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Abstract: Conventional black box machine learning (ML) algorithms for gas-phase species identifica-
tion from T H z  frequency region absorption spectra have been reported in the literature. While the
robust classification performance of such ML models is promising, the black box nature of these ML
tools limits their interpretability and acceptance in application. Here, a one-dimensional convolutional
neural network (CNN), VOC-Net, is developed and demonstrated for the classification of absorption
spectra for volatile organic compounds (VOCs) in the T H z  frequency range, specifically from 220 to
330 GHz where prior experimental data is available. VOC-Net is trained and validated against simu-
lated spectra, and also demonstrated and tested against experimental spectra. The performance of
VOC-Net is examined by the consideration of confusion matrices and receiver-operator-characteristic
(ROC) curves. The model is shown to be 99+% accurate for the classification of simulated spectra
and 97% accurate for the classification of noisy experimental spectra. The model’s internal logic is
examined using the Gradient-weighted Class Activation Mapping (Grad-CAM) method, which
provides a visual and interpretable explanation of the model’s decision making process with respect
to the important distinguishing spectral features.

Keywords: V O C ;  D N N ;  C N N ;  classification; T H z ;  spectroscopy; rotational; microelectronic;
spectrometer; gas sensing

1. Introduction

Absorption spectroscopy in the terahertz (THz) frequency region (0.1–10 THz)  allows
for the identification and quantitative detection of gas-phase polar molecules, including
many volatile organic compounds (VOCs). Molecules of interest can be identified via
their rich, complex, and unique T H z  region rotational absorption spectra, which act as
fingerprints. Hence, T H z  absorption spectroscopy and gas sensing can be valuable in many
scientific, industrial and environmental applications [1–5]. Moreover, recent advances in
microelectronic T H z  sources and detectors has increased the viability of portable, miniature
spectrometers capable of sensing a wide variety of gas molecules which are active in
the T H z  region [6–16]. Similar to other spectroscopic techniques, rotational spectra in
the T H z  frequency region require signal/data processing for spectral interpretation, gas
species identification, and quantitative gas sensing. Spectral identification is often difficult
because of overlapping transitions, among a single molecular spectra or for a complex gas
mixture, which is further complicated by collisional broadening at realistic pressures found
in applications.

Identification of rotational fingerprints with high accuracy, sensitivity, and selectivity
is a challenge that can be addressed and automated with artificial intelligence (AI) and
machine learning (ML) methods. Automated spectral identification using ML requires a
model that can learn to identify unique spectral features that provide fingerprints for each
molecule and separate those features from similar features of other molecules. Ideally, a
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ML “artificial spectroscopist” would make spectral classification decisions based on identi-
fication of unique fingerprints within a spectra just as a human spectroscopist would, while
ML methods, including shallow neural networks composed of multi-layer perceptrons,
have been demonstrated to identify spectra of different molecules from T H z  absorption
spectroscopy [17], I R  and Raman spectroscopy [18,19], and excitation spectroscopy [20],
their black box nature, and the difficulty of interpreting the logic behind their decision
making, can lead to an erosion of acceptance and trust in such models [21], especially in
industrial applications. Thus, there is a need for AI-based models to not only have high
accuracy, sensitivity, and selectivity, but also to have good interpretability.

A I / M L  based classification generally requires data with good descriptive and variable
features. Often, the original raw data is reduced to derived values which are non-reducible,
while preserving the most useful and distinctive information, in a process known as
feature extraction. Since their resurgence in the late 2000s, neural networks have
facilitated the training of complex models capable of wide variety of tasks such as image
recognition, seg-mentation, classification, denoising, representation learning, and
computer vision [22–27]. Deep networks are able to learn patterns in data by extracting
good features. Particularly, convolutional neural networks (CNN)  are widely used to
extract features from data with the help of convolutional and subsampling or pooling
layers [22]. These features are used to represent the data in a compact and useful form.

The most common C N N s  are two dimensional (2D), since they are often used on image
data [23] and numerous works have demonstrated 2D C N N s  for learning useful represen-
tations such as edges, contours, contrast, saturation etc. However, 2D C N N s  are difficult to
use to interpret spectral data because spectral data is highly-dimensional along a single axis.
On the other hand, 1D CNNs,  widely used to learn time-series data for classification and
regression purposes [22,28], are suited for data that is highly-dimensional along a single
axis. A  1D C N N  moves a sliding window filter kernel along a single axis to learn features
from the data (spectrum). C N N s  have an added advantage over fully-connected neural net-
works, in that the output from each of the applied filters can be viewed and interpreted,
to better understand the limitation of the training data and how the model makes
classification decisions. There are several visualization techniques available to interpret
C N N  classi-fication decision processes, including Grad-CAM (Gradient-weighted Class
Activation Mapping) [29], which can be used to evaluate the output from every layer of the
C N N  via a class activation map, to observe how the model is basing classification decisions
on spectral features (peak locations, feature shapes, etc.) [30]. A  class activation map
relates localized patterns prioritized by the model to identify corresponding classes, offering
an interpretable visualization of the neural network, and can be tailored to CNN-based
classification models to better understand their inner decision making logic. Ultimately,
Grad-CAM applied to spectral data produces a heat map illustrating the class-
discriminative regions of the spectra. Interpretable deep learning models based on
C N N s  for classifying V O C s  have been reported by Wang et al. [30] where the Grad-
CAM method [29] was implemented to compute class activation maps to interpret the
learning of a C N N  model from optical emission spectra.

In prior work, we have demonstrated that conventional ML models, including random
forests, fully connected neural networks, and support vector machines, can achieve high
classification accuracy for the identification of pure gases from T H z  spectra [17], while
the performance of these models based on specifically designed features or all available
features within a frequency range is acceptable, they may fit specific spectral frequency
locations instead of generalizing the spectral peaks, shapes, and widths. A  deep learning
classification network can offer advantages over such methods, both in terms of achieving
better accuracy and other performance measures (e.g., area-under-curve (AUC) scores), but
also by providing corresponding class activation maps allowing further insights into the
network’s decision making process and its generalizability.

In this paper, we report a deep learning neural network classifier composed of convo-
lutional layers for the identification of T H z  absorption spectra for twelve VOCs. The model
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is trained and validated using simulated spectra and is demonstrated via the classification
of experimental spectra. Its performance is evaluated based on confusion matrices and
receiver-operating-characteristics curves (ROC). Finally, the model is analyzed using Grad-
CAM activation maps to understand how the model learns from the fingerprint spectral
features contained in each spectra and to determine the critical spectral features among the
gases considered that should be prioritized for a cross-sensitive gas sensor design.

2. Methodology

The data sets, their development, and statistics, and the architecture of the VOC-Net
and network training and validation approaches are described in the following subsections.
A  schematic of VOC-Net for automated classification of experimentally collected spectra is
shown in Figure 1.

Figure 1. VOC-Net  model for the automated classification of absorption spectra measured with a
T H z  spectrometer.

In the above schematic, an overview of how VOC-Net  can be be integrated with a
spectrometer is illustrated. A  spectrum, measured using a T H z  spectrometer (described
in the experimental data section), is fed to VOC-Net which consists of convolutional,
pooling, and dense layers. VOC-Net broadly performs two tasks, extracting relevant
features from the spectra and classification. Feature extraction is a process where a raw
spectrum is reduced to a set of derived values which captures the spectrum’s most relevant
aspects, by preserving its distinctive and unique information. Classification is the process
of categorizing the spectrum as belonging to a specific class or molecule. VOC-Net classifies
by producing a set of raw score values that can be converted to softmax scores, which
indicate the probabilities that the spectrum belongs to each class. VOC-Net  outputs the
class with the highest softmax score/probability; hence, classifying the input spectrum.
The softmax scores, s ,  are given by,

s (z ) i  =  
ezi     

z (1)
j = 1

where, z is the input to the softmax layer and K  is the number of molecule classes.
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2.1. Training and Validation Data

The C N N  model developed in this study was trained and validated using spectra
for twelve pure V O C s  that were simulated using spectroscopic parameters found in the
H I T R A N  [31] and JPL [32] databases. Spectral simulations were carried out using the
H API  tool [33]. Representative simulated spectra for each molecule are shown in Figure 2.
The frequency range considered in this study is based on the range available in our T H z
spectrometer, 220–330 G H z  (7.33–11 cm 1). The dataset consists of spectra for the twelve
V O C  molecules at pressures from 0.1 to 16.5 Torr (13.3 to 2200 Pa). Each spectra is for
a single pure molecule and consists of 229 absorbance values at a frequency resolution
of 0.016 cm 1.

(a) C H3 C l

(c) H COO H

(e) H2 S

(g) OCS

Figure 2. Cont.

(b) C H3 O H

(d) H2 CO

(f) SO2

(h) H C N
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(i) C H 3 C N

(k) C2 H5 O H

(j) H NO3

(l) C H3 C H O

Figure 2. Representative simulated spectra; conditions: 1 Torr, 297 K,  21.6 cm pathlength.

2.2. Experimental Data

Data used for demonstration of the trained VOC-Net model consists of experimental
spectra measured in our laboratory for six VOCs:  ethanol, methanol, formic acid, ace-
tonitrile, and acetaldehyde. Absorption spectra for these molecules have been previously
measured in the 220–330 GHz range using a T H z  microelectronics spectrometer (Figure 1),
as reported by Rice et al. [34–37]. Measurements were carried out at room temperature
(297 K)  in a gas cell with an absorption pathlength of 21.6 cm. The spectrometer provides
frequency resolution of 0.5–15 MHz, depending on operating parameters.

For the measurement of absorption spectra, T H z  radiation is generated using micro-
electronics based frequency multiplication of a radio frequency source. That radiation is
coupled to free space with a diagonal horn antenna that produces a diverging beam of T H z
radiation. The diverging output is collimated with a Teflon lens and passed through the
gas cell. Following passage through the gas cell, the radiation is focused using a second
Teflon lens onto a Schottky diode detector, where the signal is captured and sent to a
data acquisition system. Absorbance is determined by measuring a baseline reference
intensity, I0, with the gas cell under vacuum and then measuring the absorbed intensity, I ,
when the gas cell is pressurized with a gas of interest. The spectral absorbance A  is given
by,

A  =   ln( 
I  

)  =  ecl (2)
0

where e is spectral absorption coefficient, which is a function of the spectroscopic pa-
rameters for the probed transitions (i.e., line position, strengths, and shapes), thermo-
dynamic conditions, and gaseous composition; c is concentration of the absorbing gas;
and l is the pathlength. The acquired experimental spectra are resampled to match the
0.016 cm 1resolution of the simulated spectra. The initial frequency resolution of the exper-
imental spectra was 0.000016 cm 1, except for chloromethane which was 0.00036 cm 1.

2.3. Data Analytics

In total, 1968 simulated spectra for twelve VOCs were generated, 70% were used for
training (1377 spectra) and 30% were used for validation (591 spectra). The training and
validation spectra were chosen using random stratification to ensure all molecules are
equally represented in both the training and validation datasets as listed in Table 1. To
demonstrate and test the model, 36 experimental spectra for the six VOC  molecules were
considered. In Figure 3, the number of the spectra in each dataset and their normalized
maximum absorbance and normalized standard deviation in absorbance are illustrated to
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show that there is no bias among molecules in training and validation, and that there is
significant variation among absorbance from molecule-to-molecule and from spectrum-to-
spectrum for each molecule.

(a) Normalized maximum absorbance. (b) Normalized standard deviation absorbance.

Figure 3. Data analytics for simulated training and validation spectra and experimental spectra.

Table 1. Number of spectra in training, validation, and experimental datasets.

Molecule

Chloromethane
Methanol

Formic acid
Formaldehyde

Hydrogen sulfide
Sulfur dioxide

Carbonyl sulfide
Hydrogen cyanide

Acetonitrile
Nitric acid

Ethanol
Acetaldehyde

Totals

Molecular Formula

C H3 C l
C H3 O H
H COO H

H2 CO
H2 S
SO2
OCS
H C N

C H 3 C N
H NO3

C2 H5 O H
C H3 C HO

Training Counts

115
115
114
115
115
115
114
115
115
115
115
114

1377

Validation Counts

49
49
50
49
49
49
50
49
49
49
49
50

591

Experiment Counts

6
6
6
-
-
-
-
-
6
-
6
6

36

2.4. Model Development

To construct a 1D C N N  based classifier, we examined the performance of a number
of C N N  models in 70–30% training-validation studies using the simulated spectra. These
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models were implemented using Tensorflow [38] in Python [39]. The training time per
epoch was on average two seconds and computations were performed on a Dell 5820
Precision Tower Workstation computer with 64 GB RAM, Intel Xeon 3.6 G H z  processor
with N V I D I A  QUADRO RTX4000 GPU.

2.4.1. Model Architecture

C N N  models primarily consist of a feature extraction section, comprising of convolu-
tion and subsampling or pooling blocks, followed by a classifier section of dense layers.
Here, twelve C N N  architectures have been considered and a standardized naming con-
vention to describe these architectures has been used as shown in Table 2. For example,
C2f3k3_AP1_D48_L1_R50_D12 refers to a deep neural network consisting of two convolu-
tional layers each with three filters of kernel size three, one subsampling or pooling layer
between the convolutional layers, followed by flattened dense layer, a hidden layer with
48 neurons and the output layer with 12 neurons corresponding to each molecule. The
prefix L  and R  refers to L2 and dropout regularized models. Models are also identified
by roman numerals in Figures 4 and 5.

The loss and accuracy on training and validation data for the twelve C N N  architectures
considered are shown in Figures 4 and 5. The simplest model consisting of one convolu-
tional layer with a single filter and kernel size of three, followed by pooling, flattening, and
a 12 neuron dense layer minimizes the sparse categorical crossentropy loss and achieves
accuracy above 90%. The convolution and the pooling layer extracts relevant features from
the input spectrum consisting of 229 absorbance values corresponding to the 0.016 cm 1

resolution. Al l  other model architectures are constructed incrementally and regularization
is added for certain models. In constructing models, simplicity was preferred and a balance
of network width and depth was maintained. The penultimate layer in each model outputs
raw scores that are then converted to a probability distribution using a softmax layer.

Figure 4. Loss on training and validation data for the considered C N N  model architectures.



Appl. Sci. 2022, 12, 8447 8 of 19

Figure 5. Accuracy on training and validation data for the considered C N N  model architectures.

Table 2. Overview of C N N  model architectures. The accuracy is calculated at the 200th epoch. The
filter kernel size is three, the pool size is two, and padding is valid with stride of two.

Model Name
C1f1k3_AP1_D12 (I)
C1f1k3_MP1_D12 (II)
C2f1k3_AP1_D12 (III)
C2f1k3_AP1_D48_D12 (not plotted)
C2f1k3_AP2_D48_D12 (IV)
C2f3k3_AP1_D48_D12 (V)
C2f3k3_AP1_D6_D12 (VI)
C1f1k3_AP1_RD50_D12 (VII)
C1f1k3_AP1_D48_RL1_D12 (VIII)
C2f3k3_AP1_D48_RD50_D12 (IX)
C2f3k3_AP1_D48_RL1_D12 (X)
C2f3k3_AP1_D48_RL1_R50_D12 (XI)

Conv. Layers
1
1
2
2
2
2
2
1
1
2
2
2

Filters
1
1
1
1
1
3
3
1
1
3
3
3

Pooling
1, Average

1, Max
1, Average
1, Average
2, Average
1, Average
1, Average
1, Average
1, Average
1, Average
1, Average
1, Average

Dense Layers
(113,12)
(113,12)
(111,12)

(111,48,12)
(55,48,12)

(333,48,12)
(333,6,12)
(113,12)

(113,48,12)
(333,48,12)
(333,48,12)
(333,48,12)

Regularization
-
-
-
-
-
-
-

dropout
L2

dropout
L2

L2 +  dropout

Remarks
initial model
accuracy improves
accuracy improves
negligible improvement
accuracy improves
accuracy improves
accuracy worsens
accuracy improves
accuracy worsens
best accuracy, VOC-Net
accuracy worsens
accuracy worsens

In Table 2, a brief description of the performance of the considered C N N  models is
noted in the remarks column, while max pooling improves performance, it increases the
emphasis of model decision making on very strong transitions within each spectrum and,
thus, weak but important transitions for defining spectral fingerprints may be ignored.
Hence, we kept average pooling to preserve as much information from the raw spectrum
for feature extraction. Adding additional filters, convolutional blocks, pooling layers
generally improves accuracy, but is likely to result in a model that overfits the data. We
also found that dropout regularization of model weights work best for this classification
task compared to L2 regularized weights and combined L2 with dropout regularization.
Having a second convolutional layer and/or increasing the number of filters from one to
three improves the performance on the training and the validation set. After consideration
of these observations regarding performance of the various C N N  model architectures,
the C2f3k3_AP1_D48_RD50_D12 model was selected, given its training and validation
(generalization) losses are closely matched and this model does not overfit the simulated
dataset, as shown in Figures 4 and 5.
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2.4.2. Hyperparameter Tuning and Model Training

Some of the hyperparameters in the selected C N N  architecture were tuned using
KerasTuner [40], including the number of filters in the convolutional layers, number of
neurons in the dense layer after flattening, and the learning rate. The best epoch for
training was found to be four. The final classification model, trained using the optimized
hyperparameters, is shown in Figure 1. The sparse categorical crossentropy losses and
classification accuracy for training and validation spectra are shown in Figure 6. Using a
small epoch helps to prevent overfitting.

(a) (b)

Figure 6. (a) Sparse categorical crossentropy loss and (b) accuracy for simulated training and
validation spectra.

3. Results

The performance of the VOC-Net classifier was evaluated by consideration of confu-
sion matrices and R O C  curves. The confusion matrix and R O C  curves for performance
against the training spectra are shown in Figures 7 and 8. There are eleven misclassifications
for the 1377 training spectra, resulting in a classification accuracy for the training dataset of
99.2%. By minimizing the sparse categorical cross-entropy loss, we have limited training
to some extent, which reduces the accuracy against the training dataset. However, this
approach results in better generalization for the C N N  model and more robust performance
in validation and in application against experimental spectra, as illustrated in Figure 6b,
where the accuracy on validation data is greater than accuracy on training data,
indicating that the generalization error is small compared to the training error. The
misclassifications for the training spectra are for carbonyl sulfide, hydrogen cyanide,
and ethanol spectra. Interestingly, the ethanol spectra is misclassified as carbonyl sulfide
and formic acid. As  a consequence, in the ROC curve shown in Figure 8, the ethanol and
carbonyl sulfide have reduced area-under-curve (AUC)  scores.

For the classification of simulated validation spectra, the VOC-Net  model produces
two misclassifications, resulting in a classification accuracy of 99.7% for the 591 validation
spectra. The confusion matrix and R O C  curves for the validation spectra are shown in
Figures 9 and 10. The confusion matrix illustrates that two ethanol spectra were misclassi-
fied out of the 591 validation spectra. These misclassifications cause the reduction in the
true positive rate of ethanol shown in the ROC curve in Figure 10.
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Figure 7. Confusion matrix for classification of 1377 simulated training spectra. Red boxes indi-
cate misclassifications.

Figure 8. ROC curve for the classification of 1377 simulated training spectra.



Appl. Sci. 2022, 12, 8447 11 of 19

Figure 9. Confusion matrix for the classification of 591 simulated validation spectra. Red boxes
indicate misclassifications.

Figure 10. ROC curve for the classification of 591 simulated validation spectra.

In Figure 11, we observe twelve spectra sampled from the validation dataset. One
of the two misclassficiations is illustrated in Figure 11, a misclassification for an ethanol
spectra at 4.4 Torr. The rest of the sampled Figure 11 spectra are correctly classified. Based
on the softmax scores, the model is performing very well, with softmax scores for individual
classifications of approximately one. The softmax scores represent the probability that a
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spectra belongs to one of the considered molecules; hence, the softmax scores near unity
indicate that the model has a high degree of confidence in these classifications.

Figure 11. Sampled validation spectra and their corresponding VOC-Net softmax scores.

The misclassified ethanol spectra shown in Figure 11 (top left) is very complex. Based
on the softmax scores for this case, it is evident that the model is confused by this complexity
and is uncertain as to whether the spectra belongs to methanol, carbonyl sulfide, ethanol, or
formic acid. A l l  four of these molecules have complex spectra with hundreds of significant
transitions in the present spectral region. Of course, the number of epochs can be increased,
additional filters can be added, and/or additional convolutional blocks can be added to
increase the classification accuracy and avoid model confusion for these complex spectra,
but that runs the risk of building a model that overfits the spectral dataset and will not
perform well for the classification of noisy experimental spectra. The spectra for methanol
in the third row and the fifth column is similarly complex but it is correctly classified but
with the model assigning a small probability that this spectra could belong to
acetaldehyde. Thus, classification decisions with softmax scores, as illustrated, offer
insight into the certainty of model predictions and encourages acceptance of
classification models like VOC-Net. Since the training and validation spectra are
simulated and do not contain noise, we can conclude that the misclassifications for the
validation spectra arise from similar transitions present in very complex spectra for more
than one molecule, and are not from overfitting. We conclude that VOC-Net is not
overfitting, since similar training and validation accuracies were achieved and the model
was trained with only four epochs. The smaller number of epochs essentially implements
an early stopping strategy that prevents overfitting. Ensuring the model is not
overfitting does not preclude misclassifications; however, it makes the model capable of
generalization.

Thirty-six experimental spectra measured as described above were used to demon-
strate and test the model. The softmax scores produced by the VOC-Net  for these exper-
imental spectra and their subsequent classifications are given in Figures 12–14. Against
the experimental dataset, the model yields one misclassification. The misclassified spectra
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is for methanol at 1 Torr. The details of the measurement conditions of the experimental
spectra are given in Table 3. We observe that all of the spectra contain some amount of noise
(noise floor is on average 0.001 in absorbance space) and other experiment-to-experiment
variations and anomalies. For example, some measurements exhibit an subtle upward
drift in measured absorbance at higher frequencies that is a purely experimental artifact
resulting from intensity baseline drift in the radiation source.

Despite the noise and other aberrations not found in the training datasets, VOC-Net
performs very well against the experimental dataset, yielding a 97.2% classification accuracy.
The strong performance against experiments illustrates that the VOC-Net has managed to
generalize and learn to distinguish the salient spectral features belonging to each molecule.
However, when the noise floor is large relative to the signal, the softmax scores illustrate that
the model has lower confidence and offers probabilities that the spectra under consideration
may belong to multiple molecules. For the single misclassification (spectra no. 17), we
observe that the model marginally misses the correct classification (methanol), confusing
the methanol spectra with that of formic acid and carbonyl sulfide. Note, similar uncertainty
was shown by the model with respect to methanol, carbonyl sulfide, and formic acid for
simulated validation spectra. Due to this particular misclassification, in the R O C  curves
shown in Figure 15, the AUC  scores for formic acid and methanol are reduced. The overall
AUC  score for the six molecule classes that make up the experimental spectra is 0.983, which
is very similar to the training and validation A U C  scores of 0.996 and 0.998, respectively.
The overall classification accuracy for the VOC-Net  against experimental data (97.2%) is
somewhat better than the performance of a support vector machine (SVM) classifier we
have previously reported, that under similar conditions produced an accuracy of 93.5%
against experiments [17].

Table 3. Experiment conditions. The experimental spectra are sequentially plotted from left to right
in Figures 12–14.

Exp. Spectrum No.
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Molecule
Ethanol
Ethanol
Ethanol
Ethanol
Ethanol
Ethanol

Formic acid
Formic acid
Formic acid
Formic acid
Formic acid
Formic acid
Methanol
Methanol
Methanol
Methanol
Methanol
Methanol

Pressure (Torr)
2

16
8
1
4
8
1
2

16
1
4
4
1
4
2
2
1
8

Exp. Spectrum No.
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Molecule
Chloromethane
Chloromethane
Chloromethane
Chloromethane
Chloromethane
Chloromethane

Acetonitrile
Acetonitrile
Acetonitrile
Acetonitrile
Acetonitrile
Acetonitrile

Acetaldehyde
Acetaldehyde
Acetaldehyde
Acetaldehyde
Acetaldehyde
Acetaldehyde

Pressure (Torr)
8
1
5

0.5
1

10
4

16
0.5
2
8
1
2
8
1

0.5
1
2
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Figure 12. VOC-Net classification of experimental spectra (1–12). The corresponding softmax scores
for each classification are given with each spectra.

Figure 13. VOC-Net classification of experimental spectra (13–24). The corresponding softmax scores
for each classification are given with each spectra.
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Figure 14. VOC-Net classification of experimental spectra (25–36). The corresponding softmax scores
for each classification are given with each spectra.

Figure 15. ROC curve for the classification of 36 experimental spectra.

4. Discussion

The VOC-Net is further examined using the Grad-CAM method [29], which produces
a heatmap superimposed on the raw spectral input to visualize and elucidate the model’s
decision making process. The gradients of each target molecule class from the inputs to
the last convolutional layer (in our case the second convolution layer) are averaged. Then
the gradient multipliers are summed with the corresponding feature maps to generate the
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heatmap. Localized spectral peaks prioritized by the model for classification are easily
visualized and illustrate the molecule-discriminating regions of the spectra. The class
activation maps for six experimental spectra correctly classified by VOC-Net are shown in
Figure 16. The class activation map for the single misclassification of the methanol spectra at
1 Torr, which VOC-Net  incorrectly predicted to be formic acid, is shown in Figure 17.
Figures 16 and 17 depicts the softmax scores corresponding to each spectrum next to the
class activation maps.

Figure 16. Class activation maps for the classification of six experimental spectra (No. 1, 7, 13, 19, 25,
and 31). A l l  of these spectra were correctly classified. The corresponding softmax scores are shown
next to each class activation map.
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Figure 17. Class activation map for the classification of experimental spectra number 17. The spectra is
for methanol at 1 Torr but is misclassified as formic acid. The corresponding softmax scores are
shown next to the class activation map.

For accurate and confident classification (high softmax scores), the Grad-CAM results
illustrate that distinguishing transitions, characterized by strong absorption peaks, should
be activated, where activation refers to the features that the model prioritizes in its classifi-
cation decisions. Furthermore, weak transitions and noise fluctuations should have low
activation. The model misclassifies when large numbers of weak absorption features within
the noise floor causes activation. Both methanol and formic acid have a large number of
absorption peaks in the considered frequency range. In the activation map for the misclassi-
fied methanol spectrum (Figure 17, misclassified as formic acid), we observe that the major
transitions near 8.4 cm 1 and 9.8 cm 1 are not well activated. The class activation maps
also provide valuable insight regarding the identification of the necessary or preferred
features for spectral classification. Thus, in terms of selecting spectroscopic transitions or
frequency ranges for sensor design, the Grad-CAM method may act as a guiding tool.

5. Conclusions

A  deep learning neural network, VOC-Net,  has been developed and demonstrated
for the automated identification of VOCs based on their fingerprint rotational absorption
spectra in the 220–330 G H z  frequency range. VOC-Net performed at an greater than 99%
against simulated spectra and 97% against experimental spectra. The architecture of the
CNN-based VOC-Net and model and data parameters affecting its performance have been
evaluated. Grad-CAM class activation maps for the C N N  provide valuable insight into the
decision making process of the network, enabling acceptance and trust from potential users.
The model demonstrates a high degree of accuracy, selectivity, and sensitivity for simulated
spectra for twelve VOCs of interest in remote gas sensing in industrial applications and for
six VOCs for which prior experimental data is available. The model further demonstrated
the importance of specific spectral features which it prioritizes for making classification
decision. VOC-Net maybe used for classification of spectra and sensor design (transition or
frequency range selection), enabling future selective and cross-sensitive automated T H z
remote gas sensing. The VOC-Net  model reported here may be extended to different
frequency regions, types of spectroscopy, or other spectral classification problems, provided
suitable training datasets exist or can be generated.
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