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ABSTRACT: The identification of gas mixture speciation from a
complex multicomponent absorption spectrum is a problem in gas
sensing that can be addressed using machine-learning approaches.
Here, we report on a deep convolutional neural network for
multigas classification using terahertz (THz) absorption spectra,
THz spectra mixture classifier network or TSMC-Net. TSMC-Net
has been developed to identify eight volatile organic compounds in
mixtures based on their fingerprint rotational absorption spectra in
the 220-330 GHz frequency range. A data set consisting of
simulated absorption spectra for randomly generated mixtures, with
absorption greater than thresholds representing detectable limits
and annotated with multiple labels, was prepared for model
development. The supervised multilabel classification problem, i.e.,
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the identification of individual gases in a mixture, is converted to a supervised multiclass classification problem via label powerset
conversion. The trained model is validated and tested against simulated spectra for gas mixtures, with and without white Gaussian
noise. The trained model exhibits high precision, recall, and accuracy for each pure compound. Class activation maps illustrate the
complex decision-making process of the model and highlight relevant frequency regions that are needed to identify unique mixtures.
Finally, the model was demonstrated against measured THz absorption spectra for pure species and mixtures, acquired using a
microelectronics-based THz absorption spectrometer. The data set generation strategy and deep convolutional neural network
approach are generalized and can be extrapolated to other spectroscopy types, frequency ranges, and sensors.
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as sensing in industrial, scientific, and environmental
G applications, such as process control and remote
monitoring, often requires the determination of the speciation
of complex mixtures from spectra containing dozens to perhaps
hundreds of features, obtained using absorption spectroscopy
or other methods.'™ Such gas-sensing applications include the
continuous sensing of targeted toxic chemical species as
required in personnel safety scenarios,* occupational health,>®
pharmaceutical and medical,”** automotive,’>** national
security, ™! pollutant monitoring,**™2° and other safety®%??
applications. Complex spectra, arising from multicomponent
mixtures, can be analyzed using multiple component analysis
(MCA),?® independent component analysis (ICA),%* multi-
variate calibration (MVC),>® self-modeling curve resolution
(SMCR),?>*® and multivariate curve resolution (MCR);?’
however, these methods typically require knowledge of the
species present in the mixture prior to their application.
Furthermore, to determine quantitative concentrations of
mixture components, a regression problem needs to be solved,
in which a signal or feature is fit against a calibration or model
that defines the concentration. This is often done using
principal component regression (PCR), non-negative matrix
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factorization,?® partial least-squares (PLS), inverse least-
squares (ILS), or ordinary least-squares (OLS) methods.?932

Machine learning (ML) and deep learning (DL) have been
used in several recent chemical sensing applications. For
example, DL has been applied in solid-state gas sensors.>>73®
Two- and three-dimensional deep convolutional neural
network (CNN) models trained on optical micrographs for
liquid-crystal-based mixture speciation have been re-
ported.>’~3° One-dimensional CNNs have been used to
extract nonlinear features to classify pure gases in a solid-
state electronic nose sensor.’° Classical ML models, for
instance, classification trees, random forests, multilayer
perceptrons, and support vector machines, have been
demonstrated to achieve high classification accuracy for the
identification of pure gases from terahertz (THz)*' and
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Figure 1. Schematic diagram of TSMC-Net and a THz spectrometer for classification of complex mixtures. TSMC-Net consists of a feature

extraction block and a dense downstream classification block.

infrared spectra.*? In recent work, we have reported a deep
convolutional network (VOC-Net) for classification of pure
rotational spectra in the 220-330 GHz frequency range and
examined it with gradient-weighted class activation maps*® to
understand its inner workings.** Interpretable classification
networks, such as VOC-Net, illustrated that DL models are
capable of achieving high classification performance measures
by generalizing spectral features. Deep convolutional neural
network models offer several key advantages. First, deep CNNs
can extract features (sets of derived values from the absorption
spectrum). Second, the universal approximation theorem
guarantees that a deep neural network will be able to represent
the complex relationship that exists between a spectrum and its
corresponding class-distinctive label.*> Third, a deep convolu-
tional neural network can be further examined using the
GRAD-CAM method,*® which, when implemented in 1-D for
spectra, visually highlights the spectral features that contribute
to a positive class distinction decision.

The THz absorption spectrum for a given polar gas-phase
molecule, within in a suficient frequency band, is dependent
on the unique rotational structure of the molecule and can
retain a self-similar spectral fingerprint irrespective of
thermodynamic conditions, concentration, bath gas composi-
tion, or frequency of the transitions.*™*® The rotational
fingerprint allows for the application of one-dimensional
CNNs or other ML models to learn and extract relevant
features for speciation. Furthermore, due to the recent
advances in THz microelectronic sources, miniature and
portable THz gas sensors are feasible.*>*° Thus, DL-assisted
THz multigas speciation can contribute toward advanced
sensor design for portable, wearable,”*> and unmanned
vehicle®® applications.

The problem of determining mixture speciation from a
spectrum is similar to the problem of blind source separation
(BSS), which is the separation of an original source signal from

a mixed signal without any information regarding the mixing
process.”>>* Here, we present a DL>* approach to determine
the speciation of a mixture from its THz absorption spectrum.
We assume a mixture spectrum is a linear combination of
component spectra and train a CNN followed by a dense
neural network using high-dimensional simulated spectra. The
present approach is only limited by the availability of pure
reference spectra and can be adapted to any arbitrary and
potentially large number of mixture components. This is
advantageous, since the absence of a known number of mixture
components makes the application of traditional methods (i.e.,
MVC, SMCR, MCR, PCR, PLS, and OLS) dificult.

The present DL model is developed to identify eight
possible volatile organic compounds (VOCs) that are
rotationally active in the frequency range of interest (220-
330 GHz) and have line positions and strengths that are
documented in the HITRAN®® and JPL®® spectroscopic
databases. For many of the considered VOCs, we have
previously reported spectral absorption measurements in the
present frequency range.*>>”°® The DL model is trained and
validated using simulated spectra, is tested against noisy
simulated spectra, and is demonstrated via the classification of
experimental spectra. Lastly, the model is analyzed using class
activation maps to examine how it learns from the spectral
fingerprints containing class-discriminating spectral features.

E METHODOLOGY

The data sets, their generation, the architecture of the THz
spectra mixture classifier network (TSMC-Net), and network
training and validation approaches are described in the
following subsections. A schematic of TSMC-Net with the
experimental THz spectrometer, illustrating the overall
methodology, is shown in Figure 1. TSMC-Net is trained
using simulated mixture spectra. A laboratory spectrometer
measures the THz spectrum of a gas mixture of interest, and
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TSMC-Net outputs estimated probabilities for the mixture
speciation. The TSMC-Net codes and the analysis presented in
this paper are hosted at https://github.com/
arshadzahangirchowdhury/TSMC-Net.

Problem Statement and Solution Approach. Multi-
component speciation based on a single absorption spectrum is
a multilabel supervised classification problem. Since a single
spectrum can be associated with the presence of multiple gases,
the spectrum will have multiple labels, presenting two
challenges. First, labeling or annotating a multigas spectrum
for model training is much more expensive compared to a pure
gas spectrum. Second, not all machine-learning models can be
directly applied to classify spectra with multiple labels, thus
motivating conversion of the multilabel problem to a multiclass
classification problem.

Here, the maximum number of mixture components
considered is 8 and each spectrum considered consists of
229 absorbance values from 220 to 330 GHz (frequency
resolution of 0.016 cm™'). The label powerset method® is
implemented to convert an 8-label classification problem to a
28 - 1 = 255 class classification problem. Because each
spectrum is comprised of 229 features, the input layer to the
TSMC-Net has 229 neurons, and the output layer contains
255 neurons, corresponding to the number of unique mixtures
(classes). The input and output layers of the network are
trained using simulated spectral data sets and their
corresponding multiclass integer label indices. Each neuron
in the output layer provides a raw score for each mixture class.
Thus, the model establishes a mapping between the input
spectra and raw scores corresponding to its label. These scores
are converted to estimated probabilities via softmax activation.

The softmax scores, g, are given by

€
K Z;
j=1€ (1)

o(2), =

where z is the input to the softmax layer and K is the number
of molecule classes.

The feature extraction scheme highlighted in Figure 1
applies convolution and pooling operations to reduce the
dimensionality of the input spectrum while preserving the
mixture-distinguish information. Each convolution converts
the input vector to a new vector containing learned features.
The size of the convolution output is given by
%(W — K, + 2P) + 1, where, W, K, P, and S are the sizes of
the input, kernel, padding, and the stride, respectively, for each
filter. TSMC-Net uses three filters for every convolution.
Consequently, the output of the first convolutional layer is

given by i(229 _ 3+ 2x0)+ 1= 227, since the input size

is 229, th%a kernel size is 3, the stride size is 1, and valid (zero)
padding was used. Since we implemented three filters, the total
output of the first convolution is given by (227,3). For the
subsequent pooling layer, for each filter, the output size is

WK+ For a stride size of 2 and a pooling kernel size of 2,

s
we obtain the total output shape of (113,3).

Each convolution passes a sliding window over its inputs,
and each pooling layer downsamples its inputs; thus,
collectively they produce a derived set of values from the
input spectrum during the forward pass of the model. The
weights of these convolutional and pooling layers are trained
and regularized and ultimately output a small set of derived

values after the last convolutional layer. The derived set of
values contain the most relevant information contained in the
input spectrum in a lower-dimensional vector. The process of
reducing the input features of the spectrum to a new set of
features in a lower-dimensional space is known as feature
extraction. The features extracted after the last convolutional
layer are fed to a flattened dense layer. The dense layer learns
from the extracted features and during the forward pass
transforms its inputs to the supervised class label of each
mixture. Each dense layer applies learned weights and biases
followed by nonlinear ReLU activation to obtain raw scores.
Afterward, the Adam optimizer®® updates weights and biases
with sparse categorical cross-entropy loss with a batch size of
32. Once training is complete, the raw scores are converted
with the softmax activation function and the estimated
probabilities for all 255 classes are reported. The class with
the highest estimated probability is the predicted speciation for
the considered mixture spectrum. The classification scheme
shown in Figure 1 simply maps the extracted features to raw
scores. For multiclass classification, these raw scores are
converted to estimated probabilites via the softmax function.

E EXPERIMENTAL METHODS

Experimental spectra were acquired using an spectrometer that has
been described in prior work.#>°%°75861 THz radiation is generated
with a microelectronics source (VDi SGX Model WR 3.4 220330
GHz), passed through a gas cell containing the absorbing gas mixture
(path length of 21.6 cm), and detected using a Schottky diode
detector (VDi Model QOD 315). A brief schematic of the setup is
shown in Figure 1.

The absorbance is determined by first measuring a baseline
reference intensity, /;, while the gas cell is under vacuum. Then the
cell is pressurized with the gas mixture of interest and the transmitted
intensity, /, is measured. Gas mixtures were made in situ via partial
pressures from pure chemicals (>99%, Sigma-Aldrich). The spectral
absorbance of the gas mixture, Amixure iS given by

(2)

where ¢,is the spectral absorption coeficient for the ith species, which is
a function of the spectroscopic parameters (i.e., line positions,
shapes, strengths) and temperature, pressure, and gas concentration, cig
the concentration of the ith absorbing gas species, and [ is the
absorption path length.

An absorption spectrum is calculated from the measured reference
and transmitted intensities and sent to the TSMC-Net model for
classification ofline (after completion of the experiment). The
measured experimental spectrum is resampled to match the 0.016
cm™? resolution of the simulated spectra used to train TSMC-Net. In
this work, ten measured spectra for gas mixtures and pure species are
used to demonstrate TSMC-Net against experimental data. These
experimental spectra are described in Table S1 of the Supporting
Information.

iy
Amixture = —In.— = Z gicil
Kot 4

E COMPUTATIONAL METHODS

Training, Validation, and Test Spectra. DL models require
significant amounts of data for training and validation. A key challenge
in the training of DL models to recognize spectra is the lack of
experimental spectra. In prior pure gas spectra identification problems
in the THz and infrared frequency ranges,***>** simulated spectra
proved to be excellent for training various ML models. Model training
for mixtures necessitates the use of simulated spectra, given the lack of a
suficient number of available experiments on multigas mixtures.

To generate simulated mixture spectra, we simulated the spectra for
the eight pure components of interest (listed in Table 1) at a total
pressure of 1 Torr, a temperature of 297 K, and a path length of 21.6
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Table 1. Summary of Pure Compounds and Source of the
Spectroscopic Parameters Used in Spectral Simulations

compound formula source of spectroscopic data
acetaldehyde CH5;CHO JPL®®
acetonitrile CH;CN JPL
chloromethane CH,ClI HITRAN®®
methanol CH;OH HITRAN
ethanol C,H;OH JPL
formic acid HCOOH JPL
nitric acid HNO, HITRAN
formaldehyde H,CO HITRAN

cm without dilution. Simulations were carried out using the HAPI
software®? and the spectroscopic parameters found in the HITRAN®>®
and JPL®® databases. The spectra were simulated at a frequency
resolution of 0.016 cm™). These spectra are illustrated in Figure 2.
Mixture spectra were generated by the linear combination of these
eight pure component reference spectra with randomly generated
concentrations for each pure component. The simulated mixture
spectra generated by a linear combination of the pure compound
reference spectra assume collisional line broadening that is
independent of mixture composition (i.e., all collisions result in
broadening that is the same as a self-broadening collision).
Unfortunately, information on broadening parameters is almost
always restricted to self-broadening and broadening by air or nitrogen,
owing to the lack of cross-collisional broadening parameters in the
literature.

For simulated spectra, the composition of the mixture is generated
randomly by the selection of component concentrations for the linear
combination from a uniform distribution on the interval [0, 1], while
obeying two constraints. First, the maximum absorbance for each
species in the mixture must be above 0.01. For kHz-rate experiments,
minimum detectivity typically occurs for an absorbance of around
0.001. Hence, the requirement of a maximum absorbance of 0.01 for
each species corresponds to a maximum signal-to-noise ratio (SNR)
of 10 for the detection of each species at its peak value of absorbance
within the 220-330 GHz frequency range. As a second constraint, to
ensure that each component absorbance suficiently stands out
compared to the total absorbance, we require that the ratio of the
maximum absorbance for each species to the maximum absorbance
for the mixture be 0.01 or greater. These thresholds ensure that the
DL model will not learn from a spectrum which (a) is very weak, (b)
contains practically undetectable components, and/or (c) has weaker
absorbers whose fingerprint is overwhelmed by strong absorbers.

The spectra generation process was as follows.

Step 1: A set of random concentration values for 8 components
and the diluent are generated such that their sum equals 1.
Step 2: Using reference spectra at 1 Torr for the 8 pure
compounds, a mixture spectrum is calculated via linear
combination.

Step 3: The mixture spectrum is checked for the two
constraints on absolute and relative absorbance.

Step4: If thespectrum passesthe two constraints, it is
retained; otherwise, steps 1-3 are repeated.

Step 5: Once the desired number of mixture spectra are
generated, 90 spectra from each of the 255 mixture classes are
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Figure 2. Simulated reference spectra. Conditions: 1 Torr, 297 K, 21.6 cm path length.
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Figure 3. Accuracy, precision, recall, and f1 score for species identification: (a—h) simulated validation spectra without added noise. (i-p) test

spectra with added Gaussian noise (SNR = 30).

randomly sampled, to generate an unbiased data set with each
mixture type equally represented.

Step 6: These spectra are split into a training and a validation
set.

For the unique 255 mixture types, 22950 unique simulated spectra
were generated for the development of TSMC-Net (90 spectra per
mixture type). Approximately 97% of the simulated spectra were
multicomponent, while the remaining 3% of the training spectra were
for pure components diluted in air, such that the trained network
would also accurately predict those single absorber mixtures. The
spectra were split into 60%-40% training and validation sets, yielding
13770 training spectra (54 spectra per mixture type) and 9180
validation spectra (36 spectra per mixture type). Thus, the matrices
containing the training and validation spectra have shapes of 13770 x
229 and 9180 x 229, respectively. The representation of spectra in the
training and validation sets from each of the unique combinations of
pure compounds is shown in Figure S1 and the description of each
data set is provided in Table S2 of the Supporting Information.

To understand the influence of noise on TSMC-Net classification
performance, a data set was prepared where Gaussian noise was added
to the 9180 simulated validation spectra; we call this the test set in
Table S2 of the Supporting Information. Noise was added to generate
spectra with a SNR of 30, where SNR has been defined as the
maximum absorbance value for the mixture spectra divided by the
amplitude of absorbance white noise added.

The training time is on average 145 + 1 s. The prediction time on
the entire validation data set was measured to be less than 2 s. The
timing measurements were carried out on an Intel(R) Xeon(R) W-
2223 CPU with a clock speed of 3.60 GHz.

1D Convolutional Neural Network Architecture (TSMC-Net).
For the classification of pure spectra in the 220-330 GHz range, we
previously reported a convolutional deep neural network (VOC-
Net).** TSMC-Net borrows the VOC-Net architecture and adds an
additional convolutional layer for improved feature extraction and a
denser penultimate flattened layer for classification of 255 classes of
spectra (mixture types).
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Figure 4. Measured mixture spectra under the conditions given in Table S1. The tabular data to the right of each spectrum give the top mixture

probabilities predicted by TSMC-Net.

In Figure 1, the TSMC-Net architecture is illustrated. The network
consists of three sections: the feature extraction block, a dense
classification block, and a softmax probability model (not shown in

Figure 1). Raw absorbance values from simulated spectra serve as
features, and each spectrum serves as a training instance. The feature

extraction block is tasked with examining regions of the spectra via
convolutional filter kernels to progressively extract mixture-discrim-
inating information from the raw absorbance. These extracted features
are then sent to a dense model to calculate raw classification scores.
The raw classification scores are next converted to probabilities in a
softmax layer. The final layer of the dense model contains 28 - 1 =
255 neurons, a neuron for every unique mixture, to convert from a
multilabel to a multiclass classification problem, a step known as label
powerset conversion of multilabel classification-

For the present complex classification task, TSMC-Net must learn

the training examples closely and a relatively complex model is
needed; hence, early stopping was implemented to regularize TSMC-

Net instead of dropout. Training was stopped after 37 epochs with
accuracies on training and validation at 97.1% for both.

E RESULTS AND DISCUSSION

Validation and Testing Results. In Figure 3a-h, the
confusion matrices for the identification of each compound in
the validation data set are shown. Each confusion matrix lists
the true positives, true negatives, false positives, and false
negatives for the classification of a single compound for all
instances where the compound is present in the validation
spectra. The model classification performance against simu-
lated noise-free validation spectra is very strong, with overall
accuracy, precision, and recall for predicting individual
compounds trending toward greater than 99%. As previously
shown, the accuracy for predicting the correct mixture is
greater than 97% for the validation data set.

The addition of Gaussian noise to the data set (SNR = 30)

results in a slightly reduced classification performance, as
shown in the Figures 3i—p confusion matrices. For the noise-

added test data set, the overall accuracies range from 80% for
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Figure 5. Measured pure spectra under the conditions given in Table S1. The tabular data to the right of each spectrum give the top mixture

probabilities predicted by TSMC-Net.

formic acid (HCOOH), a weak absorber, to 95% for
acetonitrile (CH,CN), a strong absorber. The precision ranges
from 0.77 to 0.99 and the recall from 0.79 to 0.99. The
classification metrics are the poorest for the weakest absorbers
(H,CO, CH,CHO, HCOOH) that are more easily over-
whelmed in mixtures by competing absorbers and noise, when
present.

TSMC-Net was compared to two statistical learning models,
decision tree®® and random forest.®* TSMC-Net achieved
higher precision, recall, accuracy, and f1 scores across all the
compounds and mixtures. Both the decision tree and random

forest methods also overfit the training spectra and achieved
poor accuracies in our prior work on pure compound
identification in the same frequency range.*! Furthermore,
the prediction time for these models were found to be
relatively slower, since TSMC-Net can be parallelized.
Demonstration Results. In Figure 4, the performance of
TSMC-Net for the classification of five experimental mixture
spectra is demonstrated. The measured spectra and the
corresponding softmax scores from TSMC-Net are shown.
TSMC-Net outputs 255 softmax scores corresponding to the
probabilities associated with the respective spectra belonging
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Figure 6. Class activation maps for the classification of three simulated validation spectra: (top) 38% C,H,OH-2% CH,CHO-2% CH,CI-16%
CH 30H-10% H,CO-20% HCOOH-8% HNO3-4% air; (middle) 20.5% CH3CHO-75.8% HNO3-3.7% air; (bottom) 40% CH;CHO-60%

air.

to any one of the mixture classes. In Figure 4, the top 5
softmax scores are given. Three measurements of 30%
CH3Cl-70% CH3CN are illustrated and all correctly classified.
The first (Figure 4a) shows only high probability for the
correct classification (CH3;Cl and CH3CN), but the second
two (Figure 4b,c) show marginal probabilities (35% and 8%)
that the mixture could include C,HsOH in addition to CH;Cl
and CH3;CN. Figure 4d,e demonstrates two experimental
spectra for a 3-component mixture (90% CH3;OH-30%
CH3CI-70% CH3;CN) with different levels of noise. The
model yields 99.9% probability for the correct classification in
both cases and illustrates that the model can deal with
variations in the noise floor.

In Figure 5 TSMC-Net is demonstrated for the identi-
fication of five single-component spectra. With the exception of
acetaldehyde (CH3CHO), the model produces the correct
classification with over 99% probability. The acetaldehyde
spectrum is misclassfied as a three-component mixture of
acetaldehyde, ethanol, and acetonitrile, with a reported
probability of approximately 84%. For this misclassified
spectrum, the model predicts acetaldehyde in all of the top
five classification probabilities but predicts false positives. In
this case, the model is misconstruing some of the absorption
features within the acetaldehyde spectrum as arising from other

species, which have similar and overlapping absorption features
in this frequency range (see Figure 2).

Interpretability. Gradient-weighted class activation map-
ping (Grad-CAM)*® has been employed to interpret TSMC-
Net. The last convolutional layer within the model produces a
set of extracted features which originate from the input
features. Grad-CAM gives a visualization of the importance of
each extracted feature using a heat map that is superimposed
on the original raw spectrum, where the intensity (color) of the
output indicates the weight associated with each extracted
feature. See several examples in Figure 6. The color scale
indicates whether a feature has a positive or negative
contribution to the model class prediction. Higher weights
associated with extracted features indicate a positive
contribution (bright colors) toward the identification of the
positive class, and lower weights indicate a negative
contribution (dark colors) to the final classification. The
class activation maps contain useful information for sensor
design, since critical localized spectral peaks within a spectrum
for classification decision-making can be visualized, thus
distinguishing mixture-discriminating regions in each spec-
trum.

Three class activation maps (CAM) are illustrated in Figure
6. The example 7-component CAM (top graph) demonstrates
that a significant portion of the spectrum is used to identify the
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mixture; i.e., much of the spectrum has colors that tend toward
higher Grad-CAM weights. For mixtures containing fewer
components, we see that smaller portions of the spectra
contribute positively to the mixture classification. In the cases
of 2- and 1-component mixtures a smaller number of
important features are identified by the model as providing
the important class-discriminating fingerprint.

E CONCLUSIONS

A convolutional deep-learning neural network model, TSMC-
Net, has been developed and demonstrated for the automated
identification of gas mixtures comprised of up to eight
industrially relevant VOCs based on their fingerprint rotational
absorption spectra in the 220-330 GHz frequency range.
TSMC-Net achieved greater than 97% accuracy for identifying
mixtures on a balanced validation data set consisting of 9180
simulated spectra. The accuracy in the identification of
individual compounds was greater than 99%. The model is
applied to ten experimental spectra, yielding correct classi-
fication for nine of those spectra and for the other spectrum
(pure acetaldehyde) identifying the true positive and two false
positives. Class activation maps for TSMC-Net illustrate the
decision-making process of the model. TSMC-Net can be
applied in gas sensing and other situations where spectral
identification is required and for sensitive and selective sensor
design. TSMC-Net may be extended to different frequency
regions, types of spectroscopy, or other spectral classification
problems, provided suitable training data sets exist or can be
generated. The method can also be extended in the future to
provide quantitative concentrations, in addition to speciation.
Additionally, extension of the sensor operating frequency range
can allow for improved sensitivity and access to additional
species.
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