2 is defined in (32)).

Case 1. Suppose τ1 leaves C1,2 invariant and acts nontrivially on C1 ∩ R3,4 (and hence,

given the setup, also nontrivially on C2 ∩ R1,2). Then, one of the following two cases

occurs.

Case 1a. Suppose τ1 acts by the arrangement

on C1,2. Then, τ1 7 φC
1,2 acts by arrangement (2) of Lemma 5.25, and the result follows.
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Case 1b: Suppose τ1 acts by the arrangement

on C1,2. We then split this into two further subcases.

Subcase 1b.1. Suppose that τ1 leaves some column j invariant. If τ1 acts by the identity

on column j, we set τ2 = τ
φR

2,4
1 and τ3 = τ2 7 φC

2,j. Then, setting τ4 = τ3 7 φR
2,5, τ4 consists of

one 3-cycle and one 5-cycle. Thus, τ3
4 consists of a single 5-cycle.

Suppose instead τ1 acts nontrivially on column j. Let τ2 = τ1 7 φC
2,j. Then, τ2 acts

by one of the following:

In the 1st case, setting τ3 = τ2 7 φR
2,5, we have that τ3

3 consists of a single 5-cycle

and the result follows. In the 2nd case, first let τ3 = τ2 7 φR
2,5, then define τ4 = τ

φC
j,3

3 ,

and τ5 = τ
φC

3,4
4 τ4. Finally, letting τ6 = τ5 7 φR

2,3, τ7 = τ
φC

2,4
6 , and τ8 = τ

φR
1,3

7 , then τ8 acts by

arrangement (5) in Lemma 5.25 and the result follows.

Subcase 1b.2. Suppose τ1 leaves no column invariant. Then, we may assume that τ1 maps

points in column 3 into some columns j1, j2. We may assume at least one of j1, j2 is not

equal to 3, since if not, we are in subcase 1b.1. Thus, without loss of generality, we can

suppose that j1 )= 3.
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Suppose first that j2 )= 3. Then, letting τ2 = τ17φC
2,3, τ2 acts by one of the following

arrangements:

Note that while we have drawn these arrangements as if j1 )= j2, we could also have

j1 = j2 and the proof is the same. Thus, for arrangement 1b.2 (i), we set τ3 = τ2 7φR
1,5, and

then τ4 = τ
φR

2,5
3 , τ5 = τ

φC
4,j2

4 , τ6 = τ
φC

1,3
5 , τ7 = τ6 7 φC

2,5, and τ8 = τ
φC

3,5
7 , τ8 acts by arrangement

(6) of Lemma 5.25. For the arrangement 1b.2 (ii), set τ3 = τ2 7 φR
4,5 and then τ4 = τ3

3 ,

τ5 = τ
φC

1,3
4 , and τ6 = τ

φR
1,4φR

2,5
5 . Then, τ6 acts by the arrangement (4) in Lemma 5.25.

Suppose instead that j2 = 3. Then, τ1 fixes two points in column 3. Set τ2 =
τ1 7 φC

2,3 and τ3 = τ3
2 . Then, setting τ4 = τ3 7

(
φR

1,3φR
2,4

)
, we have that τ4 acts by one of the

two arrangements 1b.2 (i) or 1b.2 (ii) above, and we proceed as when j2 )= 3.

Case 2. Suppose C1,2 is invariant under τ1 and τ1 acts by the identity on
(

1
2

)
,
(

2
2

)
,
(

3
1

)
,

(
4
1

)
. Then, τ1 acts by the arrangement

Setting τ2 = τ1 7 φC
1,2, we have reduced to Case 1b, and the result follows.

Case 3. Suppose C1,2 is not invariant under τ1. Again, we split the analysis into cases.

Subcase 3a. Suppose τ1 acts nontrivially on
(

4
1

)
, and hence also on

(
3
1

)
. Then, τ1 maps

(
4
1

)
into some column j, and by assumption, we must have j )= 1, 2. It follows from the

setup that τ1 also maps
(

3
1

)
into column j. We split the analysis into two subcases.
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Subcase 3a.1. Suppose τ1 fixes both
(

1
2

)
and

(
2
2

)
, so τ1 acts by one of the

following arrangements:

In either case, setting τ2 = τ1 7φC
1,2 and τ3 = τ2 7φR

4,5, we have that τ3 consists of a 7-cycle.

Subcase 3a2: Suppose τ1 maps
(

1
2

)
into column i where i )= 1, 2 (it follows from

the setup that τ1 also maps
(

2
2

)
into column i). Let τ2 = τ1 7 φC

1,2. Then, τ2 acts by one of

the following arrangements:

For the 1st case, set τ3 = τ2 7 φR
2,5. Then, τ4 = τ3

3 consists of a single 5-cycle. The

2nd case proceeds analogous to Subcase 1b.1, as illustrated in Figure 1b.1 (ii).

Subcase 3b. Suppose τ1 fixes both
(

4
1

)
and

(
3
1

)
. Then, by assumption, τ1 maps

(
1
2

)
and

(
2
2

)
into some column j )= 1, 2. Letting τ2 = τ

φC
1,2

1 and τ3 = τ
φR

1,3φR
2,4

2 , we are back

in Subcase 3a.1. !

We now prove Lemma 5.24.

Proof of Lemma 5.24. Since H is substantial, it satisfies both conditions (1) and (2)

of Definition 5.20. Thus, H contains an involution implementing either arrangement (a)

or (b) of Definition 5.20. First, we note that the subgroup H contains a p-cycle for some

prime p < |E(2)| − 2 if and only if the subgroup s−1Hs does. Moreover, H contains an

involution implementing arrangement (b) if and only if s−1Hs contains an involution

implementing arrangement (a). It follows that it suffices to consider the case that there
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is an involution γ3 ∈ H implementing arrangement (a), and we call this arrangement IC:

Fig. 1 Arrangement IC

Set γ4 = γ3 7 φR
1,2. Then, γ4 acts by the arrangement

and we label the distinguished 3-cycle as c1.

We claim that any cycle in γ4 whose support does not intersect R1,2 (see (31))

must be a 2-cycle. To see this, note that γ
φR

1,2
4 = γ3γ

φR
1,2

3 = γ −1
4 . If c is a cycle in γ4 whose

support does not intersect R1,2, then cφR
1,2 = c, and it follows that c is equal to its inverse,

and hence order two, proving the claim.

Thus, we may choose a large m1 ∈ N that is relatively prime to 3 such that

γ5 = γ
m1
4 consists of cycles ci, i = 1, . . . , L, each cycle of length 3ki for some ki ≥ 1, and

such that each of these ci has support that intersects R1,2. Note that L ≥ 1 since γ5 still

contains the cycle c1 (or its inverse). Define

I = {i ∈ {1, . . . , L} : the support of ciis not contained in R1,2}.

We adopt the following notation: if c is a cycle whose support intersects E(2)\R1,2

in exactly one point, we denote this point by ω(c).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/21/17112/6344682 by N
orthw

estern U
niversity user on 05 M

arch 2023
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Observe that for each i ∈ I, ci has support with at most one point not in R1,2

(since each ci satisfies c
φR

1,2
i = c−1

i and each cycle ci is of odd length). Thus, for i ∈ I, ω(ci)

is well defined. We also note that

∑

i∈I

(
|ci| − 1

)
≤ 2n, (33)

where |ci| denotes the length of a cycle ci. In particular, in the case that all the cis are

3-cycles, we have |I| ≤ n. We also have 1 ≤ |I| since 1 ∈ I (the cycle c1 has support not

contained in R1,2).

We now analyze the cases that arise.

Case 1. Suppose ki = 1 for all i ∈ {1, . . . , L} (recall this means each cycle ci has length

3ki ). Thus, γ5 consists of a collection of 3-cycles, and since we have the cycle c1 in the

arrangement, it follows that 1 ≤ |I| ≤ n. We split into two subcases.

Subcase 1a. Suppose there exists j ≥ 3 such that γ5 fixes
(

j
2

)
. Set γ6 =

(
γ

φR
3,j

5

)
γ5. Then,

γ6 consists of cycles determined by the following.

(i) Let i ∈ I be an index such that, writing ω(ci) =
(

xi
yi

)
, either of the following

occur:

(a) xi = 3 and
(

j
yi

)
= ω(cl) for some l ∈ I;

(b) xi = j and
(

3
yi

)
= ω(cl) for some l ∈ I.

Then, γ6 contains a pair of 3-cycles supported in the union of the

supports of ci and cl.

(ii) Let i ∈ I be an index such that, writing ω(ci) =
(

xi
yi

)
, either of the following

occur:

(a) xi = 3 and γ5 fixes
(

j
yi

)
;

(b) xi = j and γ5 fixes
(

3
yi

)
.

Then, γ6 contains a pair of 2-cycles whose support is contained in the

set
(
ci ∩ R1,2

)
∪

{(
3
yi

)
,
(

j
yi

)}
.

Note that the index 1 ∈ I falls into the 2nd case. Set γ7 = γ 3
6 and set γ8 = γ

φR
4,j

7 .

Then, either γ8 or γ
φR

1,2
8 satisfies the hypotheses of Lemma 5.26, completing this case.

Subcase 1b. Suppose there is no j ≥ 3 such that γ5 fixes
(

j
2

)
. This means that for all

j ≥ 3, there exists some i(j) ∈ I such that the cycle ci(j) intersects column two, meaning

that ω(ci(j)) lies in column two. Since |I| ≤ n, there exist at most two other cycles, call
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Stabilized Automorphism Group of a Subshift 17181

them c51
, c52

, such that ω(c51
) lies in some column L1 and ω(c52

) lies in some column L2,

with L1 )= 2 and L2 )= 2. The analysis of this splits into three subcases.

Subcase 1b.1. Suppose the support of c51
is not contained entirely in column L1, so the

support of c51
also intersects some column L3 )= L1. By assumption, ω(c51

) lies in column

L1, so we may write ω(c51
) =

(
x1
L1

)
. Furthermore, it also follows from our assumptions

that there must exist some j ≥ 3 such that γ5 fixes
(

j
L1

)
. Setting γ6 = γ

φC
L3,1

5 , γ7 =

γ
φR

x1,3φC
L1,2

6 , it follows that γ7 acts by the arrangement

so γ7 again consists of 3-cycles all of whose supports intersect R1,2. Moreover, γ7 has a

distinguished 3-cycle which matches c1 (or its inverse) and also acts by the identity on

some
(

j
2

)
for some j ≥ 3, so we can apply Subcase 1a.

Subcase 1b.2: If the support of c52
is not entirely contained in column L2, the argument

proceeds exactly as in Subcase 1b.1.

Subcase 1b.3: The remaining case is that the support of c51
is entirely contained in L1

and the support of c52
is entirely contained in L2 (note that if neither c51

nor c52
exist,

their supports are viewed as empty, and so this scenario is covered by this subcase).

There exists some cycle cm such that ω(cm) =
(

J1
2

)
and the support of cm intersects

some column J2 )= 2. Set γ6 = γ5 7 φR
3,J1

. Then, after conjugating by φR
1,2 if necessary, γ6

acts by one of the following:
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In either case, there exists some column J3 on which γ6 acts by the identity, and setting

γ7 = γ6 7 φC
2,J3

, γ7 acts by

We may then conjugate γ7 to move this pair of 2-cycles into case (1) of Lemma 5.25.

Case 2. Suppose there exists a cycle ci with ki ≥ 2 (recall this means the cycle ci has

length 3ki and note that this i may not be in I). Let k′ = maxi ki, let I1 ⊂ {1, . . . , L} be the

set of indices for which ki = k′, and set γ6 = γ 3k′−1

5 . Then, γ6 is order 3 and contains

3k′−1|I1| 3-cycles di, each of whose support intersect R1,2. We proceed by analyzing two

subcases.

Subcase 2a. Suppose every di has support entirely contained in R1,2. Note that we still

have γ
φR

1,2
6 = γ −1

6 . As a result, any cycle di = (z1, z2, z3) in γ6 has a companion cycle

di′ = (z3+1mod 2, z2+1mod 2, z1+1mod 2) in γ6. Moreover, for each cycle di = (z1, z2, z3)

in γ6, we must have z1, z2, and z3 lying in distinct columns. We further note γ6 acts by

the identity on
(

1
1

)
,
(

2
1

)
. Among all the cycles di, there are two companion cycles, call

them dj and dj′ , whose supports intersect a column, say column J, which is furthest to

the left. Thus, we have that J < J ′ for any other column J ′ hit by cycles in the list di.

Consider γ7 = γ
φC

1,J
6 γ6. Then, γ7 consists of four 2-cycles, two of which intersect column

one; call these e1, e2. Due to the structure of the companion cycles dj, dj′ , it follows that

e1 and e2 also intersect some distinct columns J1 < J2. Choose a column J3 )= 1, J1, J2,

and set γ8 = γ7 7 φC
1,J3

. Then, γ8 consists of two 3-cycles, e′
1, e′

2, whose support columns

consist of 1, J1, J3 and 1, J2, J3, respectively. Since n is large (n ≥ 7), we may find yet

another column J4 )= 1, J1, J2, J3, and let γ9 = γ
φC

J1,J4
8 γ8. Then, γ9 consists of two 2-cycles,

whose supports intersect four distinct columns. Choosing again a new column J5, we

have γ
φC

J4,J5
9 γ9 consists of only one 3-cycle, and we are done.

Subcase 2b. Suppose there exists a cycle di whose support is not contained in R1,2. Then,

I1 ∩ I )= ∅ and we can consider the nonempty set of indices

J = { j : the support of dj is not contained in R1,2}.
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Recall γ6 = γ 3k′−1

5 and that 2 ≤ k′ = maxi ki. Since each cycle in γ5 has at most one point

not in R1,2, each cycle of length 3k′
in γ5 contributes one cycle of length 3 in γ6 whose

support is not contained in R1,2. Thus, it follows that |J| = |I1 ∩ I|, and that, since the

support of the cycles of length 3k′
in γ5 have at least eight points in R1,2, we must have

|J| ≤ n
4

. (34)

Thus, the collection {ω(dj) : j ∈ J} has at most n
4 points, and we may choose some k ∈ J

such that, upon writing ω(dk) =
(

xk
yk

)
, there exists some 3 ≤ 5 ≤ n such that γ6 fixes the

point
(

5
yk

)
. Consider

γ7 = γ
φR

xk ,5

6 γ6.

Then, γ7 contains cycles determined by the following:

(i) a pair of 3-cycles corresponding to each (un-ordered) pair of indices j1, j2 ∈ J

such that ω(dj1) ∈ Rxk
, ω(dj2) ∈ R5, and ω(dj1), ω(dj2) lie in the same column;

(ii) a pair of 2-cycles corresponding to each index j ∈ J such that either
(

xk
yj

)
=

ω(dj) ∈ Rxk
and γ6 fixes

(
5
yj

)
, or

(
5
yj

)
= ωdj

∈ R5 and γ6 fixes
(

xk
yj

)
.

The 2-cycles that arise in case (ii) have support intersecting rows 1, 2, xk, 5. Moreover,

since k ∈ J satisfies case (ii), we have at least one pair of 2-cycles; suppose this pair

has support contained in columns yk, y′
k (note we could have yk = y′

k). Setting γ8 = γ 3
7 ,

we have that γ8 consists of only pairs of 2-cycles corresponding to each j ∈ J satisfying

case (ii). Setting γ9 = γ
φR

xk ,3φR
5,4

8 , γ9 is an involution satisfying the 1st three conditions of

Lemma 5.26.

Now, by (34), there exists a column F1 such that γ9 acts by the identity on the

column F1. Suppose yk = y′
k. Then,

(
γ

φC
yk ,F1

9

)−1

γ9 consists of two pairs of 2-cycles,

supported in rows 1, 2, 3, 4,; upon conjugating and moving these cycles if necessary,

we can apply Lemma 5.25. If yk )= y′
k, then setting γ10 = γ

φC
1,yk

φC
2,y′

k
9 , and if necessary,

replacing γ10 with γ11 = γ
φR

1,2
10 , γ10 is an involution satisfying all four conditions of

Lemma 5.26, and the result follows. !

We have now assembled all the ingredients to complete the proof of the technical

lemma:
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Proof of Lemma 5.15. Our goal is to show that at least one of

(i) H1 = Sym(E(2)) and H2 = Sym(E(2)) and

(ii) H1 = Alt(E(2)) and H2 = Alt(E(2))

holds. Since both N1 and N2 are trivial by assumption, and H1 and H2 are isomorphic

by assumption, it suffices to show that at least one of H1 or H2 is either Sym(E(2)) or

Alt(E(2)). By Jordan’s theorem, it then suffices to show that at least one of H1, H2 is

primitive and also contains a p-cycle for some prime p < |E(2)| − 2. By Lemma 5.21, at

least one of H1 or H2 is substantial. Since both H1 and H2 contain P, combining Lemmas

5.23 and 5.24 gives that at least one of H1 or H2 satisfies the hypotheses of Jordan’s

theorem and hence is either Sym(E(2)) or Alt(E(2)), as desired. !
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