ISRAEL JOURNAL OF MATHEMATICS 251 (2022), 271-300
DOI: 10.1007/s11856-022-2426-2

THE COMPLEXITY THRESHOLD
FOR THE EMERGENCE OF KAKUTANI INEQUIVALENCE*

BY
VAN CYR
Department of Mathematics, Bucknell University, Lewisburg, PA 17837, USA
e-mail: van.cyr@bucknell. edu
AND
AIMEE JOHNSON
Departmet of Mathematics and Statistics, Swarthmore College
Swarthmore, PA 19081, USA
e-mail: aimee@swarthmore.edu
AND
Bryna KRA
Department of Mathematics, Northwestern University, Evanston, IL 60208, USA
e-mail: kra@math.northwestern.edu
AND
AYSE SAHIN

Departmet of Mathematics and Statistics, Wright State University
Dayton, OH 454385, USA
e-mail: ayse.sahin@Quright.edu

We dedicate this paper to Benjy Weiss on the occasion of his 80 birthday

* The authors thank the Casa Matemética Oaxaca (CMO) for hosting the “Sym-
bolic Dynamical Systems” workshop during which this work was started. The
third author was partially supported by NSF grant DMS-1800544.

Received July 19, 2020 and in revised form January 13, 2021

271



272 V. CYR, A, JOHNSON, B. KRA AND A. SAHIN Isr. J. Math.

ABSTRACT

We show that linear complexity is the threshold for the emergence of
Kakutani inequivalence for measurable systems supported on a minimal
subshift. In particular, we show that there are minimal subshifts of arbi-
trarily low superlinear complexity that admit both loosely Bernoulli and
non-loosely Bernoulli ergodic measures and that no minimal subshift with

linear complexity can admit inequivalent measures.

1. Complexity and Kakutani equivalence

1.1. BLOCK COMPLEXITY AND CONSTRAINTS ON THE SYSTEM. The growth
rate of the complexity function of a symbolic dynamical system gives rise to
combinatorial invariants that allow for a finer classification of zero-entropy sys-
tems and can be an obstruction for realizing certain dynamic properties. For
example, the Morse-Hedlund Theorem [16] says that if the number of n blocks
in the language of a subshift grows more slowly than n 4 1, then the subshift is
periodic, putting a lower bound on the growth rate for the emergence of interest-
ing behavior. Boshernitzan showed [1] that the complexity bound on a minimal
subshift with linear complexity constrains the number of ergodic measures sup-
ported by the subshift and provided precise bounds related to the linear growth
rate of the complexity function (two of the authors [2] lifted the assumption
of minimality when counting nonatomic measures). Ferenczi [7] showed that
any two ergodic measure preserving systems supported on a minimal subshift
with linear complexity are even Kakutani equivalent and more specifically are
loosely Bernoulli (see Section 2 for definitions).

For each such result, it is natural to explore the complexity threshold where
the constraint is no longer present. It was shown in [2] that linear complex-
ity is the threshold for Bozhernitzan’s result. In particular, given arbitrarily
low superlinear complexity there exists a minimal subshift with at most that
complexity that supports uncountably many invariant ergodic measures. Here
we show that linear complexity growth is also the threshold for Ferenczi’s re-
sult: we show that there are minimal subshifts with arbitrarily slow superlinear
complexity growth which support Kakutani inequivalent measures.

1.2. EVEN KAKUTANI EQUIVALENCE AND LOOSELY BERNOULLI. Recall that
an orbit equivalence between two measurable systems (X, T, u) and (Y, S,v)
is a bi-measurable, measure preserving map ¢: X — Y that maps orbits to
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orbits. Ornstein’s seminal result [17] states that two Bernoulli systems are
measure theoretically isomorphic if and only if they have equal entropy. On
the opposite end of the spectrum, Dye’s theorem [4, 5] states that any two
measurable systems are measurably orbit equivalent if and only if they are
ergodic. These are the two extremes of orbit equivalence, with the first an
isomorphism preserving order on orbits and the second permuting points in an
orbit without any restriction beyond measurability. Even Kakutani equivalence
lies in between: an orbit equivalence between two ergodic systems (X, T, 1) and
(Y, S,v) is an even Kakutani equivalence if there exist sets of equal positive
measure A C X and B C Y such that the measure preserving map ¢: X — Y
is order preserving on A. Namely, if and only if the induced transformations T4
and Sp are measurably isomorphic.

Feldman, in [6], was the first to use the term Kakutani equivalence to describe
this equivalence relation given by inducing. In that paper he introduced the
property of loosely Bernoulli, which he showed to be an invariant for Kakutani
equivalence. He also constructed the first example of a zero-entropy non-loosely
Bernoulli system, which he used to build the first example of a K and not
Bernoulli automorphism which is not Kakutani equivalent to any Bernoulli. He
defined the loosely Bernoulli property by introducing a new metric to use in the
definition of very weak Bernoulli, a key ingredient in Ornstein theory. This new
metric, called f, weakens the d metric to capture the effect of an even Kakutani
equivalence on orbits.

Feldman’s work was extended by Ornstein, Rudolph and Weiss [18] who de-
veloped the general equivalence theory for this metric. They showed that the
loosely Bernoulli transformations play the role for even Kakutani equivalence
that the Bernoulli transformations play in the isomorphism theory. In par-
ticular, two loosely Bernoulli transformations are even Kakutani equivalent if
and only if they have equal entropy. This result, and the work in [18], is the
motivating example for the more general theory of restricted orbit equivalence
developed by Rudolph in [19]. He showed that if an orbit equivalence satis-
fies certain regularity conditions then there is always a distinguished family
of transformations playing the role of Bernoulli transformations for the asso-
ciated equivalence relation. Finally, we note that Katok and Sataev [15] and
Katok [13, 14] independently defined the f metric and proved the equivalence
theorem in the zero-entropy category, using the term standard to describe the
loosely Bernoulli family of transformations.
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The loosely Bernoulli class of systems contains all Bernoulli transformations
but is strictly larger, even in the positive-entropy category. Here we focus our
attention on the zero-entropy transformations. The simplest characterization
of zero-entropy loosely Bernoulli systems is that they are the family of transfor-
mations that induce rotations. For this reason, they are sometimes referred to
as loosely Kroenecker systems. Examples of zero-entropy loosely Bernoulli sys-
tems include rotations and, more generally, all finite rank systems [18]. Many
more examples exist, and the study of the loosely Bernoulli property and the
role of the f metric continues to be an active area of research; see for exam-
ple [9, 10, 12, 11].

1.3. COMPLEXITY AND LOOSELY BERNOULLI. Turning to complexity and sym-
bolic systems, for a subshift (X, o), let P(n) denote the block complexity of X,
meaning the number of words of length n that occur in any x € X (see Section 2
for precise definitions). Ferenczi [7, Proposition 4] showed that if a minimal sub-
shift has low complexity, namely Px(n) = O(n), then it has finite rank. More
generally, essentially using Ferenczi’s proof, we check (see Appendix A) that the
same result holds under the milder assumption that lim inf,, PXT(") < 00. As
finite rank transformations are loosely Bernoulli, we can rephrase Ferenczi’s
result in the language of Kakutani equivalence: if a minimal subshift has lin-
ear complexity, then all invariant ergodic measures on the subshift give rise to
measurable systems that are even Kakutani equivalent.

We show that linear complexity is the threshold for which this result holds. In
particular, our main result shows that there are minimal subshifts of arbitrary
low superlinear complexity that admit both loosely Bernoulli and non-loosely
Bernoulli ergodic measures:

THEOREM 1.1: Let (pn)nen be a non-decreasing sequence of integers satistying

I
(1) liminf 2% = co and limsup 08 Pn
n—oco N N0 n

=0.

Then there exists a zero-entropy minimal subshift (X, o) satisfying

lim inf Px(n)

n—o0 p’ﬂ

=0

which supports two ergodic measures, pu and v, such that (X, o, p) is loosely
Bernoulli while (X, o,v) is not loosely Bernoulli.
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Our construction builds on Feldman’s classical example from [6], but requires
significant modification in order to both find a loosely Bernoulli system sup-
ported on the subshift and to control its block complexity.

By Ferenczi’s result (see the version in the Appendix), it follows immediately
that the complexity of the subshift (X,o) that we construct is constrained.
Namely, any subshift satisfying the conclusions of Theorem 1.1 satisfies the
superlinear growth condition

lim inf Px(n) =00
n—oo n

1.4. GUIDE TO THE PAPER. In Section 2, we give a short summary of the def-
initions and background results and in Section 3 we build the system (X, o)
used to prove Theorem 1.1. Sections 4 and 5 are devoted to proving the exis-
tence of the measures p and v such that the systems (X, o, u) and (X, 0,v) are
Kakutani inequivalent. All the results are sewn together in Section 6 to prove
Theorem 1.1. In the Appendix, we review Ferenczi’s result showing that linear
complexity implies finite rank.

2. Background

2.1. SYMBOLIC SYSTEMS. Let A be a finite alphabet, and denote = € A%
as * = (T )nez. We endow A% with the topology induced by the metric

d(z,y) =1/2"
where
k = inf{|i|: x; # y:}.
The left shift o: AZ — AZ is defined by
(02)n = Tnt1

for all n € Z. If X C AZ is closed and o-invariant, then (X, o) is a subshift.
The set A™ consists of all words of length n and we denote w € A™ by
WoW1 +** Wp—1 = Wo,,—1)- Define the cylinder set determined by w to be the

set

[w)={z€X:a;=w;forj=0,...,n—1}.
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Definition 2.1: Given w € A", we define [[w]] to be the union of cylinder sets
associated with all words of length n that appear in the 2n-length block ww.

If FF'= {ui,ug,...,up} is a collection of words u; (possibly of varying
lengths), we similarly define

|7 |F|
)= U and (71 = Ul
i=1 i=1
Associated to the subshift (X, o) is the set of all shift-invariant probability
measures, M(X, o), defined on the Borel o-algebra generated by the cylinder
sets. We denote the subset of ergodic measures by M. (X, o). Standard results
from topological dynamics tell us that both of these sets are nonempty.

2.2. CoMPLEXITY. If (X,0) is a subshift and n € N, the words £, (X) of
length n are defined to be the collection of all w € A™ such that [w] # 0. We
denote the length of a word w by |w|. The language L£(X) of the subshift X
is the union of all its words:

LX) = J £.(x).

If w e £(X) is a word, we say that v € £(X) is a subword of w if w = wjuws
for some (possibly empty) words wy,ws € L(X).

For a subshift (X, o), the word complexity Px: N — N is defined to be
the number of words of length n in the language:

Thus Px (1) is the size of the alphabet, meaning that Px (1) = |A|.
We say that (X, o) has linear complexity if

lin_1>inf Px(n)/n < oco.

One can also consider the stronger condition, limsup,,_,., Px(n)/n < co. This
is a distinct condition from the above, as there exist systems satisfying the first
condition but not satisfying the second (see [3], Example 4.1). In this paper we
restrict our attention to the liminf condition.
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2.3. LOOSELY BERNOULLI. Let z,y € L(A) be finite words, written
T =T1%o Ty and ¥y = y1ys - Yn. We define a match between z and y
to be an order preserving bijection 7: Z7 — I where Z7 C {1,...,m} and
I; C {1,...,n} with the property that z; = y.;). We then say that the
indices ¢ and j = (i) are matched. The size of the match is defined to be

|7 = 1271+ 125,

and the best fit between the two words x and vy is

—c max{|n|: 7 is a match between x and y}

fzy) =

m-+mn

We can then define the f-distance between z and y to be

— max{|n|: 7 is a match between z and y}

T(Ian):l*f ("an):l*

m-+n
This distance measures the proportion of letters such that, once they are deleted,
the remaining words are identical. See for example [6] or [18] for more details
and properties of this metric.

Let B be the Borel o-algebra generated by the cylinder sets and u € M(X, o).
Then (X, B, i) is a Lebesgue probability space: together with o it is a measur-
able dynamical system. We abbreviate this as (X, o, u).

Now assume that p € M (X, o) is such that (X, o, 1) is zero-entropy. In this
case, we can define loosely Bernoulli as follows:

Definition 2.2: The zero-entropy ergodic subshift (X, o, i) is loosely Bernoulli
if for all ¢ > 0, there exists N > 0 such that for all n > N, there ex-
ists W C L, (X) with

o u(W)>1-¢;and
e for any pair w,w’ € W, f(w,w’) < e.

3. The construction

3.1. FELDMAN WORDS. The core symbolic structure of the subshift we build is
closely related to the first example of a zero-entropy non-loosely Bernoulli sys-
tem that was given by Feldman [6]. We begin by describing a slight modification
of his example, where changes are introduced to accommodate the additional
requirements our subshift must satisfy.
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Let {ny} be an increasing sequence of integers with ng > 2. We inductively
define sets of words of increasing sizes. Define the Oth stage alphabet

AO = {GO,l, a072, e ,aomo}.
For stage one of the construction we define words
.Al = {alﬁl, G,LQ, e ,alym}
each of length ny"* 3 by setting
p204m1) 2itn) R0 2 i)

ai; = (a0,1 ap% agS,, for 1 <i<n;.

For k > 1, given a set of ny distinct words

Ap ={ag1, 06,2, ..., 0kn,}
each of length |ak_1,1|ni7j’“1+3, we define a set of ngi1 new words
AkJrl = {a‘kJrLla Ak+1,2y- - ak+11nk+1}
4 3 .
each of length |(1;€71|nk"’““—Ir by setting
2('L+nk+1) 2(i+nk+1) 2(i+nk+1) 2("k —it1)
n, n, n, +1 .
Aky1, = (ak,’“1 ak:‘Q . ~-ak7’”nk T for all 1 <i < mgyq.

In what follows we refer to the words a,,  as Feldman words. Throughout our
construction we introduce conditions on the growth rate of the sequence {n;}
that guarantee that it grows rapidly enough for our subshift to have the neces-
sary properties.

3.2. EXTENDED FELDMAN WORDS. The sets of words used in our construction
are extensions of the words described above. We begin with a base-case alphabet
of size ng + 1 to be Ay with an additional symbol cy:

Bo := {a0,1,00,2; - - - 0,05 C0}-

We then define n; words of length L; =1+ né””‘g by setting

2itny) | 2(itn) 2(i+n1) 2(nq—i+1)
/.M ng L) (no)2(m1 .
b= ((1071 ap%h o, co forl<i<ng.

In addition, we define a new word, also of length L;, but with a different
combinatorial structure:

1

Li—n
C1 = ¢y “a071a072 ©r40,ng -

Finally, we denote the collection of these stage one words by

By = {b1,1,b1,2,. .., b1,ns,C1}.
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Note that every letter in By appears at least once in every word in By, similar
to how every letter in A appears at least once in every Feldman word in A;.
We now proceed inductively. Fix k£ > 1 and suppose we are given the set

B = {br,1,bk,2, - bkyny, Ck
dnyt3
)

comprised of ny + 1 many words, all of length Ly = (1 + ny_’ Lg_1, written
in the stage-(k — 1) words of By_1, meaning each word in By, is a concatenation

of words from Bj_;. We then define ny; words, all of which have length

Angy1+3
(2) L1 = (1+mn, )Ly,
by setting
2(itnppy)  20i+nggq) 2(itng4q) 2(np 41 —i+1)
n n
(3) brt1,i = (bk,kl bk,k2 bkknk " Ck-

We define a new word, also of length Lj41 but with a combinatorial structure
similar to the words cj constructed at previous levels, by setting

(LkJrl/Lk)*nkbk 1bk g-

(4) Cht1 1= Cy Dy -

Finally, we define the collection of (k + 1)-words to be

Bii1 = {brt1,1, 06412, -+ Dkt 1m0 Cht 1 }-
Note that every element of By appears at least once in each element of By
(and similarly with Ay and Agy1). It also follows that
Ly 1

5 lim Ly = d .
() kLH;o k oo an Lk+1 ng

In what follows we often distinguish between words of the type by ; and the
word ci. As the words by ; are similar in form to the Feldman words, we refer
to them as extended Feldman words, and we denote the set of extended
Feldman words at stage k by

BF ={weBy:w# e} =Bi\{ck}.

3.3. CONSTRUCTING THE SUBSHIFT. We use the extended Feldman words to
construct the subshift X. We emphasize that for the construction and the
properties we prove about the system, all of the results only rely on choosing
the sequence {ny} with sufficiently rapid growth. As they become necessary,
we introduce new growth conditions on this sequence, clarifying when each new
condition is needed. For the preliminary properties and construction of the
space X, we only require that the sequence satisfies ng > 2 and nj — oo.
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Given such a sequence, by the inductive procedure described above we obtain,
for each k > 1, a set By comprised of words of equal length, each of which is a
concatenation of words from B_1, and every word in By appears at least once
in every word in Bj. Moreover note that, by construction, by 1 is the leftmost
subword of length Ly in the word byy1,1 for all £ > 0. Therefore we can define
a one-sided infinite word b..,1 as the unique word whose leftmost subword of
length Ly, is by,; for all & > 1. We note that we use the less standard term of
leftmost (or rightmost) word, rather than prefix (or suffix), to emphasize that
the core part of the word is not the focus and to highlight the visual placement
of these subwords as part of the intuition behind the construction.

We choose a new symbol, denoted %, that was not included in By and we define
a {b11,b12,...,b1n,,cC1,*}-coloring of Z by coloring N with the word b, 1 and
coloring the set {...,—2,—1,0} with «; call this Z-coloring . Finally let X be
the space

(6) {x€{bi1,b19,...,b1m,,c1,%}7: Vi > 0,35 > i such that d(z,07a) <27},

where ¢ and d are the left-shift and the metric as defined in Section 2.1. Note
that % does not appear in any Z-coloring that can be obtained by taking larger
and larger left-shifts of a, and so the elements of X are actually written in the
letters By. Thus we make no abuse of notation by referring to X as a subshift
of BZ.

PROPOSITION 3.1: The system (X, o), where X is the space defined in (6) and
0: X — X is the left-shift, is minimal.

Proof. Let uw € £(X). Then by the construction of X, u occurs as a subword
of bo,1 and therefore there exists some n such that u occurs as a subword of by, ;.
Note that every word in B, contains b, 1 as a subword (in fact every word
in By, 41 contains every word in B,, as a subword). We also have that for all k > 1,
bp+k,1 € Bnyr can be written as a concatenation of words in B,,11. Thus any
subword of length at least 2L,,41 in b,k 1 has u as a subword. Therefore any
subword of length at least 2L, in b 1 has u as a subword. We conclude that
if v € L(X) is a word satisfying
[v] > 2Ly41,
then u occurs as a subword of v. This means that u occurs syndetically in

every element of the subshift X and the maximum gap between consecutive
occurrences of u is at most 2L,,41.
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Since u was arbitrary, we conclude that every word in £(X) occurs syndeti-
cally in every element of X and, for any fixed word in £(X), the maximum gap
between consecutive occurrences is uniform throughout X (but may depend on
the word itself). Therefore X is minimal. n

4. Non-loosely Bernoulli

4.1. OVERVIEW OF THE EXISTENCE OF A NON-LOOSELY BERNOULLI MEASURE.
The goal of this section is to show that if the sequence {ny} used in constructing
the space X grows sufficiently rapidly, then there is a non-loosely Bernoulli
measurable system supported on X. For ease of exposition, in what follows, we
assume that the sequence grows sufficiently rapidly and we defer defining the
explicit growth condition to later in the section where we provide proofs of the
key results.

THEOREM 4.1: If the sequence {ny} used in constructing the space X grows
sufficiently rapidly, then there exists an ergodic measure v € M.(X) such that
the system (X, o,v) is not loosely Bernoulli.

The proof follows from several propositions, which we now state, deferring
their more technical proofs until after the proof of the theorem. The first
proposition shows that extensions of different Feldman words from the same
stage of the construction do not match well in the f metric:

PROPOSITION 4.2: If the sequence {ny} grows sufficiently rapidly, then for all
integers r, s,k > 0, if i # j then

(7) Fki 0k ;) >

The next two results establish necessary properties of ergodic measures of

co| Ut

extended Feldman words.

PROPOSITION 4.3: If the sequence {ny} grows sufficiently rapidly, then there
exists a measure v € M.(X) such that

lim o(([BF]) = 1.
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PROPOSITION 4.4: Given any £ € M.(X) and € > 0, there exists K € N such
that for all k > K and by, br j € Bi, we have

1§ ([1brm]]) — &([[br 5]DI <&

With these results in hand, the proof of the theorem follows quickly:

Proof of Theorem 4.1. We prove the result by contradiction. Assume that the
sequence {ny} grows sufficiently rapidly such that Propositions 4.2, 4.3 and 4.4
hold, and assume the constructed system (X,o,v) is loosely Bernoulli.
Fix e > 0.

Using Propositions 4.3 and 4.4 and the fact that |Bj| — co, we can choose K
such that for all kK > K we have ﬁ <e v([Bf]]) >1—¢, and

v ([[br.m]]) — v([[bk 51| <& for all m, j.
Then for any set of words W C Ly, (X) with v([W]) > 1 — ¢, we have
(8) v(WIN[[B{]]) > 1 2.

Since there are more than 1/e sets of the form [[bg ;]], each with similar measure,
there must be distinct words u,v € W that are elements of [[bg m]] and [[bk,;]],
respectively, for some m # j. Since |u| = |v| = L, the words u and v must
cover exactly half of b%,m and b%yj, respectively. Suppose f(u,v) < ¢ and
thus f (u,v) > 1 —e. Extending the match that realizes this value to all
of b%m

that

and b%j gives that ?C(b%m, b%j) > 2(1 — ). Equivalently, this means

— 1
FO s 82,) < 5(1+2),

But for sufficiently small €, this is a contradiction of Proposition 4.2. |

The remainder of this section is devoted to the proofs of the three proposi-

tions.

4.2. PROOF OF PROPOSITION 4.2: BAD f MATCH OF EXTENSIONS OF FELDMAN
WORDS. We begin by proving that the Feldman words themselves do not match
well in f, and then use the fact that their extensions add only a small proportion
of symbols to obtain our result.

The first lemma is essentially Feldman’s original argument in [6]. We include
it here for the sake of completeness.
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LEMMA 4.5: If{ny} increases sufficiently rapidly, then for all integersr, s,k > 0,
if i # j, then

OOl\]

(9) T(G‘z,z? k]) 2

Proof. Let {ng} be an increasing sequence with the property that

d N =2 1
10 — < =
(10) H ng — 2 - ; ng — 32
We construct a sequence {I'y} by setting I'g = 0 and for k& > 1, set

(11) rk§<lﬁ%"12)2%.

=0 Jj=t

We prove the lemma by showing that for all £ > 0 and 4 # j, the match
(12) Flag ;a5 ;) < T

Clearly (12) holds for & = 0 and so assume that (12) holds for some k& > 0. Our
goal is to show that

—cC
(13) f (G};Jrl,iaaerl,j) < Dhta,
and then the statement follows since I'y, < % for all £ > 0.
2(i+ngyq)
Assume that j = i+m, with m > 1. Let a, = aZ’“h denote the building

blocks of the word aj41,;. With this notation, we can rewrite

2(ng 41 —i+1)
r . n T
Q1,6 — (1, )"
2m 2m  2(npyq—j+1)
S _ k ny n, .S

Apy1,5 = (041 T Oy

Consider an arbitrary match 7 between these two words and take the re-
2m

striction of this match to each subword ap* of aj,, ;- Using the restric-
tion, we can partition a_, ; into disjoint subwords that contain indices all of

2m
which are matched to a unique ozZ’“ . Each such subword must have the form
B(ay - an, )y, where B and 7 are substrings from the beginning and end,
respectively, of (aq - - - ap, ). Thus to prove (13) it suffices to show that for all h

(14) F (" Blas - any)') < Tisr.
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Instead, we consider the quantity
(15) Frlaph (- an,)™?)

where we have added at most 2|ayp|ng symbols to S(aq -+ - a, )y and the worst
fit would be if none of these additional symbols improved the match between
the original pair of strings. Therefore, letting

2m
lo=lap" |+ 8o o)™

denote the lengths of the original two strings being matched, we have

—c nim o t+2 > |7T|
f (ah ,(041 ank) ) = 6(9 + 2|ah|nk
—c, p2m t 2|ah|nk
Zf (ahk aﬁ(al"'ank) 7)(1_ |ah|n%m)
—c nim t 2
> T Blar e ) (1= =)
ng

Thus to prove (13), it suffices to show that

nk —c nim

f(ay

(16) (o -0, )'?) < T

Nk — 2

For ease of notation, define w = oazim and W’ = (aq - ap, )2 Consider the
partition of w into disjoint subwords w,, ,, corresponding to contiguous subblocks
that contain (but do not necessarily consist of) indices matched by 7 to a symbol
in the v-th occurrence of oy, in w’. Formally we define w,, , to be the subblock
of w corresponding to the indices in the interval wy;, -], where

i» = min{i: 7(i) lies in the v-th occurrence of a, in w’}
and
i*=min{i > i,: 9 € I, but 7(i) does not lie in the v-th occurrence of o, } —1,

recalling that the notation Z7 was introduced at the beginning of Section 2.3.
Since 7 is order preserving, these blocks are disjoint and contiguous. In order to
guarantee that w, , be a partition of w, we add any initial (respectively, final) in-
dices in w that are not matched to anything in w’ to w1 (respectively, wy, i+2)-
Note that it is possible for some w, , to be empty.
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Adopting this notation, we have

Fw,w)
_ 2(# of total indices in w’ that are matched by 7)
B jwl + ']

2 &

= of indices in w’ matched by 7 lying in an occurrence of ay,).
R uz::l(# y m lying u)

Note that if u = h, then there is the possibility that = provided a perfect
match for every possible occurrence of oy, in w’. Recall that

(17) lw| = |ap|ni™  and  |w'| = || (t + 2)ng

So
2 L, .
W(# of indices in w’ matched by 7 lying in an occurrence of ay,)

2]ap|(t +2) 2
- |ah|nim +lan|(t+2)nk — ng

We now turn to the matches between o, and w, , where u # h, namely the

other summands:

2 Nk t+2
— Z Z(# of indices matched in w’
|W| + |w | u=1,u#h v=1
(18) lying in the v-th occurrence of «,)
ng t+2
= T |w,| S0 F W aw) (o] + wuw])-
u=1,u#h v=1

Recall that ., = a}, , and wy, , = baz/hc for some p, p’ € N and where c and d are
the end and beginning substrings of ay, p, respectively. As before we complete
each wy , to af 2_2’ adding at most 2|ay 5| symbols, obtaining a match between
strings where our inductive hypothesis holds. Therefore, for each u,v we have
—c - 2
(19) Lpy>f (ai ZQa ) > fc(wu,vv au)(l - n_k)
Then we have that the quantity in (18) is less than or equal to

ng t+2

|w|+|w’| 2 Z(

=1, u#h v=1

5 )Tkl + [waol):
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Recall that |, | = |ap]| for all u and so we have that this last quantity is equal
to
1 n nE t+2
k
r t+2 E g .
|w|+|w’|(nk—2) k{nk( +2)|on| + . |Wu,v|}
u=1,u#h v=1

By (17) and the fact that the w, , form a partition of w, this is

(e o) = (25 )T

<
|w] + [w!| \ng — 2 2

Putting all this together with (11), we see that (16) is satisfied:

Tk T (- )T <( - )QF ( - )3<F "
nk72f (0" (@1 an,)™7) < m—2) Dot =5 )y ST

The following property of the f metric (see for example [10, Property 2.4]) is
used in the proof of Proposition 4.2:

LEMMA 4.6: Suppose by and by are strings of symbols of length n and m,
respectively, from an alphabet A. If a1 and ae are strings of symbols obtained
by deleting at most | p(n+m) | terms from by and by altogether, where0 < p < 1,
then

(20) 7(1)1, bg) Z 7((11, ag) — 2[)

Proof of Proposition 4.2. Suppose the sequence {n} grows sufficiently rapidly
such that both (10) is satisfied and

21 ] n?"ﬂ'“*?’ ’

( ) jl;[o W > g
We then have
o
b, e nj”"“H +1 8

and thus any two Feldman words ax ; and ag; are obtained from the extended

words by ; and by ; by eliminating at most %(Lk + L) symbols. Therefore we
can apply Lemma 4.6 with p = § and obtain that f (b}, ,, by.;) > faj, ;, ag ;)= 5

Using the result of Lemma 4.5, we can conclude that T(bz’i, b;j) > %. |
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4.3. PROOFS OF PROPOSITIONS 4.3 AND 4.4: PROPERTIES OF ERGODIC MEA-
SURES ON (X,0). We start with the proof of Proposition 4.3, which depends
on the following lemma:

LEMMA 4.7: Let (X, 0, ) be a measure preserving system and let {b,,}°_, be a
sequence of measurable sets satistying p(by,) > 1— = for allm > 1. Then there
exists an ergodic measure v, supported on X, Wh1ch satisfies v(by,) > 1 — 2—m
for all m > 1.

Proof. If 14 is ergodic, then we are done by setting v = u. Otherwise recall that u
has an ergodic decomposition, meaning there is a measurable map, = — pg,
from X to the space of probability measures on X satisfying with the property
that p, is ergodic for p-almost everywhere x € X, and for any measurable
set M we have

p) = [ s (M),
For each m > 1, define the measurable set
1
A, = {xGX:uT,(b )>1—2—m}
Then for any fixed m, we have

1-— 4% < p(bm) = /XM;,;(bm)du(x) :/a o (b )du(z) + /X\am p (b ) dps ()

< ) + (1= 5 ) (1 = plan).

Therefore f1(am) > 1 — 5= or, equivalently, j(X \ ;) < 5. This means that

,u< ﬂ am)l (U X\am)EIZu(X\am)
m=1 m=1 m=1

which gives us p([(,5_; @m) > 0. But for p-almost every x € X, the measure y,
is ergodic and so there exists © € (._, am such that g, is ergodic. Pick
such an x and define v := p,. Then, since x € a,, for all m > 1, we have

V(bm) = pz(bm) > 1 — 2% |

We are now ready to prove Proposition 4.3, which we recall states that there
is an ergodic measure on X that gives large measure to the sets [[BL]] for
sufficiently large m.
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Proof of Proposition 4.3. By Lemma 4.7, it suffices to show that there is a o-
invariant (but not necessarily ergodic) measure p with the property that for
all m > 1, we have

1
p((IBEI) > 1~ 7o
Suppose the sequence {n;} grows sufficiently rapidly such that for all m > 1,
i 1 1
(22) 11 (1—n—i) >1- o

Fix an arbitrary m > 1 and choose x € X such that the restriction of = to
its first Ly symbols is exactly the word by 1 for every k > 1. Let p be a weak™
accumulation point of measures of the form

Note that this means there is a subsequence k; and a value J = J(m) such that
for all 7 > J,

(23) B - 7 3 e UBED)] < ot

We show below that for all large k,

Li—1
(24) = Y Sea(IBEN) > 1= o
=0

where as usual 0 denotes the Dirac measure. Together the two inequalities (24)
and (23) yield that u([BL]]) > 1 — 4%, as wanted.

It only remains to show that (24) holds. By the definition of z, it suffices to
count the number of L,,-sized subwords in by ; that lie in [[BL]]. Note that by 1
can be thought of as the concatenation of blocks from B,,4+1, meaning the
concatenation of blocks of the form ¢,,11 and byt1,5, 5 = 1,...,npmy1. Thus,
we can obtain a lower bound on the number of these L,-sized subwords in by, ;
by counting the number of L,,-sized subwords in by ; that are within one of the
By, +1-words that lie in [[BL]]. This quantity is in turn bounded below by the
product of the interior count I,,, and the multiplicity count M,,, where I, is the
number of L,,-sized subwords within one b,, 11 j-block that lie in [[BL]] and M,,
is the number of b,,41,;-blocks in by 1. We count each of these separately.
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For the interior count I,,, consider one b,,11 j-block and consider all of
the L,,-sized windows that lie in [[BL]]. Such a window yields a subword
that is not in [[BL]] exactly when it straddles two words of the form b,, ; and
b i+1s b, and by, 1, or by, n,. and cp,. The number of such subwords is at
most Lmnmn%nmﬂﬂ). Since there are exactly L,,+1 — (L, — 1) subwords of

length L, in any b,,41,; we have
I > Lyt — (L — 1) = Lyt a3 > L — Ly — Lyyn2tm+13,

For the multiplicity count M,,, we again view by ; as the concatenation of
blocks from B,,,4+1 and count the number that are of the form b,,1 ; for some j.
We do this in steps: first view by ; as the concatenation of blocks from Bj_; and
note that there must be Ly /Li_1 such blocks and all but one is of the form by_1 ;
for some ¢. Each of these b,_1 ;, in turn, can be thought of as the concatenation
of blocks from By_o. There are Lg_1/Lj_o such blocks and all but one is of the
form by_s,; for some i. We continue in this vein, and after k — (m + 1) steps,
we have that the number of the B,,41-blocks of the form by, ,; for some 7 is
bounded below by

b L; koL Li_
_ I (Li_1 *1) - 11 Li_l(lf Lil)'
i=m-+2 i=m-+2

Combining these two estimates, we have that
Ly—1 k

1 1 L; L; 4

=N 5, (IBEY) > — (Lt — L — Lypn2nim+1+3 —1(1— i )
7= 2 o[BI > (L A | Bl S

1=0 1=m-+2
Since Ly = LL’L Lyn+1, we can rewrite the right hand side as

k L; Li—1
7 (L1 = L = Ly ¥9) == et 2
m Hicmre 75

Then by (2) and (5), this last quantity is greater than or equal to

() T (55 =TT )= T (- 2)

which by condition (22) shows that LLk ZZL:’“O_l Soiz([BEI) > 1 — . n

We end this section by proving Proposition 4.4 which assures us that all
ergodic measures on X for fixed k give approximately the same measure to sets
of the form [[bx m]]-
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Proof of Proposition 4.4. Fix € > 0. Since ny — 00, we can choose K € N such

that for all £ > K we have % < §. Choose such a k and consider any pair

bk, m, br,; € Bi. By the ergodicity of £, we can find a point € X such that

n—1
1 ;
&(lbeml]) = lim ~ Zj e 1 (0" )
and
1 n—1

E([[br.51]) = nh_{I;O o Z 1[[17,67]‘]](01'90).
i=0

We first show that it is enough to look at the frequency of the sets [[bx,m]]
and [[b ;]] in a certain subword of the point x.
We rewrite the difference:

N-1
E(brnl]) = &0 ID] <[eMnl) = 5 3 U0
=0
1 N-1 .
e - 5 X e
1=0

1 Nt . | N2 '
i ‘N ; om0 ~ 3y ; Lo, ;11(0"2)

Choosing N large enough, we can assume that the first two terms are each
bounded by %. The last term is the difference between the number of times olx
lands in the set [[bg,m]] as compared to [[bg ]], for ¢ = 0 to N — 1. In other
words, this last term simply gives the difference between the number of Lj-
length-subblocks of xj y_1j that are in [[by ]| as compared to [[bg;]].

Since x can be written as a concatenation of words from By, there is a
subword z of x|y y_1) whose length is at least N — 2Ly, that can be written
exactly as a concatenation of words from Bj1. We restrict our attention to this
subword z, and let Dy denote the difference between the number of L-length-
subblocks of z that are in [[by ]| as compared to [[bg ;]]. Then choosing N such
that 221 < 2 /4, we have

N
T Ry . N-1 . .
N1 2 Wb (@'0) = D Ty ) (0'2)| < /4+ 5D
i=0 i=0

We thus have )
[€([orm]]) — €([[bw,5]D)] < 3e/4 + D
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We are then left with showing that Dy /N is sufficiently small. Consider the
subword z and divide it into disjoint subblocks of (k 4 1)-words from Bji1. As
we look at subblocks of z of length Ly, these are either entirely contained in
one of these (k + 1)-words or partially overlapping two adjacent (k + 1)-words.

Let us first consider the Lg-length-subblocks of the second type, those over-
lapping two adjacent (k+1)-words in z. Since the number of ways an Lj-length-
subblock can overlap two specific (k 4+ 1)-words is Ly — 1, and the number of
adjacent (k+1)-words in z is bounded by |z|/Ly+1 < N/Lj41, we can bound the
difference between these Ly-length-subblocks that are in [[bg ]| as compared
to [[bk,;]] by

Li(N/Lg41) = N(L/Li+1) < N(1/n).

We next consider the Lg-length-subblocks of the first type, the ones entirely
contained in one of the (k + 1)-words from Byyi. If this (K + 1)-word is an
extended Feldman word (see (3)), then we see that blocks of length Ly ei-

2(ngy1+1i)
ther lie within a repeated k-word, bZ’“Z , or an overlap between two k-

words, bk ¢bgs41. Note that the number of occurrences of [[bg,.,]] and [[bk ;]]
2(ngy1+1)
in bZ’“e , as £ ranges from 1 to ny, are exactly the same. Thus we can bound

the difference by the number of Li-length-subblocks that overlap a subblock of
the form by, ¢by ¢+1. This is bounded by Lknkni("k“_iﬂ) for one (k + 1)-word.
In the case that the (k 4 1)-word has the form of (4), then the only possible
occurrences of [[by.m]] and [[bg ;]] occur at the end, when cx41 cycles through
the various by ¢. We can thus bound the difference between the occurrences of
these sets by Lgny, which is less than the bound used above.
Thus altogether we have that

Dy < N(1/ng) + Lknkni(n’““_iﬂ)(number of (k + 1)-words in z).

Using that N > (number of (k 4 1)-words in z)Ljy1, we have

Dy _ 1 +Lknkni("’““‘i+” L 12
N — ng Liy1 ng Nk nk.

It then follows that
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5. Loosely Bernoulli

In Section 4, we made use of the words by ; to find a measure that yielded a
non-loosely Bernoulli system. Now we make use of the words ¢, to find a loosely
Bernoulli system. We begin with a result that is analogous to Proposition 4.3
in that it shows that there is an ergodic measure that gives large measure to
the sets [[cy,]] for sufficiently large m.

PROPOSITION 5.1: If the sequence {ny} grows sufficiently rapidly, then there
exists an ergodic measure £ supported on X with the property that

(25) lim ¢({[en]]) = 1.

m—o0

Proof. This proof is very similar to the proof of Proposition 4.3. Suppose {n}
satisfies (22). We begin by noting that, because of Lemma 4.7, it suffices to
show that there is a o-invariant (but not necessarily ergodic) measure p which
satisfies

1
p(lem]]) >1— T forallm=1,2,....
We find p by choosing y € X such that the restriction of y to its first L symbols

is exactly the word ¢, for every k. Just as in Proposition 4.3, we need only show
that

1! 1
(26) I, > oiy([lem]])) > 1 - yrE
=0

Thus it suffices to count the number of L,,-sized subwords of c¢; that lie
in [[¢]], which is bounded below by the number of L,,-sized subwords of ¢y
that lie both in [[¢,,]] and within one of the ¢;,4+1 words which makes up cy.
We bound this last quantity with the product of the interior count I,,, and the
multiplicity count M,,, where I,, is the number of L,,-sized subwords within
one ¢p,+1-block that lie in [[¢;,]] and M, is the number of ¢,,41-blocks one has
when ¢y, is thought of as the concatenation of blocks from B,,+1. We count each
of these separately.

For the interior count I,,, consider one c¢,,+1-block and consider all of the
L,,-sized windows that lie in [[¢;,]]. Given the structure of c¢,,y1 (see (4)),
every L,-sized subword that lies within the c{Emtr/Lm)=nm portion of ¢p41
lies in [[¢;,]]. There are Ly,41 — LyMun — Ly, such subwords and thus

Im > L1 — Loy (ngn + 1).
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For the multiplicity count M,,, we again view ¢, as the concatenation of
blocks from B,,+1 and count the number that are equal to ¢, +1. We do this in
steps: first view ¢ as the concatenation of blocks from Bj_; and note that there
must be Li/Li_1 such blocks and all but ng_1 are cx—1’s. Each of these cp_1,
in turn, can be thought of as the concatenation of blocks from By_s. There are
Lj—1/Li—2 such blocks and all but ny_o are c;_3’s. Continue in this vein, and
after k — (m + 1) steps, we have that the number of the B,,41-blocks that are
Cm+1 1S exactly

Ly Ly Liyi2
M = (g2 =) (s = meea) o (222 = m)
Ly k=1 Ly_» k=2 L1 fimt1

Combining these two estimates, we have that L% Zfz’“o_ ! doiy([[em]]) is bounded
below by
k
1 L.
— (L1 — Lon (i + 1 (= = nir).
L = Ll + 1) ] (2 =i
1=m-+2
Since Ly = L—i—leH, we can write this as
k L,
1 [licmio(g25—ni1)
L—(Lm+1_Lm(nm+1)) A L
m+1 [licmie T
k
1 L;
= (L1~ Lo (nm +1 (1=nia==t).
Lerl( i (o ))i:ngz it L;

Since L; = L;_1(1 +ni™™), we have L 1/L; = 1/(1 4+ n;{™"*3) and thus
(ni—1Li—1)/L; <1/n;_1.

Similarly,
(g + D)Ly /L1 < (Mg + 1) /ninme®3 <1 /n,.

We thus have

5 2 Al 2 (1210 [ (-55)

It then follows from (22) that L% Zf:’“(;l Spiy([lem]]) 2 1 — 7. |
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THEOREM 5.2: If the sequence {ny} grows sufficiently rapidly, then X carries
a measure £ such that (X, 0,£) is loosely Bernoulli.

Proof. Let {n} be a sequence that satisfies (22). We apply Proposition 5.1 to
obtain a measure & satisfying (25).
Let K be large enough such that both nK{l < e and &([[ek]]) > 1 —e.

Take k > K. Let 2,y € L1, (X) be two words that occur as subwords of ¢cy,
so each is a word of length Lj; which looks like the end of a ¢, concatenated

with the beginning of a cj.

Recall that ¢ is a concatenation of many copies of c¢;_1 followed by the
block bg_1.1,...,bk—1n,_,. Therefore, by eliminating at most Ly_1(nk—1 + 2)
indices from both z and y, we can remove any indices corresponding to the
extended Feldman words and any partial copies of cx—;. What is left now are
words of the form ¢j;_; and ¢;_,, where r and s could differ as different choices

of x and y might necessitate removal of a different number of indices. However,
Ly Ly

L1 L1

most another 2L indices, we obtain identical strings.

—np_1—2<7rs< —Ng—1, i.e. |r — s| < 2. Thus by throwing out at

This means that

= 1 Li-1(ng-1+2) 1
z,Y) < — (Lg—1(ng—1 +2)+2Lk_1) = < <e.
f(@,y) 2Lk( k—1(ngp—1+2) k—1) I o

Taking W and N in Definition 2.2 to be the set [[cx]] and our choice of K
respectively yields the result. ]

6. Proof of Theorem 1.1

We are now ready to prove our main result, showing that the system (X, o) we
constructed carries both a loosely Bernoulli measure and a non-loosely Bernoulli

measure.

Proof of Theorem 1.1. We fix a non-decreasing sequence {p,, nen satisfying

log i,
08Pn _

lim inf 22 = oo and limsup

n—oo 1 n—00
We choose a sequence {ny }r>o satisfying all of the growth conditions needed to
apply our arguments. More precisely, we choose this sequence such that ng > 2
and ny — oo, and the growth conditions corresponding to (10), (21) and (22)
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are all satisfied, meaning that

0o oo o) 4nk+1+3
II p— > e S 300 H 4nk+1+3 >
k=0 k=0 k=0
ﬁ (1 ! )>1 !
g gm+1°

We remark that while it is possible to simplify the assumptions on the growth,
as some of these conditions imply others, for clarity in how they are used, we
keep each of them. As these are all growth conditions on the sequence, they are
clearly compatible. For example, the sequence nj = 44 suffices.

We inductively modify the sequence {ny}x>0, again only possibly increasing
the growth rate. Given ny, choose npy1 > ny such that, in addition to the
growth conditions already satisfied (meaning conditions (10), (21) and (22)),

we also have that if m = Lkn%’”“Jr2 then

(27) Pm > k(6 + 3ng)m

Now construct a subshift X as described in Section 3.3. By Proposition 3.1,
Theorem 4.1, and Theorem 5.2 this subshift X is minimal, and there ex-
ist v, € M.(X) such that (X,o,v) is not loosely Bernoulli and (X, 0,£) is
loosely Bernoulli.

We now check that X satisfies the complexity condition

(28) lim inf Px(n)

n—roo pn

=0.

2np41+2
Lknk )

Fix k and consider the words of length m (= Since any

point x € X can be written as a bi-infinite concatenation of elements of Bj1,
we can count the number of words of length m by counting the number found
entirely within an element in Byi1 or overlapping two concatenated elements
of BkJrl.

To make this count, recall the forms of the words bg41,; and ¢y given in (3)

2(1+ngy1)

and (4). The word by11,1 has each by, ; repeated exactly n;; times, mean-

2(14npy1) _

ing that this portion of byy1,1 has length Lyn = m. The other by41,

have even longer lengths of repeated k-words.
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We first count the number of words of length m that are subwords of
some by414. Note that for each choice of 4, one of the following occurs:

2(i+nk+1)
(i) The word of length m is a subword of a repeated k-word bZ’“J

for j = 1,...,nk. The repetition of b, ; means the number of distinct
words of length m of this type for a specific j is just the length of by, ;
and thus altogether we have Lini, number of such words of length m.

(ii) The word of length m overlaps two consecutive repeated k-words and
n2(i+nk+1) nZ(i+nk+1)
: k k
thus is a subword of b, *; ki1

the number of distinct words of length m by counting the number of

. For a specific j, we can count

locations within the word at which it switches from a by ; to a by j11:
this number is m. Since j ranges from 1 to ng, this yields a total of
mny, distinct words.

(iii) The word of length m lies towards the end of bg1+1,; and thus, for all 4,
n2(i+nk+1)
is a subword of b, ", ¢- The number of distinct words of length m

can be counted by simply noting the number of places at which ¢ can
begin in the word, which is L.

To count the number of words of length m that are subwords of ¢g1, note that

one of two situations occur:

(i) The word of length m is a subword of the repeated c¢’s. There are Ly
distinct such subwords.
(ii) The word of length m lies towards the end of ¢x; and thus is a subword
of ¢ -+ cpbr1br2 - - by n,. We can count this by counting the number
of locations within the word at which it switches from the ci to by 1,
which is ng L.
Thus the number of words of length m that are subwords of some element By
is 2Lgny + mng + 2Ly
We next count the number of words of length m that overlap two concatenated
elements of Bj1. There are four possible combinations for such concatenations:

(i) bry1,iber1y, () ckprbryry, (i) begrjerrr, (V) Crpichrr-

To count the number of combinations for the first situation, we note that for all
choices of i and j, the word of length m is a subword of by, ,,. - - - b n, Cbr,1- - b1
We count the number of distinct words of length m by noting that there are
exactly m locations where we can see the beginning of ¢ within it, which leads
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to a count of m distinct words. The three other possible combinations can be
counted in a similar manner, with each yielding at most m distinct words. Thus
we obtain a total of 4m words of this type.

Combining these counts and using that Ly < m, we have that

Px(m) < m(3n + 6).

But by (27), we have that mk(3ny + 6) < py,. Therefore Px(m) < p,,,/k. But
recall that m = Lknink“Jr2 so this shows that there is a sequence, indexed
by k, showing that (28) is satisfied.

Finally, to see that (X, o) has zero topological entropy note that by (28)
there are infinitely many n for which Px(n) < p,. Combining this fact with
the subexponential growth condition on the sequence {p,} given in (1), we have

that

log P I n
lim inf LX(TL) < limsup og P

n—00 n n—oo

=0.

Since the limit defining topological entropy exists, it follows that

! 1
hiop(X) = lim log Px (1) — liminf log Px (1)

n—ro0 n n—0o0 n

=0. |

Appendix A. Ferenczi’s theorem on the rank of systems of linear
complexity

We would like to conclude from our work here that a minimal system that
has a non-loosely Bernoulli measure must have liminf, ,. Px(n)/n = oc.
If we knew that a minimal subshift whose complexity function satisfies
liminf,,, Px(n)/n < oo has finite rank, then as discussed previously we would
have that all measures supported on such a subshift are loosely Bernoulli and
our conclusion would follow. While Ferenczi [7] shows that a minimal subshift
whose complexity function satisfies Px(n) = O(n) has finite rank, essentially
the same proof can be used to show that the result holds under the slightly
weaker hypothesis liminf, ., Px(n)/n < co. As we were not able to find the
liminf version of this result in the literature, for completeness we include the
proof which demonstrates how to use Ferenczi’s argument to get this result.
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First we recall what it means for a system to have finite rank, taking the
definition directly from [8, Definition 8]:

Definition: A subshift (X, o) and invariant measure p has rank at most r if for
every partition P = (A1, Aa,..., Ajp|) and every ¢ > 0, there exist r many sub-
sets F; C X, r many positive integers h;, and a partition P'=(By, Ba, ..., B|p/|)
such that

(1) all sets of the form T*F;, where 1 <i <7 and 0 < k < h;, are pairwise

disjoint;
(2)
max{|P|,|P"|}
d(P,P') := min{ Z 1(AiABy(;y): o € Sym(max{|P|, |P’|})} <e

i=1
where P or P’ have been padded with null sets to give them the same
number of elements;

(3) the elements of P’ can be expressed as unions of elements of the partition
consisting of all sets of the form TFF;, where 1 <i<rand 0 <k < h;,
as well as X \ U, U, T*F;.

The subshift (X, o) has finite rank if it has rank at most r for some r € N.

While the following lemma is slightly stronger than [7, Proposition 4], it
readily follows from the proof given there. For completeness we include the
argument.

LEMMA: Let (X, o) be a subshift and let u be an invariant measure supported
on X. If

Px(n)

(29) lim inf

n—00

< 00,
then (X, o, u) has finite rank.

Proof. By (29), there is an integer % and an increasing sequence {n;}32, such
that

(30) Px(nj+1)—Px(n;) <R

for all j > 1. By (30), there are at most R many elements of L, y1(X) whose
leftmost subword of length n; is a word that fails to extend uniquely to its right.
Passing to a subsequence if necessary, we can assume there exists r < R such
that for all j there are exactly r many elements of £, (X) that appear as the
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rightmost subword of length n; in a word in £, 11(X) whose leftmost subword
of length n; fails to extend uniquely to its right. For each j enumerate these
words as

Fj,F],...,F} € L,,(X).
Now for each 1 < k < r let hi € N be the smallest positive integer for which
there exists 1 < i < r such that [F/] N ol [F] # 0.

Note that all sets of the form ak[Fij], where 1 <i<rand 0< k< h{, are
pairwise disjoint by definition of h{ . (These sets are actually a partition of X
and there is no need to add the complement of their union.) Also note that
the elements of the partition @); of X into cylinder sets of length n; are unions
of elements of the partition given by sets of the form o* [Flj ], where 1 < i <r
and 0 < k < hg , meaning that @); is a coarser partition. Finally, note that
any partition P of X can be approximated arbitrarily well by partitions coarser
than the partitions into cylinder sets of increasing length. Therefore for any
P and any € > 0 there exists j such that some partition, P’, coarser than Q;
satisfies d(P, P’) < £/2 and such that

d(Q,{o"[F/]:1<i<r0<k<hl}) <e/2

Thus (X, 0, 1) has rank at most r, and in particular it has finite rank. ]
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