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For a mixing shift of finite type, the associated automorphism group has a rich algebraic
structure, and yet we have few criteria to distinguish when two such groups are
isomorphic. We introduce a stabilization of the automorphism group, study its algebraic
properties, and use them to distinguish many of the stabilized automorphism groups.
We also show that for a full shift, the subgroup of the stabilized automorphism group
generated by elements of finite order is simple and that the stabilized automorphism

group is an extension of a free abelian group of finite rank by this simple group.

1 Distinguishing Automorphism Groups
1.1 Automorphism groups and stabilized automorphism groups

Let (X,0) be a shift over a finite alphabet A4, that is, X ¢ A% is closed and invariant
under the left shift o: .AZ — AZ. The automorphism group Aut(X,c) of the shift is
the collection of homeomorphisms ¢: X — X such that ¢ o 0 = o o ¢. For many
shifts with complicated dynamical behavior, including any mixing shift of finite type,
the associated automorphism group is known to have a rich algebraic structure, for
example, containing isomorphic copies of any finite group, the countably infinite direct

sum of copies of Z, and the free group on two generators (see [6, 11]). In contrast to
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shifts of finite type, numerous results show that for many zero entropy shifts, the
automorphism group is more constrained (see, e.g., [8-10]).

In spite of much attention, several natural and simple to state questions remain
open. Boyle et al. [6] raised the question of distinguishing (up to isomorphism) the
automorphism groups of full shifts (X,,,0,) for various n (meaning X,, = A% and the
alphabet A has n symbols). They ask if the automorphism group of the full shift on
2 symbols is isomorphic to the automorphism group of the full shift on 3 symbols,
and more generally, for which p and g the groups Aut(X,,o0,) and Aut(X,o,) are
isomorphic as groups. For some choices of p and g, such as when q = p? for a prime
p, one can show that the associated automorphism groups are not isomorphic (this was
explicitly pointed out for 2 and 4 in [6], and we make note in Theorem 2.5 of the natural
generalization using their method). But for general p and g, this problem remains open.

While many groups are known to embed into the automorphism group of a shift
of finite type, the subgroup structure of the automorphism groups cannot be used to
distinguish them, as shown by a result of Kim and Roush [16]. Namely, they showed
that the automorphism group of any full shift can be embedded into the automorphism
group of any other full shift (in fact, it can be embedded into the automorphism group of
any mixing shift of finite type). Thus, any strategy for distinguishing two automorphism
groups relying on finding some subgroup of one that does not lie in the other must fail.

Taking a new approach to this problem, we define a certain stabilization
of the automorphism group and show that many of these stabilized groups can be
distinguished (up to isomorphism) based only on the alphabet size. To simplify notation,
we suppress the associated space in the notation for the automorphism group, writing
Aut(oy) instead of Aut(X, ox). We make a slight abuse of notation for the full shift on n
symbols, writing Aut(c,,) for its automorphism group.

For a subshift (X, 0y), we define the stabilized automorphism group Aut'™ (oy)
to be

o0
Aut™ (oy) = | ] Aut(o}).
k=1

Passing from the non-stabilized automorphism group to the stabilized setting offers
certain advantages, and some of our results are analogous to what happens in the realm
of algebraic K-theory. Given a ring R, one defines the stabilized general linear group
GL(R) by taking the union of the finite general linear groups GL,(R). An important
subgroup of GL,(R) is E,,(R), the subgroup generated by elementary matrices (matrices
that differ from the identity in at most one coordinate), and in 1950, Whitehead [38]
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proved that the commutator of GL(R) coincides with the stabilized subgroup of
elementary matrices E(R). One way to interpret this result is that, by stabilizing,
a certain abstract subgroup that is defined group-theoretically (in this case the
commutator) may be identified with a concrete naturally occurring subgroup: the group
of stabilized elementary matrices. In the setting where (X, o) is a shift of finite type,
stabilizing produces analogous results. While the commutator of Aut(oy) is not very well
understood, we prove in Theorem 3.14 that, at the stabilized level, the abelianization of
Aut(® (oyx) coincides with the abelianization of a certain explicit quotient of Aut(® (oy):
the dimension representation (see Section 3.4 for definitions). Thus, in many cases (e.g.,
when (X, 0y) is a full shift), the commutator subgroup of Aut®>® (0x) coincides with a
certain naturally occurring subgroup (the subgroup of stabilized inert automorphisms).

Illustrating the stronger tools available in the stabilized setting, we are able
to distinguish many stabilized automorphism groups for which there are currently no
techniques to distinguish the (non-stabilized) counterparts. In particular, in Section 3.5,
we show that the stabilized automorphism groups of full shifts on alphabets with

different numbers of prime factors cannot be isomorphic.

Theorem 1.1. Assume that (X,,,0,,) and (X,,o0,) are the full shifts on m and n
symbols for some integers m,n > 2, and assume that the stabilized automorphism
group Aut(oo)(om) on m symbols and the stabilized automorphism group Aut®(s,)
on n symbols are isomorphic. Then, m and n have the same number of distinct prime

divisors.

In particular, this means that the stabilized automorphism groups on 2 symbols
and 6 symbols are not isomorphic; the analog of this result for the (non-stabilized)
automorphism groups on 2 and on 6 symbols remains open. However, our results do
not distinguish the stabilized automorphism groups with 2 and 3 symbols or those
with 6 and 12 symbols, and another method is needed to address this question (see
Question 3.23).

After the results in this article were proven, the 3rd author [34] has proven
a stronger result, showing that the stabilized groups Aut®”(o,,) and Aut®(s,) are
isomorphic if and only if m¥* = n/ for some k,j=>1.

In Section 3, we prove various properties of the stabilized automorphism group
and compare them with the (non-stabilized) automorphism group of the shift. It is
easy to check that, as for the automorphism group, the stabilized automorphism

group is countable. We also prove that, like the automorphism group, the stabilized
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automorphism group is not finitely generated; in contrast, though, the proof is quite
different from the proof for the non-stabilized case.

However, differences between the (non-stabilized) automorphism group and the
stabilized group appear quickly. For example, while Ryan's [32, 33] theorem states that
the center of the automorphism is exactly the powers of the shift, in Proposition 3.8, we
show that the stabilized automorphism group has a trivial center.

A mixing shift of finite type (X,,0,) has a dense set of periodic points, and
as a result, the action of the automorphism group on X, is far from minimal and has
many invariant measures. However, it follows from a result of Boyle et al. [6] that the
Aut® (o ,)-action on the space X, is minimal and uniquely ergodic. We discuss this in
Section 3.3.

An important tool for studying Aut(cy) when (X,ox) is a shift of finite type
is the dimension representation, a certain homomorphism from Aut(cy) to the group
of automorphisms of an ordered abelian group associated with (X, oy). The kernel of
this dimension representation, known as the subgroup of inert automorphisms, is a
large, algebraically rich subgroup of Aut(oy); for example, in the case of a full shift,
the automorphism group is an extension of a finitely generated free abelian group by
the inert subgroup. However, in general the inert subgroup is not well understood. In
Section 3, we show that the dimension representation extends naturally to a stabilized
dimension representation and that the abelianization of the group Aut®(cy) factors
through this stabilized dimension representation. Similar to the non-stabilized group
Aut(oy), the kernel of the stabilized dimension representation, which we refer to as the
group of stabilized inerts, constitutes the core combinatorial part of Aut®(cy). In the
classical (non-stabilized) setting, the inert subgroup Inert(cy) C Aut(oy) is residually
finite, and hence (since Inert(oy) is infinite) is far from simple. In stark contrast to this,

in Section 5, we prove the following theorem.

Theorem 1.2. For any n > 2, the group of stabilized inert automorphisms of the full

shift (X,,, 0,,) is simple.

In some sense, the stabilized automorphism groups capture different infor-
mation about the shift system than the non-stabilized automorphism groups. For
example, the stabilized automorphism groups for the full shift on 2 symbols and on
4 symbols are isomorphic, whereas for the automorphism groups this is essentially
the only case in which these groups can be distinguished. However, there is often an

advantage in working with a stabilized object involving sufficiently high powers of the
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transformation, rather than the original object. Examples of success in solving problems
in the stabilized setting, but which are still open in the non-stabilized setting, are
Wagoner’s [36] Finite Order Generation Theorem for stabilized inert automorphisms,
the classification [14, 39] of shifts of finite type up to topological conjugacy, and the
characterization [7] of the existence of a closing factor map between equal entropy
mixing shifts of finite. Some of these results, in turn, have shed light on problems in
the non-stabilized setting, such as the use of shift equivalence to address the problem
of classification of shifts of finite type up to conjugacy.

In this direction, we use our results on the stabilized automorphism group to
address a question about the (non-stabilized) automorphism group. As part of our anal-
ysis in the stabilized setting, we make key use of a particularly important class of inert
automorphisms, introduced by Nasu [28], called simple automorphisms. Wagoner [36]
asked whether the group of inert automorphisms is always generated by simple
automorphisms. Kim and Roush [17] answered Wagoner’'s question by constructing a
particular shift of finite type that has an inert automorphism that is not a product
of simple automorphisms. Our methods (together with the realization results in [19, 20])
also show that the same result holds for a wide class of shifts of finite type; for example,
any shift of finite type having at least three fixed points and no points of least period
two (we note this can also be deduced using some results from [3], though our methods
are quite different). However, we do not know if this phenomena is even more general,
and it is possible that the same result holds for any shift of finite type (including the
full shift). A related problem is posed in Question 3.19.

In Section 4, we prove a stabilized version of the Kim-Roush Embedding
Theorem; namely, we show the stabilized automorphism group of any full shift embeds
into the stabilized automorphism group of any mixing shift of finite type. We use this
to show that, unlike the classical automorphism group, the stabilized automorphism
group of a mixing shift of finite type is never residually finite. We also prove along
the way that the stabilized group contains divisible subgroups, highlighting another

difference with the classical setting.

1.2 Guide to the paper

In Section 2, we give an overview of the tools we need from the classical setting of (non-
stabilized) automorphism groups. Most of these results appear scattered throughout
the literature, and we present them with the goal of generalizing and adapting these

results for the setting of stabilized automorphisms. Along the way, in Theorem 2.5, we
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write down the natural generalization of the observation made by Boyle et al. [6] that
Ryan’s theorem may be used to distinguish the automorphism groups of the full 2 shift
and the full 4 shift.

In Section 3, we introduce the stabilized automorphism group. The basic prop-
erties are small variations on the classical setting, allowing us to set up and study the
stabilized versions of the center, the dimension representation, and the inert subgroup.
The innovations arise when we turn to studying the commutator subgroup of the
stabilized automorphism group. The key ingredient used throughout this section that
is not available in the classical setting is Wagoner’'s theorem, which shows that the
stabilized inert automorphisms are generated by simple automorphisms. Our analysis
in particular leads to Theorem 3.17, which, in conjunction with the constructions in
[19, 20], gives a method to detect, in the classical non-stabilized setting, the difference
between the subgroup of inerts and the subgroup generated by simple automorphisms.
In Section 3.6, we study the abelianization of the stabilized automorphism group. Using
our characterization of the commutator, we show how the abelianization can be used to
distinguish many automorphism groups in the stabilized setting.

Section 4 continues the extension of various properties from the classical setting
to the stabilized automorphism group. In particular, we prove a stabilized version of
the Kim-Roush Embedding Theorem. The proof adapts the original construction used
by Kim and Roush, with some necessary modifications.

The most difficult arguments of the paper are in Section 5, where we show that
the group of stabilized inert automorphisms of a full shift is simple. For a given shift
of finite type presented by a labeled graph T", the group of stabilized inerts contains
a certain locally finite subgroup of stabilized simple graph automorphisms associated
with the presenting graph I'. In the case of a full shift, this locally finite subgroup turns
out to be simple. By a result of Boyle, this locally finite subgroup, together with the
shift, generates all of the stabilized inert subgroup. The key ingredient for us then is
Lemma 5.2, which shows that any nontrivial normal subgroup of the stabilized inert
automorphisms must have nontrivial intersection with the subgroup of stabilized sim-

ple graph automorphisms. The proof of Lemma 5.2 occupies the majority of the section.

2 Background and Notation
2.1 Symbolic dynamics

Assume that A is a finite set endowed with the discrete topology; we call A the alphabet.

The space A%, endowed with the product topology, is a compact, metrizable space. An
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element x € A” is a bi-infinite sequence over the alphabet A, and we write x = (X;);c7,
with each x; € A. It is easy to check that the left shift o: A> — A% defined by
(0x); := X;,; is a homeomorphism of AZ to itself, and the dynamical system (A%, o)
is called the full A-shift. While the choice of symbols in the alphabet is irrelevant, we
often want to distinguish different full shifts by the size of the alphabet .4, and so to
emphasize the size of the alphabet, we write the full shift as (X, 0,,) when |A| = n.

A subshift X C AZ is a closed, o-invariant set X, and we use the shorthand shift
to refer to a subshift. We write (X, oyx) for this system.

Ifw=w,...w, € A", then we call w a word of length n. If w is a word of length
n, then the set [w] defined by

wl={xeA”: x;, =w, fori=1,...n)

is the cylinder set determined by w. If (X,oy) is a subshift, then the language L(X) of
X is defined by

LX) ={we | A [wInX #0).

n=1

The collection of sets {a§([w]): w e L(X) andkeZ] generate the topology of the

space X.
If x € X and k,m € Z with m > k, then x ) denotes the word x; Xy, ...Xx,, of
consecutive entries in x. Analogously, x_, ,,; denotes the infinite word ...x,, ;x,,, and

we similarly define x ..

A shift (X,o0y) is irreducible if for all words u,v € L(X), there exists some
w € L(X) such that uwv € L(X), and the shift is mixing if for all u,v € £(X), there
exists N € N such that for all n > N, there is a word w € L£(X) of length n such that
uwv € L(X). Irreducibility of the shift (X, oy) is equivalent to the system (X, ox) being
transitive: there exists some x € X such that the orbit closure {a}}x—}neN is all of X.

Two systems (X,o0y) and (Y,oy) are (topologically) conjugate if there exists a
homeomorphism h: X — Y such that h o oy = oy o h and we refer to the map h as
a conjugacy. It follows from the Curtis—Hedlund-Lyndon theorem [11] that any such
conjugacy is given by a sliding block code, meaning there exists some radius r € N

XL For

X

such that for all x € X, the value h(x); only depends on the entries x;_ it

e
example, the shift oy is given by a sliding block code with r = 1.
A shift of finite type is a subshift whose language consists of all words (over

some finite alphabet) which do not contain some given finite list of words. Alternatively,
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a shift of finite type can be defined by a « x « adjacency matrix A = (q;;) over Z, as
follows. Given A, we define I'y to be a graph with « vertices and ag;; edges between
vertices i and j. Labeling the set of edges, the associated shift of finite type, which we
denote by (X,,0,), consists of bi-infinite walks through edges in I' . Any shift of finite
type (X, o) is conjugate to a shift of finite type (X,,0,) for some Z-matrix A. We use I',,
to denote the graph consisting of one vertex with n edges.

A shift of finite type (X, 0y) is mixing if and only if it is conjugate to a shift of
finite type (X,,0,) for which the Z, -matrix A is primitive, meaning there exists J such
that every entry of A” is positive. A shift of finite type (X, oy) is irreducible if and only
if it is conjugate to some (X,,0,) for which A is an irreducible matrix, meaning that for
any entry A, ; in A there exists J such that AZ'I, j is positive.

Standing assumption. Unless otherwise noted, we always assume that any shift
of finite type (X, ox) has positive entropy h,,(ox): in terms of the language, this means
that

. logl{w € L(X): |w| = n}|
htop (ox) = nll)rrolo g - > 0.

In terms of a matrix presentation, if A is an irreducible matrix and (X, oyx) is conjugate
to (X,,04), then h(oy) = h(o,) = logi, where 2, is the Perron-Frobenius eigenvalue of

the matrix A.

2.2 Automorphism groups

Given a compact space X, let Homeo(X) denote the group of all homeomorphisms from
X to itself (with group operation given by composition). It is obvious that for a shift
system (X, oy) one has oy € Homeo(X), and the centralizer of o5 in Homeo(X) is called
the automorphism group of the subshift (X,ox). As we consider various shift spaces,
we denote the group (under composition) of all automorphisms of a subshift (X, ox) by
Aut(X,o0y), and when the shift is clear from the context, we write this as Aut(oy). In a
slight abuse of notation, we denote the automorphism group of the full shift on n letters
by Aut(o,).

A topological conjugacy h: (X,0x) — (Y,0y) between shift spaces (X,ox) and

(Y, 0y) induces an isomorphism h,: Aut(X,oy) — Aut(Y,oy) defined by

h, () =ho¢poh™L.
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For any subshift (X, oy), the subgroup (oy) generated by the shift always lies,
by definition, in the center Z(Aut(oy)) of the automorphism group Aut(oy); when X is
infinite, the subgroup generated by oy is isomorphic to Z. For an irreducible shift of

finite type, this subgroup is the whole center.

Theorem 2.1 (Ryan [32, 33]). If (X,o0y) is an infinite irreducible shift of finite type, then
Z(Aut(oy)) = (o%).

As observed in [6], this has an immediate application to distinguishing auto-
morphism groups of full shifts, using arithmetic properties of the size of the alphabet.
A general result along these lines is given in Theorem 2.5, but we briefly recall the

following corollary, which can be proven by elementary means.
Corollary 2.2.  For any prime p, Aut(o,) is not isomorphic to Aut(op).

Proof. Fix a prime p. It is easy to check that o,, € Aut(o,,) has a pth root, meaning
there exists ¢ € Aut(opp) such that ¢P = P (e.g., one can construct such an ¢ using the
fact that (pr,app) and (Xp,o{;) are topologically conjugate).

If Aut(oy,) and Aut(oy,p) are isomorphic, then any isomorphism maps the center
isomorphically onto the center. By Ryan’s theorem, this means that o, € Aut(o,) is
mapped to a;'f,l € Aut(opp). Since oy has a pth root, this implies either o, or ap_l has

a pth root. However, we claim that neither o, nor ap‘l does. Indeed, suppose there exists

¥ € Aut(op) such that yP = op, or YP = o1; we suppose P = Oy, @S the other case is
similar. The system (Xp 0p) has pP — p points of least period p, and hence p?~! — 1 orbits
of length p. Since p does not divide pP~! — 1, there exist some 1 <i < p, 0 <j < p, such

that ¢i(x) = a;,.(x) for some period p point x. But this implies
op(x) = YP(x) = o5 (%) = x,

which, since i < p, is a contradiction. [ |

2.3 The dimension representation

Krieger [21, 22] defined a dimension triple (QA,QZ,SA) associated with a shift of finite
type (X,,0,), where G, is an abelian group, gj is a positive cone in G, (meaning it is a
subsemigroup of G, containing O that generates G,), and §, is a group automorphism

of the pair (G,, gj). A conjugacy between shifts of finite type induces a corresponding
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isomorphism of their respective dimension triples; since each element of Aut(c,) is a

conjugacy from (X,,0,) to itself, this gives rise to the dimension representation
Tyt Aut(oy) — Aut(Gy).

To define this representation precisely in the manner suitable for our purposes, we
briefly outline two definitions of the dimension triple (G,, QX, 84); the 1st is an intrinsic
definition given by Krieger and the 2nd is more algebraic. These two definitions produce
isomorphic objects and this is described in [25, Section 7.5]; our presentation closely
follows the one given there.

Assume that A is an irreducible ¥ x x matrix with entries in Z_, and let (X4, 0,)
denote the associated shift of finite type. We further assume that (X4, 0,) has positive
topological entropy h,,(04) > 0, and note that h,;,(0,) = logi, where A, denotes the
Perron-Frobenius eigenvalue of A. The eventual range R(A) of A is the subspace of Q¥
defined by

R(A) = [ Q“4/
j=1

(throughout, we assume the matrices act on row vectors). The dimension triple
(Ga.GJ.8,) associated with A consists of the abelian group G,, the semigroup G; C G,,

and the automorphism §, of G,, where

(i) G, ={xeR(A): xAl e Z* for some j > 0},
(i) Gf ={xeR(A): xA/ € (Z,)" for some j > 0},
(iii) 8, (x) = xA.

When A = (n), we usually simply write (G,,, G, §,,) instead of Gy gjn),a(n)).
We now describe the intrinsic definition of the dimension triple. An m-ray is

defined to be a subset of X, of the form

Rx,m)={y € X4 ¥(—oo,ml = X(—co,ml}

for some x € X, and m € Z, and an m-beam is a finite union of m-rays. A ray is defined
to be an m-ray for some m € Z, and a beam is an m-beam for some m € Z. Note that
if U is an m-beam for some m € Z, then U is also an n-beam for any n > m. Recall
that I';, denotes the graph associated with the edge shift of finite type (X,,0,). Given an
m-beam

j
U= U RxY, m),

i=1
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let vy ,,, € Z* denote the vector whose Jth component is the cardinality of the set
(x € U: the edge corresponding to X;,il) ends at state J}.

Beams U and V are said to be equivalent if there exists some m € Z such that vy, ,, =
vy m, and we use [U] to denote the equivalence class of a beam U. Since A is irreducible

and 0 < htop(aA) = log,, given beams U, V, there exist beams U’, V' such that
[Ul=[U1], (V1=[V], and U NV =4.

Let DZ denote the abelian semigroup whose elements are equivalence classes of beams

endowed with the operation defined by
[Wl+[Vl=[U UVl

Letting D, denote the group completion of DZ (thus, elements of D, are formal
differences [U] — [V]), the map d4: D, — D, induced by

d,([UD) = lo,x (U]

is a group automorphism of D,. This defines Krieger's dimension triple (D4, D}, dy).

An automorphism ¢ € Aut(X,,0,) induces an automorphism

O, (DAIDXIdA) g (DAIDZrdA)

by setting

¢,(U) = lp@)],  [UleDj.

Here, by a morphism of a triple, we mean a morphism preserving all the relevant data
given by the group, the subsemigroup, and the group automorphism associated with
D, or G,. For example, an automorphism & € Aut(gA,gZ,SA) is a group automorphism
®: G, — G, taking G} onto G such that ® 05, =3, o ®.

The relation between these two definitions is settled by the following.

Proposition 2.3 (see [25, Theorem 7.5.13]). Assume (X,,0,) is a shift of finite type and
Aisk x k. The map 6: D} — G} induced by the map

0([U)) = 5, " (vyy ,AY),
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where U is an n-beam, is a semigroup isomorphism, and its completion is a group

isomorphism 6: D, — G, such that

QodA=8A09.

In other words, this proposition means that 6 induces an isomorphism of triples
0: (Dy, Dy, dy) — (Ga,Ga ) 8)

For ¢ € Aut(ay), let S;: (Ga.GX.84) = (G4, G4, 8,) denote the automorphism of
the dimension triple such that the diagram

DA49>gA

[on l is‘ﬁ
0
Dy —= G,
commutes. We can now define the dimension representation
Ta: Aut(oy) — Aut(Gu, G1,8,)

by setting 7, (¢) = Sg-

2.4 An application of the dimension representation

As usual, w(n) denotes the number of distinct prime divisors of n (counted without
multiplicity).
The following result appears implicitly in [6].
Proposition 2.4. For a full shift (X,,, 5,,), we have
Aut(G,, G, 8,) =700,

Moreover, the dimension representation =, : Aut(o,,) — Aut(g,,G;,§,) is surjective.

In the proof and in the sequel, if H C R is a subgroup and n > 1, we use the

notation m,, to refer to the map from H to itself givenbya — n-a.

Proof. For a full shift (X,,,0,), it follows quickly from Proposition 2.3 that there is an

isomorphism of triples

(G Gt/ 8,) = (ZIL), 2, [2],m,).
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Then, it is straightforward to check that
Aut(Z[1],Z,[1], m,) = zo™

is generated by the maps {m,: pis a prime dividing n}.

For the 2nd part, we write the prime factorization of n as n = Hf)(?) pl‘ with

p; prime. There exists a conjugacy h: (X,,0,) — (H:’:(?) Xpi,]_[i”(?) op‘) and we let
h,: Aut(o,) — Aut(]_[;”(?) Up‘) denote the induced isomorphism of automorphism groups.
For each i, let ¢; denote the automorphism of (H‘”(")X J12% o ) that acts by o,

the ith coordinate and the identity in the other coordinates. Then, the images of the

automorphisms h;!(¢;) under the map =, generate Aut(G,,, G\, 3,). |

For a € N, let R(a) = {k € N: a!/* € N} denote the non-negative integral roots of
a. To the authors’ knowledge, the only known method for distinguishing automorphism
groups of full shifts relies on Ryan's [32] theorem, which characterizes the center of the
group of Aut(o,). This technique was explicitly mentioned in [6] for the full shifts on 2
and 4 symbols. The following result, a natural generalization of this, is not altogether
new; we include it since it could not be found explicitly in the literature. Our argument
uses the dimension representation; an alternative proof may be given using [24,

Theorem 8].

Theorem 2.5. Let m,n > 2, and suppose Aut(o,,) = Aut(s,). Then, R(m) = R(n). In

particular, for any prime p and k > 2, Aut(c,,) and Aut(o,x) are not isomorphic.

Proof. Let k € %M(m), so there exists a € N such that a¥ = m. Then, X 0p,) is
topologically conjugate to (X,,05), and in particular, there exists ¢ € Aut(o,,) such
that ¢* = o,,- Suppose ¥: Aut(o,,) — Aut(o,) is an isomorphism, and let ¢’ = W(¢).
By Ryan's theorem (Theorem 2.1), ¥(c,,) = 0.5, so (PHk = ofl. Applying the dimension
representation, we have the equality

V1

v

k(m,(¢)) = m,($)F) = 7, (6;5)) = + :2 e 70m

Vr

Since 7,(¢') € Z*™, each v; must be divisible by k. Let w; = % Writing n =12 pl

for some primes p;, it follows from Proposition 2.4 that n = (Hi"(?) p; ) so k € R(n).
Thus, R(m) C R(n), and the same argument shows R(n) C R(m). Thus, R(m) = R(n). B
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In particular, it follows that the group Aut(og) is not isomorphic to the group
Aut(a,,), as R(9) £ R(27).

2.5 Inert and simple automorphisms

An automorphism ¢ € Aut(o,) is said to be inert if it lies in the kernel of the
dimension representation, and we denote the subgroup of inert automorphisms by
Inert(o,). A particularly important collection of inert automorphisms is the class of
simple automorphisms, first introduced by Nasu [28]. We recall the definition.

If T is a directed graph, we call a graph automorphism of I' that fixes every
vertex a simple graph symmetry of the graph I'. We use the term graph symmetry
instead of graph automorphism to avoid confusion between automorphisms of a graph
and automorphisms of a shift.

Let (X,,0,) be a shift of finite type presented by a matrix A over Z, with
associated directed labeled graph I', and suppose 7 is a simple graph symmetry of
I',. Then, v induces an automorphism 7 € Aut(o,) given by a 1-block code, and any
automorphism in Aut(c,), which is induced by such a graph symmetry is called a simple
graph automorphism. An automorphism ¢ € Aut(o,) is called simple if there exists
a shift of finite type (X3,03), a conjugacy h: (X,,0,) — (Xg,0p), and a simple graph

automorphism 7 € Aut(Xp, o) such that
p=h ' =hloioh.

Note that, by construction, any simple automorphism is of finite order. It is straightfor-
ward to check that the subgroup of Aut(o,) generated by simple automorphisms forms
a normal subgroup contained in Inert(c,), and we denote this subgroup by Simp(o,).
There exist irreducible shifts of finite type (X,,0,) for which Simp(o,) is a
proper subgroup of Inert(o,); see [17]. In general, the difference between Simp(c,) and
Inert(o,) for an irreducible shift of finite type is not well understood; for example, it is
not known whether for a full shift (X,,, o,,) the groups Simp(c,,) and Inert(s,) agree.
However, Wagoner [36] showed that, upon passing to sufficiently large powers
of the shift, inert automorphisms can be written as products of simple automorphisms

(an alternate proof was given by Boyle [2]).

Theorem 2.6 (Wagoner [36]). If ¢ is an inert automorphism of a mixing shift of finite
type (X,.0,4), then there exists M such that for all m > M, ¢ can be written as a product

of simple automorphisms lying in Aut(X,,o,").
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3 The Stabilized Automorphism Group
3.1 1st properties

For a subshift (X, oy), let Aut® (ox) denote the centralizer of a}lg in the group Homeo(X).
Thus, Aut® (oyx) is precisely Aut(X, a§) and Aut® (ox) is a subgroup of Aut®m (oy) for

all k, m > 1.

Definition 3.1. If (X,o0y) is a subshift, define the stabilized automorphism group
Aut™ (oy) to be

o0
Aut™ (oy) = | Aut® (oy),
k=1
where the union is taken in Homeo(X).

For the full shift (X,,, 0,,) on n symbols, we denote the stabilized automorphism
group by Aut(® (o).
It is straightforward to verify the following.

Lemma 3.2 (Stabilized Curtis—-Lyndon-Hedlund theorem). Let (X,oy) be a shift with
alphabet A, and let ¢ € Aut(k)(aX). Then, there exists a non-negative integer r and k
block maps 8;: A>*! — Afori=0,1,...,k— 1 such that

(X)), = Bomod kXg—rr- -1 Xgr -+ ’Xz+r)'

Note that, the case that all g; are identical yields an element that commutes
with oy.

One concludes, either from the definition or using Lemma 3.2 that Aut®® (ox) is
a countable group that contains the automorphism group Aut(oy).

For some subshifts, nothing new arises in the stabilized automorphism group.

Example 3.3. Let (X, 0x) be a minimal shift associated with an irrational rotation: for

example, such a shift can be defined by fixing an irrational « € (0, 1), considering
T(x)=x+«a (mod 1),

and using the coding of the orbit of 0 defined by setting the n‘" entry to be 0 if
T"(x) € [0,«0) and 1 if T"™(x) € [, 1). This gives rise to a Sturmian shift (see, e.g., [31,
Chapter 6] for background on Sturmian shifts), and Aut(oy) = Z is generated by the
shift oy (see [30]).
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The system (X,o0y) has a single pair of asymptotic orbits O,, O,, and for each
k > 1 the system (X, a)lg), then has k pairs of asymptotic orbits given by the collection
{o)i(((’)l), a)’;,((’)z)}fz_ol. Using [10, Lemma 2.3], it follows that any automorphism in Aut(a)’g)

is of the form agf for some j € Z, and hence
Aut(ok) = (oy) = Z.
Thus, in this case, we have that Aut® (o) = Aut(oy) = Z.

However, for a shift of finite type, each inclusion in the definition of the

stabilized automorphism group is strict.

Lemma 3.4. If (X,,0,) is an infinite irreducible shift of finite type, then for any k ¢ N

and any m > 2, the subgroup Aut® (04) is a proper subgroup of Autkm (04).

Proof. By Ryan’s theorem (Theorem 2.1), the center of Aut(km)(oA) = Aut(ofm) is
exactly (aifm). Thus, there exists some ¢ € Aut®™ (0,4) such that ¢ does not commute
with o. |

In Proposition 3.8, we make further use of Ryan's theorem and prove a stronger
result, showing that for an irreducible shift of finite type (X, 0,), we have that Aut(o,)
is not abstractly isomorphic to Aut® (o).

The following proposition follows immediately from the definition of the

stabilized automorphism group.
Proposition 3.5. For any shift (X, 0y) and k > 1, Aut®™ (cf) = Aut™ (o).

It is well known that if two shifts are conjugate, then their automorphism
groups are isomorphic, and the same holds true for their stabilized automorphism
groups. In fact, a stronger result holds in the stabilized setting, and to make
this precise, we define a weaker notion that suffices for the associated groups to
be isomorphic.

Recall that (X,0x) and (Y,o0y) are eventually conjugate if there exists some
K e N such that for all k > K, (X, a§) and (Y, a’;) are conjugate. We define a weaker
notion: we say that the systems (X,oyx) and (Y,oy) are rationally conjugate if there
exist j,k > 1 such that the systems (X, a)];,) and (Y, a’ij) are conjugate. For example, the

systems (X,,0,) and (X,, 0,) are rationally conjugate but are not eventually conjugate.
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Proposition 3.6. If the systems (X,oyx) and (Y,oy) are rationally conjugate, then

Aut®™(oy) and Aut® (o) are isomorphic.

Proof. Ifh: (X, ai,) — (Y, 015;) is a conjugacy, then h, gives rise to an isomorphism
h,: Aut©® (agf) — Aut™ (a’lf).

By Proposition 3.5, this implies Aut® (o) and Aut® (o) are isomorphic. |

In particular, since (X4, 0,) is conjugate to (X,, 022), it follows that Aut(®® (0y) and
Aut(®® (0,) are isomorphic, in contrast to the non-stabilized setting, where Aut(c,) and
Aut(o,) are not isomorphic (see Theorem 2.5).

Recall that two matrices A and B with entries in Z, are said to be shift
equivalent (over Z,) if there exists an integer m > 1 and matrices R and S over Z,
such that

AR = RB, SA =BS, A™ = RS, and B™ = SR.

If A and B are irreducible Z -matrices which are shift equivalent, then the systems
(X,,0,), (Xg,0p) are eventually conjugate, and Kim and Roush [14] showed the converse

holds. We use this to show the following proposition.

Proposition 3.7. Suppose (X,,0,) and (Xgz,05) are irreducible shifts of finite type
defined by Z,-matrices A,B. If A and B are shift equivalent, then Aut®(s,) and

Aut®(op) are isomorphic.

Proof. By Kim and Roush [14, 15], matrices A and B are shift equivalent if and only if
the systems (X,,0,) and (X3, 0p) are eventually conjugate. The result then follows from

Proposition 3.6. u

3.2 The center

Ryan’s theorem (Theorem 2.1) shows that for any irreducible shift of finite type, the
center is exactly the powers of the shift. In contrast, the center is trivial in the stabilized

automorphism group.

Proposition 3.8. Suppose (X,,0,) is an infinite irreducible shift of finite type. Then,
the center Z(Aut®(o,)) of Aut®(s,) is trivial, and the group Aut®(o,) is not finitely

generated.
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Proof. Suppose ¢ € Z(Aut(oo)(aA)), and choose k > 1 such that ¢ € Aut(k)(oA). Then,
¢ € Z(Aut® (04)), so by Ryan's theorem, we have ¢ = Ui‘m for some m € Z. However, if
okm = ¢ € Z(Aut™ (o)), then ok™ € Z(Aut®*™ (0,)) = (o2k™), so m = 0.

For any irreducible shift of finite type (X,,0,), any finitely generated subgroup
of Aut® (0,) has nontrivial centralizer (as each finitely generated subgroup is included
in Aut® (0,) for some k, for which ¥ would be in the centralizer). By the previous part,
it follows that for any infinite irreducible shift of finite type, the group Aut(®(o,) is
not finitely generated. |

3.3 The Aut(® (64)-action on X,

Let (X,,0,) be a mixing shift of finite type, and let P(X,) denote the set of o,-periodic
points in X,. Then, both Aut(o,) and Aut®(s,) act on the set P(X,). While the action
of Aut(o,) on P(X,) is far from transitive (since any ¢ € Aut(o,) must preserve the
order of a o, -periodic point), it follows from [5, Theorem 3.6] that Aut(® (04) acts highly
transitively on the o,-periodic points of X, (recall an action of a group G on a countable
set X is said to be highly transitive if for all k > 1 it is transitive on the set of ordered
k-tuples of distinct elements in X).

It is straightforward to check that the action of Aut(c,) on X, is not minimal,
since there are periodic points. Similarly, there are many Aut(o,)-invariant probability
measures, including atomic measures supported on periodic points, and the measure
of maximal entropy. However, the minimal components and Aut(o,)-invariant measures
are essentially classified in [6, Sections 9 and 10]. Using this, we deduce the following

proposition.

Proposition 3.9. If (X,,0,) is a mixing shift of finite type, then Aut®(0,) acts highly
transitively on the set of o,-periodic points in X,, and the action of Aut®®(s,) on X,
is minimal and uniquely ergodic. Moreover, the unique Aut® (o ,)-invariant probability

measure is given by the measure of maximal entropy for the system (X4, 0,).

Proof. For the full shift on (X,,0,) is easy to see that Aut®)(s,) acts highly
transitively on the set of periodic points of o,,: any permutation of fixed points ¢, may
be implemented by a simple graph automorphism. Then, the minimality, the unique
ergodicity, and the claim regarding the measure of maximal entropy follow from [6,
Theorem 9.2 and Corollary 10.2].

For the general case of a mixing shift of finite type (X,,0,), to apply this same

result it suffices to show that Aut®(o,) acts highly transitively on the set of periodic
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points of o,. Suppose Q = {x;,...,x;} is a set of o,-periodic points and t is some
permutation of the set Q. Let y;,y, be a pair of o,-periodic points not contained in
Q and choose m large enough that the set of fixed points of ¢}* contains Q U {y,, y,}.
If T is an even permutation, then it follows from [19, Main Theorem] that there exists
o, € Inert(o,) such that «, acts on Q via 7. If 7 is odd, define 7’ to be the permutation
of QU {y;,y,}, which acts by r on Q and by an involution on {y;, y,}. Then, ¢’ is an even
permutation, so again [19, Main Theorem] implies there exists some «,, such that the
action of o, on Q is given by 7’. It follows that Aut™(g,) acts highly transitively on
the o, -periodic points of X,. The statement now follows in the same way as for the full
shift. [

3.4 The stabilized dimension representation

Let A be a Z -matrix, and recall we have defined the dimension representation

ma: Aut(o,) — Aut(G,, G, 8,).

For any k > 1, we also have a homomorphism

73 Aut(of) — Aut(Gyr, G, 840).

Note that in general, we have (gA,gX) = (QAk,ng) for all k € N, and §,x = 5};.
However, the dimension triples (QA,QX,cS 4) and (gAk,ng,a k) are not isomorphic, as
there is no isomorphism that intertwines the maps 6, and §,x. For each k > 1 the map
nlgk) - Aut® (04) — Aut(Gyk, sz,SAk) sends a}f to Sk = (Sﬁ, and the image of ngk) lands in

the centralizer of (Slj, so in fact, we have a homomorphism

7P aut® (o,) - Aut(G,, G/, 85).

It follows from the definitions that for all £ > 1, Aut(gA,gX,cSA) can be viewed
naturally as a subgroup of Aut(gA,gX,Sllj), and we can define the stabilized group of

automorphisms of the dimension triple by setting

o0
Aut(oo)(gA, gz’ 8A) = U Aut(gA, gzrsg)
k=1

Equivalently, Aut(o")(gA,QZ,é ,) is the union of the centralizers of 6’5 in the group of
automorphisms of the pair (G,, QZ), that is, all automorphisms of the group G,, which

preserve G, .
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Furthermore, as remarked in [6, p. 87], for k > 1, the restriction of the map

73" Aut® (o) — Aut(Gar, Gy, 85) = Aut(G,, G, 85)

to Aut(o,) C Aut(a}l‘) coincides with the map 7, : Aut(o,) — Aut(G,, QX, 84). We can thus

define the stabilized dimension representation
(00) , (00) (00) +
7 At (6,) — Aut™ (G, GF,8,).

In what follows, we use the shorthand notation Aut(oo)(gA) to refer to the group
Aut®(G,, Gr,84).

Example 3.10. Consider the case of the full 3-shift, presented via the matrix A = (3).
Forall k € N, we have G; = Gar = Z[%]. In this case, Aut(Gsx) = Aut(G;) = Z for any k, and

70 Aut® (o) — Aut(Gy) = Z
with 7 (03) = 3.

Recall w(n) denotes the number of distinct prime factors of n, and the maps m,

are defined by m,(x) =p-x.

Proposition 3.11.  For the full shift (X, 0,)), we have
Aut®™(G,) = Aut(G,, G, 8,) = 207
is generated by the maps {m,,: pis a prime dividing n}.

Proof. The statement follows immediately from Proposition 2.4, and the fact that the

maps m,, generate Aut(Z[%], Z+[%],8n) ~ zem), [ ]

For an example where the stabilized group of automorphisms of the dimension
group is non-abelian; see Example 3.24.

In the case of a full shift (X,,, 5,,), the classical dimension representation

7, Aut(o,) — Aut(G,)
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is surjective (see Proposition 2.4). However, in the general setting of mixing shifts of
finite type, the dimension representation need not be surjective: Kim et al. [18] give
an example of a mixing shift of finite type for which the dimension representation is
not surjective, and in the general setting of mixing shifts of finite type, the question
of when the dimension representation is surjective remains open. In the stabilized
setting, however, the question has a satisfying answer, as shown in [6] (our terminology

is different, but this is an immediate translation of their result).

Theorem 3.12 (Boyle et al. [6, Theorem 6.8]). For any mixing shift of finite type (X,,0,),

the stabilized dimension representation
70 At (o) — Aut®(G,)

is surjective.

As in the standard setting, we define the group of stabilized inert automor-
phisms to be the kernel of 71/(100), and we denote this group by

Inert®(c,) = ker nlgoo)

It follows immediately from the definitions that

00
Inert™(o,) = U Tnert(o ).
k=1

Similarly, we define the simple automorphisms in the stabilized automorphism
group to be the union of the simple automorphisms at each of the finite levels.

We show later that one of the many differences between stabilized and standard
automorphism groups lies in the structure of their corresponding inert subgroups. In
particular, in Section 5, we prove that, in the case of a full shift, Inert(®® (0,,) is always
simple. This is in stark contrast to the classical inert subgroup Inert(c,), which is
residually finite. Using the stabilized version of the Kim-Roush embedding proved
in Section 4, it follows that for any mixing shift of finite type (X,,04), Inert®(o,)
always contains an infinite simple group; in particular, Inert®(c,) is never residually
finite (Section 4.2). We note that, as a consequence, Inert(o")(oA) and Inert(cy) are not
isomorphic as groups (in fact, it follows that Inert(>)(s,) does not even embed into
Inert(o,)).

Rewriting Wagoner’'s theorem (Theorem 2.6) in our terminology, we have the

following theorem.
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Theorem 3.13 (Wagoner (Theorem 2.6 rephrased)). If (X,,0,) is a mixing shift of finite

type, then Inert®(c,) is generated by simple automorphisms in Aut® (o).

3.5 The commutator subgroup

For a group G, we write [g, h] = g~'h~!gh for the commutator of the elements g, h € G and
for subgroups H,,H, C G, we let [H;, H,] denote the group generated by all commutators
[h,, h,] with h; € H; and h, € H,. The goal of this section is to prove the following

theorem.

Theorem 3.14. Let (X4,0,) be a mixing shift of finite type. Then, we have

Inert®™ (0,) C [Aut®™ (0,), Aut®™ (o)].

If Aut®)(G,) is abelian, then equality holds. In particular, for a full shift on n letters

we have
Inert™ (0, = [Aut®(a,,), Aut> (,,)].

Note that, in the case where Aut(oo)(gA) is torsion-free (e.g., a full shift),
Wagoner's theorem as phrased in Theorem 3.13 characterizes the dynamical object
given by the group of stabilized inert automorphisms via an abstract property of the
group: the subgroup generated by the elements of finite order. Theorem 3.14 gives a
general relation between an abstract group property, this time the commutator and the
dimension representation of the symbolic system.

The following lemma is the technical tool needed for the proof of Theorem 3.14.

Lemma 3.15. Let (X,,0,) be a shift of finite type, and let  be a simple graph symmetry
of the graph I',, which permutes two distinct edges e and f between the vertices i
and j. Let 7 denote the automorphism of (X,,0,) induced by r. Then, we have T lies
in [Aut(c2), Aut(o)].

a
Proof. We consider (X,,02) as a shift on the alphabet ( 0) where aya; is an

a;
admissible word in X, . Define the zero-block code ¢ in Aut(c2) by

()
a a
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Note that since t is a simple graph automorphism, it follows that ¢, is an

automorphism of (X,, aj). Then, in Aut(aﬁ), we have

T = pooady o, (1)

For a set X, let Sym(X) denote the group of all permutations of the set X.

Theorem 3.16. Let (X,,0,) be a shift of finite type, and let ¢ € Aut(c,) be a simple

automorphism. Then, we have ¢ € [Aut(c?), Aut(c2)].

Proof. Since ¢ is simple, there exists some shift of finite type (X3, o5) and a conjugacy
h: (X,,04) — (Xg,0p) such that h, (¢) is a simple graph automorphism. Set 7 = h,(¢).
Since h also induces an isomorphism between Aut(oj) and Aut(ag), it suffices to show
that 7 € [Aut(o2), Aut(o2)].

Let E; ; denote the set of edges between vertices i,j in the graph I'p. There exist
permutations 7;; € Sym(E; ;) such that 7 is induced by the simple graph symmetry
HiJ 7;j- For each pair i,j, the permutation T 1s given by a product of transpositions
in Sym(E; ;). By Lemma 3.15, the automorphism induced by each of these transpositions

lies in [Aut(c}), Aut(c£)], so T lies in [Aut(c}), Aut(c7)] as well. [ |
We now use Theorem 3.16 to complete the proof of Theorem 3.14.

Proof of Theorem 3.14. Theorem 3.16 implies that any simple automorphism lies
in the commutator. By Theorem 3.13, the group Inert®(o,) is generated by simple
automorphisms, proving the 1st part.

To check the 2nd statement, when Aut® (G 4) is abelian, the dimension repre-

sentation
njloo)  Aut™ (o) — Aut®)(G,)
factors through the abelianization of Aut(> (04). Thus,
[Aut™ (0,), Aut™ (0,)] C Inert™ (o).

The statement about full shifts follows from Proposition 3.11. |
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As a 2nd corollary of Theorem 3.16, we can in some cases show that, in the non-
stabilized automorphism group Aut(c,), a particular inert automorphism can not lie in
the subgroup generated by simple automorphisms. Such results can also be deduced
from [3, Theorem 2], where the possible actions of simple automorphisms on finite
subsystems of the shift were classified. Together with the powerful realization result
in [19, 20], this provides a large class of examples where the answer to Wagoner's

Question 3.17 is no.

Theorem 3.17. Let (X,,0,) be a shift of finite type, and suppose there exists odd k € N
such that X, has no o,-periodic points of least period 2k, and further assume that there
are at least three distinct orbits of least period k. Then, the group generated by simple

automorphisms is a proper subgroup of Inert(o,).

Proof. By [19, 20, Main Theorem], there exists ¢ € Inert(o,) such that the action of ¢
on the o4-orbits of length k consists of a 3-cycle. We show that ¢ cannot be written as a
product of commutators in Aut(oﬁ) of the form given in (1). By Theorem 3.16, it follows
that ¢ ¢ Simp(o,).

Suppose y € Aut(aﬁ). Since k is odd, aﬁ maps length k 0,-orbits to themselves.
Furthermore, since there are no o,-periodic points of least period 2k, it follows that
Aut(c?) induces a well-defined action on the set of o4-orbits of length k. Since o, acts

1o, ! acts trivially on

trivially on the set of o,-orbits of length k, the commutator yo,y~
the set of length k o,-orbits. Thus, since ¢ acts nontrivially on the o4-orbits of length k&,

¢ cannot be written as a product of such commutators. |

For a concrete example of the phenomena exhibited in this corollary, consider

the primitive matrix

—_ O O =
O H =
e e =
o O = O

Since the system (X,,0,) has three fixed points and no points of least period 2, by

Theorem 3.17, Inert(o,) # Simp(oy,).

Remark 3.18. Considering the matrix A in (2), it can be shown using [4, Theorem 1]

that there exists a product of finite order inert automorphisms in Aut(c,) whose action
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on the set of fixed points in (X,,0,) is a 3-cycle. Letting Fin(o,) denote the subgroup of
Inert(c,) generated by elements of finite order, in light of Theorem 3.17, for this matrix

A we have the following proper containments:
Simp(o,) € Fin(o,) € Inert(o,).

In general, we do not know if Simp(o,) is always finite index in Inert(c,). Based

on Theorems 3.16 and 3.17, as a way to approach this question, we ask the following.
Question 3.19. Assume (X,,0,) is a shift of finite type. Is

Inert(o,) N [Aut(c2), Aut(o2)]
finite index in Inert(o,)?

3.6 The abelianization of Aut(® (¢,4) and Theorem 1.1

For a group G, we let G,;, denote its abelianization. We write Ab,, for the abelianization
map Aut® (o) — (Aut™)(sy)),,, and Abg, for the abelianization map Aut™(G,) —
(Aut(oo)(g A))ab‘ With the previous results in hand, we can now show that the abelian-
ization of Aut(®(0,) for a general mixing shift of finite type (X,,0,) coincides with the

abelianization of its dimension representation.

Theorem 3.20. Suppose (X,,0,) is a mixing shift of finite type. Then, we have an

isomorphism of the abelianizations:
Aut® (0,) 4, = Aut® (Gy)ap-

Proof. Consider the following diagram:

(00)

(00) Ta (c0)
Aut®™(g,) ———= Aut®(G,)
f ~ -
Ab(rA P AbQA
A ~

(AUt<OO)(UA))ab < 7 (Aut(“)(QA))ab (3)

By Theorem 3.14, Inert® (0,) C [Aut®(0,), Aut(®(5,)], and by Theorem 3.12, the map

néoo) is surjective, so the map f is well defined. Since f factors through the abelianization
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of Aut("o)(gA), the map g exists. Moreover, since Ab,, is surjective, f is surjective, and
hence g is surjective.

We claim that the map g is also injective. Suppose a € kerg. Since the map Abg,
is surjective, we can find b € Aut®(G,) such that Abg, (b) = a, and hence f(b) = Id. By
Theorem 3.12, néoo) is surjective, so there exists ¢ € Aut(“)(aA) such that nﬁf’o)(c) = b.
Then, c lies in the kernel of the map Ab, " which implies that ¢ is a commutator. Thus,

ng’o) (c) = b is also a commutator, and hence a = AbgA (b) = 1d. [ |
Corollary 3.21. If n > 2, then we have Aut(™ (0,,),, = Z*™.
Proof. This follows immediately from Theorem 3.20 and Proposition 3.11. |

This allows us to complete the proof of Theorem 1.1, via the following theorem.
Theorem 3.22. If Aut®(¢,,) and Aut®(o,,) are isomorphic, then w(n) = w(m).

Proof. If Aut®(o,) and Aut'®(s,,) are isomorphic, then their abelianizations are

isomorphic. The result then follows from Corollary 3.21. [

Toward a converse of Theorem 3.22, observe that by Proposition 3.5, if m,n
satisfy m¥ = nJ for some k and j, then Aut(® (o) = Aut(® ().

In general, we ask the following question.
Question 3.23.  For integers m, n > 2, when are Aut®(o,,,) and Aut® (o,,) isomorphic?

We end this section with an example showing how Theorem 3.20 can be used
to compute the abelianization Aut®(c,),;, of the stabilized automorphism group. In
the example, Aut(® (04)4p has nontrivial torsion, and it follows (by Corollary 3.21) that

Aut(® (0,) is not isomorphic to Aut©® (0,,) for any n € N.

Example 3.24. Consider the matrix

5 2 2
A=14 1 4
0 6 3

(this matrix appears in [6, Example 6.7]). By Theorem 3.20, in order to compute
Aut®(0,),p,, it suffices to compute the abelianization of the stabilized automorphism

group of the dimension group.
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As shown in [6], the matrix A has eigenvalues —3,3,9 and can be conjugated

over Z[%] to a diagonal matrix. For any k, A%k then has eigenvalues gk gk 81k, and

g1k 0 o0
can be conjugated over Z[%] to the matrix U,, = 0 9% 0 |. 1t follows that
0 0 9

Aut(Ghze) = Aut(Gy2mi1)) = GL, (ZI3]) ® GL,(ZI3]), and so Aut™)(G,, GF) = Z & GL,(ZI3))
and Aut®™(G,, G}),y, is isomorphic to Z & GL,(ZI[4]),;,. By Theorem 3.20, the dimension
representation is surjective and coincides with the abelianization of Aut® (o).

The remainder of this example is devoted to computing GLy,(Z[3]),p. Consider

the determinant map
1 1.,
det: GLZ(Z[§]) - Z[§] ,

where Z[%]X denotes the group of units. This map is a split surjection with kernel
SLZ(Z[%]), with the splitting coming from embedding Z[%]X = GLI(Z[%]) — GLZ(Z[%]).
Hence, GL, (Z[%]) is isomorphic to the semidirect product SLZ(Z[%]) X Z[%]X.

In general, the abelianization of a semidirect product H x G is given by (H,;) %
G,1,» where the subscript G denotes the coinvariants of the G-action on H, (arising from
the G-action on H). Since Z[%]X is abelian, the abelianization of the semidirect product
SLZ(Z[%]) X Z[%]>< has the form

1 |
(SLZ(Z[g])ab)Z[é]X X Z[g] .

This leaves us with computing (SL, (Z[%])ab)Z[%]x.

The abelianization of SL,(ZI3]) is SL,(ZI3]),;, = Z/4, as computed by Serre [35]
(see also [1]). Thus, we only need to determine the coinvariants of the induced Z[%]X—
action on this copy of Z/4.

The ring map Z[%] — 7Z/4 given by 3% +— a mod 4 induces a surjection mapping
SLZ(Z[%]) to SL,(Z/4). The group SL,(Z/4) has a normal subgroup N of order 12 (this is

2 3 3 1
its commutator subgroup), which is generated by the matrices ( 3 1 ) and ( 3 0 )

Thus, SL,(Z/4) factors onto an abelian group G of order 4. Let = denote the composition

of the two maps given by

SLZ(Z[%]) — SL,(Z/4) — G.
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. . 11 . .
One can check directly that the matrix 01 and its square do not lie in the normal
.. 1 1
subgroup N and hence do not lie in the kernel of 7. Thus, 7 ( 0 ) has order 4, and
1

1 1
n(( 0 )) is a generator for G and hence also pushes down to a generator for the
1

abelianization.

To compute the coinvariants, we are left with determining the action of Z[%]X

1 1
on the matrix ( 0 1 ) (since it pushes down to a generator of the abelianization). Note

1 1
that Z[%]X is generated by —1 and 3. The action of these units on ( o 1 ) is given by

+(0)-(67)
(00)-(00)

It follows that the orbit of a generator for the abelianization under this action is a

(modulo commutators)

subgroup of order 2, and the coinvariants are
1 ~
(SLZ(Z[g])ab)Z[%]x =17/2.

Thus, we have that

1 o~ e Loy N

GLZ(Z[§])ab = Z[§] OLI2=Z)20ZDZ)2
and
Aut® (G, Gy SZOL/2B LS TL)2.

4 Stabilized Kim-Roush Embedding
4.1 Extending the embedding result

The purpose of this section is to extend the following theorem of Kim and Roush to the

stabilized setting.
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Theorem 4.1 (Kim-Roush Embedding [16]). Let (X,,0,) be a mixing shift of finite type.
Then, for any n > 2, the group Aut(o,,) embeds into the group Aut(oy,).

Thus, our goal is to prove the following.

Theorem 4.2. Let (X,,0,) be a mixing shift of finite type. Then, for any n > 2, the

group Aut®(s,) embeds into Aut® (g ,).

The proof follows much of the original argument given in [16], with a few mod-
ifications. Before beginning, we briefly indicate the idea. We proceed by constructing
a bijection h from the given shift X, to some other space K. While h is nothing more
than a bijection, the advantage in making use of the 2nd space K is that it admits
a natural faithful Aut(>® (0,)-action. This action of Aut(oo)(an) leaves the image of h
invariant, and so upon pulling back by h, we obtain an embedding of Aut® (0,,) into
the set of bijections from X, to itself. We then show that this embedding actually lands
in Aut(®® (04). The construction of the map h uses markers, as used in [6, 11], and we

review this technique in the proof.

Proof of Theorem 4.2 Let (X4,0,) be a mixing shift of finite type. The proof consists
of multiple steps constructing the embedding.

Finding markers. Assume that there exists a word M € L(X,) (a marker) and a
collection D C L(X,) of n? words of some fixed length such that the word M overlaps
MDM, for any D € D, only in the initial and final segments (the data). The existence
of such pairs of marker and a data set of size n? is guaranteed for any n € N since we
assume that X, is a mixing shift of finite type.

Since there are n?

words in D, we can view them as pairs of words, from some
collection of size n of some other words. Namely, we define an abstract set of n words
W such that each D € D is a pair of two words from W. Since there are n words in W,
we can view the full shift over these words as (X,,, 0,,), and the stabilized automorphism
group of this shift is the one we realize as a subgroup of Aut® (o).

It is convenient to consider the elements in D as vertical pairs, viewing them as

Wu
D= ,
w!
where W¥%, W' € W. For simplicity of the presentation, we assume that all of the words

D are words of length 1, which is possible after passing via a conjugacy, if needed, to a
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copy of (X4, 0,4). Then, for x € X, and some index j, if x; = D we can write

Coded stretches in the shift. Fix some R € N. An (R, M, D)-coded stretchin x € X,
is an R-gapped (possibly finite) arithmetic progression C C Z such that x; € D for all
Jj € C, and C is maximal with respect to these properties. That is, if max(C) exists then
Xmax(c)+r £ D, and if min(C) exists, then X, ¢)_g ¢ D.

Note that coded stretches may be finite, two-sided infinite, or one-sided infinite.
Since X, is mixing, there are points x € X, with arbitrarily long-coded stretches
(including infinite ones). Moreover, each word in £(X,), whether finite or infinite,
appears as a coded stretch of some x € X,. For each x € X,, let S; C Z denote the
union of all the coded stretches in x.

Fix some x € X,. Recall that forj € S,, XJ‘.‘ and XJl. are two words in V. Again, we

consider elements in {u,l} x S, as vertical pairs, so if p = (
J

€ ) € {u,l} x S,, we write

i €
X, = X; e W.

The function next. We define an invertible map next,: {u,l} x S, — {u,{} x S, by

setting

v ifj+ReS
nextx(lf): (]+R) x

j (J’) ifj+R¢S,

and

nextx(l')= (,') ifj~ReS,

(‘]‘) ifj—R¢S,

J
X, when starting with an element in X,, by reading the words appearing in the current

€ . . . . .
Fix ( ) )Where] € S,. Repeated application of the next function produces an element in
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coded stretch when applying this function; for example,

t \

Let C be a finite or one-sided coded stretch, and let j,j* € C. Note that starting

!

J
for a two-sided stretch C, the element of X,, read from the u row has nothing to do with

€ €
to read from ( ) ) or from ( )yields the same element in X, up to a shift. However,
J

the element read from the I row.

The function read. To maintain the group structure when embedding the group
Aut(oo)(an), we are forced to keep track of which level an element belongs to (as ¢ €
Aut®(c,) applies k different block maps, depending on the index mod k). For this, we
define a read map that depends on the index, in such a way that the word read from

( 6 ) and from ( 6/ ) would be identical (where identical means not just up to a shift).
J J

Formalizing this, define read, : S, — X2 by setting read, (i) = (y”,yl) where

v, =X and y! ; =X
L§J+Z (nextX)Z( u ) 7LFJ+Z (nextx)z( l )
i

l

forallz € Z.

We note that this complication does not arise in the original embedding of Kim
and Roush [16] of Aut(s,,) in Aut(o,), as one can define the read map without the floor
functions (similarly for the multidimensional version of Hochman [12]).

letY =AU X,zl, where A is the alphabet of X,, and consider the set K= HjeZ Y.

Definition of the map h. Define a map h: X, — K by setting

hx), read, () ifjeS, @

J .
X; otherwise

Thus, h assigns to every x € X, a sequence in K in the following way. If x; is not included
in any coded stretch, h copies the symbol x; to the j coordinate of the new element in X.
If X; is included in a coded stretch, there are two elements in X,, that are read from this
stretch: the one associated with the upper row, and the one associated with the lower
row, and this pair of elements is placed in the j coordinate of the new element in K.

Set K = Im(h) C K.
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The map h is injective. We claim that the map h is injective. To see this, we check
the action of the inverse of h on its image. For any coordinate of a given point in K,
there is either an element from A or there is a pair in X?2. In the 1st case, h™! copies
the symbol. In the 2nd case, we (re)-form the pair composed of one symbol from the 1st

element and the other from the 2nd element from X2. More precisely, in this case,

((kj)l)_L%J

1 lkaEszl
(k) = ((kj)Z% | -

k. ifkjeA

This verifies the claim.

We now make use of the representation of the element x as h(x) by exploiting
the natural associated Aut®® (0,,) action. On Y, we have a pointwise action of Aut(>® (o)
(and trivial action on the 4 part), and this action naturally extends to a diagonal action
on K. In other words, there is a group homomorphism Aut®® (0,) = Bijection(K).

Stabilized automorphisms keep the set K invariant. Next, we claim that every
element in Aut®(c,) is a bijection that keeps the set K invariant, and the restriction
action of Aut®(o,,) on K is faithful. To check this, note that each element of Aut®(c,,)
keeps K invariant by the mixing assumption. As K is invariant, we can consider the
restriction of the Aut(o")(an)—action to K. Since all words of £(X,) appear as coded
stretches for some x € X, every word in X,, appears in some coordinate of some element
in K, and as the action of Aut(® (0,,) on X, is faithful (by definition), we conclude that
the action on K is faithful as well. Thus, the claim follows.

In other words, this realizes Aut(oo)(an) as a subgroup of Bijection(K). Fur-
thermore, the bijection h: X, — K induces a group isomorphism #,: Bijection(K) —
Bijection(X,).

Stabilized automorphisms give rise to continuous maps commauting with some
power of the shift. By pushing Aut®(o,) through the injective map h,, we realize
Aut™(c,)) as a subgroup of Bijection(X,). To verify that the image lies in Aut‘®(s,)), we
are left with checking that every ¢ € Aut(® (0,,) C Bijection(K) gives rise to a continuous
h,¢ € Homeo(X,), which commutes with some power of o4.

To do this, we make use of the block map description of the stabilized
automorphism group (Lemma 3.2). Fix some ¢ € Aut® (0,,) of radius r. That is, ¢ can
be represented as k block maps of radius r, where r is some number greater than k.

Now, if x and x’ are two points in X,, which are close, then by definition they agree
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on a large number of coordinates around the O coordinate. In particular, their coded
stretches (if they exist) in this area coincide. So there exists large s > 0 such that
S,N[-s,s] =S, N[-s,s]. Since ¢ is of radius r, h ¢ (x), and h, ¢ (x') agree on [-s+7r,5s—71],
and hence h,¢ is a continuous map. Finally, to check that k¢ commutes with a power
of the shift, using the fact that ¢ € Aut® (0,,) is induced by a k-tuple of block maps on
X,,, it is easy to check that k¢ can be modeled by a k - R-tuple of block maps on X,.
This concludes the proof of Theorem 4.2. [

4.2 Residual finiteness and subgroup properties

For a mixing shift of finite type (X,,0,), the classical automorphism group Aut(c,) is
residually finite (see [6, Section 3]). Simplicity of the stabilized inerts for the full shifts
(proved in Section 5), together with the stabilized Kim—Roush Embedding, implies that
the stabilized group Aut®(o,) is never residually finite. In addition, we show below

that Aut®(0,) always contains a divisible group, and hence cannot be residually finite.

Proposition 4.3. Let (X,,0,) be a mixing shift of finite type. Then, Aut®(s,) contains

a divisible subgroup. In particular, the group Aut(*(o,) is not residually finite.

Proof. Since any subgroup of a residually finite group is residually finite, and
any nontrivial divisible group is not residually finite, by Theorem 4.2, it suffices
to prove that Aut®(s,) contains a divisible subgroup. Let m > 2. We show that
Aut®(c,) contains the divisible group Z[:L1/Z. We claim that if ¢, € Aut(c}) is given
by a 0-block code, then there exists ¢; € Aut(ozmk) such that ¢1" = ¢,. The result
then follows by letting ¢, be any 0-block code of order m in Aut(og) for some j, m,
and induction.

To prove the claim, suppose we have such ¢,. We consider the alphabet for the

Qg
shift ovzmk as symbols : where a; € {0, 1}¥. Define 0-block codes in Aut(azmk) as
Am—1

follows:

do(agp)

o
a;
o : ) = i , a; € {0,1}F
Am-1
a
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and

a as
Cm = .
Am-1 Qg
Then, it is easy to check that
m
(@Cm) " = oo
as desired. [ ]

The method used in Proposition 4.3 can also produce embeddings of other
groups into Aut(®> (0,,). Given a prime p > 2, consider the direct limit SLgéag(]Fp) of the
systems (SLyn (IFp), i,) wherei,: SLG(Fp) — SLjn+1 (Fp) is the map given by A — A @ A.
A construction analogous to the one given in the proof of Proposition 4.3 can be used to
produce an embedding of SLE?8 (F,) into Aut™ ().

We end this section with an example of how results in the stabilized setting can

be used to study the classical automorphism group Aut(oy).
Lemma 4.4. For a full shift (X, 0,,), the group Aut(s,,) embeds into the group Inert(s,,).

Proof. For a symbol a, let R, denote the 0-ray of points x such that x; = a for all
i < 0. Following the proof of the embedding theorem in [16], there exists an injective
group homomorphism f: Aut(s,,) — Aut(s,,) such that for some symbol a, f(¢)(R,) is
again a O-ray. Since we are considering a full shift, for any ¢ € Aut(c,), the action
of f(¢) on the dimension group G, is determined by its action on any O-ray R, since
the equivalence class of any 0-ray rationally generates G,,. Since all 0-rays in (X,,,0,,)
are equivalent, this implies that f(¢) acts trivially on the dimension group, meaning
that f(¢) € Inert(o,,). |

Theorem 4.5. Let G be a finitely generated group that embeds into Aut(s,,). Then, G
embeds (using a possibly different embedding) into [Aut(c,), Aut(c,)].

Proof. Suppose G embeds into Aut(s,). Composing this embedding with a Kim-

Roush embedding f gives an embedding of G into Inert(s,) (by the previous lemma).
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In particular, G embeds in Inert®(o,), which, by Theorem 3.14, is a subgroup of
[Aut > (on),Aut<°°)(an)]. Since G is finitely generated, it follows that G embeds inside
[Aut™ (an),Aut(m) (0,,)] for some m € N. We can then apply another Kim-Roush Embed-
ding, this time to embed Aut™(c,,) (which is isomorphic to Aut(o,,m)) into Aut(o,,). The
composition of these embeddings takes G into [Aut(s,,), Aut(c,,)]. |

In [6, Proposition 2.8], Boyle et al. prove that if (X,,0,) is a mixing shift of
finite type, then Aut(o,) contains no finitely generated subgroup with unsolvable word
problem (this argument is attributed to Kitchens). The same proof immediately gives the

following proposition.

Proposition 4.6. Let (X,,0,) be any mixing shift of finite type. Then, any finitely

generated subgroup of Aut®(s,) has a solvable word problem.

We note that this is the only obstruction, of which we are aware, for realization

of a countable group as a subgroup of Aut® (g,).

5 Simplicity of the Stabilized Inerts for Full Shifts
5.1 Simplicity

For a mixing shift of finite type (X,,0,), the classical inert subgroup Inert(c,) has an
abundance of normal subgroups. For example, given ¢ € Inert(c,) and k € N, ¢ leaves
invariant the set P;(o,) of o,-periodic points of period k, and there is a well-defined
homomorphism from Inert(o,) to Sym(P(o,)). Moreover, if Id # ¢, then there exists
some k such that ¢ acts nontrivially on P (0,), and it follows from this that the group
Inert(o,) is in fact residually finite (see [6, Section 3] for details).

In contrast, different behavior arises in the stabilized setting, where the inert
subgroup has no nontrivial normal subgroups. The remainder of this section is devoted

to the proof of Theorem 1.2, which we restate for convenience.

Theorem [Theorem 1.2]. For any n > 2, the group of stabilized inert automorphisms of
the full shift (X,,, 0,,) is simple.

Simplicity of various groups defined via dynamical systems has been shown
in other contexts (see, e.g., [26, 27, 29]). For many of these groups, an important and
useful property is the existence of elements of the group, which act by the identity on
certain regions of the domain space. In contrast to such groups, the action of the group

Inert®(0,)) on the shift space is of a very different nature; for example, for any mixing
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shift of finite type (X,,0,4), and in particular any full shift, if Id # ¢ € Inert©® (04), then
for any open subset U C X,, ¢ # Id on U (in other words, Inert(oo)(aA) never contains

nontrivial elements with small support).

5.2 Stabilized simple automorphisms

Many of the ingredients in the proof of Theorem 1.2 hold more generally, and so we start
with some preliminaries that hold for more than the full shift.

Assume (X,,0,) is a mixing shift of finite type defined by a ¥ x « primitive Z_ -
matrix A (note that the full shift on n symbols corresponds to A = (n)). Let I', denote
a directed labeled graph associated with A, and let Simp(I",) denote the subgroup of
simple automorphisms in Aut(o,) induced by simple graph symmetries of I',. Note that
Simp(T',) is contained in Simp(o,), but the converse inclusion does not hold.

Recall that E; ; denotes the set of edges between vertices i and j in the graph I'y.

There is a natural isomorphism

K
Simp(T'y) = [] Sym(;)), (5)
ij=1

where we adopt the convention that if E; ; =  for some choice of i and j, we assume that
Sym(E; ) is the trivial group with one element.

We define the subgroup of even simple graph automorphisms Simp,,(I',) in
Simp(T',) by pulling back the associated product of alternating subgroups, meaning
the subgroup [[;;_; Alt(E; ), via the isomorphism in (5).

Let F‘Zn) denote a graph that presents the shift (X,,o}"); thus, Simp(FXn)) C
Aut(o,"). We note the graphs qum) and I' ym differ only up to a choice of labeling. For any

k,m > 1, we have an inclusion map
Ik Simp(FXn)) N Simp(Fka)), (6)

and by making the natural identifications among the iterates, this homomorphism

agrees with the restriction of the map
Aut(c)) <> Aut(ck™)
to Simp(I'y™).

Proposition 5.1.  For any k, m > 1, the map i,, , takes Simpev(qum)) into Simpev(r‘ﬁlkm)).
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Proof. Fix vertices I,J in qum), and let r € Alt(E; ;). Letting 7 denote the element
of Simpev(FX")) corresponding to v under the isomorphism in (5), it suffices to show
that i, x(7) lies in Simpev(l“ﬁlkm)). We may write T as a product of an even number of
transpositions 7T = ]_[inl 7;, and for each 1 < i < 2I, since 7; is an involution, we may
write i, (7;) = H]rlzl c; where each ¢; is a 2-cycle. It suffices then to show that r,, = r, for
any 1 < p,q < 2l. Given some 1 < p < 2I, suppose the involution % corresponds (under
the isomorphism (5)) to the transposition in Alt(E; ;) that permutes a pair of edges e, f,
between vertices I and J. Then, the value p is given by %Mp, where M, denotes the
number of distinct words w of length k, over the alphabet given by the edge set of Fém),
where each word w contains at least one e, or fp. Since the number M, of such words
is independent of what ep,fp are, it follows that Mp = Mq for any other 1 < g < 2l, as

desired. [
We consider the corresponding stabilized groups, defining the subgroups

o0
Simp™(Iy) = | J simp(y"™) c Aut®™ (o)

m=1

and

o0
Simp{ () = | J Simp,, (™) C Simp®(Iy).

m=1

Thus, « € Aut®(0,) lies in Simp(oo)(FA) when « is induced by a simple graph symmetry

of I“fqm) forsomem > 1,and « € Simpg?,o)(FA) if for some m > 1, « is induced by a simple

graph symmetry of I‘ﬁlm) that consists of only even permutations on every edge set for

Fﬁlm). We note that it follows from the definitions that
Simp©®)(T',) C Inert™ (o).

With this notation, Wagoner’s theorem (Theorem 3.13) states that for a mixing
shift of finite type (X4,0,), Inert(°°)(aA) is generated by the collection of subgroups
\D;I(Simp(o")(FB)), where W: (X,,0,") — (Xp,0p") is any conjugacy and m > 1 is any
integer.

The key lemma in the proof Theorem 1.2 is the following.

Lemma5.2. Letn > 2, and let N be a nontrivial normal subgroup of Inert(®® (0,,). There
existm>0and Id # ¢ € Simp(oo)(r‘n) such that ¢*¢o,;™ € N.

£202 YOJB|\ GO UO JoSn AUSISAIUN UISISSMULON AQ Z89%YE9/ZL |2 L/12/220Z/3I0ne/uiwl/wod dno-olwspeoe/:sdpy Woly pepeojumod



Stabilized Automorphism Group of a Subshift 17149

The proof of Lemma 5.2 is technical and long, and we postpone it until
Section 5.3. For now, we assume this result and proceed to develop the other tools

needed in the proof of Theorem 1.2.

Lemma 5.3. Assume (X,,0,) is a mixing shift of finite type defined by a primitive
Z, -matrix A. Then, the following hold:

(i) the commutator subgroup of Simp©®(I',) is Simp (I );

(00)
ev

(ii) the group Simpy,’ (T',) is simple;

(00)

(i) if A = (n) for some n > 2, then Simp™(I',)) = SimpS™(T",,).

Proof. For Part (1), clearly Simpg",")(FA) is contained in [Simp(oo)(FA),Simp(oo)(FA)].
For the other inclusion, consider a commutator a,Ba‘I,B‘l € Simp(oo)(FA), where «, 8 €
Simp(oo)(FA). We may assume that both «,8 € Simp(r‘ﬁlm)) for some m > 1. Then, for
each vertex pair i and j in the graph qum), the component of afa~!f~1 in Sym(E; ) lies in
Alt(E; ;). Thus, efa~' =1 € Simp{y (I'y).

For Part (2), let {Id} # N be a normal subgroup of Simpg",o)(FA). For k > 1 and
a pair of vertices i,j in the graph quk), let Altg;.) denote the subgroup of Simpé‘f,o)(F a)
obtained by pulling back the alternating subgroup contained in the Sym(E; ;) component
of Simp{)(T",).

LetId # o € N, and choose K > 1 such thata € Simpev(r‘f)). By passing to larger
K if necessary, since A is primitive we may assume that all entries in AX are greater than
or equal to five. We claim that for any i,j > 1 and for all m sufficiently large, we have
NN Altgjm) # {Id}. Since « is nontrivial, for some choice of I,J we have that oy g the
component of « in Altg), is also nontrivial. Choose a path y of length m > 3 in 1-*1(41{) such
that y begins at i, ends at j, and passes through an edge from I to J on which «; ; acts
nontrivially. Then, y corresponds to an edge in quKm) starting at vertex i and ending at

vertex j on which ig ,,, (¢; ;) acts nontrivially. It follows that
N N AlgE™ (7)

is nontrivial, proving the claim.

Since each entry of AX is at least 5, it follows that Altl@fm) is simple foralli,j > 1
and m > 3. Moreover, N is normal in Simp®”(I',), and so NﬂAltgjm) isnormal in AltE?m).
Thus, since the intersection in (7) is nontrivial, it follows that for alli,j > 1 and m > 3,

we have that Altf;m) C N. Therefore, N contains the subgroup generated by the collection
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of subgroups
o0
{Simpev(l*g{m)) } g’

Given any r > 1, there exists M > 3 such that r divides M, so the subgroup Simp(FéKM))

contains the subgroup Simp(l"g)). It follows that Simp{S”(I',) is contained in the group
generated by the collection

’

{Simpev(rjfm))} .

o0
m
and hence,

Simp{”(Iy) C N,

proving Part (2).

For Part (3), let I > 1, and suppose ¢ € Simp(Fg)) is an order two automorphism
induced by the simple graph symmetry of rﬁ? that permutes two edges e and f and leaves
all other edges fixed. We claim ;,(¢) € SimpeV(Fﬁlzb) (recall that the inclusion map i;, is
defined in (6)). To check this, observe that i;,(¢) is induced by the action of « on paths of
length two in rﬁ? of the form ab, where at least one of a or b is either e or f. The action
of i; , (1) on such pairs of words is given by the composition of 2n — 2 transpositions, and
it follows that i;,(1) € SimpeV(Fgl)), proving the claim. Since such involutions generate

all of Simp®™(I",,), the equality in Part (3) follows. (]

It follows from Parts (2) and (3) of Lemma 5.3 that for a full shift A = (n),

Simp("o)(Fn) is a simple group.

Lemma 5.4. Suppose (X,,0,) is a mixing shift of finite type such that for all m > 1,

A™ contains an entry greater than or equal to 3. Then,

(i) for any a € Aut®(o,), the group aSimp{S”(I',)a~! is a simple subgroup of

Inert©® (04). Moreover, if N is a normal subgroup in Inert©® (0,4) such that
aSimpS (M e ! NN # {1d},

then

aSimp (e~ C N;
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(ii) if for some m; > 0,

o1 SimpS (Iy)o, ™ C N,

then for any m > 0

o SimpS(Iy)o, ™ C N.

Proof. The 1st part follows immediately from Lemma 5.3. For the 2nd part, by
assumption, we have that A contains an entry greater than or equal to 3. It follows

there exists some y € Simp,,(I'4) that commutes with o4, so that

o1 Simp S (T y)o, ™ N SimpS (I,) # {1d).

Then, since

o Simp (o, ™ C N,

we have

Simp(y” (Iy) NN # {1d}.

Part (i) now implies

Simp{S(I',) C N.

Given m > 1, since A™ contains an entry greater than or equal to 3, the group

Simp,, ("'{"") is nontrivial. Thus, we have that
o'SimpSY (T y)o, ™ N SimpyY) (T'y) # {1d},

and hence,

o Simp (o, ™ NN # {Id}.

Part (i) then implies that

o SimpS(Ty)o, ™ C N,

as desired. |
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Finally, we use a lemma of Boyle, which is a stronger version of Wagoner's
Theorem (Theorem 3.13).

Lemma 5.5 (Boyle [2]). Let (X,,0,) be a mixing shift of finite type, and suppose
« € Inert®™(o,). There exist m;,m, > 1 and ¥,, ¢, € Simp(I'y"") such that

o =Yy Y0,
We have now assembled the ingredients to prove Theorem 1.2.

Proof of Theorem 1.2. Since Inert®(o,) = Inert®(s,n) for any m > 1, we may
assume without loss of generality that n > 3. Suppose N is a nontrivial normal subgroup

of Inert(® (0,,). By Lemma 5.2, there exists m; > 1 such that
oM Simp*>)(T,)o, ™ NN # {Id}.
Since Simp(oo)(l“n) = Simpg",o)(l"n) by Part (3) of Lemma 5.3, we have that
ot SimpY (M), ™ NN 3 {Id}.
Then, since n > 3, by Lemma 5.4,
oy Simp(y ()0, ™ C N,

and applying Lemma 5.4 again, it follows that N contains an_mSimp(oo)(Fn)o,T for all
m > 0. By Lemma 5.5, the collection of subgroups o{msimp(oo)(l“n)o,rl", m > 0, generate

Inert®™(c,)), completing the proof. [

5.3 Proof of Lemma 5.2

5.3.1 Notation
We start with some notation used in the proof of Lemma 5.2, and we maintain this
notation for the remainder of this section.

For m > 1, let E™)(T',)) denote the edge set of I'{"™. Label the edges of EV(T",,) by
{1,2,...,n}. Note that we may label the edge sets E(m)(Fn) such that for all m > 2,

E™(T,) = ]_[E“)(rn).

i=1
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When working with E®(I',)) for some TI',,, we denote points in E?(I',,) by ( o )
where x,,y; € EY(I',,). We refer to rows and columns of E@?(I',)), with the convention
that row i of E®(I,) refers to the set of points in E?(T',)) of the form

[(}):veE®myl,

while column i refers to the set of points in E®(I',)) of the form

{(’:)X € E(l)(Fn)}.

Assume (X,,, 0,,) is a full shift, and let A, denote the corresponding alphabet for
the shift space. By definition, A, = EM(T,). Thus, for m > 1, we identify the alphabet
4o
A,m with the set of elements of the form : where a; € A, fori=1,..., m—1.
Am—1
Given a point x € X, as usual we write x = (x;);cz. When we need to indicate

where x; is located, we use a dot to indicate this; thus, the point
x=...abc...

has xy = b.

Given any a € A, , let p, denote the point ...aaa..., which is fixed by o,,.

We let Py (o,,) denote the set of k-periodic points for ¢, so P;(c,,) consists of all
points x for which o(x) = x (note that P,(s,) in general contains, but is not equal to,
the set of points of least period k). We can identify P (c,) with E® (")), and similarly,
given m > 1, we can identify P, (o;") with E & (p Iy,

Thus, for the remainder of this section, we assume (X,,, 0,,) is a full shiftonn > 2
symbols, and without loss of generality, we assume that n > 7. This is not a restrictive
assumption, as in the stabilized setting, Inert®(c,) = Inert® (o)") = Inert® (o,,m) for
any m > 1.

Finally, for the remainder of this section, we fix a nontrivial normal subgroup N
of Inert(® (0,,), and our goal is to prove Lemma 5.2, showing that there exists m > 0 and
Id#¢ € Simp(oo)(l"n) such that o]*¢o,; ™ € N.

5.3.2 Existence of an inert with additional properties

We start by recording a slightly stronger version of Lemma 5.5.

£202 YOJB|\ GO UO JoSn AUSISAIUN UISISSMULON AQ Z89%YE9/ZL |2 L/12/220Z/3I0ne/uiwl/wod dno-olwspeoe/:sdpy Woly pepeojumod



17154 Y. Hartman et al.

Lemma 5.6 (Boyle [2]). Suppose a € Inert®(c,). There exists M > 1 such that for all
m > M, there exist y\™, ¢{™ e Simp(I'?™) such that « = ™oy o™,

Proof. This can be deduced from the proof of [2, Theorem, p. 970] (in the notation used
in the proof there, for m large enough, we can choose n = 2p — k+ m > 0, so that
t=k+m+n=2p+2m=2(p+m)). [ |

To avoid overly cumbersome notation, we often suppress the n, writing I' and o
instead of I', and o,,, with the understanding that we are still working with a full shift
on n symbols.

Suppose o € Inert(o) and that « is induced by a block code h, of range r > 1;
thus, h,: A2 — A_ . We say that

() o satisfies property (¥) if there exist distinct a, b, ¢ € A, such that

(i) apg) =Dpa
(ii) h, (a"aba™ ') #£ae A;

(iii) Forall0<i<r, h,(a" ba™) = a and h,(a* ‘ca’) = a.

Lemmab5.7. Suppose o € Inert(o) is induced by a block code h,, of range r and satisfies
(*) for some a, b, c € A,. Then, there exists m > 1 such that, upon viewing « as an element
of Inert(c?™), all of the following hold:
(i) for some y™, ¢ ™ € Simp((I@™), we have @ = ™™y,
(i) a(pg) =Dpa;
(iii) for w = ba™ 2c, the pointp,,, = ... a™waa™ 'w...is a point of least period
two for ™, and in particular, a(p,,,) € Py(c™);
(iv) the point a(p,,) in P,(c™) satisfies (a(pgy)),,

(@(Pgy)); =aforallm <i<2m—1.

_, # a and satisfies

Furthermore, using the identification of P,(¢™) and E®(I'"™), we have the following:

(a) a(ﬂ):(ﬁ);

(b) oz( o ) = ( ;",’r/l ) for some word w’ of length m where w’ # a™.
Proof. By Lemma 5.6, Part (i) holds for all sufficiently large m, so in particular for
some m > 2r + 2. Part (ii) is obvious, and since a, b, ¢ are distinct, Part (iii) follows. To

prove Part (iv), note that since «(p,) = p,, it follows that h,, (a?t1) = a. Since m > 2r+2,
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we have that m —r — 1 > r 4+ 1, and it follows that

o™ Y Pgw) =...Wa...aa...aaw...

m—r—1 r

Thus, (¢@gu)) 1 = (" 'a@un)y = (@0™ 1 (Pgy)), = hy(@’aba’™') # a. Using
Condition (3) of (¥), it follows that (“(paw))i =aforallm<i<2m—1.

Parts (a) and (b) follow immediately by translating the results via the identifica-
tion. [

Given symbols a,b € A_, we use the shorthand a < b to denote the 0-block code
involution in Aut(c) which permutes the symbols a and b and leaves all other symbols
fixed.

Lemma 5.8. There exists « € N satisfying property (*).

Proof. SupposeId # « € N and « € Inert(c’) for some ¢ > 1. By passing to a larger ¢ if
necessary, we may assume that « acts nontrivially on P, (o%). Since Inert(c?) can induce
any permutation on P, (¢%), and since N is normal, by replacing « with some other o’ € N

if needed, we can assume that « satisfies

a(p,) = p, for some p, € Py(c") with A € A,;
a(pp,) = pp, for some py, ,pp, € Py (c") with D;, Dy € A
«(pg,) = pg, for some pg, , pg, € P, (0% with E|,E, € A ¢;

and A,D,,D,, E,,E, are all distinct.

Suppose « is induced by a block code h, of range r. Without loss of generality,
we may assume that r > 1 (if » = 0, the conclusion of Lemma 5.2 already holds).

Set k = 2¢r+ 1. By considering « as an element of Inert(c*), we may assume that
« is given by a block code hék) of range 1.

Consider the words
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and

AR\ [ AR\ [ Ak
ve=| EF || aF || EX
AK A A
of length three over the alphabet .A_s. Viewing o as an automorphism lying in Inert(c %),

we have that « is induced by some block h((fk) of radius one, and this block code satisfies

Ak Ak
WOwy = ak |, rPw, =| aF |,
Ak Ak
while
Ak Ak Ak * Ak
RGO ax || ok || ak || =| b, | #]| D¥ |, (8)
Ak Ak Ak * Ak
Ak Ak Ak * Ak
RO ak || EX || 4% || =| & | #] EF (9)
Ak Ak Ak * Ak

(note that h,(D}) = D, # D, and h,(E]) = E, # E).

Define the words

k k k k k k

DK\ [a A EF\ [a A

wy=| D || AF || DY |, w.=| EF || &% || EF

k k k k k k

ak J\ ak |\ Dk ak J\ a4 ok
Ak Ak
and note that A$¥ (w,) = | 4% | and R (w,) = | a*
Ak AF

We set convenient notation for some letters in 4 ak: given X € A, we define
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Thus, for example,

Choose b, c € A sk suchthata,b,c,d;,d,, e;, e, are all distinct and such that hf{o’k)(aac) #
b (this is possible since, e.g., hf,,3k) (aac) contains letters from the original alphabet).

Define the automorphism 8, € Inert(c%%) by
By = 0% (e;e e, < aab) o —3F

(note that this is the conjugacy by o3 of the involution e,e;e, < aab), and let a; =
ﬂl_locﬁl. Then, «; € N and can be induced by a block code of range 4 on the alphabet
A 3. Furthermore, we have

-1
. B1 . o . By .
.ataba®... =5 . adejeead... T ey s e,

and B, (p,) = p,, and so «; satisfies conditions (1) and (2) of (*) for the letters a, b.
Define the automorphism g, € Inert(c%) by B, = 0%%g,0 =3k, where g} is the 0-
block code involution on the alphabet A_sx that performs the following permutation on

symbols:

aba < v,

, | baa < wy
By (10)
aac < w,

aca < v,

and consider a, = B, 'a;B,. Then, a, € N, and still satisfies conditions (1) and (2) of ().

To see that it satisfies condition (3) is a matter of checking case by case. For example,

-1
> B2 . o] . By
...alabaa®... = . .avya® ... 5 o xa... o oxa. ..

since, by (8), * is some word containing D,s. Next,

—~1
. ﬂz . o . ﬁz .
...a’baaa®... = . .aPwyad... 5 xa... 5 . xa...
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since * also contains some D,s. Furthermore,

-1
3 e 3 ﬁz 3.° 3 (5} . /52 .
...aacaa”... — ...avv,a” ... — ...*xaA... —> ... %xQA...

since, by (9), * contains E,s and

-1
3 3 P 3.0 3 & - B .

.
...araaca” ... — ...aw,a” ... —> ... xA... —> ... *xA...

since * contains some E,s. n

Combining Lemmas 5.7 and 5.8, we obtain the existence of an automorphism,
which for convenience we also denote by «, with @« € N, such that « satisfies
the conditions in Lemma 5.7 for some m > 1. The automorphism « constructed in
Lemma 5.8 also satisfies an additional property that we note for use in the sequel:
there exists some word z, (e.g., let z; = be[*™!) such that, with the symbol a given
by Lemma 5.8, writing oc( ‘Z ) = ( ’ ), we have x # a™ and y # a™.

For ease of notation, for the remainder of the section, we suppress the power m,
and write o instead of ¢™, and write y,, ¥, for the simple automorphisms w{m) ,wém)
produced by Lemma 5.7.

It is convenient to recode the alphabet for our shift, and to do so we choose a
bijection A, < {1,2,...,n} such that 1 — a™, and let {1, 2,...,n} be the alphabet of our

shift. Summarizing, we have shown the following lemma.

Lemma 5.9. There exists a € Inert(c?) satisfying the following properties:

(i) o eN;
(i) « =y 0¢,07 ", for some ¥, ¥, € Simp(I'?);

G o 1)=(1);

(iv) a( ull ) = ( 2 ) for some 1 # u,; and some u, € {1,2,...,n};

(v) there exists ug € {1,2,...,n} such that neither component ofa( ula ) is 1.

5.3.3 Constructing a particular subgroup K of SymE®@) x Sym(E?)

Consider the set

Ky = {(¢1,#,) € Simp(I'?) x Simp(I'?): ¢,0¢, 0" € N}. (11)

Lemma 5.10. The set K, defined in (11) is a subgroup of Simp(I'"®) x Simp(I"®).
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Proof. Assume ¢,0¢, 0"}, ¢30¢, 0! € N. Then, 0¢, '01$; € N, and hence,

oy lo pspiop, o e N

and

B3100; ¢y 0! = 30 (dahy) 'o T €N
Lastly, if ¢;0¢, 07! € N, then ¢; 'op,0 ™! = ¢; o0 1p; 1p; € N. [

To simplify notation, for the remainder of this section, we write E™ instead of

E™)(I'). By definition, E® is the edge set of ', so there is an isomorphism
#H: Simp(I'?) — Sym(E?), (12)
and hence an isomorphism,
H x H: Simp(I'?) x Simp(I'?) — Sym(E?) x Sym(E®).

Define

K= (HxH)(Ky), (13)

meaning that X is the image of K, under this isomorphism. Thus, we have

K c Sym(E®) x Sym(E®@).

Let o € Inert(c?) be the element in N given by Lemma 5.9. Maintaining the

notation of that lemma, we have o = y,0y,07!, for some ¥, ¥, € Simp(I'?) and so

W, ¥y Y € Ky

Defining
i =HW1), vy =HWy), (14)

it follows that

v, H ek, (15)
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X
Recall we have E® = EW x EV, and we write points in E? as ( ) where
y

x,y € EI, We embed Sym(EV) x Sym(E®) into Sym(E®) via the map

($1,8y) > ( P ) (16)
o
where ( 1 )( X ) = ( $1(0) ) Define
(o)) 4 #2(¥)

xP to be the subgroup of Sym(E?) that is the image of this embedding. (17)
Lemma 5.11. For any ( %1 ) € P, we have (( 2 ),( 92 )) e K.
¢, b2 b1
Proof. Let (21 ) € Simp(I'®) be the automorphism induced by the permutation
2

( g ) on the edge set E?(I'). Thus, ( 1 ) = (H x 7—[)( <7f1 ) It is straightforward to

¢2 2 2

check that
~ ~ =1 ~ ~_1
() ()
) 2y ) #,
o b,
- A - € Ky
((2)(3:))

Define the swapping element s € Sym(E®) by

(2)-C)

Recall we can identify period two points for o with the set E®), Then, o induces

SO

an action on E?, and this action agrees with the action of s on E®.

Lemma 5.12. For the elements y;, y, defined in Equation (14), we have yz_l #s5 lys.
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Proof. By Lemma (5.9), « = ¥,0¢,0 ! for some ¥, ¥, € Simp(I'®). If y, ! = 57 1y;5,

then o acts on E® by the permutation

)/15571)/1_155*1 = ylyl_l = Id.
But this contradicts Lemma 5.9, as o acts nontrivially on E?®, [

5.3.4 Completion of the proof of Lemma 5.2
To translate properties of K to subgroups of Sym(E®), we make use of the following

result.

Lemma 5.13 (Goursat's lemma (see [23])). Let G,, G, be groups, and let H be a subgroup
of G| x G,. Then, there exist subgroups H; C G;,H, C G,, normal subgroups N; <H,;,N, <
H,, and an isomorphism ¥: H, /N, — H,/N, such that

H={(x,y) e H x Hy: ¥(Ix]) = [yl}.
Applying Goursat’s lemma to the group K, we obtain the following corollary.

Corollary 5.14. Let K be the subgroup defined in (13). There exist H;, H, C Sym(E?),
normal subgroups N, <H,,N, < H,, and an isomorphism ¥: H,/N; — H,/N, such that

K={(¢1,¢,) € H x Hy: ‘p([(ﬁll) = [¢2]}

We turn our attention then to studying the subgroups H;,H,,N;,N,. The key

lemma regarding their structure is the following.

Lemma 5.15. Assume both subgroups N; and N, of Corollary 5.14 are trivial. Then, at
least one of the following holds:

(i) H, = Sym(E®) and H, = Sym(E®);

(ii) H; = Alt(E®) and H, = Alt(E@).

As the proof of this lemma is lengthy and involves checking multiple cases, we
defer its proof to Section 5.4.

For use in the proof of Lemma 5.2, we recall the following classical theorem.

Theorem 5.16. Suppose |X| > 6, G is either Sym(X) or Alt(X), and ¥: G — G is an
automorphism. Then, there exists g € Sym(X) such that W(h) = g 'hg forall h € G.
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We have now assembled the tools to prove Lemma 5.2 (modulo the deferral of

the technical statement in Lemma 5.15).

Proof of Lemma 5.2. Let N;, N, be the subgroups produced in Corollary 5.14, and let
V: H,/N;, — H,/N, be the isomorphism in the same result.

Assume first that N; # {Id}, so there is some ¢; # Id with ¢; € N;. Then,
¥ ([¢,]) = w([1d]) = [Id] € H,/N,, so (¢;,1d) € K. This implies that

H (@)oot =H 1 (p)) e N.

But since ’H*(d)l) € Simp(T"), the statement of Lemma 5.2 follows. Likewise, if N, # {Id},
then (Id, ¢,) € K for some ¢, € N,, and again the result follows. Thus, we are left with
showing that either N; # {Id} or NV, # {Id}.

We proceed by contradiction and suppose that both N, = {Id} and N, = {Id}.

Combining Corollary 5.14 and Lemma 5.15, we have that the isomorphism W is either
v: Sym(E?) - Sym(E?®)

or

v AILE?) > AlYE®D).

By Theorem 5.16, we have that ¥ is given by W(h) = g~'hg for some g € Sym(E®).
We claim that g is the swap map s, defined in (18).

To check this claim, note that for any ( 2 ) € P, where P is defined in (17), it
2

follows from Lemma 5.11 that (( Zl ),( Zz )) € K. Thus,
2 1

and hence,

—1 ¢2 -1 ¢2 )
g s s g= (19)
( 1 ) ( 4
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for all ¢;,¢, € Sym(E). We now check that this implies that s~!g = Id. If not, there

exists (X1 ),( *2 ) € E® such that 51g( 1 ) = (Xz ) and ( = ) £ (X2 ) Either
1 Y2 1 Y2 1 Y2

X, # X, OT y, # V,; assume x; # x, (the other case is similar). Choose z € EV) such that

Z # x,X,, and define ¢; € Sym(E") to be the transposition swapping x, and z. Then,

-1
Id Id Y1 Id Y2 Y2 Y2 Y1
contradicting (19), thus proving the claim.

Since (y,, yz_l) € K (see (15)) we have yz_l = W(y,). It then follows from the claim
that y{l = s ly,s. But this contradicts Lemma 5.12, completing the proof. |

5.4 The proof of Lemma 5.15

5.4.1 Preliminary reductions

We are left with showing Lemma 5.15. Recall that Corollary 5.14 gives us the existence
of subgroups H;, H, C Sym(E?), normal subgroups N, <H,, N,<H,, and an isomorphism
V: H,/N; — H,/N, such that

K ={(¢1,9,) € H x Hy: ¥([¢;]) = [p,]}.

The statement of Lemma 5.15 is that when both subgroups N, and N, are trivial, at least

one of the following holds:

(@) H, = Sym(E®) and H, = Sym(E®);
(i) H, = Alt(E?@) and H, = Alt(E?).

We start with some terminology used to study these subgroups.

For a finite set X, recall that Sym(X) denotes the group of permutations of the
set X. If K C Sym(X) is a subgroup, a nonempty subset A C X is called a K-block
if for all g € K either g(A) = A or g(A) N A = . A subgroup K C Sym(X) is called
primitive if the only K-blocks are singletons and X. We say the subgroup K C Sym(X)
contains a p-cycle if it contains some element r € K such that t consists of a single

p-cycle.

Theorem 5.17 (Jordan ([38, Theorem 13.9])). Suppose K C Sym(X) is primitive and
contains a p-cycle for some prime p < |X| — 2. Then, K = Alt(X) or K = Sym(X).
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Thus, to prove Lemma 5.15, by Jordan’'s theorem, since H,,H, C Sym(E®), it
suffices to show that at least one of H;, H, is primitive and also contains a p-cycle for
some prime p < |[E®?)| — 2.

We start with some technical results on subgroups of Sym(E®), then prove

primitivity, and then show how to generate a p-cycle for some prime p < |[E®| — 2.

5.4.2 Subgroups of Sym(E®)

To denote the 1st and 2nd components of an element ( ’; ) € E@, we write

()= ()=

We say that an element 7 € Sym(E®) is

(i) row-preserving if ‘L’( o )1 = r( o )1 for all y,,y, € ED;

. . . 1 .
(ii) column-preserving if r( o )2 = r( I )2 for all x;,x, € ED;

(iii) free if 7 is neither row-preserving nor column-preserving.
For any element t € Sym(E®), there exists a pair of functions 7,,7,: E? — EWD
such that

It follows quickly from the definitions that

(i) t is row-preserving if and only if 7, ( ’; ) is independent of y,

(ii) t is column-preserving if and only if 12( ’; ) is independent of x.
It is also easy to check that

(i) the collection of r € Sym(E®) that are row-preserving forms a subgroup;
(ii) the collection of T € Sym(E?) that are column-preserving forms a subgroup;
(iii) any r € P, where P is the subgroup defined in (17), is both row-preserving

and column-preserving.

In Lemma 5.9, we showed the existence of @ € N of the form o = y,0¢,07!
for some V1, ¥, € Simp(I''?). The automorphism « acts on P,(0), and upon identifying
P,(0) with E@), there is a corresponding permutation of E? induced by «, which we
denote by @ € Sym(E®). (Recall that we are identifying E® with EV x E) and that
ED =1(1,2,...,n})
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Recall that y,, y, are defined in (14) and the swap map s is defined in (18). By
Part (iii) of Lemma 5.9, we have that &(( } )) = ( } ) Since the subgroup P (see (17)) acts

transitively on E®, there exists some ¢ € P such that quj( h ) = ( h ) Letting ¢ denote

the automorphism in Simp(I"®) corresponding to ¢ € Sym(E®), we have that
a=y0¥0 L =Y 10d oo = Y good oy e N

Since ¢ € P, it is straightforward to check that ¢ !¢~ lo € Simp(I'®), and hence
(Y16, ¥ "o ¢o) € Ky. Furthermore (recall that the isomorphism # is defined in (12)),

H(o L po) =5*1¢s,

and it follows that (y;¢, y2_15_1¢5) € K. Abusing notation, we replace y; and yz_l by y,¢
and y2_15_1¢5, respectively. Then, yl( } ) = ( i ) Since &( } ) = ( } ) and a( } ) = ( } )
it follows that yz( . ) = ( . ) as well.

By Part (b) of Lemma 5.7, &( ull ) = (”12 ) for some u; # 1,u, # 1. Since @ €

Aut(o), it follows that &( ”11 ) = ( ulz ) as well. Finally, recall in our notation the action

@ of @ on E® is given by

— -1
o = J/lﬁj/zs .

Lemma 5.18. Either y, is free or y, is free.

1
V1

Proof. Suppose y, is row-preserving. Then, yz( ull ) = ( ) for some v; € EV, v; #1,

since y, fixes ( } ) Then,

(ulz ) Za( K ) 21’153’25_1(u11 ) =V15V2(u11 ) =V15( Vll ) =J/1(V11 )

Thus, yl( o ) = ( ulz ) Since y, fixes ( . ) it follows that y, is free.
Suppose instead that y, is column-preserving. Then, likewise, we have yz( u ) =

( "2 ) for some v, € EV, v, # 1, since y, fixes ( : ) Thus, as in the 1st case, we then

have

— 1 —1 1 \% 1
() =a(i) =nms () =) =ns(7) =n( )
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Since y, fixes ( . ) it again follows that y, is free. |

For a subgroup H C Sym(E®), we say H contains the arrangement
(20)

if H contains an element ¢ such that ¢ maps points as in (20). Note that not all points of
E® may be listed, and if a point is not listed, it means we make no claim how ¢ acts on

that point. Instead of writing ( o ) — ( o ), we simply write Id on ( o )

Lemma 5.19. Suppose H is a subgroup of Sym(E®) and P ¢ H, where P is the subgroup
defined in (17).

(i) Suppose there exists 7 € H such that 7 is not row-preserving. Then, at least

one of the following holds:

(a) H contains the arrangement

an (1) (21)

(b) H contains the arrangement

on (1) . 22)

2 1
1 = 2
(ii) Suppose there exists v € H such that t is not column-preserving. Then, at

least one of the following holds:

(a) H contains the arrangement

wn (1) (23)
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(b) H contains the arrangement

o (1) . (24)

(+)~(:)

(iii) If H contains some 7 where 7 is free, then H contains the arrangement

on (1) | 25

(2)~ ()

Proof. The proofs of Parts (1) and (2) are similar, so we only prove case (2), assuming
that t is not column-preserving.

Since 7 is not column-preserving, there exist a,,a,,b; € EWY such that
(‘L’( 5 ))2 £ (r( 5 ))2 The group P acts transitively on E®®, so there exists ¢; € P
such that ¢1r( b ) = (Z; ) It follows that ¢lr( 5 )2 # b,. Choose ¢, € P such that

¢2( i) = (Zi ) let g3 = ¢, ¢ 7h,, and let (“13) = ¢2_1(‘;f ) Note that a; # 1. We

have ¢3( | ) = ( . ) and setting k = ¢>3( @ )2, we have k # 1 (since ¢1‘C( IS )2 # by).
Letting ¢, = ( k{jz )¢3, it follows that ¢4( @ )2 = 2. Finally, let ¢5 = ¢4( 2o ), so that
¢>5( 2 ) = ( : ) for some t. Note that we still have 455( . ) = ( h ) If t = 1, then ¢5 gives

t< 2

arrangement (24). If ¢ > 1, then letting ¢g = ( d )¢>5, ¢ gives arrangement (23).
Turning to Part (3), suppose t € H and r is free. By Parts (1) and (2), either H

contains the arrangement

wn (1) (26)

in which case (upon taking an inverse) we are done, or H contains both arrangements

wa (1) [ (1) o

()~ (%) (2)=(5)
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In the latter case, if ¢,, ¢, implement these arrangements, then ¢1‘1¢2 implements the

arrangement

an (1) (28)

5.4.3 Structures in the subgroups Hy, Hy

We use pictures to depict the action of elements of Sym(E?). Since E? = EV x EWD,

each point p € E® corresponds to an ordered pair p = (p,,p,) € EV x EV; we choose

an ordering on EV) and may then consider E® as a grid of points with respect to the

ordering chosen for E(V), When we say ¢ € Sym(E®) acts by

[ J .\X X
X X ® X
X X X X

we mean that ¢ acts on E? as drawn in the picture, with the following conventions:

(i)

(ii)

(iii)

(iv)

(v)

An arrow drawn from one e (representing a point (p;,q;)) to another e
(representing a point (p,, g,)) indicates the point (p;,q;) is mapped to the
point (p,y,g,). A two-headed arrow between two bullets indicates the two
corresponding points are swapped.

A e associated with no arrow represents a point fixed by ¢.

An x means the point could be mapped anywhere, meaning that we make no
assumption on how that point is mapped by ¢.

Ellipses indicate the type of action continues in that direction. For example,
the use of ellipses following xs means that we make no assumption on
how ¢ acts on points in that direction. When ellipses are between specified
behavior, we mean a continuation of the same type of action (this is not
relevant until Figure 1b.2 (i).

When no ellipses are present, ¢ acts by the identity on any unrepresented

points (meaning points in E® that do not appear in the picture).
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Definition 5.20. We say a subgroup H c Sym(E'?) is substantial if it contains both of
the following:

(i) a free element;

(ii) an involution implementing at least one of the following arrangements:

° X X
[ ] [ ] X X
o x x AN
\ X X ° X
X L] X
X X X X
X X X
Arrangement (a) Arrangement (b)

Lemma 5.21. At least one of the subgroups H;, H, in Sym(E‘?) is substantial.

Before the proof, we introduce some notation. Define
CR:[(;)eE(z):eitherX:loryzl}, (29)

and so CR is the union of row one and column one in E® (CR stands for column row).

Define
IS=E?\CR (30)

(IS stands for inner square).

Proof. First, suppose H is a subgroup of Sym(E®) with P ¢ H, and suppose ¢ € H
satisfies both of the following:

0 oo(1)=(1)

(ii) ¢( ’;i ) € IS for some (’;i ) € CR.
Note that since ¢ satisfies both of the above conditions, (’;i) cannot be equal
to (i) We prove that H contains an involution implementing at least one of the

arrangements in Part (2) of Definition 5.20. Thus, suppose that we have such a ¢ and
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some ( } ) # (’;i ) € CR with qﬁ( ) ( ) € IS. Suppose first that ( ) is in column

-1
one (so y; = 1 and x; > 1, since ( ) ( . ) By replacing ¢ by (Z‘Zixl ) ¢( Zom ),
we may assume that x; = 2. Set

le{(’;)eE(z):X>Zandy>1}.

Since n is large, there exists some (’;g ) € L, such that qﬁ(;g) € IS. Choose some

involution r; € P such that rl( | ) = ( h ) and rl¢( I ) = (’;2 ) Then,

omo(5) =07 (52) = ()= (1)

Thus, ¢~'7,¢ is an involution in H fixing ( . ) that satisfies ¢*lrl¢( 2 ) = (X3 ) €L,
and we may choose another involution r, € P such that r, fixes ( . ), and ‘L'Z( ;3 ) = ( 5 )
Now, the involution 7, 1¢_111¢12 is in H and implements the 1st arrangement. The case
that (Xl ) is in row one is similar and produces an involution in H implementing the
2nd arrangement. This completes the proof of the claim.

Recall we have y; € H;, yz_l € H, (see (14)) and both y; and y, fix ( } ) By Lemma
5.18, either y, is free or y, is free. Suppose then that y, is free. If y; maps any point
(necessarily not ( } )) in CR into IS, then H; satisfies both parts of Definition 5.20 by the
claim above. Suppose then that y; leaves CR invariant. Then, y;s leaves CR invariant, and
fixes ( } ) By condition (v) of Lemma 5.9, @ = y,5y,5 ! maps the points ( ) and ( )
into IS. Since s leaves CR and hence IS invariant, this means y, maps both ( us ) and
( ¢ ) into IS. Since y, fixes ( } ), this implies y, is neither row-preserving nor column-
preserving and so is free. Furthermore, y, maps a point in CR (specifically, ( )) into
IS. By the claim, this implies H, satisfies both conditions (1) and (2) of Definition 5.20.

A similar argument shows that if y, is free and preserves CR, then H; satisfies
both conditions (1) and (2) of Definition 5.20, finishing the proof. [

5.4.4 Primitivity
Our goal now is to show that any substantial subgroup of Sym(E?), which contains P
is primitive.

We make use of the following lemma from [13].

Lemma 5.22 (See [13, p. 735]). Suppose X is a finite set, K C Sym(X) is transitive, and

x € X. Then, K is primitive if the only blocks that contain x are {x} and X.

£202 YOJB|\ GO UO JoSn AUSISAIUN UISISSMULON AQ Z89%YE9/ZL |2 L/12/220Z/3I0ne/uiwl/wod dno-olwspeoe/:sdpy Woly pepeojumod



Stabilized Automorphism Group of a Subshift 17171

Lemma 5.23. Suppose H C Sym(E?) is a subgroup that contains P and is substantial.

Then, H is primitive.

Proof. Since the subgroup P (see (17)) acts transitively on E® and P C H, the subgroup
H also acts transitively on E®. By Lemma 5.22, it suffices to show that if A is any

H-block containing ( : ) and at least one other point, then A must be all of E®?,

Let A be an H-block containing ( } ) and some other point ( ;i ) We claim that
if A contains a point in IS (recall that the set IS is defined in (30)), then A = E®. To check
this, suppose A contains ( 1‘2 ) eIS. If ( ‘;j ) is any other point in IS, then there exists
¢ € P such that

It follows that A contains IS. Now, ( 1 I(_il 2 )A NA # ¢ and ( 1 I(_il 2 )A contains all of column

1 except ( } ) so A contains all of column 1 (since A already contained ( i )). Likewise,

( ! d z )A NA # () so A must contain all of row 1. Thus, A must contain all of E®, proving
the claim.
To finish the proof of the lemma, it suffices then to show that A contains some

point in IS. By assumption, A contains some point (’;i ) # ( } ) The only remaining

X
y

case; the 2nd case is analogous.

X

cases then are that either ( v

i ) lies in row 1 or ( i ) lies in column 1. We prove the first

Id
zoy

Assume x; = 1. Then, for any 1 # z € EWD, ( )A N A contains ( . ) so A

contains ( ; ) for all such z, and A contains row 1. Let p € Sym(E1) denote the 3-cycle
mapping 3 — 2,2 — 1,1 — 3. Since H is substantial, it contains a free element. Thus,

by Part (iii) of Lemma 5.19, there is some 7 € H such that

()
(2)= ()
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Since A contains row 1, it contains ( ; ) so this implies that A contains ( i ) completing
the proof. |

5.4.5 Obtaining a p-cycle

The main goal of this subsection is to prove the following lemma.

Lemma 5.24. Let H C Sym(E®) be a subgroup that contains P and is substantial.

Then, H contains a p-cycle for some prime p < |[E@)| — 2.

We start with some notation to aid in describing the arrangements. Define
Ri={(})veEVm™u(]): v sV m)} (31)
and
cu-[(3) xeo[(5) xemm)

Thus, R; ; denotes the set of points in E® that belong to either row i or j, and C; ; denotes
the set of points in E® that belong to either column i or j.

Given 1 < i,j < n, let q’)lcj denote the involution in P swapping columns i and j,
and let ¢fj denote the involution in P swapping rows i and j. Given any ¢;,¢, € H;, we
let ¢f‘ = ¢1_1¢2¢1, and for t,¢ € H;, define

Txgp = (r¢)_1 t=¢ 7 1gr.

(While 7 x ¢ is usually denoted by [¢, ], we find the * notation to be more
readable.)

We frequently use the following observation: if c is a cycle whose support does
not intersect C; ; (respectively, R; j), then ¢ x q)lCJ =1Id (cx ¢5j = Id, respectively).

Let us briefly outline the proof of Lemma 5.24. Suppose H is a substantial
subgroup of Sym(E®), which contains P. To show H contains a p-cycle, we begin
by letting y; denote some element of H that acts by one of the arrangements in
Definition 5.20; say Arrangement (a). Letting y, = y3 x ¢§2, by passing from y; to this
Y4, any 2-cycles in y; whose support were disjoint from rows one and two vanish.
Moreover, the element y, has a distinguished 3-cycle whose support consists of the
points ( } ) ( f ) ( 2 ) and we use this distinguished cycle to reduce to a collection of

cases, which we then handle. The proof of this occupies the remainder of this section.
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Lemma 5.25. Suppose H is a subgroup of Sym(E®) that contains P and any of the

following arrangements.

° ° ° o——e °

I 1 ° oL—e °
Arrangement (1) Arrangement (4)

[] [] ] oi—>e °

I I ° o—>e o

° [ e oi—>e °

I I ° o——e °
Arrangement (2) Arrangement (5)

I I [ ] .@.

s (§ o < oo

J./ J./ L] [ ] ° [ ]
Arrangement (3) Arrangement (6)

Then H contains a 3-cycle.

Proof. We prove the lemma for arrangements (1), (2), (3); the proofs for arrangements
(4), (5), (6) are similar.

Suppose the arrangement (1) is implemented by the involution y;. Then,

(pR
Ya = (Vg 2'3) Vs
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acts by the arrangement

o—ei——e
ol—ei—=o
°

C
and y; yf '3 acts by the arrangement

o{——e
oi——ei—<e

o<——e

Squaring now produces a 3-cycle.
R
Suppose now the arrangement (2) is implemented by some y;. Then, y, = ysq> 88

acts by the arrangement

o——e
oi——e

o{——re
oi——e

R c 2
Setting ys = (yf 2'3) Ya, the element (7/4)/:7 1'3) consists of a single 3-cycle.

Suppose now the arrangement (3) is implemented by some y;. Then, y, =

R
(y,f 3'4) ¥3 acts by the arrangement

o——e
o<——>e
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R
and y5 = yf >* acts by the arrangement

o<—e o<—e
“—e °“—e

But this is exactly the arrangement in case (2), so the result follows for the

same reason. [ |

Lemma 5.26. Suppose H is a subgroup of Sym(E®) that contains P, and suppose H

contains an involution r; that satisfies the following:

(i) 7, is supported in rows 1, 2, 3,4 and consists of an even number of 2-cycles
d;,i=1,...,2q for some g > 1;
(ii) each 2-cycle in 7; has support containing a point in R, , and a point in Ry 4;

(iii) each 2-cyclein 7; has a companion 2-cycle, meaning that for each 2-cycle d;,

R 4R
_ d¢1,2¢3,4,
i+gmod 2q — “; ’

(iv) 7, has a pair of 2-cycles d;,d,, such that d, = (( ! ) ( : )) and dgyy =

((2)-(2))

Then, H contains a p-cycle for some prime p < |[E®| — 2.

we have d

Proof. We proceed by cases (recall that C, , is defined in (32)).

Case 1. Suppose 1; leaves C, , invariant and acts nontrivially on C; N R;, (and hence,
given the setup, also nontrivially on C, N R, ,). Then, one of the following two cases
occurs.

Case la. Suppose 1, acts by the arrangement

on C, ,. Then, 7; x qbfz acts by arrangement (2) of Lemma 5.25, and the result follows.
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Case 1b: Suppose 1, acts by the arrangement

on Cy ,. We then split this into two further subcases.

Subcase 1b.1. Suppose that 7; leaves some column j invariant. If t; acts by the identity
R
on column j, we set 7, = tip“ and 13 = 7, * ¢gj. Then, setting 7, = 73 * ¢35, 74 consists of
one 3-cycle and one 5-cycle. Thus, rf consists of a single 5-cycle.
Suppose instead 7; acts nontrivially on column j. Let 7, = 7 * qﬁgj. Then, 7, acts

by one of the following:

I j
[ ] [ ] [ ] [ ] { ] [ ] .\.;/.
L —_ o o @ e ° Q\OL/O
or .
X X ° ° X X X ° ° X
X X L] ° X X X ° ° X
1b.1 (i) 1b.1 (ii)

In the Ist case, setting 73 = 7, * ¢5 -, we have that rg consists of a single 5-cycle

. . Y
and the result follows. In the 2nd case, first let 3 = 7, * ¢§5, then define 7, = 13"3,
R

C C
and 75 = rf3'4r4. Finally, letting 15 = 15 % ¢55, 7, = rg) 2% and 1g = r;b '* then 74 acts by

arrangement (5) in Lemma 5.25 and the result follows.

Subcase 1b.2. Suppose 1, leaves no column invariant. Then, we may assume that r; maps
points in column 3 into some columns j,,j,. We may assume at least one of j,,j, is not
equal to 3, since if not, we are in subcase 1b.1. Thus, without loss of generality, we can

suppose that j; # 3.
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Suppose first that j, # 3. Then, letting 7, = ‘L'I*d)g, 31 T acts by one of the following

arrangements:

/«,ﬁ\)j 2 ] 1 J 2
® 0L—>e ° ® e oL—>e ) )

DEEEY Or ..
ok el e ° ° o —e ° °
ok oo e ° o>o<—><n °
1b.2 (i) 1b.2 (ii)

Note that while we have drawn these arrangements as if j, # j,, we could also have
J1 =J, and the proof is the same. Thus, for arrangement 1b.2 (i), we set 73 = 1, *¢f5, and
then 7, = r??g's, Ty = rrg'jz, Tg = rglc'3, T, = 14 *¢§5, and g = rjg's, 7g acts by arrangement
(6) of Lemma 5.25. For the arrangement 1b.2 (ii), set 73 = 7, * ¢f,5 and then 7, = 133,
Ty = r:f 10'3, and 74 = r: §4¢§5. Then, 74 acts by the arrangement (4) in Lemma 5.25.
Suppose instead that j, = 3. Then, r; fixes two points in column 3. Set 7, =
7) * ¢5 5 and 13 = 3. Then, setting 7, = 73 » (¢§3¢§4), we have that 7, acts by one of the

two arrangements 1b.2 (i) or 1b.2 (ii) above, and we proceed as when j, # 3.

Case 2. Suppose Cy , is invariant under 7, and 7; acts by the identity on ( ; ) ( 2 ) ( ‘;’ )

( ‘f ) Then, 7, acts by the arrangement

L) [} X

° ° X
° ° X
° ° X

Setting 7, = 7, * ¢¢,, we have reduced to Case 1b, and the result follows.
Case 3. Suppose C , is not invariant under 7;. Again, we split the analysis into cases.

Subcase 3a. Suppose 7; acts nontrivially on ( ‘ll ) and hence also on ( f ) Then, t; maps
( ‘f ) into some column j, and by assumption, we must have j # 1, 2. It follows from the

setup that r; also maps ( ? ) into column j. We split the analysis into two subcases.
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Subcase 3a.1. Suppose t; fixes both (;) and (i) so 7; acts by one of the

following arrangements:

or

In either case, setting 7, = 7, *¢{, and 7; = 7, *¢%, we have that 7; consists of a 7-cycle.
Subcase 3a2: Suppose t; maps ( ; ) into column i where i # 1, 2 (it follows from
the setup that r; also maps ( 2 ) into column i). Let 7, = 7; *¢%,. Then, 1, acts by one of

the following arrangements:

i J i J

[ ] { ] [ ] [ ] [ ] L ] [ ] .w.

o { ] [ ] [ ] [ ] { ] [ ] .\.;I/.

X X o L] X ° X X ] [ ) X °
or

X X [ [ X [ X X ° ° X °

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

For the 1st case, set 13 = 7, * ¢§5. Then, 7, = t33 consists of a single 5-cycle. The

2nd case proceeds analogous to Subcase 1b.1, as illustrated in Figure 1b.1 (ii).
Subcase 3b. Suppose t; fixes both ( 411 ) and ( f ) Then, by assumption, r; maps

Cc R 4R
( ) ) and ( 2 ) into some column j # 1, 2. Letting 7, = rfl'z and 73 = rf”%"‘, we are back

in Subcase 3a.1. u
We now prove Lemma 5.24.

Proof of Lemma 5.24. Since H is substantial, it satisfies both conditions (1) and (2)
of Definition 5.20. Thus, H contains an involution implementing either arrangement (a)
or (b) of Definition 5.20. First, we note that the subgroup H contains a p-cycle for some
prime p < |[E®| — 2 if and only if the subgroup s !Hs does. Moreover, H contains an
involution implementing arrangement (b) if and only if s~!Hs contains an involution

implementing arrangement (a). It follows that it suffices to consider the case that there
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is an involution y,; € H implementing arrangement (a), and we call this arrangement ZC:

® X X
® X X
\

X (] X
X X X

Fig. 1 Arrangement ZC

Sety, =y3* ¢fz. Then, y, acts by the arrangement

o]

° X X
X ° X
X X X

and we label the distinguished 3-cycle as c;.

We claim that any cycle in y, whose support does not intersect R, , (see (31))

R R
12— y3y3¢1'2 =y, '. If c is a cycle in y, whose

must be a 2-cycle. To see this, note that yf
support does not intersect Ry ,, then C¢§2 = ¢, and it follows that c is equal to its inverse,
and hence order two, proving the claim.

Thus, we may choose a large m; € N that is relatively prime to 3 such that

! consists of cycles c;,t=1,...,L, each cycle of length 3ki for some k; > 1, and

Vs =i
such that each of these c; has support that intersects R, ,. Note that L > 1 since y; still

contains the cycle ¢, (or its inverse). Define
I={ie{l1,...,L}: the support of ¢;is not contained in R ,}.

We adopt the following notation: if ¢ is a cycle whose support intersects E) \R; -

in exactly one point, we denote this point by w(c).
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Observe that for each i € I, ¢; has support with at most one point not in R ,

R -
(since each c; satisfies Cfl'z = cl._1 and each cycle c; is of odd length). Thus, fori e I, w(c;)

is well defined. We also note that

> (legl = 1) < 2m, (33)

iel

where |c;| denotes the length of a cycle c;. In particular, in the case that all the c;s are
3-cycles, we have |I| < n. We also have 1 < |I| since 1 € I (the cycle ¢; has support not
contained in R, ,).

We now analyze the cases that arise.

Case 1. Suppose k; = 1 for all i € {1,...,L} (recall this means each cycle c; has length
3k). Thus, vs consists of a collection of 3-cycles, and since we have the cycle c; in the

arrangement, it follows that 1 < IT| < n. We split into two subcases.

Subcase 1a. Suppose there exists j > 3 such that yg fixes ( ) Set yg = (y:R ) vs. Then,
ve consists of cycles determined by the following.
(i) Leti eI be an index such that, writing w(c;) = ( ;z ), either of the following
occur:
(a) x;=3and ( Ifi ) = w(c) for some l € I;
(b) x; =jand ( . ) = w(c) for some l € I.
Then, y; contains a pair of 3-cycles supported in the union of the
supports of ¢; and c;.
(i) Leti eI be an index such that, writing w(c;) = ( ’;; ) either of the following
occur:
(a) x; =3 and y; fixes ( ;L )
(b) x; =jand yg fixes ( ;l )
a pai
3

Then, yg contains r of 2-cycles whose support is contained in the

xai

. = . by
Note that the index 1 € I falls into the 2nd case. Set y; = yg’ and set yg = y, i

set (¢;NRy ) U {(YL

R
Then, either yg or yg)l'z satisfies the hypotheses of Lemma 5.26, completing this case.

Subcase 1b. Suppose there is no j > 3 such that y; fixes ( é ) This means that for all
j = 3, there exists some i(j) € I such that the cycle ¢y intersects column two, meaning

that w(cyj) lies in column two. Since |I| < n, there exist at most two other cycles, call
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them ¢, ,¢,,, such that w(c,,) lies in some column L, and w(c,,) lies in some column L,,

with L; # 2 and L, # 2. The analysis of this splits into three subcases.

Subcase 1b.1. Suppose the support of ¢, is not contained entirely in column L,, so the

support of ¢, also intersects some column L; # L,. By assumption, o(c,, ) lies in column

L,, so we may write w(c,,) = ( I ) Furthermore, it also follows from our assumptions

: . . ; : 7
that there must exist some j > 3 such that y; fixes (LJ1 ) Setting yg = y5L3'1, Y, =
b a2 .
Ye , it follows that y; acts by the arrangement

° X X
I X X
X [ X
X X X

so y; again consists of 3-cycles all of whose supports intersect R, ,. Moreover, y; has a
distinguished 3-cycle which matches c; (or its inverse) and also acts by the identity on

some ( é ) for some j > 3, so we can apply Subcase 1a.

Subcase 1b.2: If the support of c,, is not entirely contained in column L,, the argument

proceeds exactly as in Subcase 1b.1.

Subcase 1b.3: The remaining case is that the support of ¢, is entirely contained in L,
and the support of ¢, is entirely contained in L, (note that if neither ¢, nor ¢, exist,
their supports are viewed as empty, and so this scenario is covered by this subcase).
There exists some cycle c,, such that w(c,,) = (‘]21 ) and the support of c,, intersects
some column J, # 2. Set y5 = y5 * ¢’§,J1' Then, after conjugating by ¢>f’2 if necessary, y;

acts by one of the following:

JZ Ll L2 J2 Ll LZ

ok o e X X ° ° ° ° X X

° ° ° X X o\‘. ] X X
or .

° ° ° X X ° ° ° ° X X

J1 ° Co ° X X J1 ° I ° ° X X
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In either case, there exists some column J; on which y; acts by the identity, and setting

Y7 = Yo * b5 1, v7 acts by

J3
[ ] [ ] [ ]

o—e
o{——re

We may then conjugate y, to move this pair of 2-cycles into case (1) of Lemma 5.25.

Case 2. Suppose there exists a cycle ¢; with k; > 2 (recall this means the cycle c; has
length 3% and note that this i may not be in I). Let k¥’ = max; k;, let I,  {1,...,L} be the
set of indices for which k; = k/, and set y5 = yg’k/_l. Then, y; is order 3 and contains
3k -1 II;| 3-cycles d;, each of whose support intersect R, ,. We proceed by analyzing two

subcases.

Subcase 2a. Suppose every d; has support entirely contained in R; ,. Note that we still
have yg)?'z = yg_l. As a result, any cycle d; = (2;,2,,23) in y; has a companion cycle
d; = (z3+1mod 2,z,+1mod 2, z; +1mod 2) in y;. Moreover, for each cycle d; = (z;, z,, z3)
in yg, we must have z;, z,, and z; lying in distinct columns. We further note y5 acts by
the identity on ( i ) ( f ) Among all the cycles d;, there are two companion cycles, call
them dj and d]-,, whose supports intersect a column, say column J, which is furthest to
the left. Thus, we have that J < J’ for any other column J’ hit by cycles in the list d;.
Consider y; = V:IC'J)/G. Then, y, consists of four 2-cycles, two of which intersect column
one; call these e;, e,. Due to the structure of the companion cycles d;, d;, it follows that
e; and e, also intersect some distinct columns J; < J,. Choose a column J; # 1,J;,J,,
and set yg = y5 ﬂﬁfjs. Then, yg consists of two 3-cycles, e’l,e’z, whose support columns

consist of 1,J,,J5 and 1,J,,J;, respectively. Since n is large (n > 7), we may find yet
C

¢ .
another column J, # 1,Jy,J,,J3, and let yg = y, 174 vs. Then, y4 consists of two 2-cycles,

whose supports intersect four distinct columns. Choosing again a new column Jg, we

c
¢J4 J5

have yy ™" y9 consists of only one 3-cycle, and we are done.

Subcase 2b. Suppose there exists a cycle d; whose support is not contained in R, ,. Then,

I, NI # ¢ and we can consider the nonempty set of indices

J = {j: the support of dj is not contained in R ,}.
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Recall y; = y53k/_1 and that 2 < k' = max; k;. Since each cycle in y; has at most one point
not in R, ,, each cycle of length 3% in vs contributes one cycle of length 3 in y; whose
support is not contained in R, ,. Thus, it follows that |J| = [I; N I|, and that, since the
support of the cycles of length 3% in Y5 have at least eight points in R, ,, we must have

|7| < (34)

NE!

Thus, the collection {a)(dj) :j € J} has at most % points, and we may choose some k € J

such that, upon writing w(d;) = ( ’;: ) there exists some 3 < £ < n such that y; fixes the

. ¢ .
point ( Vi ) Consider

¢§k'£
Y7=Ye Ve

Then, y, contains cycles determined by the following:

(i) a pair of 3-cycles corresponding to each (un-ordered) pair of indices j,,j, € J
such that a)(djl) € RXk,w(djz) € R,, and “’(djl)'w(djz) lie in the same column,;
(ii) a pair of 2-cycles corresponding to each index j € J such that either ( ’;;‘ ) =

w(d)) € Ry, and yg fixes ( ;] ), or ( )f] ) = wg, € R, and y; fixes (2‘ )
The 2-cycles that arise in case (ii) have support intersecting rows 1, 2, x;, £. Moreover,
since k € J satisfies case (ii), we have at least one pair of 2-cycles; suppose this pair
has support contained in columns yy, y; (note we could have y, = y;). Setting yg = y73,

we have that yg consists of only pairs of 2-cycles corresponding to each j € J satisfying

R R
¢Xk,3¢5,4

case (ii). Setting yg = y4 , Y9 is an involution satisfying the 1st three conditions of

Lemma 5.26.

Now, by (34), there exists a column F; such that y4 acts by the identity on the

c

Vi F1

-1
column F,. Suppose y; = y;. Then, (yg ) Y9 consists of two pairs of 2-cycles,

supported in rows 1,2,3,4,; upon conjugating and moving these cycles if necessary,

¢7y b5
we can apply Lemma 5.25. If y; # y;, then setting v, = v £ z'y", and if necessary,
R
replacing y;q with y;; = y1¢’01,2, Y10 is an involution satisfying all four conditions of
Lemma 5.26, and the result follows. [ |

We have now assembled all the ingredients to complete the proof of the technical

lemma:
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Proof of Lemma 5.15. Our goal is to show that at least one of
(i) H, = Sym(E®@) and H, = Sym(E®) and
(ii) H; = Alt(E?) and H, = AIt(E@)

holds. Since both N, and N, are trivial by assumption, and H; and H, are isomorphic
by assumption, it suffices to show that at least one of H, or H, is either Sym(E®) or
Alt(E®). By Jordan’s theorem, it then suffices to show that at least one of H;, H, is
primitive and also contains a p-cycle for some prime p < |E®?| — 2. By Lemma 5.21, at
least one of H, or H, is substantial. Since both H; and H, contain P, combining Lemmas
5.23 and 5.24 gives that at least one of H; or H, satisfies the hypotheses of Jordan's
theorem and hence is either Sym(E®) or Alt(E®), as desired. [ |
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