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∗ The authors thank the Casa Matemática Oaxaca (CMO) for hosting the “Sym-

bolic Dynamical Systems” workshop during which this work was started. The

third author was partially supported by NSF grant DMS-1800544.

Received July 19, 2020 and in revised form January 13, 2021

271



272 V. CYR, A, JOHNSON, B. KRA AND A. SAHİN Isr. J. Math.

ABSTRACT

We show that linear complexity is the threshold for the emergence of

Kakutani inequivalence for measurable systems supported on a minimal

subshift. In particular, we show that there are minimal subshifts of arbi-

trarily low superlinear complexity that admit both loosely Bernoulli and

non-loosely Bernoulli ergodic measures and that no minimal subshift with

linear complexity can admit inequivalent measures.

1. Complexity and Kakutani equivalence

1.1. Block complexity and constraints on the system. The growth

rate of the complexity function of a symbolic dynamical system gives rise to

combinatorial invariants that allow for a finer classification of zero-entropy sys-

tems and can be an obstruction for realizing certain dynamic properties. For

example, the Morse–Hedlund Theorem [16] says that if the number of n blocks

in the language of a subshift grows more slowly than n+1, then the subshift is

periodic, putting a lower bound on the growth rate for the emergence of interest-

ing behavior. Boshernitzan showed [1] that the complexity bound on a minimal

subshift with linear complexity constrains the number of ergodic measures sup-

ported by the subshift and provided precise bounds related to the linear growth

rate of the complexity function (two of the authors [2] lifted the assumption

of minimality when counting nonatomic measures). Ferenczi [7] showed that

any two ergodic measure preserving systems supported on a minimal subshift

with linear complexity are even Kakutani equivalent and more specifically are

loosely Bernoulli (see Section 2 for definitions).

For each such result, it is natural to explore the complexity threshold where

the constraint is no longer present. It was shown in [2] that linear complex-

ity is the threshold for Bozhernitzan’s result. In particular, given arbitrarily

low superlinear complexity there exists a minimal subshift with at most that

complexity that supports uncountably many invariant ergodic measures. Here

we show that linear complexity growth is also the threshold for Ferenczi’s re-

sult: we show that there are minimal subshifts with arbitrarily slow superlinear

complexity growth which support Kakutani inequivalent measures.

1.2. Even Kakutani equivalence and loosely Bernoulli. Recall that

an orbit equivalence between two measurable systems (X,T, µ) and (Y, S, ν)

is a bi-measurable, measure preserving map φ : X → Y that maps orbits to
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orbits. Ornstein’s seminal result [17] states that two Bernoulli systems are

measure theoretically isomorphic if and only if they have equal entropy. On

the opposite end of the spectrum, Dye’s theorem [4, 5] states that any two

measurable systems are measurably orbit equivalent if and only if they are

ergodic. These are the two extremes of orbit equivalence, with the first an

isomorphism preserving order on orbits and the second permuting points in an

orbit without any restriction beyond measurability. Even Kakutani equivalence

lies in between: an orbit equivalence between two ergodic systems (X,T, µ) and

(Y, S, ν) is an even Kakutani equivalence if there exist sets of equal positive

measure A ⊂ X and B ⊂ Y such that the measure preserving map φ : X → Y

is order preserving on A. Namely, if and only if the induced transformations TA

and SB are measurably isomorphic.

Feldman, in [6], was the first to use the term Kakutani equivalence to describe

this equivalence relation given by inducing. In that paper he introduced the

property of loosely Bernoulli, which he showed to be an invariant for Kakutani

equivalence. He also constructed the first example of a zero-entropy non-loosely

Bernoulli system, which he used to build the first example of a K and not

Bernoulli automorphism which is not Kakutani equivalent to any Bernoulli. He

defined the loosely Bernoulli property by introducing a new metric to use in the

definition of very weak Bernoulli, a key ingredient in Ornstein theory. This new

metric, called f , weakens the d metric to capture the effect of an even Kakutani

equivalence on orbits.

Feldman’s work was extended by Ornstein, Rudolph and Weiss [18] who de-

veloped the general equivalence theory for this metric. They showed that the

loosely Bernoulli transformations play the role for even Kakutani equivalence

that the Bernoulli transformations play in the isomorphism theory. In par-

ticular, two loosely Bernoulli transformations are even Kakutani equivalent if

and only if they have equal entropy. This result, and the work in [18], is the

motivating example for the more general theory of restricted orbit equivalence

developed by Rudolph in [19]. He showed that if an orbit equivalence satis-

fies certain regularity conditions then there is always a distinguished family

of transformations playing the role of Bernoulli transformations for the asso-

ciated equivalence relation. Finally, we note that Katok and Sataev [15] and

Katok [13, 14] independently defined the f metric and proved the equivalence

theorem in the zero-entropy category, using the term standard to describe the

loosely Bernoulli family of transformations.



274 V. CYR, A, JOHNSON, B. KRA AND A. SAHİN Isr. J. Math.

The loosely Bernoulli class of systems contains all Bernoulli transformations

but is strictly larger, even in the positive-entropy category. Here we focus our

attention on the zero-entropy transformations. The simplest characterization

of zero-entropy loosely Bernoulli systems is that they are the family of transfor-

mations that induce rotations. For this reason, they are sometimes referred to

as loosely Kroenecker systems. Examples of zero-entropy loosely Bernoulli sys-

tems include rotations and, more generally, all finite rank systems [18]. Many

more examples exist, and the study of the loosely Bernoulli property and the

role of the f metric continues to be an active area of research; see for exam-

ple [9, 10, 12, 11].

1.3. Complexity and loosely Bernoulli. Turning to complexity and sym-

bolic systems, for a subshift (X,σ), let P (n) denote the block complexity of X ,

meaning the number of words of length n that occur in any x ∈ X (see Section 2

for precise definitions). Ferenczi [7, Proposition 4] showed that if a minimal sub-

shift has low complexity, namely PX(n) = O(n), then it has finite rank. More

generally, essentially using Ferenczi’s proof, we check (see Appendix A) that the

same result holds under the milder assumption that lim infn→∞
PX (n)

n < ∞. As

finite rank transformations are loosely Bernoulli, we can rephrase Ferenczi’s

result in the language of Kakutani equivalence: if a minimal subshift has lin-

ear complexity, then all invariant ergodic measures on the subshift give rise to

measurable systems that are even Kakutani equivalent.

We show that linear complexity is the threshold for which this result holds. In

particular, our main result shows that there are minimal subshifts of arbitrary

low superlinear complexity that admit both loosely Bernoulli and non-loosely

Bernoulli ergodic measures:

Theorem 1.1: Let (pn)n∈N be a non-decreasing sequence of integers satisfying

(1) lim inf
n→∞

pn
n

= ∞ and lim sup
n→∞

log pn
n

= 0.

Then there exists a zero-entropy minimal subshift (X,σ) satisfying

lim inf
n→∞

PX(n)

pn
= 0

which supports two ergodic measures, µ and ν, such that (X,σ, µ) is loosely

Bernoulli while (X,σ, ν) is not loosely Bernoulli.



Vol. 251, 2022 COMPLEXITY THRESHOLD 275

Our construction builds on Feldman’s classical example from [6], but requires

significant modification in order to both find a loosely Bernoulli system sup-

ported on the subshift and to control its block complexity.

By Ferenczi’s result (see the version in the Appendix), it follows immediately

that the complexity of the subshift (X,σ) that we construct is constrained.

Namely, any subshift satisfying the conclusions of Theorem 1.1 satisfies the

superlinear growth condition

lim inf
n→∞

PX(n)

n
= ∞.

1.4. Guide to the paper. In Section 2, we give a short summary of the def-

initions and background results and in Section 3 we build the system (X,σ)

used to prove Theorem 1.1. Sections 4 and 5 are devoted to proving the exis-

tence of the measures µ and ν such that the systems (X,σ, µ) and (X,σ, ν) are

Kakutani inequivalent. All the results are sewn together in Section 6 to prove

Theorem 1.1. In the Appendix, we review Ferenczi’s result showing that linear

complexity implies finite rank.

2. Background

2.1. Symbolic systems. Let A be a finite alphabet, and denote x ∈ AZ

as x = (xn)n∈Z. We endow AZ with the topology induced by the metric

d(x, y) = 1/2k

where

k = inf{|i| : xi %= yi}.

The left shift σ : AZ → AZ is defined by

(σx)n = xn+1

for all n ∈ Z. If X ⊂ AZ is closed and σ-invariant, then (X,σ) is a subshift.

The set An consists of all words of length n and we denote w ∈ An by

w0w1 · · ·wn−1 = w[0,n−1]. Define the cylinder set determined by w to be the

set

[w] = {x ∈ X : xj = wj for j = 0, . . . , n− 1}.
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Definition 2.1: Given ω ∈ An, we define [[ω]] to be the union of cylinder sets

associated with all words of length n that appear in the 2n-length block ωω.

If F = {u1, u2, . . . , u|F |} is a collection of words ui (possibly of varying

lengths), we similarly define

[F ] =

|F |⋃

i=1

[ui] and [[F ]] =

|F |⋃

i=1

[[ui]].

Associated to the subshift (X,σ) is the set of all shift-invariant probability

measures, M(X,σ), defined on the Borel σ-algebra generated by the cylinder

sets. We denote the subset of ergodic measures by Me(X,σ). Standard results

from topological dynamics tell us that both of these sets are nonempty.

2.2. Complexity. If (X,σ) is a subshift and n ∈ N, the words Ln(X) of

length n are defined to be the collection of all w ∈ An such that [w] %= ∅. We

denote the length of a word w by |w|. The language L(X) of the subshift X

is the union of all its words:

L(X) =
∞⋃

n=1

Ln(X).

If w ∈ L(X) is a word, we say that u ∈ L(X) is a subword of w if w = w1uw2

for some (possibly empty) words w1, w2 ∈ L(X).

For a subshift (X,σ), the word complexity PX : N → N is defined to be

the number of words of length n in the language:

PX(n) = |Ln(X)|.

Thus PX(1) is the size of the alphabet, meaning that PX(1) = |A|.
We say that (X,σ) has linear complexity if

lim inf
n→∞

PX(n)/n < ∞.

One can also consider the stronger condition, lim supn→∞ PX(n)/n < ∞. This

is a distinct condition from the above, as there exist systems satisfying the first

condition but not satisfying the second (see [3], Example 4.1). In this paper we

restrict our attention to the lim inf condition.
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2.3. Loosely Bernoulli. Let x, y ∈ L(A) be finite words, written

x = x1x2 · · ·xm and y = y1y2 · · · yn. We define a match between x and y

to be an order preserving bijection π : Iπ
x → Iπy where Iπ

x ⊂ {1, . . . ,m} and

Iπ
y ⊂ {1, . . . , n} with the property that xi = yπ(i). We then say that the

indices i and j = π(i) are matched. The size of the match is defined to be

|π| = |Iπ
x |+ |Iπ

y |,

and the best fit between the two words x and y is

f
c
(x, y) =

max{|π| : π is a match between x and y}
m+ n

.

We can then define the f -distance between x and y to be

f(x, y) = 1− f
c
(x, y) = 1− max{|π| : π is a match between x and y}

m+ n
.

This distance measures the proportion of letters such that, once they are deleted,

the remaining words are identical. See for example [6] or [18] for more details

and properties of this metric.

Let B be the Borel σ-algebra generated by the cylinder sets and µ ∈ M(X,σ).

Then (X,B, µ) is a Lebesgue probability space: together with σ it is a measur-

able dynamical system. We abbreviate this as (X,σ, µ).

Now assume that µ ∈ Me(X,σ) is such that (X,σ, µ) is zero-entropy. In this

case, we can define loosely Bernoulli as follows:

Definition 2.2: The zero-entropy ergodic subshift (X,σ, µ) is loosely Bernoulli

if for all ε > 0, there exists N > 0 such that for all n ≥ N , there ex-

ists W ⊂ Ln(X) with

• µ(W ) > 1− ε; and

• for any pair ω,ω′ ∈ W , f(ω,ω′) < ε.

3. The construction

3.1. Feldman words. The core symbolic structure of the subshift we build is

closely related to the first example of a zero-entropy non-loosely Bernoulli sys-

tem that was given by Feldman [6]. We begin by describing a slight modification

of his example, where changes are introduced to accommodate the additional

requirements our subshift must satisfy.
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Let {nk} be an increasing sequence of integers with n0 ≥ 2. We inductively

define sets of words of increasing sizes. Define the 0th stage alphabet

A0 := {a0,1, a0,2, . . . , a0,n0}.

For stage one of the construction we define words

A1 := {a1,1, a1,2, . . . , a1,n1}

each of length n4n1+3
0 by setting

a1,i := (a
n
2(i+n1)
0

0,1 a
n
2(i+n1)
0

0,2 · · · an
2(i+n1)
0

0,n0
)n

2(n1−i+1)
0 for 1 ≤ i ≤ n1.

For k ≥ 1, given a set of nk distinct words

Ak = {ak,1, ak,2, . . . , ak,nk}

each of length |ak−1,1|n4nk+3
k−1 , we define a set of nk+1 new words

Ak+1 = {ak+1,1, ak+1,2, . . . , ak+1,nk+1}

each of length |ak,1|n4nk+1+3
k by setting

ak+1,i = (a
n
2(i+nk+1)

k
k,1 a

n
2(i+nk+1)

k
k,2 · · · an

2(i+nk+1)

k
k,nk

)n
2(nk+1−i+1)

k for all 1 ≤ i ≤ nk+1.

In what follows we refer to the words an,k as Feldman words. Throughout our

construction we introduce conditions on the growth rate of the sequence {nk}
that guarantee that it grows rapidly enough for our subshift to have the neces-

sary properties.

3.2. Extended Feldman words. The sets of words used in our construction

are extensions of the words described above. We begin with a base-case alphabet

of size n0 + 1 to be A0 with an additional symbol c0:

B0 := {a0,1, a0,2, . . . , a0,n0 , c0}.

We then define n1 words of length L1 = 1 + n4n1+3
0 by setting

b1,i := (a
n
2(i+n1)
0

0,1 a
n
2(i+n1)
0

0,2 · · ·an
2(i+n1)
0

0,n0
)(n0)

2(n1−i+1)

c0 for 1 ≤ i ≤ n1.

In addition, we define a new word, also of length L1, but with a different

combinatorial structure:

c1 := cL1−n0
0 a0,1a0,2 · · · a0,n0 .

Finally, we denote the collection of these stage one words by

B1 := {b1,1, b1,2, . . . , b1,n1 , c1}.
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Note that every letter in B0 appears at least once in every word in B1, similar

to how every letter in A0 appears at least once in every Feldman word in A1.

We now proceed inductively. Fix k ≥ 1 and suppose we are given the set

Bk = {bk,1, bk,2, . . . , bk,nk , ck}

comprised of nk + 1 many words, all of length Lk = (1 + n4nk+3
k−1 )Lk−1, written

in the stage-(k− 1) words of Bk−1, meaning each word in Bk is a concatenation

of words from Bk−1. We then define nk+1 words, all of which have length

(2) Lk+1 = (1 + n4nk+1+3
k )Lk,

by setting

(3) bk+1,i = (b
n
2(i+nk+1)

k
k,1 b

n
2(i+nk+1)

k
k,2 · · · bn

2(i+nk+1)

k
k,nk

)n
2(nk+1−i+1)

k ck.

We define a new word, also of length Lk+1 but with a combinatorial structure

similar to the words ck constructed at previous levels, by setting

(4) ck+1 := c(Lk+1/Lk)−nk

k bk,1bk,2 · · · bk,nk .

Finally, we define the collection of (k + 1)-words to be

Bk+1 := {bk+1,1, bk+1,2, . . . , bk+1,nk+1 , ck+1}.

Note that every element of Bk appears at least once in each element of Bk+1

(and similarly with Ak and Ak+1). It also follows that

(5) lim
k→∞

Lk = ∞ and
Lk

Lk+1
<

1

nk
.

In what follows we often distinguish between words of the type bk,i and the

word ck. As the words bk,i are similar in form to the Feldman words, we refer

to them as extended Feldman words, and we denote the set of extended

Feldman words at stage k by

BF
k = {ω ∈ Bk : ω %= ck} = Bk\{ck}.

3.3. Constructing the subshift. We use the extended Feldman words to

construct the subshift X . We emphasize that for the construction and the

properties we prove about the system, all of the results only rely on choosing

the sequence {nk} with sufficiently rapid growth. As they become necessary,

we introduce new growth conditions on this sequence, clarifying when each new

condition is needed. For the preliminary properties and construction of the

space X , we only require that the sequence satisfies n0 ≥ 2 and nk → ∞.
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Given such a sequence, by the inductive procedure described above we obtain,

for each k ≥ 1, a set Bk comprised of words of equal length, each of which is a

concatenation of words from Bk−1, and every word in Bk−1 appears at least once

in every word in Bk. Moreover note that, by construction, bk,1 is the leftmost

subword of length Lk in the word bk+1,1 for all k ≥ 0. Therefore we can define

a one-sided infinite word b∞,1 as the unique word whose leftmost subword of

length Lk is bk,1 for all k ≥ 1. We note that we use the less standard term of

leftmost (or rightmost) word, rather than prefix (or suffix), to emphasize that

the core part of the word is not the focus and to highlight the visual placement

of these subwords as part of the intuition behind the construction.

We choose a new symbol, denoted ∗, that was not included in B0 and we define

a {b1,1, b1,2, . . . , b1,n1 , c1, ∗}-coloring of Z by coloring N with the word b∞,1 and

coloring the set {. . . ,−2,−1, 0} with ∗; call this Z-coloring α. Finally let X be

the space

(6) {x∈{b1,1, b1,2, . . . , b1,n1 , c1, ∗}Z : ∀i > 0, ∃j > i such that d(x,σjα)<2−i},

where σ and d are the left-shift and the metric as defined in Section 2.1. Note

that ∗ does not appear in any Z-coloring that can be obtained by taking larger

and larger left-shifts of α, and so the elements of X are actually written in the

letters B0. Thus we make no abuse of notation by referring to X as a subshift

of BZ
0 .

Proposition 3.1: The system (X,σ), where X is the space defined in (6) and

σ : X → X is the left-shift, is minimal.

Proof. Let u ∈ L(X). Then by the construction of X , u occurs as a subword

of b∞,1 and therefore there exists some n such that u occurs as a subword of bn,1.

Note that every word in Bn+1 contains bn,1 as a subword (in fact every word

in Bn+1 contains every word in Bn as a subword). We also have that for all k > 1,

bn+k,1 ∈ Bn+k can be written as a concatenation of words in Bn+1. Thus any

subword of length at least 2Ln+1 in bn+k,1 has u as a subword. Therefore any

subword of length at least 2Ln+1 in b∞,1 has u as a subword. We conclude that

if v ∈ L(X) is a word satisfying

|v| ≥ 2Ln+1,

then u occurs as a subword of v. This means that u occurs syndetically in

every element of the subshift X and the maximum gap between consecutive

occurrences of u is at most 2Ln+1.
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Since u was arbitrary, we conclude that every word in L(X) occurs syndeti-

cally in every element of X and, for any fixed word in L(X), the maximum gap

between consecutive occurrences is uniform throughout X (but may depend on

the word itself). Therefore X is minimal.

4. Non-loosely Bernoulli

4.1. Overview of the existence of a non-loosely Bernoulli measure.

The goal of this section is to show that if the sequence {nk} used in constructing

the space X grows sufficiently rapidly, then there is a non-loosely Bernoulli

measurable system supported on X . For ease of exposition, in what follows, we

assume that the sequence grows sufficiently rapidly and we defer defining the

explicit growth condition to later in the section where we provide proofs of the

key results.

Theorem 4.1: If the sequence {nk} used in constructing the space X grows

sufficiently rapidly, then there exists an ergodic measure ν ∈ Me(X) such that

the system (X,σ, ν) is not loosely Bernoulli.

The proof follows from several propositions, which we now state, deferring

their more technical proofs until after the proof of the theorem. The first

proposition shows that extensions of different Feldman words from the same

stage of the construction do not match well in the f metric:

Proposition 4.2: If the sequence {nk} grows sufficiently rapidly, then for all

integers r, s, k ≥ 0, if i %= j then

(7) f(brk,i, b
s
k,j) ≥

5

8
.

The next two results establish necessary properties of ergodic measures of

extended Feldman words.

Proposition 4.3: If the sequence {nk} grows sufficiently rapidly, then there

exists a measure ν ∈ Me(X) such that

lim
k→∞

ν([[BF
k ]]) = 1.
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Proposition 4.4: Given any ξ ∈ Me(X) and ε > 0, there exists K ∈ N such

that for all k ≥ K and bk,m, bk,j ∈ Bk, we have

|ξ([[bk,m]])− ξ([[bk,j ]])| < ε.

With these results in hand, the proof of the theorem follows quickly:

Proof of Theorem 4.1. We prove the result by contradiction. Assume that the

sequence {nk} grows sufficiently rapidly such that Propositions 4.2, 4.3 and 4.4

hold, and assume the constructed system (X,σ, ν) is loosely Bernoulli.

Fix ε > 0.

Using Propositions 4.3 and 4.4 and the fact that |Bk|→∞, we can choose K

such that for all k ≥ K we have 1
|Bk| < ε, ν([[BF

k ]]) > 1− ε, and

|ν([[bk,m]])− ν([[bk,j ]])| < ε for all m, j.

Then for any set of words W ⊂ LLk(X) with ν([W ]) > 1− ε, we have

(8) ν([W ] ∩ [[BF
k ]]) > 1− 2ε.

Since there are more than 1/ε sets of the form [[bk,i]], each with similar measure,

there must be distinct words u, v ∈ W that are elements of [[bk,m]] and [[bk,j ]],

respectively, for some m %= j. Since |u| = |v| = Lk, the words u and v must

cover exactly half of b2k,m and b2k,j , respectively. Suppose f(u, v) < ε and

thus f
c
(u, v) > 1 − ε. Extending the match that realizes this value to all

of b2k,m and b2k,j gives that f
c
(b2k,m, b2k,j) ≥ 1

2 (1 − ε). Equivalently, this means

that

f(b2k,m, b2k,j) <
1

2
(1 + ε).

But for sufficiently small ε, this is a contradiction of Proposition 4.2.

The remainder of this section is devoted to the proofs of the three proposi-

tions.

4.2. Proof of Proposition 4.2: bad f match of extensions of Feldman

words. We begin by proving that the Feldman words themselves do not match

well in f , and then use the fact that their extensions add only a small proportion

of symbols to obtain our result.

The first lemma is essentially Feldman’s original argument in [6]. We include

it here for the sake of completeness.
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Lemma 4.5: If {nk} increases sufficiently rapidly, then for all integers r, s, k ≥ 0,

if i %= j, then

(9) f(ark,i, a
s
k,j) ≥

7

8
.

Proof. Let {nk} be an increasing sequence with the property that

(10)
∞∏

k=0

nk

nk − 2
≤ 2 and

∞∑

k=0

2

nk
≤ 1

32
.

We construct a sequence {Γk} by setting Γ0 = 0 and for k ≥ 1, set

(11) Γk =
k−1∑

i=0

( k−1∏

j=i

nj

nj − 2

)2 2

ni
.

We prove the lemma by showing that for all k ≥ 0 and i %= j, the match

(12) f
c
(ark,i, a

s
k,j) ≤ Γk.

Clearly (12) holds for k = 0 and so assume that (12) holds for some k ≥ 0. Our

goal is to show that

(13) f
c
(ark+1,i, a

s
k+1,j) ≤ Γk+1,

and then the statement follows since Γk ≤ 1
8 for all k ≥ 0.

Assume that j = i+m, with m ≥ 1. Let αh = a
n
2(i+nk+1)

k
k,h denote the building

blocks of the word ak+1,i. With this notation, we can rewrite

ark+1,i = (α1 · · ·αnk)
n
2(nk+1−i+1)

k ·r

ask+1,j = (α
n2m
k

1 · · ·αn2m
k

nk )n
2(nk+1−j+1)

k ·s.

Consider an arbitrary match π between these two words and take the re-

striction of this match to each subword α
n2m
k

h of ask+1,j . Using the restric-

tion, we can partition ark+1,i into disjoint subwords that contain indices all of

which are matched to a unique α
n2m
k

h . Each such subword must have the form

β(α1 · · ·αnk)
tγ, where β and γ are substrings from the beginning and end,

respectively, of (α1 · · ·αnk). Thus to prove (13) it suffices to show that for all h

(14) f
c
(α

n2m
k

h ,β(α1 · · ·αnk)
tγ) ≤ Γk+1.
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Instead, we consider the quantity

(15) f
c
(α

n2m
k

h , (α1 · · ·αnk)
t+2)

where we have added at most 2|αh|nk symbols to β(α1 · · ·αnk)
tγ and the worst

fit would be if none of these additional symbols improved the match between

the original pair of strings. Therefore, letting

+O = |αn2m
k

h |+ |β(α1 · · ·αnk)
tγ|

denote the lengths of the original two strings being matched, we have

f
c
(α

n2m
k

h , (α1 · · ·αnk)
t+2) ≥ |π|

+O + 2|αh|nk

≥ f
c
(α

n2m
k

h ,β(α1 · · ·αnk)
tγ)

(
1− 2|αh|nk

|αh|n2m
k

)

≥ f
c
(α

n2m
k

h ,β(α1 · · ·αnk)
tγ)

(
1− 2

nk

)
.

Thus to prove (13), it suffices to show that

(16)
nk

nk − 2
f
c
(α

n2m
k

h , (α1 · · ·αnk)
t+2) ≤ Γk+1.

For ease of notation, define ω = α
n2m
k

h and ω′ = (α1 · · ·αnk)
t+2. Consider the

partition of ω into disjoint subwords ωu,v corresponding to contiguous subblocks

that contain (but do not necessarily consist of) indices matched by π to a symbol

in the v-th occurrence of αu in ω′. Formally we define ωu,v to be the subblock

of ω corresponding to the indices in the interval ω[i∗,i∗], where

i∗ = min{i : π(i) lies in the v-th occurrence of αu in ω′}

and

i∗=min{i ≥ i∗ : i ∈ Iπ
ω , but π(i) does not lie in the v-th occurrence of αu}−1,

recalling that the notation Iπ
ω was introduced at the beginning of Section 2.3.

Since π is order preserving, these blocks are disjoint and contiguous. In order to

guarantee that ωu,v be a partition of ω, we add any initial (respectively, final) in-

dices in ω that are not matched to anything in ω′ to ω1,1 (respectively, ωnk,t+2).

Note that it is possible for some ωu,v to be empty.
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Adopting this notation, we have

f
c
(ω,ω′)

=
2(#of total indices in ω′ that are matched by π)

|ω|+ |ω′|

=
2

|ω|+|ω′|

nk∑

u=1

(# of indices in ω′ matched by π lying in an occurrence of αu).

Note that if u = h, then there is the possibility that π provided a perfect

match for every possible occurrence of αh in ω′. Recall that

(17) |ω| = |αh|n2m
k and |ω′| = |αh|(t+ 2)nk.

So

2

|ω|+ |ω′| (# of indices in ω′ matched by π lying in an occurrence of αh)

≤ 2|αh|(t+ 2)

|αh|n2m
k + |αh|(t+ 2)nk

≤ 2

nk
.

We now turn to the matches between αu and ωu,v where u %= h, namely the

other summands:

(18)

2

|ω|+ |ω′|

nk∑

u=1,u'=h

t+2∑

v=1

(# of indices matched in ω′

lying in the v-th occurrence of αu)

=
1

|ω|+ |ω′|

nk∑

u=1,u'=h

t+2∑

v=1

f
c
(ωu,v,αu)(|αu|+ |ωu,v|).

Recall that αu = apk,u and ωu,v = bap
′

k,hc for some p, p′ ∈ N and where c and d are

the end and beginning substrings of ak,h, respectively. As before we complete

each ωu,v to ap
′+2

k,h , adding at most 2|ak,h| symbols, obtaining a match between

strings where our inductive hypothesis holds. Therefore, for each u, v we have

(19) Γk ≥ f
c
(ap

′+2
k,h ,αu) ≥ f

c
(ωu,v,αu)

(
1− 2

nk

)
.

Then we have that the quantity in (18) is less than or equal to

1

|ω|+ |ω′|

nk∑

u=1,u'=h

t+2∑

v=1

( nk

nk − 2

)
Γk(|αu|+ |ωu,v|).
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Recall that |αu| = |αh| for all u and so we have that this last quantity is equal

to

1

|ω|+ |ω′|

( nk

nk − 2

)
Γk

[
nk(t+ 2)|αh|+

nk∑

u=1,u'=h

t+2∑

v=1

|ωu,v|
]
.

By (17) and the fact that the ωu,v form a partition of ω, this is

≤ 1

|ω|+ |ω′|

( nk

nk − 2

)
Γk(|ω′|+ |ω|) =

( nk

nk − 2

)
Γk.

Putting all this together with (11), we see that (16) is satisfied:

nk

nk−2
f
c
(α

n2m
k

h , (α1 · · ·αnk)
t+2)≤

( nk

nk−2

)2
Γk+

( nk

nk−2

) 2

nk
≤Γk+1.

The following property of the f metric (see for example [10, Property 2.4]) is

used in the proof of Proposition 4.2:

Lemma 4.6: Suppose b1 and b2 are strings of symbols of length n and m,

respectively, from an alphabet A. If a1 and a2 are strings of symbols obtained

by deleting at most .ρ(n+m)/ terms from b1 and b2 altogether, where 0 < ρ < 1,

then

(20) f(b1, b2) ≥ f(a1, a2)− 2ρ.

Proof of Proposition 4.2. Suppose the sequence {nk} grows sufficiently rapidly

such that both (10) is satisfied and

(21)
∞∏

j=0

n
4nj+1+3
j

n
4nj+1+3
j + 1

>
7

8
.

We then have

|ak,i|
|bk,i|

=
k−1∏

j=0

n
4nj+1+3
j

n
4nj+1+3
j + 1

>
7

8

and thus any two Feldman words ak,j and ak,i are obtained from the extended

words bk,j and bk,i by eliminating at most 1
8 (Lk + Lk) symbols. Therefore we

can apply Lemma 4.6 with ρ = 1
8 and obtain that f(brk,i, b

s
k,j) ≥ f(ark,i, a

s
k,j)− 1

4 .

Using the result of Lemma 4.5, we can conclude that f(brk,i, b
s
k,j) ≥ 5

8 .
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4.3. Proofs of Propositions 4.3 and 4.4: properties of ergodic mea-

sures on (X,σ). We start with the proof of Proposition 4.3, which depends

on the following lemma:

Lemma 4.7: Let (X,σ, µ) be a measure preserving system and let {bm}∞m=1 be a

sequence of measurable sets satisfying µ(bm) > 1− 1
4m for all m ≥ 1. Then there

exists an ergodic measure ν, supported on X , which satisfies ν(bm) > 1 − 1
2m

for all m ≥ 1.

Proof. If µ is ergodic, then we are done by setting ν = µ. Otherwise recall that µ

has an ergodic decomposition, meaning there is a measurable map, x 0→ µx,

from X to the space of probability measures on X satisfying with the property

that µx is ergodic for µ-almost everywhere x ∈ X , and for any measurable

set M we have

µ(M) =

∫

X
µx(M)dµ(x).

For each m ≥ 1, define the measurable set

am :=
{
x ∈ X : µx(bm) > 1− 1

2m

}
.

Then for any fixed m, we have

1− 1

4m
< µ(bm) =

∫

X
µx(bm)dµ(x) =

∫

am

µx(bm)dµ(x) +

∫

X\am

µx(bm)dµ(x)

≤ µ(am) +
(
1− 1

2m

)
(1− µ(am)).

Therefore µ(am) > 1− 1
2m or, equivalently, µ(X \ am) < 1

2m . This means that

µ

( ∞⋂

m=1

am

)
= 1− µ

( ∞⋃

m=1

(X \ am)

)
≥ 1−

∞∑

m=1

µ(X \ am)

which gives us µ(
⋂∞

m=1 am) > 0. But for µ-almost every x ∈ X , the measure µx

is ergodic and so there exists x ∈
⋂∞

m=1 am such that µx is ergodic. Pick

such an x and define ν := µx. Then, since x ∈ am for all m ≥ 1, we have

ν(bm) = µx(bm) > 1− 1
2m .

We are now ready to prove Proposition 4.3, which we recall states that there

is an ergodic measure on X that gives large measure to the sets [[BF
m]] for

sufficiently large m.
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Proof of Proposition 4.3. By Lemma 4.7, it suffices to show that there is a σ-

invariant (but not necessarily ergodic) measure µ with the property that for

all m ≥ 1, we have

µ([[BF
m]]) > 1− 1

4m
.

Suppose the sequence {nk} grows sufficiently rapidly such that for all m ≥ 1,

(22)
∞∏

i=m

(
1− 1

ni

)
> 1− 1

4m+1
.

Fix an arbitrary m ≥ 1 and choose x ∈ X such that the restriction of x to

its first Lk symbols is exactly the word bk,1 for every k ≥ 1. Let µ be a weak*

accumulation point of measures of the form

1

Lk

Lk−1∑

i=0

δσix.

Note that this means there is a subsequence kj and a value J = J(m) such that

for all j ≥ J ,

(23)

∣∣∣∣µ([[B
F
m]])− 1

Lkj

Lkj−1∑

i=0

δσix([[BF
m]])

∣∣∣∣ <
1

4m+1
.

We show below that for all large k,

(24)
1

Lk

Lk−1∑

i=0

δσix([[BF
m]]) > 1− 1

4m+1
,

where as usual δ denotes the Dirac measure. Together the two inequalities (24)

and (23) yield that µ([[BF
m]]) > 1− 1

4m , as wanted.

It only remains to show that (24) holds. By the definition of x, it suffices to

count the number of Lm-sized subwords in bk,1 that lie in [[BF
m]]. Note that bk,1

can be thought of as the concatenation of blocks from Bm+1, meaning the

concatenation of blocks of the form cm+1 and bm+1,j , j = 1, . . . , nm+1. Thus,

we can obtain a lower bound on the number of these Lm-sized subwords in bk,1
by counting the number of Lm-sized subwords in bk,1 that are within one of the

Bm+1-words that lie in [[BF
m]]. This quantity is in turn bounded below by the

product of the interior count Im and the multiplicity count Mm, where Im is the

number of Lm-sized subwords within one bm+1,j-block that lie in [[BF
m]] and Mm

is the number of bm+1,j-blocks in bk,1. We count each of these separately.
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For the interior count Im, consider one bm+1,j-block and consider all of

the Lm-sized windows that lie in [[BF
m]]. Such a window yields a subword

that is not in [[BF
m]] exactly when it straddles two words of the form bm,i and

bm,i+1, bm,nm and bm,1, or bm,nm and cm. The number of such subwords is at

most Lmnmn2(nm+1+1)
m . Since there are exactly Lm+1 − (Lm − 1) subwords of

length Lm in any bm+1,j we have

Im ≥ Lm+1 − (Lm − 1)− Lmn2nm+1+3
m ≥ Lm+1 − Lm − Lmn2nm+1+3

m .

For the multiplicity count Mm, we again view bk,1 as the concatenation of

blocks from Bm+1 and count the number that are of the form bm+1,j for some j.

We do this in steps: first view bk,1 as the concatenation of blocks from Bk−1 and

note that there must be Lk/Lk−1 such blocks and all but one is of the form bk−1,i

for some i. Each of these bk−1,i, in turn, can be thought of as the concatenation

of blocks from Bk−2. There are Lk−1/Lk−2 such blocks and all but one is of the

form bk−2,i for some i. We continue in this vein, and after k − (m + 1) steps,

we have that the number of the Bm+1-blocks of the form bm+1,i for some i is

bounded below by

k∏

i=m+2

( Li

Li−1
− 1

)
=

k∏

i=m+2

Li

Li−1

(
1− Li−1

Li

)
.

Combining these two estimates, we have that

1

Lk

Lk−1∑

i=0

δσix([[BF
m]]) ≥ 1

Lk
(Lm+1−Lm−Lmn2nm+1+3

m )
k∏

i=m+2

Li

Li−1

(
1− Li−1

Li

)
.

Since Lk = Lk
Lm+1

Lm+1, we can rewrite the right hand side as

1

Lm+1
(Lm+1 − Lm − Lmn2nm+1+3

m )

∏k
i=m+2

Li
Li−1

(1− Li−1

Li
)

∏k
i=m+2

Li
Li−1

.

Then by (2) and (5), this last quantity is greater than or equal to

(
1− 1

nm

) k∏

i=m+2

(
1− 1

ni−1

)
=

k−1∏

i=m

(
1− 1

ni

)
≥

∞∏

i=m

(
1− 1

ni

)
,

which by condition (22) shows that 1
Lk

∑Lk−1
i=0 δσix([[BF

m]]) > 1− 1
4m+1 .

We end this section by proving Proposition 4.4 which assures us that all

ergodic measures on X for fixed k give approximately the same measure to sets

of the form [[bk,m]].
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Proof of Proposition 4.4. Fix ε > 0. Since nk → ∞, we can choose K ∈ N such

that for all k ≥ K we have 2
nk

< ε
4 . Choose such a k and consider any pair

bk,m, bk,j ∈ Bk. By the ergodicity of ξ, we can find a point x ∈ X such that

ξ([[bk,m]]) = lim
n→∞

1

n

n−1∑

i=0

1[[bk,m]](σ
ix)

and

ξ([[bk,j ]]) = lim
n→∞

1

n

n−1∑

i=0

1[[bk,j]](σ
ix).

We first show that it is enough to look at the frequency of the sets [[bk,m]]

and [[bk,j ]] in a certain subword of the point x.

We rewrite the difference:

|ξ([[bk,m]])− ξ([[bk,j ]])| ≤
∣∣∣∣ξ([[bk,m]])− 1

N

N−1∑

i=0

1[[bk,m]](σ
ix)

∣∣∣∣

+

∣∣∣∣ξ([[bk,j ]])−
1

N

N−1∑

i=0

1[[bk,j]](σ
ix)

∣∣∣∣

+

∣∣∣∣
1

N

N−1∑

i=0

1[[bk,m]](σ
ix)− 1

N

N−1∑

i=0

1[[bk,j ]](σ
ix)

∣∣∣∣.

Choosing N large enough, we can assume that the first two terms are each

bounded by ε
4 . The last term is the difference between the number of times σix

lands in the set [[bk,m]] as compared to [[bk,j ]], for i = 0 to N − 1. In other

words, this last term simply gives the difference between the number of Lk-

length-subblocks of x[0,N−1] that are in [[bk,m]] as compared to [[bk,j ]].

Since x can be written as a concatenation of words from Bk+1, there is a

subword z of x[0,N−1] whose length is at least N − 2Lk+1 that can be written

exactly as a concatenation of words from Bk+1. We restrict our attention to this

subword z, and let DN denote the difference between the number of Lk-length-

subblocks of z that are in [[bk,m]] as compared to [[bk,j ]]. Then choosing N such

that 2Lk+1

N < ε/4, we have

1

N

∣∣∣∣
N−1∑

i=0

1[[bk,m]](σ
ix) −

N−1∑

i=0

1[[bk,j ]](σ
ix)

∣∣∣∣ ≤ ε/4 +
1

N
DN .

We thus have

|ξ([[bk,m]])− ξ([[bk,j ]])| ≤ 3ε/4 +
1

N
DN .
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We are then left with showing that DN/N is sufficiently small. Consider the

subword z and divide it into disjoint subblocks of (k+ 1)-words from Bk+1. As

we look at subblocks of z of length Lk, these are either entirely contained in

one of these (k + 1)-words or partially overlapping two adjacent (k + 1)-words.

Let us first consider the Lk-length-subblocks of the second type, those over-

lapping two adjacent (k+1)-words in z. Since the number of ways an Lk-length-

subblock can overlap two specific (k + 1)-words is Lk − 1, and the number of

adjacent (k+1)-words in z is bounded by |z|/Lk+1 ≤ N/Lk+1, we can bound the

difference between these Lk-length-subblocks that are in [[bk,m]] as compared

to [[bk,j ]] by

Lk(N/Lk+1) = N(Lk/Lk+1) ≤ N(1/nk).

We next consider the Lk-length-subblocks of the first type, the ones entirely

contained in one of the (k + 1)-words from Bk+1. If this (k + 1)-word is an

extended Feldman word (see (3)), then we see that blocks of length Lk ei-

ther lie within a repeated k-word, b
n
2(nk+1+i)

k
k,% , or an overlap between two k-

words, bk,%bk,%+1. Note that the number of occurrences of [[bk,m]] and [[bk,j ]]

in b
n
2(nk+1+i)

k
k,% , as + ranges from 1 to nk, are exactly the same. Thus we can bound

the difference by the number of Lk-length-subblocks that overlap a subblock of

the form bk,%bk,%+1. This is bounded by Lknkn
2(nk+1−i+1)
k for one (k+1)-word.

In the case that the (k + 1)-word has the form of (4), then the only possible

occurrences of [[bk,m]] and [[bk,j ]] occur at the end, when ck+1 cycles through

the various bk,%. We can thus bound the difference between the occurrences of

these sets by Lknk, which is less than the bound used above.

Thus altogether we have that

DN ≤ N(1/nk) + Lknkn
2(nk+1−i+1)
k (number of (k + 1)-words in z).

Using that N ≥ (number of (k + 1)-words in z)Lk+1, we have

DN

N
≤ 1

nk
+

Lknkn
2(nk+1−i+1)
k

Lk+1
<

1

nk
+

1

nk
=

2

nk
.

It then follows that

|ξ([[bk,m]])− ξ([[bk,j ]])| ≤ ε.
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5. Loosely Bernoulli

In Section 4, we made use of the words bk,i to find a measure that yielded a

non-loosely Bernoulli system. Now we make use of the words ck to find a loosely

Bernoulli system. We begin with a result that is analogous to Proposition 4.3

in that it shows that there is an ergodic measure that gives large measure to

the sets [[cm]] for sufficiently large m.

Proposition 5.1: If the sequence {nk} grows sufficiently rapidly, then there

exists an ergodic measure ξ supported on X with the property that

(25) lim
m→∞

ξ([[cm]]) = 1.

Proof. This proof is very similar to the proof of Proposition 4.3. Suppose {nk}
satisfies (22). We begin by noting that, because of Lemma 4.7, it suffices to

show that there is a σ-invariant (but not necessarily ergodic) measure µ which

satisfies

µ([[cm]]) > 1− 1

4m
for all m = 1, 2, . . . .

We find µ by choosing y ∈ X such that the restriction of y to its first Lk symbols

is exactly the word ck for every k. Just as in Proposition 4.3, we need only show

that

(26)
1

Lk

Lk−1∑

i=0

δσiy([[cm]]) > 1− 1

4m+1
.

Thus it suffices to count the number of Lm-sized subwords of ck that lie

in [[cm]], which is bounded below by the number of Lm-sized subwords of ck
that lie both in [[cm]] and within one of the cm+1 words which makes up ck.

We bound this last quantity with the product of the interior count Im and the

multiplicity count Mm, where Im is the number of Lm-sized subwords within

one cm+1-block that lie in [[cm]] and Mm is the number of cm+1-blocks one has

when ck is thought of as the concatenation of blocks from Bm+1. We count each

of these separately.

For the interior count Im, consider one cm+1-block and consider all of the

Lm-sized windows that lie in [[cm]]. Given the structure of cm+1 (see (4)),

every Lm-sized subword that lies within the c(Lm+1/Lm)−nm
m portion of cm+1

lies in [[cm]]. There are Lm+1 − Lmnm − Lm such subwords and thus

Im ≥ Lm+1 − Lm(nm + 1).
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For the multiplicity count Mm, we again view ck as the concatenation of

blocks from Bm+1 and count the number that are equal to cm+1. We do this in

steps: first view ck as the concatenation of blocks from Bk−1 and note that there

must be Lk/Lk−1 such blocks and all but nk−1 are ck−1’s. Each of these ck−1,

in turn, can be thought of as the concatenation of blocks from Bk−2. There are

Lk−1/Lk−2 such blocks and all but nk−2 are ck−2’s. Continue in this vein, and

after k − (m+ 1) steps, we have that the number of the Bm+1-blocks that are

cm+1 is exactly

Mm =
( Lk

Lk−1
− nk−1

)(Lk−1

Lk−2
− nk−2

)
. . .

(Lm+2

Lm+1
− nm+1

)
.

Combining these two estimates, we have that 1
Lk

∑Lk−1
i=0 δσiy([[cm]]) is bounded

below by

1

Lk
(Lm+1 − Lm(nm + 1))

k∏

i=m+2

( Li

Li−1
− ni−1

)
.

Since Lk = Lk
Lm+1

Lm+1, we can write this as

1

Lm+1
(Lm+1−Lm(nm+1))

∏k
i=m+2(

Li
Li−1

−ni−1)
∏k

i=m+2
Li

Li−1

=
1

Lm+1
(Lm+1−Lm(nm+1))

k∏

i=m+2

(
1− ni−1

Li−1

Li

)
.

Since Li = Li−1(1 + n4ni+3
i−1 ), we have Li−1/Li = 1/(1 + n4ni+3

i−1 ) and thus

(ni−1Li−1)/Li ≤ 1/ni−1.

Similarly,

(nm + 1)Lm/Lm+1 ≤ (nm + 1)/n4nm+1+3
m ≤ 1/nm.

We thus have

1

Lk

Lk−1∑

i=0

δσiy([[cm]]) ≥
(
1− 1

nm

) k∏

i=m+2

(
1− 1

ni−1

)
.

It then follows from (22) that 1
Lk

∑Lk−1
i=0 δσiy([[cm]]) ≥ 1− 1

4m+1 .
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Theorem 5.2: If the sequence {nk} grows sufficiently rapidly, then X carries

a measure ξ such that (X,σ, ξ) is loosely Bernoulli.

Proof. Let {nk} be a sequence that satisfies (22). We apply Proposition 5.1 to

obtain a measure ξ satisfying (25).

Let K be large enough such that both 1
nK−1

< ε and ξ([[cK ]]) > 1 − ε.

Take k ≥ K. Let x, y ∈ LLk(X) be two words that occur as subwords of ckck,

so each is a word of length Lk which looks like the end of a ck concatenated

with the beginning of a ck.

Recall that ck is a concatenation of many copies of ck−1 followed by the

block bk−1,1, . . . , bk−1,nk−1 . Therefore, by eliminating at most Lk−1(nk−1 + 2)

indices from both x and y, we can remove any indices corresponding to the

extended Feldman words and any partial copies of ck−1. What is left now are

words of the form crk−1 and csk−1, where r and s could differ as different choices

of x and y might necessitate removal of a different number of indices. However,
Lk

Lk−1
−nk−1 − 2 ≤ r, s ≤ Lk

Lk−1
−nk−1, i.e. |r− s| ≤ 2. Thus by throwing out at

most another 2Lk−1 indices, we obtain identical strings.

This means that

f(x, y) ≤ 1

2Lk
(Lk−1(nk−1 + 2) + 2Lk−1) =

Lk−1(nk−1 + 2)

Lk
<

1

nk−1
< ε.

Taking W and N in Definition 2.2 to be the set [[cK ]] and our choice of K

respectively yields the result.

6. Proof of Theorem 1.1

We are now ready to prove our main result, showing that the system (X,σ) we

constructed carries both a loosely Bernoulli measure and a non-loosely Bernoulli

measure.

Proof of Theorem 1.1. We fix a non-decreasing sequence {pn}n∈N satisfying

lim inf
n→∞

pn
n

= ∞ and lim sup
n→∞

log pn
n

= 0.

We choose a sequence {nk}k≥0 satisfying all of the growth conditions needed to

apply our arguments. More precisely, we choose this sequence such that n0 ≥ 2

and nk → ∞, and the growth conditions corresponding to (10), (21) and (22)
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are all satisfied, meaning that

∞∏

k=0

nk

nk − 2
≤ 2;

∞∑

k=0

2

nk
≤ 1

32
;

∞∏

k=0

n4nk+1+3
k

n4nk+1+3
k + 1

>
7

8
;

∞∏

k=m

(
1− 1

nk

)
> 1− 1

4m+1
.

We remark that while it is possible to simplify the assumptions on the growth,

as some of these conditions imply others, for clarity in how they are used, we

keep each of them. As these are all growth conditions on the sequence, they are

clearly compatible. For example, the sequence nk = 4k+4 suffices.

We inductively modify the sequence {nk}k≥0, again only possibly increasing

the growth rate. Given nk, choose nk+1 > nk such that, in addition to the

growth conditions already satisfied (meaning conditions (10), (21) and (22)),

we also have that if m = Lkn
2nk+1+2
k , then

(27) pm > k(6 + 3nk)m.

Now construct a subshift X as described in Section 3.3. By Proposition 3.1,

Theorem 4.1, and Theorem 5.2 this subshift X is minimal, and there ex-

ist ν, ξ ∈ Me(X) such that (X,σ, ν) is not loosely Bernoulli and (X,σ, ξ) is

loosely Bernoulli.

We now check that X satisfies the complexity condition

(28) lim inf
n→∞

PX(n)

pn
= 0.

Fix k and consider the words of length m (= Lkn
2nk+1+2
k ). Since any

point x ∈ X can be written as a bi-infinite concatenation of elements of Bk+1,

we can count the number of words of length m by counting the number found

entirely within an element in Bk+1 or overlapping two concatenated elements

of Bk+1.

To make this count, recall the forms of the words bk+1,i and ck+1 given in (3)

and (4). The word bk+1,1 has each bk,j repeated exactly n2(1+nk+1)
k times, mean-

ing that this portion of bk+1,1 has length Lkn
2(1+nk+1)
k = m. The other bk+1,i

have even longer lengths of repeated k-words.



296 V. CYR, A, JOHNSON, B. KRA AND A. SAHİN Isr. J. Math.

We first count the number of words of length m that are subwords of

some bk+1,i. Note that for each choice of i, one of the following occurs:

(i) The word of length m is a subword of a repeated k-word b
n
2(i+nk+1)

k
k,j

for j = 1, . . . , nk. The repetition of bk,j means the number of distinct

words of length m of this type for a specific j is just the length of bk,j
and thus altogether we have Lknk number of such words of length m.

(ii) The word of length m overlaps two consecutive repeated k-words and

thus is a subword of b
n
2(i+nk+1)

k
k,j b

n
2(i+nk+1)

k
k,j+1 . For a specific j, we can count

the number of distinct words of length m by counting the number of

locations within the word at which it switches from a bk,j to a bk,j+1:

this number is m. Since j ranges from 1 to nk, this yields a total of

mnk distinct words.

(iii) The word of length m lies towards the end of bk+1,i and thus, for all i,

is a subword of b
n
2(i+nk+1)

k
k,nk

ck. The number of distinct words of length m

can be counted by simply noting the number of places at which ck can

begin in the word, which is Lk.

To count the number of words of length m that are subwords of ck+1, note that

one of two situations occur:

(i) The word of length m is a subword of the repeated ck’s. There are Lk

distinct such subwords.

(ii) The word of length m lies towards the end of ck+1 and thus is a subword

of ck · · · ckbk,1bk,2 · · · bk,nk . We can count this by counting the number

of locations within the word at which it switches from the ck to bk,1,

which is nkLk.

Thus the number of words of length m that are subwords of some element Bk+1

is 2Lknk +mnk + 2Lk.

We next count the number of words of lengthm that overlap two concatenated

elements of Bk+1. There are four possible combinations for such concatenations:

(i) bk+1,ibk+1,j , (ii) ck+1bk+1,j , (iii) bk+1,jck+1, (iv) ck+1ck+1.

To count the number of combinations for the first situation, we note that for all

choices of i and j, the word of lengthm is a subword of bk,nk · · · bk,nkckbk,1· · · bk,1.
We count the number of distinct words of length m by noting that there are

exactly m locations where we can see the beginning of ck within it, which leads
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to a count of m distinct words. The three other possible combinations can be

counted in a similar manner, with each yielding at most m distinct words. Thus

we obtain a total of 4m words of this type.

Combining these counts and using that Lk ≤ m, we have that

PX(m) ≤ m(3nk + 6).

But by (27), we have that mk(3nk + 6) < pm. Therefore PX(m) ≤ pm/k. But

recall that m = Lkn
2nk+1+2
k so this shows that there is a sequence, indexed

by k, showing that (28) is satisfied.

Finally, to see that (X,σ) has zero topological entropy note that by (28)

there are infinitely many n for which PX(n) ≤ pn. Combining this fact with

the subexponential growth condition on the sequence {pn} given in (1), we have

that

lim inf
n→∞

logPX(n)

n
≤ lim sup

n→∞

log pn
n

= 0.

Since the limit defining topological entropy exists, it follows that

htop(X) = lim
n→∞

logPX(n)

n
= lim inf

n→∞

logPX(n)

n
= 0.

Appendix A. Ferenczi’s theorem on the rank of systems of linear

complexity

We would like to conclude from our work here that a minimal system that

has a non-loosely Bernoulli measure must have lim infn→∞ PX(n)/n = ∞.

If we knew that a minimal subshift whose complexity function satisfies

lim infn→∞ PX(n)/n < ∞ has finite rank, then as discussed previously we would

have that all measures supported on such a subshift are loosely Bernoulli and

our conclusion would follow. While Ferenczi [7] shows that a minimal subshift

whose complexity function satisfies PX(n) = O(n) has finite rank, essentially

the same proof can be used to show that the result holds under the slightly

weaker hypothesis lim infn→∞ PX(n)/n < ∞. As we were not able to find the

lim inf version of this result in the literature, for completeness we include the

proof which demonstrates how to use Ferenczi’s argument to get this result.
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First we recall what it means for a system to have finite rank, taking the

definition directly from [8, Definition 8]:

Definition: A subshift (X,σ) and invariant measure µ has rank at most r if for

every partition P = (A1, A2, . . . , A|P |) and every ε > 0, there exist r many sub-

sets Fi ⊆ X , r many positive integers hi, and a partition P ′=(B1, B2, . . . , B|P ′|)

such that

(1) all sets of the form T kFi, where 1 ≤ i ≤ r and 0 ≤ k < hi, are pairwise

disjoint;

(2)

d(P, P ′) := min

{max{|P |,|P ′|}∑

i=1

µ(Ai2Bσ(i)) : σ ∈ Sym(max{|P |, |P ′|})
}

< ε

where P or P ′ have been padded with null sets to give them the same

number of elements;

(3) the elements of P ′ can be expressed as unions of elements of the partition

consisting of all sets of the form T kFi, where 1 ≤ i ≤ r and 0 ≤ k < hi,

as well as X \
⋃

i

⋃
k T

kFi.

The subshift (X,σ) has finite rank if it has rank at most r for some r ∈ N.

While the following lemma is slightly stronger than [7, Proposition 4], it

readily follows from the proof given there. For completeness we include the

argument.

Lemma: Let (X,σ) be a subshift and let µ be an invariant measure supported

on X . If

(29) lim inf
n→∞

PX(n)

n
< ∞,

then (X,σ, µ) has finite rank.

Proof. By (29), there is an integer R and an increasing sequence {nj}∞j=1 such

that

(30) PX(nj + 1)− PX(nj) ≤ R

for all j ≥ 1. By (30), there are at most R many elements of Lnj+1(X) whose

leftmost subword of length nj is a word that fails to extend uniquely to its right.

Passing to a subsequence if necessary, we can assume there exists r ≤ R such

that for all j there are exactly r many elements of Lnj (X) that appear as the
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rightmost subword of length nj in a word in Lnj+1(X) whose leftmost subword

of length nj fails to extend uniquely to its right. For each j enumerate these

words as

F j
1 , F

j
2 , . . . , F

j
r ∈ Lnj (X).

Now for each 1 ≤ k ≤ r let hj
k ∈ N be the smallest positive integer for which

there exists 1 ≤ i ≤ r such that [F j
i ] ∩ σhj

k [F j
k ] %= ∅.

Note that all sets of the form σk[F j
i ], where 1 ≤ i ≤ r and 0 ≤ k < hj

i , are

pairwise disjoint by definition of hj
i . (These sets are actually a partition of X

and there is no need to add the complement of their union.) Also note that

the elements of the partition Qj of X into cylinder sets of length nj are unions

of elements of the partition given by sets of the form σk[F j
i ], where 1 ≤ i ≤ r

and 0 ≤ k < hj
i , meaning that Qj is a coarser partition. Finally, note that

any partition P of X can be approximated arbitrarily well by partitions coarser

than the partitions into cylinder sets of increasing length. Therefore for any

P and any ε > 0 there exists j such that some partition, P ′, coarser than Qj

satisfies d(P, P ′) < ε/2 and such that

d(Q, {σk[F j
i ] : 1 ≤ i ≤ r, 0 ≤ k < hj

i}) < ε/2.

Thus (X,σ, µ) has rank at most r, and in particular it has finite rank.
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