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Abstract

In prior work (Chowdhury, M.A.Z., Rice, T.E. & Ochlschlaeger, M.A., Appl. Phys. B 127, 34 (2021)), we found support
vector machines (SVM) to be adept at learning patterns from spectral data within a THz frequency range (7.33—11 cm™})
for the purposes of gas-phase speciation. Here, we implement SVM, in a one-versus-rest framework, for the classification
of infrared spectra in a broad frequency range (400—4000 cm ™! or 2.5-25 pm) for 34 gas-phase compounds at pressures
ranging from 0.1 to 1 atm and for absorber mole fractions from 1 ppm to 1 (pure gases). Within the SVM framework, hyper-
parameters for the classifier were optimized to choose an optimum kernel for the SVM and acceptable soft margin constant
to minimize misclassifications. The framework is tested using cross-validation strategies to determine the dependence of
performance on variation in pressure and absorber concentration. Validation was carried out by considering experimental
absorption spectra, from the literature, in three random trials, where the combined experimental classification accuracy was
greater than 90%. A simulated spectral dataset containing artificial noise was used to further evaluate the SVM classifier in
studies where the frequency range and resolution were varied, to better interrogate the capabilities of the SVM framework.

1 Introduction

A basic problem in spectroscopy is the identification of
an unknown substance(s) from a measured spectrum. The
problem poses several complexities but at its fundamen-
tal level requires the matching of features or descriptors,
that characterize the unknown spectrum, with a previously
measured and identified spectrum. These descriptors could
be frequency range, maximum absorbance peak, number of
peaks, spacing between successive peaks, frequency loca-
tion of peaks, and others. Manual matching such descrip-
tors can be tedious, dificult, and unreliable. Therefore, an
automated framework to consistently and accurately classify
unknown spectra is desired. A successful framework for the
automated classification of spectra could be much faster than
human manual matching and is expected to result in fewer
misclassifications. Additionally, such a framework should
be extendable to a variety of different spectroscopy types
and frequency ranges.
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Supervised machine learning (ML) algorithms, are
appropriate tools for automated spectral classification, as
they learn patterns from training observations belonging to
different categories or classes and can be used to determine
the category or class of a new observation, based on the
learned pattern. Many ML algorithms have been reported
in the literature for pattern matching and in our prior work,
we have evaluated the capabilities of several popular classi-
fiers for the identification of absorption spectra in the THz
region, that result from rotational transitions [1]. The clas-
sifiers evaluated in that study were decision trees [2, 3], ran-
dom forests [4, 5], boosted decision tress and random forests
[6, 7], k-nearest neighbors [8, 9], fully connected feed for-
ward neural networks (i.e., multilayer perceptrons [10-13]),
and support vector machines (SVMs) [14, 15]. While these
methods are well established, their prior application in spec-
troscopy and/or gas sensing is relatively limited, particularly
in regards to absorption spectroscopy.

SVM is an established method for pattern recognition,
classification, and regression. Developed using statistical
learning theory, SVMs recognize patterns by constructing
a data-separating decision line or surface, mathematically
known as a n-dimensional hyperplane, to establish a deci-
sion rule. The SVM hyperplane achieves optimal separation
between training observations belonging to two classes, in
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our cases molecules, establishing the widest possible dis-
tances between those classes [15-20]. Since SVMs are by
design a binary classifier, capable of separating two classes,
they are extended to multi-class classification problems
using the one-versus-rest (OVR) strategy [21, 22]. In our
prior work, we found that OVR-SVM classifier provided
the highest classification accuracy for identification of
THz absorption spectra, relative to the other ML methods
described above [1].

SVMs offer computational advantages, particularly
for high-dimensional and large datasets. Instead of using
all training observation, SVMs only use the borderline or
marginal observations (support vectors) to construct deci-
sion rules. Therefore, with the introduction of new training
observations, the decision boundary remains unchanged,
unless those new training data are at the margins and modify
the support vectors. Hence, once the decision boundary is
determined from training observations, storing the training
observations is not necessary and retraining is only required
if new training observation alter the support vectors.

In the infrared (IR) frequency region, vibrationally active
molecules have unique absorbance spectra owing to stretch-
ing, bending, or twisting oscillations [23, 24]. IR absorp-
tion spectra can be quite complex for polyatomic molecules,
due to numerous vibrational modes and coupled rotation
and vibration. The presence of specific functional groups
within a molecule also uniquely contributes to the shape or
pattern present in an infrared spectrum. Often functional
groups (e.g., hydroxyl, carboxyl, amine) can be identified
from a specific spectral signature within a sub-region of the
IR, called the functional group region. The IR spectra of
a molecule are often divided between a functional group
region (1500-4000 cm '), indicating the presence of these
specific functional groups, and a fingerprinting region
(4001500 cm™ "), containing a large number of peaks unique
to a molecule. Manually matching both of these regions to
reference spectra from curated IR databases help provide
an understanding of the structure of a molecule. Although
IR spectroscopy alone is rarely used to identify molecular
structure, it is often used in conjunction with other methods
such as nuclear magnetic resonance (NMR) spectroscopy.
Such manual effort in matching spectra is prone to errors and
motivates an automated ML pattern recognition framework
to reduce misclassifications and allow rapid processing of
vast numbers of IR spectra.

ML methods, particularly, neural networks have been
implemented for classification of gas-phase species. Both
fully connected feedforward neural networks, also known as
multi-layer perceptrons and deep convolutional neural net-
works are capable of recognizing observations indicating
the presence of gas-phase species [25, 26], however, at high
computational training costs required for the optimization
of thousands or millions of parameter. K-nearest neighbors,
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decision trees, and ensemble methods, with and without
boosting, have also been applied to recognize patterns in gas
sensor data for speciation [27-30]. Shortcomings of k-near-
est neighbors include significant memory requirements and
decision trees and ensemble methods are more apt to overfit
training data, than other ML methods [11, 31].

SVMs have some advantages over the aforementioned
methods. First, SVMs find the optimum or best decision
boundary (hyperplane in n-dimensional space) to distin-
guish between classes [2, 14, 15, 20]. The hyperplane is
constructed only using the support vectors, thus reducing
memory requirements and allowing for fast retraining, com-
pared to deep neural networks. Moreover, the number of
parameters to be optimized within SVMs are fewer com-
pared to other machine learning methods. SVMs can also
use kernel functions to transform features in a non-linear
feature space to a higher dimension for better classification
performance. A regularization parameter of a SVM, the soft
margin constant, also allows for a degree of user control over
the number of misclassifications allowed by a SVM clas-
sifier. Furthermore, SVMs have been reported to identify
gases from data generated by different sensor types, such as
electronic noses [10, 11, 32, 33] and microelectronics-based
THz spectrometers [34, 35].

The flexibility and advantages offered by SVM, coupled
with the unique fingerprinting opportunities in the IR, moti-
vates the present construction of a SVM-based framework
for classification of gas-phase IR absorption spectra. The
fast training times afforded by SVM also allow for the train-
ing of our framework over different frequency ranges and
resolutions, depending on the availability of spectral patterns
present within the IR and experimental data.

In this study, we constructed a SVM classifier to inves-
tigate its ability to recognize IR spectra in the frequency
region from 400 to 4000 cm™'. The classifier is based on a
one-versus-rest (OVR) implementation of the SVM method
and can be trained overs arbitrary frequency range, resolu-
tion, and with arbitrary number of compounds in the train-
ing set, where data are available. The OVR strategy allows
for multiclass classification for identification of multiple
compounds. The hyperparameters of the constructed SVM
classifier were determined by a grid search cross-validation
using a simulated dataset consisting of 1428 absorption
spectra in a 70-30% training—testing split. A number of other
datasets were prepared from simulations and experiments to
evaluate the constructed SVM classifier and assess its capa-
bilities. In total, absorption spectra of 34 compounds were
simulated from fundamental spectroscopic parameters found
in the HITRAN database [36]. K-fold cross-validations were
performed for k=10 and 7, to reveal the influence of pres-
sure and absorber gas concentration on classifier perfor-
mance, respectively.
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2 Methodology
2.1 Problem overview and ML framework

The fundamental problem posed is the identification, or clas-
sification, of a molecule from two-dimensional data, pre-
sented in the form of absorption as a function of frequency,
known as an absorption spectrum. In present classification
problem, the spectra associated with each molecule, irre-
spective of their point of origin (i.e., from simulation or
experiment), can be used as training data to construct a ML
black box classifier algorithm, as schematically shown in
Fig. 1. Data are preprocessed and then used to train, test,
and validate a ML model that can identify associated labels.
From Fig. 1, it is apparent that once the ML black box is
trained, it alone sufices for making predictions directly from
data without the need of intermittent preprocessing and clas-
sifier building steps. However, the stand-alone ML black box
algorithm not only contains a trained classifier but it also
contains the additional preprocessing steps, such as loading
the data, feature extraction and check, resampling, etc.

The process flow of the ML approach used in the present
study is depicted in Fig. 2. Absorption spectra are simulated
and supplied as a dataset. A frequency region of interest is
chosen which allows for feature extraction, where the num-
ber of features is defined. In the present study, features are
used to construct a SVM-based classification model, as rep-
resented by a generic equation given below,

y = flx) (1)
y = g(x) )
X = X1, X, cee ven ot » XN (3)
/ D N
—> Preprocessing
Data Classifier Training,
(Simulations, Testing, Metrics Predictions
Experiments) Assessment
ML Black box
(Trained Classifier)

Fig.1 Schematic representation of a generic ML black box approach
to make predictions from data

where x is the feature vector consisting of a number of fea-
tures and N is the total number of features. The function f,
the target function, represents the true relationship between
the features and the molecule integer label index y. The func-
tion g is the hypothesis function and is an approximation of
the target function f. Hence, a ML algorithm develops the
function g by learning patterns in the data to predict label
index y.

For the absorption spectra considered in the present
study, the number of features is equal to the number of
sampled points at frequency locations. For example, in our
400-4000 cm™! frequency range, at a resolution of 1 cm ™!
there are 3601 features. The features themselves are defined
as the absorbance values at each frequency, for the condi-
tions of the spectral simulation or experiment.

While not all features are equally important, and some
could perhaps be excluded from consideration, due to the
computational power available with modern consumer-grade
processors, excluding such features does not provide any sig-
nificant computational- or time-saving benefits. Moreover,
while exclusion of features may be beneficial for identifica-
tion of one molecule, it can often be disadvantageous for
identification of another and sometimes that disadvantage is
not easily detected. Hence, we have considered all available
features with the exception of negligibly small absorbance
values and compounds with negligible absorption within a
frequency range under consideration are excluded from the
training set.

Once the features for a simulated spectral dataset are
established, the data are split into a training and a testing
set, whose proportion may vary. In most cases, we used a
70-30% train—test split; however, other proportions have
also been used to assess the performance of the model as
specified in Table 1. Using the training and the testing data-
set, the SVM classifier is constructed, where the hyperpa-
rameters (parameters that control how the model learns) are
optimized using an empirical grid search cross-validation
algorithm (GridSearchCV). Once the hyperparameters are
optimized, model parameters (weights, w and bias, b) are
determined from the training spectra. The GridSearchCV
optimization process, adjusts the hyperparameters until a
specified threshold for testing accuracy is met. For spectra
over the broad frequency range of 400-4000 cm ™!, we found
that 95% accuracy to be an acceptable threshold.

Once the hyperparameters were established and the SVM
model trained, we treat the trained classifier as a machine
learning black box, where the black box contains all the
preprocessing steps, including resampling, necessary for the
classifier to identify a given spectrum. In the present study,
both simulated spectra, with and without artificial superim-
posed noise, and experimental spectra were used for testing
and validation. In testing and validation studies, the classifier
performance was determined using the common metrics of
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Fig.2 Flowchart depicting ML
implementation for prediction
of molecule label
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accuracy, precision, recall, and F1 score. Additionally, con-
fusion matrices provide visual representation of classifier
performance and precision-recall curves are also helpful for
understanding classifier performance.

2.2 Datasets

A number of datasets were used in this study for training,
testing, validation, and determination of hyperparameters
for the classifier training, see Table 1. Datasets A-D consist
of simulated spectra for all 34 compounds (Table 2), where
all simulations were carried out at 297 K and 100 cm path-
length. Dataset A consists of noise-free simulated spectra
for 0.1, 0.3,0.5,0.7, 0.9, and 1.0 atm and at 1 ppm, 10 ppm,
100 ppm, 1000 ppm, 1%, 10%, and 100% of each absorber
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dilute in N,. The dataset A simulations were carried out at
a range of frequency of 400-4000 cm ™! and at three reso-
lutions (0.01, 0.1, and 1 cm™!). Dataset B is the same as
dataset A but with each spectra containing random artificial
sinusoidal noise superimposed on those. In dataset A and B,
each compound is equally represented with 42 spectra, with
no imbalance; hence, each dataset consists of 1428 spectra
per resolution. Dataset A was used for training and testing,
in 70-30% training—testing split, hyperparameter optimiza-
tion, and performance assessment. Dataset B was used for
performance assessment under noisy spectral conditions.
Dataset C was designed to examine the influence of pres-
sure variation on the performance of the classifier. It con-
tains 340 simulated noise-free spectra, with ten spectra per
compound (no imbalance). The total pressure is varied from
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Table 1 Descriptions of the datasets used for training, testing, and validation of the SVM classifier

Dataset  Description Purpose
A - Simulated, noise-free - Classifier training and performance assessment (70%-30%
- 34 compounds train-test)
- 42 spectra/compound at each resolution - Hyperparameter optimization
- frequency range: 400-4000 cm ™!
- resolution: 0.01, 0.1, and 1 cm™!
- conditions: 297 K; 0.1, 0.3, 0.5, 0.7, 0.9, 1.0 atm; 1 ppm,
10 ppm, 100 ppm, 1000 ppm, 1%, 10%, 100% absorber dilute in
N,; pathlength 100 cm
- 4284 total spectra
B - Dataset A with added random sinusoidal noise superimposed Performance assessment (validation) under noisy conditions

- 4284 total spectra

C - Simulated, noise-free
- 34 compounds
- 10 spectra/compound at each resolution
- frequency range: 400-4000 cm !
- resolution: 1 cm™!
- conditions: 297 K; 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
1.0 atm; 100% absorber; pathlength 100 cm
- 340 total spectra

D - Simulated, noise-free
- 34 compounds
- 7 spectra/compound at each resolution
- frequency range: 400-4000 cm ™!
- resolution: 1 cm™!

Tenfold cross-validation to determine influence of pressure

Sevenfold cross-validation to determine influence of absorber
concentration

- conditions: 297 K; 1.0 atm; 1 ppm, 10 ppm, 100 ppm, 1000 ppm,

1%, 10%, 100% absorber dilute in N,; pathlength 100 cm
- 238 total spectra

E - 20 room temperature experimental spectra from NIST [38, 39]

and PNNL [40]

Experimental validation

0.1 to 1.0 atm, in steps of 0.1 atm. The absorber concentra-
tion is fixed at 100% (undiluted) and the frequency resolu-
tion fixed at 1 cm ™! for the 400-4000 cm ™! frequency range.
Dataset C was used for ten-fold cross-validation to investi-
gate the classifier performance due to pressure broadening.

Dataset D was designed to examine the influence of
absorber concentration on the performance of the classifier.
It contains 238 simulated noise-free spectra, with 7 spectra
per compound (no imbalance). The absorber concentration
was varied from 1 ppm, 10 ppm, 100 ppm, 1000 ppm, 1%,
10%, to 100%. The total pressure was fixed at 1.0 atm and the
frequency resolution fixed at 1 cm ™! for the 400—4000 cm !
frequency range. Dataset D was used for seven-fold cross-
validation to investigate the classifier performance with
variation in absorber concentration or absorption signal
intensity.

Dataset E consists of 20 experimental spectra, 1 for each
molecule for which data was available. These compounds
are listed in Table 2. Data were not available for all 34 simu-
lated compounds across such a large frequency range.

All training—testing, hyperparameter optimization, cross-
validations in pressure and concentration space, and noise
investigations were performed with balanced datasets, with
no bias towards any particular compound. For assessing

classifier performance on experimental spectra, this was
not possible, because only 20 experimental spectra were
available. The counts of spectra, mean-normalized maxi-
mum absorbance and mean-normalized absorbance plots in
the supplementary material for data analytics demonstrate
that the different datasets are suficiently unique and there is
good variability between the training and testing sets.

2.2.1 Simulated spectra

Simulated spectra were generated using the HITRAN spec-
troscopy database [36] and associated HITRAN Application
Programming Interface (HAPI) code for spectral simulations
[37]. Kochanov et. al. describes the absorbance spectra gen-
eration using HAPI in detail [37]. The HITRAN database
contains data for 51 molecules. Here, we have considered
a subset of 34 molecules out of the 51 molecules listed in
HITRAN and presented their class labels, molecular for-
mula and availability of experimental spectra in Table 2.
Representative absorption spectra for these molecules are
presented in Fig. 3, where it is observed that all molecules
have a distinct spectral shape, i.e., “chemical fingerprint”,
in the 400-4000 cm ™! frequency region. The label indices
given in Table 2 are also referred to as global label indices
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Table 2 List of compounds, labels, and sources of validation spectral
data

Label Index HITRANID Name Formula Validation
Experiment
0 1 Water H,0 NIST
1 2 Carbon dioxide  CO, NIST
2 3 Ozone (02 NIST
3 4 Nitrous oxide N,O NIST
4 5 Carbon mon- CO NIST
oxide
5 6 Methane CH, NIST
6 8 Nitric oxide NO NIST
7 Sulfur dioxide SO, NIST
8 10 Nitrogen dioxide NO,
9 11 Ammonia NH; NIST
10 12 Nitric acid HNO;
11 14 Hydroflouric HF
acid
12 15 Hydrochloric HCI PNNL
acid
13 16 Hydrobromic HBr NIST
acid
14 17 Hydroiodic acid HI
15 19 Carbonyl Sulfide OCS NIST
16 20 Formaldehyde @~ H,CO  NIST
17 21 Hypochlorous HOCI
acid
18 23 Hydrogen cya-  HCN
nide
19 24 Chloromethane ~ CH;Cl1 ~ NIST
20 25 Hydrogen per-  H,0,
oxide
21 26 Acetylene C,H, NIST
22 27 Ethane C,Hg NIST
23 28 Phosphine PH;
24 31 Hydrogen sulfide H,S NIST
25 32 Formic acid HCOOH
26 38 Ethylene C,H, NIST
27 39 Methanol CH;0H
28 40 Methyl Bromide CH;Br  NIST
29 41 Acetonitrile CH;CN
30 43 Diacetylene C,H,
31 44 Cyanoacetylene HC;N NIST
32 47 Sulfur trioxide ~ SO;
33 49 Phosgene COCl,

which is required for the one-vs-rest implementation of the
SVM classifier, as described below.

Data generation, the first step in Fig. 2, involves the
simulation of spectra at a range of pressure and absorber
concentration for fixed temperature (297 K), pathlength
(100 cm), and multiple frequency resolutions (0.01, 0.1, and
1 cm™!), where the HITRAN database provides the absorber

13

gas name, line strengths, ground state energies, and pres-
sure broadening coeficients needed to carry out the spectral
simulations.

2.2.2 Experimental spectra for validation

The experimental data used in the study are mostly from
the National Institute of Standards and Technology (NIST)
database [38, 39], with the exception of the spectra for HCI
which comes from the Pacific Northwest National Labora-
tory (PNNL) database [40]. See Table 2 for compounds,
labels, and sources of experimental data used for validation.
Table 2 also lists the integer index (class labels in code) for
all 34 molecules and specifically distinguishes molecules for
which experimental data are available.

2.3 Support vector machine method

The support vector machine (SVM) method has been devel-
oped by Vapnik and colleagues based on statistical learning
theory [14, 16, 41-43]. SVMs are well known for classifying
texts and images [44, 45] and has also found applications in
remote sensing [46] and various other fields [47-52].

Once the features are established, SVMs separate data
by establishing a decision boundary, that distinguishes two
different classes (in our case molecules). SVMs find an opti-
mum decision boundary (mathematically an optimum hyper-
plane in n-dimensional space), that separates two classes or
categories or molecules with the largest possible margin.
If the optimum hyperplane is constructed such that there is
no misclassification for training data, it is known as a hard
margin classifier. Otherwise, it is known as a soft margin
classifier. As an example, in Fig. 4, a hard margin decision
boundary (line in two-dimensional feature space) is shown
separating the water and hydrogen sulfide molecules. Vec-
tors in the training spectra that are closest to the decision
boundary are known as support vectors and identified in the
Fig. 4 by individual numerals.

Here, each spectrum is represented by a number of fea-
tures in vector @ Bf length N, where the length is based on
the frequency range and resolution of the spectrum. The
SVM method is implemented in such a way that it can oper-
ate within any frequency range and resolution. The decision
boundary separating the support vectors is established with
the form

) 2 c, “4)

where (P Plis an unlabeled feature veotor, @ B ®presents a
weight vector containing weights and c is an arbitrary scaler,
neces-sary to establish the hyperplane. The values of
weights and the scaler are determined from training.
Equation 4 defines a decision rule for the identification of the
“positive” class (in
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13



161 Page80f19 M. A.Z. Chowdhury et al.
0.015 = - = Decision boundary (optimal straight line)
- —— Line through support vectors 1 & 2
—— Line through support vector 3
@ H20
0.012 =— e =
~ (o]
o 0.009 —
'
3 ©
L
]
; I A
W
0.006 =
ug |W,
——————_—)— P
w
0.003 = -
v o A I
0.000 I I
-0.0005 0.0000 0.0005 0.0010 0.0015
Feature 1
P=0.9,T=297.0,PPM=1.0 P=1.0,T=297.0,PPM=1.0
Wavelength (um) Wavelength (um)
25 20 15 10 5 25 20 15 10 5
9 0.002 +—— L ' ' Y 0.002 —1 L ' L
: © Featurel : © Featurel
.g O Feature2 -g © Feature2
2 0.001 2 0.001
a 3 |
Q 0.000 —Li—y A T I g 0.000 —Lirg l T T
800 1600 2400 3200 4000 800 1600 2400 3200 4000
Frequency, v (cm™1) Frequency, v (cm™1)
P=0.9,T=297.0,PPM=10000.0 P=1.0,T=297.0,PPM=10000.0
Wavelength (um) Wavelength (um)

25 20 15 10 5 25 20 15 10 5
§ 0.2 — | | | | g 0.2 = | | | |
s o s -

2 0.1 2 0.1
a 2

] ! L ollh, _ i | ok,

— R | ) T | - R T . T T
800 1600 2400 3200 4000 800 1600 2400 3200 4000

Frequency, v (cm™1)

Fig. 4 A SVM decision boundary for distinguishing water and hydro-
gen sulfide based on two features defined as the absorbance at fre-
quencies of 1507 and 3676 cm™!. For this example, containing only
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four data points in 2-D feature space, the resulting boundary is a
hard-margin decision boundary. The units of pressure and tempera-
ture are atm and K, respectively
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the case shown in Fig. 4, H20 is the positive class and H,S
is the “negative” class). The decision rule can be simplified
as follows,

WEU+ b= 0, (5)

where b = -c.

Since b and c are arbitrary, constraints can be imposed as
follows, for a two-component vector as shown in the Fig. 4,

WOEE B ED2 1 (6)
WERE B BB< -1, (N

where K|, P @rf# P P @@ the support vectors belonging in
the positive and the negative classes, respectively.

For a supervised problem, each vector has an associated
label index, y;. For a binary problem, a simple choice for
label indices are,

y; = +1for + samples (8)
y; = —1for — samples 9)
The width, Wp,, between support vectors is given by,

WD = B &E
o (10)

E
where Eqs. 6, 7, a 10 allow the width to be simplified as
follows, ]

2

WD = —
(11)
Since gVMs find the optimum straight line separating

classes, the width, W, between support vectors should be
maximized. Hence, 228 Iéhould be minimized and there

should be no intermediate data points between support vec-
tors. Subject to the constraints in Eqs. 6 and 7 maximizing

2
the width is equivalent to minimizing % Wl
2

max _7{ - min EI% min 2@ w (12)

w
Therefore, the following quadratic problem is posed sub-
ject to the constraint of Eqs. 6 and 7,

1 2
L= EE izli['i}i PIERR), B4 b - 1]. (13)

Equation 13 is called the primal form of support vector

machines, where ; are Lagrange multipliers and m is the

number of training spectra. It can be solved using training
spectra via the Lagrange multipliers, resulting in:

f@"ﬁhfﬂyi 80> w=_ By (14)
?lw ©

'

L

—= =0 (15)

Next, @ Bl@hd b are substituted into the primal form to
obtain the dual form which allows the use kernel functions.
The dual form is given by:

m m

iYi¥Xir Xjr (16)
i=1 j=1

where x;, x; is known as the kernel function and maps the
features to a higher dimensional space which helps to
classify linearly inseparable features. The advantage of
using kernels is that SVM only calculates the relationship
between pairs of spectra, as if they were transformed to a
higher dimensional space, instead of performing the actual
transformation. This process is known as the kernel trick
[2, 15, 20, 53].
The dual form in Eq. 16 is solved under the constraint
of Eq. 15 and the Lagrange multipliers obey the following
two criteria:

i20 and ;<C,

(17)

where C is a regularization parameter that controls the num-
ber of misclassifications allowed. In the context of SVMs,
C is called soft margin constant. Larger values of C reduce
misclassification.

The original kernel function in the dual form is the linear
kernel given by:
Xiy X; = X; B X;. (18)

Other choices of kernel functions, include, the radial
basis function kernel (RBF) and the d-ordered polynomial
kernel given, respectively, by:

2
Xi=Xj 2

X;, Xj = e =@ T X (19)
XilXj = (X,’Xj+ k)d, (20)

where is a hyperparameter that relates sensitivity to
variance in the feature vectors of the training spectra,
= 1 > 0, and k is any arbitrary scaler. In Scikit-learn
impléentation of SVM, the value for gamma can be speci-
fied and was optimized here.

The dual form is solved via convex optimization to yield
non-zero solutions for the Lagrange multipliers. These are

known as support vectors, S. From the number of support
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vectors, N, unlabeled features (unknown spectra) can be
identified by modifying the constraints as follows,

BE,y,2 (21)
w i=1 u
b= &Tisyi - ijiji Xj' (22)

In this work, we assessed the performance of three dif-
ferent kernels, and ultimately chose to implement the linear
kernel, since it offered the highest score in testing.

2.4 Implementation of SVM

In Fig. 4, we illustrate how a SVM classifier can be used to
distinguish the spectra for water (negative class) and hydro-
gen sulfide (positive class). In two dimensions (Fig. 4), the
hyperplane is simply a line. In the example, feature 1 is the
absorbance at a frequency of 1507 cm™! and feature 2 is the
absorbance at a frequency of 3676 cm ™!, where these two
features were extracted from four training spectra for water
and hydrogen sulfide.

By examining Fig. 4, it is apparent that an infinite number
of straight lines will separate the two water and two hydro-
gen sulfide data points. The support vectors are the points
nearest to the decision boundary. It is clear that any of the
lines through either support vectors 1 and 2 or support vector
3 will separate the data points and classify the molecules.
However, this scenario would leave the support vector itself
misclassified, since the decision boundary passes through it.
Moreover, it is evident that, for a decision boundary passing
through a support vector, any data points near that decision
would have higher likelihood of misclassification.

The optimal straight line divides the region equally
between the lines through the support vectors, thus mini-
mizing misclassification. Using the primal form, described
in the previous section, with a linear kernel, we can find this
optimal line separating the four data points at equal distances
from the support vectors. This particular decision bound-
ary clearly separates the two compounds/classes/labels and
thus is called a hard margin boundary, because none of the
four data points are misclassified. The unlabeled compound
represented by the vector, @ Ban then be classified using the
hard margin boundary as hydrogen sulfide.

However, for a complex problem, with many compounds
and many features, a single straight line may not separate
the data points and will result in some misclassifications.
Such a decision boundary is called a soft decision bound-
ary and the associated classifier is known as a soft margin
classifier. The soft margin constant, C, defined in the previ-
ous section, acts as a regularization parameter and controls
how much misclassification is allowed. Larger values of C
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reduce the number of misclassifications; however, for a soft
margin classification problem, misclassification cannot be
fully eliminated.

The SVM-based framework to classify infrared spectra
was implemented in Python [54] using NumPy [55], SciPy
[56], Pandas [57], Matplotlib [58] and most notably using
the Scikit-learn machine learning library [59]. The SVM
implementation in Scikit-learn is based on LIBSVM library
[60]. The Python program was run on a Dell 5820 Precision
Tower Workstation computer with 64 GB RAM, Intel Xeon
3.6 GHz processor with NVIDIA QUADRO RTX4000 GPU.

Since the SVM classifier is constructed as a binary clas-
sifier to distinguish between two molecules/labels/classes, a
strategy known as one-versus-rest (OVR), is implemented.
The OVR strategy is described in Fig. 5. The OVR classifier
contains binary SVM classifiers for each molecule. Each
of these binary SVM classifiers treats one molecule as the
positive class. For example, the ozone (O3) SVM classifier
shown inside the OVR classifier trains on Oj; as the positive
class (y= +1) and treats the rest of the compounds as a
single negative class (y=-1). Therefore, when an unlabeled
spectrum, in this example O;, is considered by the OVR
classifier, the O3 SVM classifier outputs y=+1 and all SVM
classifiers for the other molecules output y=— 1. The out-
puts of all SVM classifiers are then taken into account by
the OVR classifier and matched to the global OVR label
index (y=2 in this case), providing identification of the O,
molecule.

2.4.1 Hyperparameter optimization and classifier
construction

The SVM classifier has two key hyperparameters, the kernel
function and the soft margin constant, C, that were deter-
mined by a grid search cross-validation using the Scikit-
learn GridSearchCV function. Figure 6 illustrates classifica-
tion performance (F1 score, see definition in Sect. 3 below)
variation for the linear, radial basis function (RBF), and a
third-degree polynomial kernel functions and for C values
from 0.0001 to 1000. The RBF and a third-degree polyno-
mial kernel functions requires an additional hyperparameter,
in Eq. 19, which was optimized to maximize F1 score. The

default Scikit-learn value was used as a starting value for

optimization in both kernels, defined as = ;T,f.where N f

is the number of features and, the variance in the
features.

During the hyperparameter search, a total of 144 cases
were run using a 70-30% training—testing split and the cor-
responding scores were calculated. See Sect. 3 in supple-
mentary materials for the associated table. Dataset A was
used and two different frequency ranges, 400—4000 cm !
and 1600-1610 cm™', were considered. After the feature
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C

the O; classifier yielding a positive result and all other yielding neg-
ative. This combination of internal results is then considered at the
global OVR level, producing an identification as Os

data table

compounds and b) 1600-1610 cm™! at 0.01 cm™! resolution with 9
compounds. See Sect. 3 in supplementary materials for the associated
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extraction step shown in Fig. 2, compounds were excluded
if the absorbance for those features was smaller than
107® for the smaller frequency range and 107'° for the
larger frequency range. In the smaller frequency range
(1600-1610 cm™"), 25 compounds were excluded, as
they have weak or no appreciable absorption features in
that frequency range. For the larger frequency range
(400-4000 cm™ ), all 34 compounds had appreciable absorp-
tion and remained in the hyperparameter search data set.

The influence on performance, in terms of F1 score, for
variations in the soft margin constant C and the kernel func-
tion are shown in Fig. 6. For the 4004000 cm !, the highest
F1 score (0.999) occurs for the linear kernel with C=500.
For the 1600-1610 cm ! range, the highest F1 score (0.940)
occurs for the linear kernel with a C=500. Hence, the linear
kernel was chosen for construction of the SVM classifier. A
generally increasing F1 score is also observed with increas-
ing soft margin constant C, for most of the cases, as expected
result since increasing C regularizes the classification model
and minimizes misclassification through the soft decision
boundary.

Among the three kernels considered, the third-degree
polynomial kernel performed the worst with a scaled gamma
value. Varying the gamma values for the polynomial kernel
did not improve its performance. The RBF kernel’s perfor-
mance is improved for smaller gamma values combined with
relatively larger C values. From Fig. 6, it is also observed
that for a smaller number of compounds in a smaller fre-
quency range, where the SVM classifier has relatively less
information, a larger C value is required compared to a SVM
classifier trained in the larger frequency range with more
compounds. The performance improvement of the linear
kernel relative to the RBF kernel is due to the spectral data
containing a large number of features. Generally, RBF ker-
nels are advantageous since they map the input features non-
linearly to an infinite-dimensional space. Thus, SVM can
draw non-linear decision boundaries. However, the linear
kernel is a special case of the RBF kernel and due to the
abundance of features, the RBF kernel is unable to improve
the classification performance relative to the linear kernel
[61, 62]. Hence, the optimization of hyperparameters is cru-
cial within the SVM framework to ensure high performance
classification for any range of frequency selected.

2.4.2 Stratified k-fold cross-validation

Two stratified k-fold cross-validation studies were employed
to investigate the influence of pressure and concentration
on classifier performance. In all cases, the hyperparameters
were fixed and the number of compounds were equally rep-
resented. The influence of pressure was investigated in a
tenfold cross-validation process using dataset C. Whereas,
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Fig. 7 Schematic of (a) tenfold cross-validation to observe the influ-
ence of pressure on classification and (b) sevenfold cross-validation
to observe the influence of concentration on classification. In each
testing fold, we see the progressive increase in pressure or concentra-
tion

the influence of concentration was investigated in a seven-
fold cross-validation using dataset D. Datasets C and D,
described in Table 1, were constructed such that only pres-
sure and concentration were varied within those respective
datasets.

In a stratified k-fold cross-validation, a dataset is split into
k folds and there are a total of k iterations. In each iteration,
(k-1) folds are used for training the classifier and the remain-
ing fold is used for testing, as schematically shown in Fig. 7.
Here, the folds in both cross-validations are arranged from
the lowest pressure/concentration to the highest pressure/
concentration. The results of different classification metrics
calculated from the cross-validation are given in Table 3
and 4. The confusion matrices of both tenfold and sevenfold
stratified cross-validations can be found in the supplemen-
tary material (Section S1).
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Table 3 tenfold cross-validation

| Iteration Training time  Accuracy Average Preci- Average Recall Average F1 score

results number [ms] sion

1 1,352 88.23% 0.846 0.882 0.855

2 1,253 97.06% 0.956 0.971 0.961

3 1,262 100% 1 1 1

4 1,293 100% 1 1 1

5 1,416 100% 1 1 1

6 1,161 100% 1 1 1

7 1,408 100% 1 1 1

8 1,210 100% 1 1 1

9 1,447 100% 1 1 1

10 1,180 97.06% 0.956 0.971 0.961
Ta?he ‘t‘ sevenflcild Cross- Fold number Time [ms] Accuracy Average Precision Average Recall Average F1 score
validation results

1 33,806 94.12% 0.9216 0.9411 0.9265

2 20,812 100% 1 1 1

3 68,470 100% 1 1 1

4 104,678 100% 1 1 1

5 39,684 100% 1 1 1

6 127,434 100% 1 1 1

7 78,021 100% 1 1 1

Table 5 SVM classifier (linear kernel, C=500) performance for iden-
tification of simulated testing spectra, in 70-30% training—testing

study b)
Trial Accuracy (%) Precision Recall F1 Score Training time
[ms]
1 99.77 0.9979 0.9977 0.9977 66,345 ¢)
2 100.00 1.00 1.00 1.00 197,385
3 100.00 1.00 1.00 1.00 120,544
Total  99.92 0.9993 0.9992 0.9992 128,091
Python random number generator was used to seed different trials.
Frequency range: 4004000 cm™!, dataset A. Metrics are calculated
on testing spectra
3 Results and discussion 0

Performance of the SVM classifier framework for prediction
of molecule labels for infrared spectra is characterized via

several metrics as defined below.

a) Confusion matrix: A table or matrix that illustrates of

the number of correct and incorrect classifications of
spectra and the types of correct/incorrect classifications.
From the confusion matrix, the following classification

metrics can be calculated. All confusion matrices for the
present study can be found in the supplementary mate-
rial.
Classification accuracy (CA): The percentage of cor-
rectly classified spectra. Accuracy is calculated for the
training, testing, and validation spectra and is called
training, testing, and validation accuracy, respectively.
Precision (P): Precision is a measure of a classifier’s
ability to not misidentify a given spectrum. Precision
represents the fraction of spectra identified as positives
that were truly positive:

Tp
TR 9
where T are the true positives (correctly predicted spec-
tra) and F, are the false positives (incorrectly predic-
tions of the positive class).
Recall (R): Recall indicates the fraction of actual spectra
for a particular compound that are correctly predicted
and is defined as:

Tp
A Y
where F, are the false negatives (incorrect predictions
of the negative class).
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e) Fl score: F1 score is the harmonic mean of precision and
recall:

Px R
P+ R

Fl=12x (25)

f) Precision-recall curve: A plot of precision, the fraction
of relevant results produced by the classifier, versus
recall, the fraction of total relevant results correctly
classified, provides a measure of the classifier’s per-
formance, where the area under the precision—-recall
curve is proportional to the classifier accuracy. It is not
possible to continually increase both the precision and
recall of a classifier. There is always a tradeoff between
the two. Hence, comparison of the areas under preci-
sion—recall curves indicates relative classification per-
formance.

3.1 Cross-validation studies

The performance of the OVR SVM classifier in the tenfold
cross-validation study, in which the pressure was varied, are
shown in Table 3, where performance metrics and the com-
puter clock time for training and testing of the classifier are
given. Except for iterations 1, 2, and 10, all the simulated
spectra were correctly identified during testing. The lower
accuracy, precision, recall, and F1 scores for iterations 1
and 2 occurs, because in these cases, the classifier has been
trained on strong higher pressure spectra (0.3—1.0 atm) and
then tested on lower pressure spectra (0.1-0.2 atm), where
absorption is relatively weak. This is particularly prominent
for iteration 1, where we have four misclassifications (see
confusion matrix in supplementary material Sect. 2). For
iteration 2, there is a single misclassification, which indi-
cates that the increased absorption strength at 0.2 atm has
resulted in significant improvements in classifier perfor-
mance compared to 0.1 atm. Similarly, there is one misclas-
sification in iteration 10, the highest pressure case. Since
the SVM classifier uses a soft margin decision boundary,
occasional misclassifications are expected at the limits of the
training data or when the classifier is asked to extrapolate
outside of its training data range.

The results of the sevenfold cross-validation study, for
variation in absorber concentration, are given in .

Table 4. It is observed that the classifier performance is
reduced when concentration is of the order of 1 ppm. How-
ever, the accuracy never decreases below 90% and, hence,
the classification sensitivity to low concentrations appears
to be not as strong as it is to low pressures.

3.2 70-30% training—testing

For the 70-30% training—testing study on simulated data-
set A, confusion matrices were generated and classification
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performance was determined, as shown in Table 5. In Fig. 8,
two example confusion matrices for the SVM classifier with
two different kernels, the linear and the RBF kernels, are
shown illustrating the better performance of the linear ker-
nel. Interestingly, the vast number of misclassifications for
the RBF kernel involve the confusion of the molecules with
SO;. The reduction in classification accuracy is similar to
the reduction in F1 score observed in Fig. 6.

3.3 Experimental validation

With optimized hyperparameters, a linear kernel with a soft
margin constant value of 500, yielding the best performance
score against simulated spectra. Therefore, this classifier
was trained with a 70-30% training—testing strategy and
was tested against experimental spectra from the NIST and
PNNL databases (dataset E). Classification was carried out
in three trials or iterations and, because the experimental
spectra are all reported over different frequency ranges, clas-
sification was performed over the experimental frequency
ranges as given in Table 6. For each experimental spectrum,
the SVM classifier is trained within the specific experimen-
tal frequency range. As listed in Table 6, there are misclas-
sifications for HBr (1 of 3 trials), C,H, (1 of 3 trials), and
HCI (2 of 3 trials). All 17 other compounds are successfully
identified in all 3 trials.

3.4 Influence of number of features and frequency
resolution

The influence of the number of features (frequency range)
and frequency resolution on the performance of the SVM
classifier was examined through the consideration of spec-
tra in a series of successively smaller frequency ranges
within the infrared. The frequency ranges considered were
1200-2200 cm™', 1600-1700 cm ™', and 1600-1610 cm™".
Only a subset of 9 of the 34 molecules considered in the
present study have absorption features in all 3 frequency
ranges. Hence, the influence of number of features (fre-
quency range) and resolution on classification performance
was investigated for those nine molecules (H,O, N,0, CH,,
NO,, NH;, CH,Cl, H,0,, C,H,, and CH;Br for a total of
378 total spectra).

The SVM classifier, with unchanged hyperparameters,
was trained using dataset A, in a 70-30% training—test-
ing split. The classifier was then validated using dataset
B (simulated spectra with artificial superimposed noise).
For investigation of the influence of the number of features
(frequency range), the coarsest spectra resolution of 1 cm ™!
was used for all three frequency ranges: 1200-2200 cm ™!,
1600-1700 cm™', and 1600-1610 cm ™. For the investiga-
tion of the influence of spectral resolution, the three fre-
quency ranges of 1200-2200 cm !, 1600—1700 cm™ !, and
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Predicted Molecule
Fig. 8 Confusion matrices for SVM classifier (a) with a linear kernel, and (b) with a RBF kernel for prediction of dataset A testing spectra (fre-

quency range 4004000 cm™!)
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Table 6 SVM classifier

e Molecule Experimental fre- Accuracy on simulated spectra Result on experimental spectra
auncy g o 030 s
Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3
H,0 450-3966 99.77 99.77 99.07 v v v
Co, 459-3797 99.77 99.77 99.07 v v v
Cco 459-3803 99.77 100.00 99.53 v v v
N,0 478-3786 99.53 100.00 99.53 v v v
CH, 451-3801 99.77 100.00 99.53 v v v
NO 626-3993 100.00 99.77 99.07 v v v
NH, 455-3798 100.00 99.77 99.30 v v v
H,CO 589-3902 99.77 100.00 99.53 v v v
CH,CI 452-3803 99.77 100.00 99.53 v v v
HBr 456-3741 99.77 99.77 99.07 H,CO v v
0oCs 462-3799 99.77 99.77 99.30 v v v
GH, 455-3788 99.77  100.00  99.07 v v CH;Cl
C,Hy 455-3795 99.77 100.00 99.53 v v v 99.30
C,Hy 452-2400 98.37 98.13 v v v
SO, 576-3975 100.0 99.77 99.07 v v v 99.77
05 404-3795 99.77 99.07 v v v 99.77
HCI 457-3765 99.77  99.07 H,CO v H,CO
H,S 459-37917 99.77 99.77 99.07 v v v 96.27
CH;Br 576-2500 96.04 95.10 v v v
HC;N 554-3846 100.00 99.77  99.07 v v v
Train B Test Il Validation I Train [ Test [ Validation
(a) — (b)
Resolution : 1cm~! No. of features = 103
1200-2200 cm® 1200-2200 cnmi’
100 e 100 1600-1610 cni* 1600-1700 cni
o -1
80- 1600-1610 cm 804
3 60 3 60
(%] (%}
Y 40 S 40
< 4
20 20
0 o

10t 102
No. of features or variables

103

1072

101
Resolution (cm™1)

10°

Fig. 9 Comparison of classification accuracy in training and testing (dataset A) and validation (dataset B), for variation in a) number of features

(frequency range) and b) frequency resolution

1600-1610 cm™! were considered at resolutions of 1, 0.1,
and 0.01 cm™!, respectively, resulting in three frequency
ranges with the same number of features (1001 data points

per spectra).
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Figures 9 and 10 illustrate the performance of the clas-
sifier in these studies and confusion matrices can be found
in the supplementary materials. From Fig. 9a, it is evident
that by increasing the number of features the performance
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(a) Resolution = 1 cm™ (b) No. of features = 10’
1.0 1.0
0.8 — 0.8 — 1\1
5 06 ] 5 o ] 4
z 0.6 — @ 0.6 — !
s § 54 - ‘
4 = 4 — |l
nh_ 0.4 ] = 1600-1610 cm~?, 11 features E 0.4 | — 1600-1610 cm™3, fres=0.01cm™? !
0.2 — 1600-1700 cm~?, 101 features 0.2 — 1600-1700 cm™%, fes =0.1cm™1
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0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
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Fig. 10 Precision—recall curves for the cases considered in Fig. 9

of the classifier improves. We can conclude that providing
more information, in this study a greater number of spectral
features, is generally beneficial for construction a SVM clas-
sifier. Particularly, for cases, when an IR spectrometer is
operating in a narrow frequency range. Additionally, not all
features are equally discriminating and, therefore, providing
a greater number of features increases the probability of the
dataset containing discriminating features needed to develop
a high-performance classifier.

The influence of frequency resolution, as shown in
Fig. 9b, is less strong than the influence on the number of
features, with an apparent reduction of performance with
increasing resolution. Because the number of features (fre-
quency points) is held constant in each case, the higher
resolution spectra have smaller frequency ranges and hence
contain less useful or discrimination information for spec-
tral classifications. These results, show that the inclusion of
greater numbers of spectral features is critical, rather than
better resolving those spectral features.

4 Conclusions

A support vector machine (SVM)-based framework has been
developed for the classification of infrared absorption spec-
tra, taking advantage of the unique rotational-vibrational
fingerprints for infrared-active molecules and the highly
discriminating and automated capabilities of SVMs. The
SVM classifier was trained using simulated spectra for 34
molecules in the 400-4000 cm™! frequency range. Spectral
simulations were carried out using fundamental spectro-
scopic parameters from the HITRAN database [36]. The per-
formance of the SVM framework has been evaluated against
simulated training spectra, both with and without artificial
superimposed noise, and experimental spectra from NIST
and PNNL databases. Hyperparameter optimization was per-
formed and it was found that that the SVM classifier imple-
mented in a one-vs-rest approach with a linear kernel and

soft margin constant of 500 provided optimal performance.
The resulting SVM classifier predicted simulated spectra at
accuracies above 99% and correctly identified experimental
spectra for 19 of 20 molecules (experimental classification
accuracy of 93% across 3 random trials, 56 correct clas-
sifications in 60 attempts). The demonstrated performance
indicates that the SVM classifier achieved accuracy suit-
able for the identification and monitoring of gas-phase spe-
cies in real time. The framework proposed in this work is
not specific to infrared absorption spectroscopy but can be
extrapolated to other frequency ranges, spectroscopy types,
or conditions. We intend spectroscopists in any frequency
range to use this or a similar SVM framework for fast auto-
mated spectral detection, where the SVM classifier is trained
on simulated spectra, from available databases (e.g., [36]).

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00340-022-07879-8.
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