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ABSTRACT

Mutation faults are the core of mutation testing and have been

widely used in many other software testing and debugging tasks.

Hence, constructing high-quality mutation faults is critical. There

are many traditional mutation techniques that construct syntactic

mutation faults based on a limited set of manually-defined muta-

tion operators. To improve them, the state-of-the-art deep-learning

(DL) based technique (i.e., DeepMutation) has been proposed to

construct mutation faults by learning from real faults via classic

sequence-to-sequence neural machine translation (NMT). However,

its performance is not satisfactory since it cannot ensure syntactic

correctness of constructed mutation faults and suffers from the ef-

fectiveness issue due to the huge search space and limited features

by simply treating each targeted method as a token stream.

In this work, we propose a novel DL-based mutation technique

(i.e., LEAM) to overcome the limitations of both traditional tech-

niques andDeepMutation. LEAMadapts the syntax-guided encoder-

decoder architecture by extending a set of grammar rules specific to

our mutation task, to guarantee syntactic correctness of constructed

mutation faults. Instead of predicting a sequence of tokens one by

one to form a whole mutated method, it predicts the statements

to be mutated under the context of the targeted method to reduce

search space, and then predicts grammar rules for mutation fault

construction based on both semantic and structural features in AST.

We conducted an extensive study to evaluate LEAM based on the

widely-used Defects4J benchmark. The results demonstrate that

the mutation faults constructed by LEAM can not only better rep-

resent real faults than two state-of-the-art traditional techniques

(i.e., Major and PIT) and DeepMutation, but also substantially boost

two important downstream applications of mutation faults, i.e., test

case prioritization and fault localization.
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1 INTRODUCTION

Mutation faults are originally proposed in mutation testing, which

aim to mimic real faults and then measure the effectiveness of a

test suite [35, 36, 62]. Specifically, by applying a series of mutation

operators (e.g., relational operator replacement) to the program

under test, a set of mutation faults can be constructed. Then, the

effectiveness of a test suite can be measured by executing the test

suite to detect the set of mutation faults. Undoubtedly, mutation

faults are the core of mutation testing. Indeed, as demonstrated

by the existing studies [48, 61], the quality of mutation faults can

significantly affect the effectiveness of mutation testing. Besides

measuring test effectiveness, mutation faults have been extensively

extended to facilitate many other software testing and debugging

tasks (also called downstream applications of mutation faults), e.g.,

test case prioritization (TCP) [55, 70] and fault localization (FL) [57,

63]. In fact, mutation-based techniques have become the state of

the art for various such downstream applications. Hence, due to

the important role and wide range of usage scenarios, constructing

high-quality mutation faults has become more and more critical.

Over the years, many techniques have been proposed to con-

struct mutation faults in order to represent real faults as much as

possible [21, 34, 40, 56, 58, 69, 76]. For ease of presentation, we call

a technique constructing mutation faults a mutation technique in

our paper. The traditional mutation techniques construct mutation

faults by manually designing a series of mutation operators, each

of which can conduct a simple syntactic change to the program

under mutation for creating a mutation fault [21, 34, 40, 56, 58, 69].

Despite simple, some of them have achieved good effectiveness
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and have been used in both practice and academia, e.g., Major [40]

and PIT [21]. However, as revealed by the existing studies [12, 28,

65, 76, 77], these mutation faults constructed by the current set of

mutation operators cannot sufficiently represent real faults. There

are two major reasons: (1) The current set of mutation operators

is limited. Designing more mutation operators may be helpful to

relieve this problem, but it requires substantial manual efforts. (2)

The current set of mutation operators focuses on simple syntactic

changes, indicating that it is hard to go deep into fault semantics.

Hence, they cannot construct the mutation faults specific to the

semantics of the program under mutation.

To relieve the limitations of traditional mutation techniques,

some existing work suggested to extract mutation operators from

historical bugs/fixes [12, 65]. Same as this idea, Tufano et al. [77]

proposed the state-of-the-art deep learning (DL) based mutation

technique (i.e., DeepMutation), which constructs mutation faults

by learning from a number of real faults via classic sequence-to-

sequence neural machine translation (NMT). Indeed, DeepMuta-

tion opens a direction to avoid the efforts of manually designing

mutation operators and incorporate program semantics via deep

learning, but it was just evaluated in terms of DL metrics and thus

it is unclear whether its constructed mutation faults can really

improve mutation testing and its downstream applications (e.g.,

mutation-based TCP). From our study (to be presented in Section 5),

we demonstrate for the first time that DeepMutation actually un-

derperforms the traditional techniques (i.e., Major and PIT) in the

usage scenarios of mutation faults. That is, despite novel, DeepMu-

tation does not reach the requirement of practicality like Major and

PIT. The main reasons are threefold: (1) It constructs a mutation

fault (i.e., a mutated method) by predicting a sequence of tokens

one by one in the method, which constitutes huge search space, and

thus it is hard to achieve accurate prediction to form an expected

mutated method. (2) It treats a method to be mutated as a token

stream, which actually loses much program information, and thus

the prediction performance can be negatively affected. (3) It cannot

ensure to produce syntactically correct programs after mutation.

To overcome the limitations of the state-of-the-art DL-based

technique, in this work, we propose a novel DL-based mutation

technique, called LEAM (LEArning to Mutate), by designing a

syntax-guided mutation process inspired by the existing neural

program generation techniques [73, 74, 89]. It aims to construct

better mutation faults for facilitating both mutation testing and the

downstream applications of mutation faults. To reduce the search

space when constructing a mutation fault (overcoming the first

limitation), LEAM builds a sub-model for predicting the statements

to be mutated under the context of the targeted method, rather than

directly predicting a sequence of tokens one by one to form a whole

mutated method. To improve the prediction performance (overcom-

ing the second limitation), LEAM transforms a targeted method

as an AST (rather than a token stream) for DL model building in

order to incorporate both structural and semantic information. To

guarantee the syntactic correctness of constructed mutation faults

(overcoming the third limitation), LEAM adapts the syntax-guided

encoder-decoder architecture and builds another sub-model for

predicting a grammar rule for each unexpanded non-terminal node

in the partial AST corresponding to the identified statements to be

mutated. By integrating these sub-models built based on AST in-

formation, LEAM constructs mutation faults for a targeted method.

In particular, since a method may introduce different faults, LEAM

incorporates the beam search algorithm [26, 43] for constructing a

set of mutation faults that are highly possible to occur in practice,

for a targeted method.

To evaluate the effectiveness of LEAM, we conducted an exten-

sive study based on the widely-used Defects4J benchmark [41] by

comparing with two typical traditional mutation techniques (i.e.,

Major [40] and PIT [21]) and the state-of-the-art DL-based muta-

tion technique (i.e., DeepMutation [77]). Specifically, we compared

the quality of mutation faults constructed by the four techniques in

three popular scenarios (i.e., mutation testing, and its two important

downstream applications ś mutation-based TCP and FL). Our exper-

imental results show that LEAM can construct more representative

mutation faults than the three compared techniques in all the three

scenarios. For example, in mutation testing, the mutation faults con-

structed by LEAM can better represent real faults and the mutation

faults constructed by other mutation techniques. In mutation-based

TCP, feeding the mutation faults constructed by LEAM to the state-

of-the-art mutation-based TCP techniques (i.e., GRK, GRD, and

HYB-𝜔 [70]) achieves 15.38%∼280.00% improvements in terms of

average TCP effectiveness than the three compared techniques.

In mutation-based FL, feeding the mutation faults constructed by

LEAM to the state-of-the-art mutation-based FL techniques (i.e.,

MUSE [57] and Metallaxis [63]) achieves 110.71%∼600.00% improve-

ments in terms of average Top-1 FL effectiveness than the three

compared techniques.

To sum up, our work makes the following main contributions:

• We propose a novel DL-based mutation technique (LEAM),

which adapts the syntax-guided encoder-decoder architec-

ture to build two sub-models based on AST information, for

better learning to represent real faults and ensuring syntactic

correctness of mutation faults.

• We conduct an extensive study to evaluate LEAM in three

popular scenarios, including mutation testing and its two

downstream applications (mutation-based TCP and FL). The

results demonstrate the significant superiority of LEAM over

two traditional techniques and the state-of-the-art DL-based

technique in all the three scenarios.

• We develop and release our tool and the built model for

promoting future research and practical use. Please find them

at: https://github.com/tianzhaotju/LEAM.

2 BACKGROUND

For ease of understanding, in this section we first introduce some

basic concepts on mutation testing and mutation faults in Sec-

tion 2.1. Then, we introduce two important downstream applica-

tions of mutation faults, i.e., mutation-based TCP (Section 2.2) and

mutation-based FL (Section 2.3). This is because besides the original

usage scenario (i.e., mutation testing), mutation faults have been

widely used in many other testing and debugging tasks. To more

sufficiently evaluate the effectiveness of LEAM, we also investigate

the quality of constructed mutation faults in these downstream

applications by taking the two as the representative (Section 4).
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2.1 Mutation Testing and Mutation Faults

Mutation testing aims to reveal a set of deliberately introduced

faults with regard to a program under test, in order to measure the

effectiveness of a test suite (and further augment the test suite) [36].

Its basic assumption is that the introduced faults can effectively

represent real faults [5, 6, 22]. Here, a program with an introduced

fault is called a mutation fault (or mutant), which is constructed

by deliberately changing a small portion of code in the program

under test. The changing rules are called mutation operators.

For example, given that łif(x>y)ž is a code fragment in the orig-

inal program under test, a mutation fault can be constructed by

changing it into łif(x<y)ž through the mutation operator of re-

lational operator replacement. Please note that different mutation

techniques may include different sets of mutation operators.

Based on a set of constructed mutation faults, the effectiveness

of a test suite can be measured by running each test case on each

mutation fault. If the original program and a mutation fault produce

different outputs after the execution of a test case, we say that the

mutation fault is killed by the test case. If a mutation fault cannot

be killed by the whole test suite, we say that the mutation fault is

live with regard to the test suite. In particular, there are mutation

faults equivalent to the original program, and thus they cannot be

killed by any test cases (not only the test cases in the test suite).

These mutation faults are called equivalent mutation faults. By

computing themutation score, which is the ratio of the number

of killed mutation faults by the test suite to the total number of

constructed mutation faults (except equivalent mutation faults), the

effectiveness of the test suite can be measured.

Mutation testing is one of the most effective ways of measuring

test effectiveness [9, 20, 86], and its core lies in mutation faults [36,

65, 77]. Therefore, constructing high-quality mutation faults for

better representing real faults is a critical task.

2.2 Mutation-based TCP

Test case prioritization (TCP) aims to schedule the execution order

of test cases for detecting faults earlier, which has been widely

studied in the literature [13, 14, 18, 31, 68, 80]. Over the years, a large

number of TCP techniques have been proposed, such as coverage-

based TCP [16, 29, 31, 64, 88] and mutation-based TCP [25, 55, 70].

As demonstrated by the existing studies [55, 70], mutation-based

TCP techniques achieve better prioritization effectiveness than the

most widely-studied coverage-based TCP techniques, and thus have

become one of themainstreamTCP techniques. In our study, wewill

compare different mutation techniques by feeding their constructed

mutation faults to a mutation-based TCP technique respectively,

and then analyze the corresponding achieved TCP effectiveness.

Next, we briefly introduce three state-of-the-art mutation-based

TCP techniques, which are also the ones used in our study.

GRK iteratively selects a test case that maximizes the number

of additionally killed mutation faults [70]. It aims to distinguish

the mutation faults from the original program as early as possible.

GRD iteratively selects a test case that maximizes the number of ad-

ditionally distinguished mutation faults [70]. Here, mutation faults

are distinguished by a test case when their outputs are different

after the execution of the test case. That is, GRD aims to distinguish

all the mutation faults from each other as early as possible.HYB-𝜔

combines both GRK and GRD, which iteratively selects a test case

that maximizes the weighted sum of the number of additionally

killed mutation faults and the number of additionally distinguished

mutation faults. When the weight of the former (denoted as 𝜔 ∈

[0, 1]) is 1, HYB-𝜔 is equivalent to GRK; when 𝜔 = 0, HYB-𝜔 is

equivalent to GRD. In our study, we set𝜔 = 0.5 in HYB-𝜔 following

the existing work [70].

2.3 Mutation-based FL

Fault localization (FL) aims to automatically localize faulty program

elements (e.g., statements or methods) by ranking all the program el-

ements based on their suspicious scores, which tend to be computed

based on various dynamic execution information. FL have received

extensive attention over the years [3, 15, 17, 39, 45, 57, 67, 81],

and largely promoted the development of its follow-up task (i.e.,

automated program repair) [7, 27, 59, 83, 89]. In the literature,

a large number of FL techniques have been proposed, such as

spectrum-based FL [3, 39, 45] and mutation-based FL [57, 63]. In-

deed, mutation-based FL techniques are one kind of themost widely-

studied FL techniques, and their effectiveness has been demon-

strated by the existing studies [32, 57, 63, 66]. In our study, we will

also compare different mutation techniques by investigating the

effectiveness of a mutation-based FL technique by feeding the con-

structed mutation faults by these mutation techniques to it respec-

tively. Here, we brief introduce two state-of-the-art mutation-based

FL techniques, which are also the ones used in our study.

MUSE [57] andMetallaxis [63] are two state-of-the-artmutation-

based FL techniques. In general, mutation-based FL techniques

consider whether the execution of a statement affects the result

of a test case by injecting mutation faults. If a statement affects

failing test cases more frequently but affects passing test cases more

rarely, it is more suspicious. The main difference between MUSE

and Metallaxis lies in how to utilize mutation faults to compute

the suspicious score of each statement. MUSE first computes the

suspicious score of each mutation fault as shown in Formula 1

𝑆 (𝑚) = failed(𝑚) −
f2p

p2f
· passed(𝑚) (1)

where failed(𝑚)/passed(𝑚) is the number of test cases that fail/pass

on the original program but pass/fail on the mutation fault 𝑚,

f2p/p2f is the number of test cases that change from łfailž/łpassž

to łpassž/łfailž on any mutation fault. Then, the suspicious score of

a statement (denoted as 𝑠) is the average of the suspicious scores of

all the mutation faults occurring at 𝑠 .

Metallaxis computes the suspicious score of each mutation fault

as shown in Formula 2.

𝑆 (𝑚) =
failed(𝑚)

√︁

totalfailed · (failed(𝑚) + passed(𝑚))
(2)

where totalfailed is total number of test cases that fail on the original

program, failed(𝑚) is the number of test cases that fail on the

original program but the output changes on the mutation fault

𝑚, and similarly for passed(𝑚). Then, the suspicious score of a

statement (denoted as 𝑠) is the maximum of the suspicious scores

of all the mutation faults occurring at 𝑠 .

Following the existing studies [8, 50ś52], we used the two tech-

niques for localizing potential faulty methods (i.e., method-level
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FL) in our study. Therefore, for MUSE and Metallaxis, we further

computed the suspicious score of each method by using the maxi-

mum of the suspicious scores of all the statements in the method

following the existing work [51, 52, 72].

3 APPROACH

We propose a novel DL-based mutation technique by learning from

a large number of real faults, called LEAM, which can effectively

overcome the limitations of traditional mutation techniques (i.e.,

requiring substantial manual efforts to design mutation operators

for representing real faults but still failing to construct the faults

specific to the semantics of the program under mutation). Similar

to the state-of-the-art DL-based mutation technique (i.e., DeepMu-

tation) [77], LEAM conducts mutation at the method granularity,

i.e., constructing mutated methods for a targeted method in the

program. However, different from it, LEAM has the following sig-

nificant advantages to construct better mutation faults:

• Guaranteed syntactic correctness. LEAM adapts the syntax-

guided encoder-decoder architecture for mutation fault con-

struction by extending a set of grammar rules specific to

our task. In this way, a mutation fault can be constructed by

applying a sequence of predicted grammar rules to change

the targeted method, and thus it is syntactically correct.

• More comprehensive program features. Instead of treating a

method to be mutated as a token stream, LEAM extracts

both semantic and structural features from the method to be

mutated by representing it as an AST. Such comprehensive

features are helpful to build a more accurate model.

• Reduced search space. Instead of predicting a sequence of

tokens one by one to form a whole mutated method, LEAM

first predicts the statements highly possible to be mutated

under the context of the targeted method, which is enabled

by adding the corresponding grammar rules and can largely

reduce mutation space, and then predicts a sequence of gram-

mar rules for changing the statements.

As a method may introduce different faults, LEAM incorporates

the beam search algorithm [26, 71] for constructing a set ofmutation

faults highly possible to occur in practice for the targeted method.

Figure 1 shows the overall architecture of LEAM. In the following,

we will introduce the set of our extended grammar rules in LEAM in

Section 3.1, our extracted features for model building in Section 3.2,

our DL model for grammar rule prediction (including statement

prediction and change prediction) in Section 3.3, and the beam-

search-based mutation fault construction process in Section 3.4.

3.1 Grammar Rule Definition

Inspired by neural program generation [73, 74, 89], LEAM adapts

the syntax-guided encoder-decoder architecture for our task of

mutation fault construction in order to guarantee syntactic cor-

rectness of each constructed mutation fault. Specifically, it aims

to predict the probability of each grammar rule for expanding an

unexpanded non-terminal node in a partial AST. Please note that

the mutation process is conducted at the AST level in LEAM since

(1) this level can well support the syntax-guided architecture and

(2) an AST can provide more comprehensive information for model

Table 1: Definition of extended grammar rules for our task

1. Start −→IdentifiedStmts

2. IdentifiedStmts−→IdentifiedStmt; IdentifiedStmts | end

3. IdentifiedStmt −→Insert | Modify | Delete

4. Insert −→insert(⟨NTSstmt⟩)

5. Modify −→modify(⟨ID⟩, ⟨NTS⟩)

6. Delete −→delete(⟨IDstmt⟩)

7. ⟨NTS⟩ −→ ⟨GRS⟩

8. ⟨Identifier⟩ −→identifier | placeholder

* ⟨NTS⟩ stands for a non-terminal symbol.

* ⟨NTSstmt⟩ belongs to ⟨NTS⟩, but refers in particular to the non-terminal in the

grammar of the targeted programming language representing a statement.

* ⟨ID⟩ refers to the ID of an AST node representing a NTS.

* ⟨IDstmt⟩ belongs to ⟨ID⟩, but refers in particular to the ID of the root node for

the identified statement.

* ⟨GRS⟩ refers to the grammar rules defined in the targeted programming language.

* ⟨Identifier⟩ is the non-terminal in the grammar of the targeted programming

language representing an identifier.

building (to be presented in Section 3.2). Through applying a se-

quence of predicted grammar rules to expand from the start symbol,

a syntactically correct mutation fault can be constructed.

Here, the set of grammar rules to be predicted in LEAM contains

two subsets: (1) all the grammar rules defined in the targeted pro-

gramming language of the program under mutation, which is the

key to guarantee syntactic correctness of each constructed muta-

tion fault; (2) our extended grammar rules to enable the architecture

to support our task of mutation fault construction. Since the former

subset of grammar rules is defined by the targeted programming

language, we just present the definition of our extended grammar

rules for our task in Table 1. Please note that LEAM is a general tech-

nique and can be applied to any programming language with the

concept similar to statement, and thus we define these grammar

rules in a general manner.

Instead of predicting a sequence of tokens one by one to form

a whole mutated method, LEAM reduces the search space by first

predicting the statements highly possible to be mutated under the

context of the targeted method. Then, the mutation process can be

just conducted on the identified statements rather than the whole

method. Specifically, LEAM defines Rules 1-2 to support the predic-

tion of the statements to be mutated. From the two rules, LEAM

supports both single-statement mutation and multiple-statements

mutation, which could represent real faults better than traditional

mutation techniques (e.g., Major [40] and PIT [21]) that only con-

duct one syntactic change on one statement in each mutation.

Rules 3-6 define three operations on each identified statement.

The insert operation aims to insert a newly generated statement

before the identified statement. The parameter <NTS> can be ex-

panded to the whole statement to be inserted via a sequence of

grammar rules (defined in the targeted programming language as

shown in Rule 7). The modify operation aims to replace an AST

subtree in the identified statement with a new AST subtree. It has

two parameters: (1) the ID of the root node for the AST subtree to

be replaced, where the ID is defined as the order of a node in the

preorder traversal sequence for the AST; (2) the non-terminal to be

expanded to the new AST subtree via a sequence of grammar rules,
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AST. It represents the rule path as a vector based on the ID of each

node, denoted as (𝑞1, 𝑞2, . . . , 𝑞𝑃 ). These features can be further pro-

cessed by gating (𝜙gating) and grammar-attention (𝜙grammar) layers

as shown in Formula 4.

𝑢1, 𝑢2, . . . , 𝑢𝑃 = 𝜙gating ( [𝑟1, 𝑟2, . . . , 𝑟𝑃 ; 𝑣1, 𝑣2, . . . , 𝑣𝑃 ])

𝑔1, 𝑔2, . . . , 𝑔𝑃 = 𝜙grammar ( [𝑢1, 𝑢2, . . . , 𝑢𝑃 ;𝑞1, 𝑞2, . . . , 𝑞𝑃 ])
(4)

Then, the final feature vector (𝑑1, 𝑑2, . . . , 𝑑𝑇 ) can be computed by

the fully-connected layer (𝜙𝑑𝑒𝑛𝑠𝑒 ) as shown in Formula 5.

𝑑1, 𝑑2, . . . , 𝑑𝑇 = 𝜙𝑑𝑒𝑛𝑠𝑒 ( [𝑎1, 𝑎2, . . . , 𝑎𝐿 ;𝑔1, 𝑔2, . . . , 𝑔𝑃 ]) (5)

3.3 Grammar Rule Prediction

Our DL model is based on the state-of-the-art syntax-guided code

generationmodel, i.e., TreeGen [74]. It is a tree-based Transformer [78]

and thus it can solve the significant challenge of long dependencies

between code elements [78]. Due to its effectiveness, it has been

widely-used in many code-related tasks [24, 74, 84, 89].

In our task, LEAM designs two sub-models in the TreeGen

architecture for our two-step prediction (i.e., statement predic-

tion and change prediction). Specifically, the final feature vector

(𝑑1, 𝑑2, . . . , 𝑑𝑇 ) is fed into the two sub-models for statement predic-

tion and change prediction. Both of them are pointer networks [79],

which are trained by maximizing the negative log-likelihood of the

ground-truth sequence of grammar rules for each pair of correct

and faulty methods in training data. In particular, they do not work

at the same time by designing a control module to determine which

sub-model is enabled. It first enables the sub-model for statement

prediction, in order to identify the statements to be mutated. Then,

it enables the sub-model for change prediction and disables the

other sub-model, in order to change the identified statements by

predicting a sequence of grammar rules. The calculation via the

pointer network can be shown as Formulae 6 and 7.

𝛾1, 𝛾2, . . . , 𝛾𝑇 = 𝜙𝑝𝑜𝑖𝑛𝑡𝑒𝑟 ( [𝑑1, 𝑑2, . . . , 𝑑𝑇 ]) (6)

𝑝𝑖 =
𝑒𝑥𝑝 (𝛾𝑖 )

∑𝑇
𝑗=1 𝑒𝑥𝑝 (𝛾 𝑗 )

(7)

where (𝜙pointer) represents the pointer network. The output of the

pointer network (𝛾1, 𝛾2, . . . , 𝛾𝑇 ) is then normalized by softmax to

obtain normalized vector (𝑝1, 𝑝2, . . . , 𝑝𝑇 ). Specifically, the output

of the sub-model for statement prediction is the probability of

each statement to be mutated under the context of the targeted

method. The output of the sub-model for change prediction is the

probability of each grammar rule (except Rules 1-2) to be applied to

expand the current non-terminal. For the rules whose left side is

not the current non-terminal, LEAM sets the outputs of the fully-

connected layer to −∞ and then their probabilities can be 0 after

softmax normalization.

Please note that, the current LEAM implementation supports the

mutation on one or two statements due to the following two reasons:

(1) it can effectively reduce the search space; (2) a large percentage

of real faults involve at most two statements. We analyzed the

number of statements involved in each real fault of our collected

data (i.e., 297,029 real faults of Java projects, to be presented in

Section 4.1), and found that the real faults involving one and two

statements occupy 87.35%. In the future, we can further extend

LEAM to support the mutation on more statements.

3.4 Mutation Fault Construction

With our DL model, LEAM constructs a mutation fault by applying

a sequence of grammar rules (predicted by change prediction) to

the statements (predicted by statement prediction). If LEAM only

preserves the most probable sequence of grammar rules on the most

probable statements, only one mutation fault can be constructed

for the targeted method. However, in practice, a method may intro-

duce different faults, and thus it is important to construct a set of

mutation faults for a targeted method. To balance the accuracy and

efficiency of mutation fault construction, LEAM incorporates the

beam search algorithm [26, 71] to obtain a set of highly possible

sequences of grammar rules. Please note that each sequence of

grammar rules in the searched set includes the grammar rules for

change prediction and the grammar rules for statement prediction,

since such a pair can help construct a mutation fault. Specifically, it

preserves Top-𝐾 (𝐾 refers to beam size) partial sequences of gram-

mar rules in each prediction. For each of the 𝐾 partial sequences, it

then produces Top-𝐾 grammar rules as the potential next grammar

rules in the final set of grammar rule sequences, and thus obtains

𝐾2 partial sequences of grammar rules. It further preserves Top-𝐾

partial sequences according to the probabilities of the 𝐾2 partial

sequences for next prediction. Following the existing work [43, 44],

the probability of a partial sequence of grammar rules is calculated

by the product of the probability of each grammar rule in the partial

sequence at the corresponding prediction.

When all the non-terminals have been expanded, the prediction

process stops and a final set of Top-𝐾 sequences of predicted gram-

mar rules are obtained for mutation fault construction. Also, to

guarantee the search efficiency, we also terminate the prediction of

a sequence of grammar rules when its length reached a pre-defined

threshold 𝜁 . That is, we will discard such sequences of grammar

rules for mutation fault construction.

4 EVALUATION DESIGN

In this section, we conducted an extensive study to sufficiently

evaluate the quality of mutation faults constructed by our proposed

mutation technique, i.e., LEAM. Specifically, we evaluated LEAM in

the three usage scenarios for mutation faults, including its original

scenario (i.e., mutation testing) ś RQ1, a widely-studied software

testing task (i.e., mutation-based TCP) ś RQ2, and a widely-studied

software debugging task (i.e., mutation-based FL) ś RQ3. Both TCP

and FL are important downstream applications of mutation faults.

4.1 Training Data and Subjects Under Test

We constructed the training data required by LEAM based on the

open-source dataset provided by the existing work [89]. It contains

the Java projects created between March 2011 and March 2018

on GitHub [1], and collected fault-fixing commits by checking

whether the commit messages contain at least one of the following

words: bug, issue, problem, error, fix, and solve. Same as the existing

work [77], we obtained a real fault by treating a fault-fixing commit

as the clean version and its prior commit as the faulty version by

introducing a fault to the clean version. As presented in Section 3.3,

LEAM currently supports the mutation on one or two statements,

and thus we further removed the faults involving more than two

statements. To avoid data leakage, we removed all the commits
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related to the projects in Defects4J V1.0 (that is our subjects to be

introduced later). Finally, we obtained 297,029 real faults, and used

80% of them as the training set and 20% as the validation set.

To evaluate LEAM, we adopted Defects4J [41], one of the most

widely-used benchmarks in the area of software testing and debug-

ging [10, 11, 37, 51, 53, 76, 89], as subjects in our study. Specifically,

we used all the five subjects (i.e., Commons Lang, Joda-Time, Com-

mons Math, JFreeChart, and Closure Compiler) with 357 real

faults in Defects4J V1.0. Since mutation testing is very costly and

our study needs to run four mutation techniques, we did not use

more subjects in the latest Defects4J version in order to balance

the study sufficiency and costs. Indeed, Defects4J V1.0 has been the

most widely used Defects4J version for existing studies on mutation

testing and its downstream applications [10, 19, 37, 38, 42, 52, 53].

4.2 Compared Mutation Techniques

In our study, we compared LEAM with two most widely-used tradi-

tional mutation techniques, i.e.,Major [40] and PIT [21], and the

state-of-the-art DL-based mutation technique, i.e., DeepMutation

(DM) [76]. All of them are open-source tools. Major and PIT con-

duct syntactic mutation on source code and bytecode respectively,

based on their corresponding pre-defined mutation operators. In

our study, we used all the mutation operators in them for construct-

ing mutation faults, respectively. The details on DeepMutation have

been introduced in Section 1. Regarding it, we used the configura-

tions recommended by its original paper [77]. Both DeepMutation

and LEAM conduct source-code-level mutation like Major. Please

note that same as the existing work [60], DeepMutation cannot be

applied to Closure due to its internal errors, and thus we cannot

obtain the results of DeepMutation on Closure. As we compared

these techniques in terms of overall results across all the subjects in

our paper, our overall results did not include the results on Closure

in order to fairly compare with DeepMutation. The results on Clo-

sure can be found at our project homepage [2] and the conclusions

on Closure are consistent with the overall conclusions in the paper.

4.3 Implementations

We implemented LEAM in Python 3.7.0 based on PyTorch 1.3.0. We

determined the settings of the hyper-parameters in LEAM based

on the performance on our validation set. Specifically, we set the

embedding size to 256, the size of hidden layers to 256, the optimizer

to Adam, the learning rate to 0.0001, and the number of epochs to

20. We set the beam size to 64, and 𝜁 to 60. To promote the practical

use and future research, we have released both the implementa-

tion of LEAM and our built model at our project homepage [2].

With our implementation, researchers/practitioners can replicate

our experiments, improve the performance of LEAM in future re-

search, and extend LEAM to other programming languages. With

our built model, users can save the training time and directly use it

to construct mutation faults for any given Java projects.

We conducted all the experiments on a server with Intel(R)

Xeon(R) Silver 4214 @ 2.20GHz CPU, 256GB memory, NVIDIA

GeForce RTX 2080 Ti, and Ubuntu 18.04 as the operating system.

5 RESULTS AND ANALYSIS

5.1 RQ1: Effectiveness Comparison in Mutation
Testing

5.1.1 Metrics. We first compared the quality of mutation faults

constructed by the fourmutation techniques in the original scenario,

i.e., mutation testing. We adopted a set of widely-used metrics in

mutation testing to measure the quality of mutation faults in this

scenario [4, 42, 60, 85]. The first metric measures how the mutation

faults can represent real faults in terms of adequate test suites [60,

85]; as a supplement to the first metric, the second metric further

measures how the mutation faults can represent the mutation faults

constructed by other mutation techniques [49]. Furthermore, the

last metric measures how mutation faults can represent real faults

in terms of non-adequate test suites [42].

Regarding the first metric, following the existing work [4, 42, 85],

for each mutation technique, we constructed the minimal test suite

that is selected from the original test suite but kills the maximum

number of mutation faults constructed by this technique, and then

measured the percentage of real faults killed by the constructed

test suite. Regarding the second metric, following the existing

work [4, 42], for each mutation technique, we further measured the

mutation score of the above-constructed test suite on the mutation

faults constructed by each of the other mutation techniques, respec-

tively. Regarding the last metric, similar to the existing work [41],

for each mutation technique, we constructed 𝑚 test suites, each

of which contains 𝑛 test cases selected from the original test suite

randomly without replacement, and then measured the mutation

score and the result of real fault detection for each test suite. Finally,

we measured the point-biserial correlation (that measures the corre-

lation between dichotomous variable and continuous variable) [75]

between mutation score and real fault detection. Please note that

we removed the mutation faults that cannot be killed by the original

test suite for the above metrics following the existing work [33].

5.1.2 Process. Following the existing work [42], we constructed

mutation faults by each studied mutation technique on each fixed

version in each subject, and regarded the corresponding faulty

version as the real fault introduced to the fixed version. Specifically,

we considered only the changed source files between the fixed

version and the faulty version for constructing mutation faults.

Then, we measured the quality of the mutation faults constructed

by each mutation technique in terms of the three metrics. Please

note that for eachmetric, we repeated the process 10 times to reduce

the influence of randomness. For the last metric, we set𝑚 = 50 and

𝑛 = 50 similar to the existing study [87]. If the number of test cases

in the original test suite cannot support the construction of 50 test

suites, we constructed the maximum number of test suites with

the size of 50. If it cannot support the construction of 10 test suites

with the size of 50, we discarded this version since it does not have

statistical significance for the correlation.

Besides, different mutation techniques tend to construct different

numbers of mutation faults, which could affect the effectiveness of

each mutation technique in terms of these metrics. Although the

number of constructed mutation faults is the inherent characteristic

of each mutation technique, we still tried to compare them by con-

trolling for the number of mutation faults. On average, the number
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of mutation faults constructed by DeepMutation for each changed

source file (i.e., 11) is the smallest among the four techniques since

(1) it cannot ensure the syntactic correctness of each constructed

mutation fault; and (2) it is just applicable to the methods where

the number of tokens is smaller than 50 in order to improve the

learning process. The number of mutation faults constructed by

PIT (i.e., 2,719) is the largest since it conducts mutation on bytecode

rather than source code. The average number of mutation faults

constructed by Major and LEAM is 597 and 347, respectively.

Overall, we first compared the four techniques in terms of the

three metrics when using all the constructed mutation faults. Then,

we compared the four techniques by randomly sampling the same

number of mutation faults for each mutation technique as the small-

est number of constructed mutation faults among the four tech-

niques on each version of each subject. Finally, since the num-

ber of constructed mutation faults by DeepMutation is largely

smaller than those by the other three techniques due to the above-

mentioned reasons, keeping the number of mutation faults same

as that of DeepMutation may incur bias. We further repeated the

experiment by leaving DeepMutation out and randomly sampling

the same number of mutation faults as the smallest number of con-

structed mutation faults among the three techniques (i.e., Major,

PIT, and LEAM) for each version of each subject. To reduce the

influence of randomness caused by mutation fault sampling, we

repeated the experiments 10 times.

5.1.3 Results. Figure 2 shows the quality of the mutation faults

constructed by each mutation technique in terms of the first met-

ric. Each figure shows the percentage of real faults killed by the

constructed test suite based on the mutation faults for each mu-

tation technique. We put the results on all the versions of all the

subjects together to draw each box. From Figure 2, LEAM detects

the largest percentage of real faults by the constructed test suite

based on its constructed mutation faults among all the studied tech-

niques, regardless of using all the constructed mutation faults or

controlling for the number of mutation faults. For example, when

controlling for the number of mutation faults same as the smallest

one among Major, PIT, and LEAM, the medium percentage of real

faults detected by LEAM across all the versions is 75.35%, while

that by Major and PIT are 55.46% and 35.29%, respectively. The re-

sults demonstrate that LEAM is more helpful to construct mutation

faults representing real faults in terms of adequate test suites.

Similarly, Figure 3 shows the quality of the mutation faults con-

structed by each mutation technique in terms of the second metric.

We take the first group of boxes in Figure 3(a) as the representative

to explain how to read this kind of figures. Each box in this group

shows the mutation score of the test suite constructed based on the

mutation faults constructed by Major, in killing the mutation faults

constructed by PIT, DeepMutation, and LEAM, respectively. For

ease of presentation, we call them the mutation scores of Major over

PIT, Major over DeepMutation, and Major over LEAM, respectively.

From Figure 3(a), the median mutation score of Major over LEAM,

PIT over LEAM, and DeepMutation over LEAM are 0.90, 0.91, and

0.38 respectively, while that of LEAM over Major, LEAM over PIT,

and LEAM over DeepMutation are 0.99, 0.98, and 0.99 respectively.

The results demonstrate that the mutation faults constructed by

LEAM can better represent the mutation faults constructed by other

Table 2: Correlation ofmutation score and real fault detection

Tech.
Mutation Faults Number

All Control w/ DM Control w/o DM

Major 0.60 0.30 0.49

PIT 0.56 0.28 0.49

DM 0.28 0.14 -

LEAM 0.64 0.40 0.55

techniques when using all the constructed mutation faults. The

same conclusion can be obtained when controlling for the number

of constructed mutation faults from Figures 3(b) and 3(c).

Table 2 shows the medium correlation coefficients between mu-

tation score and real fault detection (i.e., the third metric) across all

the versions of all the subjects. The second column shows the result

when using all the constructed mutation faults, while the last two

columns show the results under the two scenarios of controlling

for the number of mutation faults. From Table 2, the correlation

coefficient of LEAM is larger than that of the other three techniques

regardless of using all the mutation faults or controlling for the

number of mutation faults. Moreover, all the p-values for these

correlations are smaller than 0.05, indicating that the correlations

have statistical significance. Hence, the results demonstrate that

there is stronger correlation between mutation score on mutation

faults constructed by LEAM and real fault detection, compared with

the other three techniques.

5.2 RQ2: Effectiveness Comparison in
Mutation-based Test Case Prioritization

5.2.1 Metrics. In the scenario of mutation-based TCP, we mea-

sured the effectiveness of each studied mutation-based TCP tech-

nique by feeding the mutation faults constructed by a mutation

technique, as the metric for the quality of the mutation faults

constructed by this mutation technique. Following the existing

TCP work [25, 55, 70], we adopted the most widely-used met-

ric, i.e., APFD (Average Percentage of Faults Detected) [68], to

measure the effectiveness of a mutation-based TCP technique:

APFD = 1 −
TF1+TF2+...+TF𝑟

nr + 1
2n , where 𝑟 refers to the number

of faults to be detected by the test suite to be prioritized, 𝑛 is the

number of test cases in the test suite, TF𝑖 is the ranking of the

first test case in the test suite prioritized by a mutation-based TCP

technique that detects the 𝑖th fault.

For a mutation-based TCP technique, if using the mutation faults

constructed by amutation technique achieves the larger APFD value

than that by another mutation technique, it means that the former

mutation technique outperforms the latter.

5.2.2 Process. Following the existing study [70], for each pair of

versions in each subject, we mimicked the regression testing sce-

nario by treating the fixed version as the prior version and the faulty

version as the current version under test. Then, we constructed mu-

tation faults on the previous version via each mutation technique.

Here, we considered only the changed source files between the two

versions for constructing mutation faults following the existing

study [70]. Based on the mutation faults constructed by a mutation
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Figure 3: Ability of representing mutation faults constructed by other mutation

techniques. (a) shows the result when using all the constructed mutation faults;

(b)/(c) shows the result under controlling for the number of mutation faults

when considering/ignoring DeepMutation (DM).

Table 3: Overall effectiveness in mutation-based TCP

TCP Major PIT DM LEAM

GRK 0.62 0.65 0.20 0.75

GRD 0.62 0.65 0.20 0.76

HYB-𝜔 0.61 0.65 0.20 0.75

technique, we prioritized test cases in the test suite provided by the

previous version via each studied mutation-based TCP technique

(i.e., GRK, GRD, and HYB-𝜔), and then calculated the APFD value

for the prioritized test suite on the corresponding faulty version.

In this scenario (and the scenario of mutation-based FL), we did

not control for the number of mutation faults, but used all the muta-

tion faults constructed by each mutation technique. The reasons are

twofold: (1) the number of constructed mutation faults is essentially

the inherent characteristic of a mutation technique; (2) we have

demonstrated the effectiveness of LEAM in the scenario of muta-

tion testing regardless of using all the constructed mutation faults

or controlling for the number of mutation faults in Section 5.1.3.

More discussion about the influence of the number of constructed

mutation faults can be found in Section 5.2.3.

5.2.3 Results. Table 3 shows the average APFD results across

all the versions of all the subjects. We found that all the studied

mutation-based TCP techniques achieve better TCP effectiveness

by feeding the mutation faults constructed by LEAM than feed-

ing those by the three compared techniques on average. The same

conclusion can be obtained on each subject, but due to space limit,

we put the detailed results on each subject to our project home-

page [2]. Specifically, LEAM achieves 20.97%, 15.38%, and 275.00%

improvements over Major, PIT, and DeepMutation in terms of av-

erage APFD across all the subjects for GRK, 22.58%, 16.92%, and

280.00% improvements for GRD, and 22.95%, 15.38%, and 275.00%

improvements for HYB-𝜔 . Furthermore, we performed a paired

sample Wilcoxon signed-rank test [82] at the significance level of

0.05 to investigate whether LEAM significantly outperforms each

compared technique on each subject for each studied mutation-

based TCP technique. All the calculated p-values are smaller than

1.86e-5 (that is far smaller than 0.05), and thus the results demon-

strate the statistically significant superiority of LEAM over all the

compared mutation techniques. Overall, LEAM significantly out-

performs all the compared mutation techniques in the scenario of

mutation-based TCP.

From our results, LEAM performs significantly better regardless

of comparison with PIT that constructs the largest number of mu-

tation faults on average or comparison with DeepMutation that

constructs the smallest number of mutation faults on average in

this scenario (as well as the scenario of mutation-based FL to be

presented in Section 5.3.3). The results further confirm the stable

effectiveness of LEAM independent of the number of mutation

faults to some degree. Also, we investigated the influence of the

number of mutation faults, which can be controlled by beam size (a

hyper parameter in LEAM), on LEAM. Due to space limit, we put

the detailed results to our project homepage [2], and the conclusion

is that with the beam size increasing, the effectiveness of LEAM in

both mutation-based TCP and mutation-based FL becomes better.

By balancing the effectiveness and efficiency, our default setting of

beam size (i.e., 64) is a good choice.

5.3 RQ3: Effectiveness Comparison in
Mutation-based Fault Localization

5.3.1 Metrics. In the scenario of mutation-based FL, we measured

the effectiveness of each studied mutation-based FL technique by

feeding the mutation faults constructed by a mutation technique,

as the metric for the quality of the mutation faults constructed

by this mutation technique. Following the existing FL work [51,

52], we adopted three most widely-used metrics to measure the

effectiveness of a mutation-based FL technique on each subject.

(1) Top-N: the number of successfully localized faults within the

Top-N position in the ranking list produced by a FL technique.

Following the existing studies [51, 52], we considered 𝑁 to be 1,

3, 5, respectively. (2) Mean First Rank (MFR): the mean of the

first faulty method rank for each fault. This metric emphasizes
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Table 4: Overall effectiveness in mutation-based FL

FL Tech. Top-1 Top-3 Top-5 MFR MAR

Metallaxis

Major 35 92 114 9.56 12.42

PIT 56 102 128 8.16 11.83

DM 19 47 98 16.64 20.65

LEAM 118 182 188 3.86 4.57

MUSE

Major 35 89 111 10.99 13.11

PIT 52 97 124 9.15 11.72

DM 18 53 94 18.70 22.47

LEAM 126 181 189 3.88 5.05

fast localization of the first faulty element to ease debugging. (3)

Mean Average Rank (MAR): the mean of the average rank of all the

faulty methods for each fault. Different fromMFR, MAR emphasizes

precise localization for all the faulty elements. If more than two

methods have the same suspicious scores, we used the 𝐸inspect [90]

to calculate the expected rank following the existing work [90].

For a mutation-based FL technique, if using the mutation faults

constructed by a mutation technique achieves the larger Top-N

value, smaller MFR value, or smaller MAR value than that by an-

other technique, it means that the former outperforms the latter.

5.3.2 Process. Following the existing studies [51, 52], for each

faulty version in each subject, we first constructed mutation faults

by eachmutation technique respectively, and then used each studied

mutation-based FL technique to produce a ranking list of suspi-

cious methods based on the mutation faults constructed by each

mutation technique respectively. Finally, we measured the above

three metrics on each subject based on the corresponding produced

ranking list of suspicious methods.

5.3.3 Results. Table 4 shows the overall effectiveness of each stud-

ied mutation-based FL technique based on the mutation faults con-

structed by each mutation technique across all the subjects. We

found that for both Metallaxis and Muse, LEAM achieves better

FL effectiveness than all the compared techniques in terms of all

the metrics. The same conclusion can be obtained on each subject,

but due to space limit, we put the detailed results on each sub-

ject to our project homepage [2]. Overall, for Metallaxis, LEAM

achieves 237.14%, 110.71%, 521.05% improvements over Major, PIT,

DeepMutation in terms of Top-1, 59.62%, 52.70%, 76.80% improve-

ments in terms of MFR, 63.20%, 61.37%, 77.87% improvements in

terms of MAR. For MUSE, LEAM achieves 260.00%, 142.31%, 600.00%

improvements over Major, PIT, DeepMutation in terms of Top-1,

64.70%, 57.60%, 79.25% improvements in terms of MFR, 61.48%,

56.91%, 77.53% improvements in terms of MAR. We also performed

a paired sample Wilcoxon signed-rank test [82] at the significance

level of 0.05 to investigate whether LEAM significantly outper-

forms each compared technique on each subject for each studied

mutation-based FL technique. All the p-values are smaller than

3.52e-5 (that is far smaller than 0.05), and thus the results demon-

strate the statistically significant superiority of LEAM over all the

compared mutation techniques. Therefore, LEAM significantly out-

performs all the compared mutation techniques in the scenario of

mutation-based FL.

Table 5: Comparison effectiveness between LEAM and its

variant w/o statement prediction (SP) in mutation-based TCP

TCP GRK GRD HYB-𝜔

LEAM w/o SP 0.60 0.60 0.59

LEAM 0.75 0.76 0.75

6 DISCUSSION

6.1 Contribution of Statement Prediction

One major component in LEAM is statement prediction, which

aims to identify the statements highly possible to be mutated under

the context of the targeted method and thus largely reduces the

search space for better prediction. Therefore, it is necessary to

investigate whether this component really contributes to LEAM.

Here, we conducted an experiment by comparing LEAM with its

variant removing the component of statement prediction in the

scenarios of mutation-based TCP and mutation-based FL. That is,

this variant randomly selects at most two statements for mutation

fault construction in LEAM. Due to space limit, we just reported the

average results across all the subjects in mutation-based TCP (in

Table 5), and the results in mutation-based FL can be found at our

project homepage [2]. We found that LEAM largely outperforms

the variant of LEAM without the statement prediction component

in terms of average APFD for each studied mutation-based TCP

technique. The results confirm the significant contribution of the

statement prediction component in LEAM.

6.2 Efficiency of LEAM

Although the time spent on our experiments mainly lies in exe-

cuting the constructed mutation faults with test cases, it is also

important to investigate the time spent on mutation fault con-

struction in order to understand the efficiency of each mutation

technique. Since each mutation technique may construct different

numbers of mutation faults, we calculated the average time spent

on constructing a mutation fault to fairly measure the efficiency of

each mutation technique. Specifically, the average time for Major,

PIT, DeepMutation, and LEAM is 0.04s, 0.003s, 0.70s, and 0.64s,

respectively. The results show that all of these mutation techniques

are efficient in terms of the time spent on mutation fault construc-

tion, and DL-based techniques spent longer time than traditional

techniques as expected.

Besides, DL-based mutation techniques involve the training pro-

cess. The training time for LEAM is about 24 hours, and we cannot

report the training time for DeepMutation since we directly used its

pre-trained model. Since the training process is offline and the built

model can be directly used by users for mutation without retraining,

the training time of LEAM is actually acceptable in practice. Over-

all, all the mutation techniques have high efficiency in mutation

fault construction, and LEAM also has acceptable training time,

which demonstrates the practicability of LEAM by comprehensively

considering its effectiveness and efficiency.

6.3 Threats to Validity

The threat to internal validity mainly lies in our implementation

for LEAM. To reduce this kind of threat, we implemented LEAM
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based on mature libraries described in Section 4.3, and two authors

have carefully checked our code.

The threat to external validity mainly lies in the subjects used in

our study. Although LEAM is general, we just evaluated its effective-

ness on Java projects (the widely-used Defects4J benchmark [41]),

which may not represent the subjects under other programming

languages. In the future, we will extend and evaluate LEAM on

more diverse subjects with different programming languages, in

order to further reduce this kind of threat.

The threat to construct validity mainly lies in the configurations

of LEAM. To reduce this kind of threat, we have reported the config-

urations of LEAM in our experiments in Section 4.3 and investigated

the influence of the important hyper-parameter (i.e., beam size) as

presented in Section 5.2.3. In the future, we will further investi-

gate the influence of other hyper-parameters in LEAM in order to

further reduce this kind of threat.

7 RELATED WORK

In the literature, many mutation techniques have been proposed

in the area of mutation testing [21, 30, 35, 36, 69]. Most of them

require developers to design mutation operators, each of which

can conduct a simple syntactic change to the program under test,

for constructing mutation faults. Typical mutation techniques in

this category include MuJava [56], Javalanche [69], Major [40] and

PIT [21], etc. As demonstrated by the existing studies [12, 28], the

mutation faults constructed by traditional mutation techniques

may not represent real faults very well. To improve the quality of

mutation faults, Brown et al. [12] suggested to extract mutation

patterns from real-world bug-fixes to create mutation faults (called

wild-caught mutants). Inspired by this idea, DeepMutation [77],

the state-of-the-art DL-based technique, was proposed for con-

structing mutation faults by learning from a large number of real

faults via classic sequence-to-sequence NMT. In our study, we chose

the more advanced DeepMutation as a compared technique. More

details about DeepMutation have been discussed in Section 1. In

contrast, LEAM aims to further resolve the limitations of DeepMu-

tation via the syntax-guided encode-decoder architecture, and has

been shown to substantially outperform DeepMutation. Our ex-

periments have demonstrated the effectiveness of LEAM compared

with two typical traditional techniques and DeepMutation.

Patra and Pradel [65] proposed SemSeed, which extracts muta-

tion patterns from real-world bug-fixes and then generalizes them

to other code locations by measuring the similarities of identifiers

and literals based on learned token embeddings. Actually, it is not

a general-purpose mutation technique, since it (1) simply reverts

a bug-fixing code change to a mutation pattern, (2) supports only

one-line pattern, and (3) just considers the semantics of identifiers

and literals but ignores the program/method semantics. In partic-

ular, the tool is specific to JavaScript programs. Therefore, same

as the existing study [60], we did not compare with SemSeed (our

study is based on Java programs) due to its totally different design

and targeted programming language [65].

Also, Khanfir et al. [46] proposed IBIR, which utilizes natural

languages in bug reports to decide the mutation locations and then

applies the mutation patterns from a pattern-based program re-

pair tool (i.e.,TBar [54]) at the identified locations. Beller et al. [9]

proposed Mutation Monkey, which is a semi-automatic technique

by mining patterns from historical changes and then transforming

these patterns to mutation operators. Different from them, LEAM

uses the syntax-guided encoder-decoder architecture to automati-

cally construct mutation faults by learning from a large number of

real faults at the AST level.

Lastly, there are many empirical studies on investigating the ef-

fectiveness of existing mutation techniques in the literature [23, 47,

48, 60]. They tend to evaluate the quality of constructed mutation

faults by the studied mutation techniques in terms of metrics in

mutation testing. Different from them, we not only adopted the

widely-used metrics in mutation testing, but also investigated the

quality of constructed mutation faults in two downstream applica-

tions of mutation faults (i.e., mutation-based TCP and FL).

8 CONCLUSION

In this work, we propose a novel DL-based technique (i.e., LEAM)

to construct mutation faults by learning from real faults. It adapts

the syntax-guided encoder-decoder architecture by extending a

set of grammar rules specific to our mutation task, in order to en-

sure syntactic correctness of constructed mutation faults. Moreover,

it significantly reduces search space by first predicting the state-

ments to be mutated in a targeted method and improves model

performance by extracting more comprehensive features from AST.

Our extensive study on Defects4J demonstrates the effectiveness

of LEAM in three popular scenarios (including mutation testing,

mutation-based TCP, and mutation-based FL) compared with two

traditional techniques and the state-of-the-art DL-based technique.
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