Less Training, More Repairing Please:
Revisiting Automated Program Repair via Zero-Shot Learning

Chungqiu Steven Xia
University of Illinois Urbana-Champaign
chunqiu2@illinois.edu

ABSTRACT

Due to the promising future of Automated Program Repair (APR), re-
searchers have proposed various APR techniques, including heuristic-
based, template-based, and constraint-based techniques. Among
such classic APR techniques, template-based techniques have been
widely recognized as state of the art. However, such template-based
techniques require predefined templates to perform repair, and their
effectiveness is thus limited. To this end, researchers have lever-
aged the recent advances in Deep Learning to further improve APR.
Such learning-based techniques typically view APR as a Neural
Machine Translation problem, using the buggy/fixed code snippets
as the source/target languages for translation. In this way, such
techniques heavily rely on large numbers of high-quality bug-fixing
commits, which can be extremely costly/challenging to construct
and may limit their edit variety and context representation.

In this paper, we aim to revisit the learning-based APR prob-
lem, and propose AlphaRepair, the first cloze-style (or infilling-style)
APR approach to directly leveraging large pre-trained code models
for APR without any fine-tuning/retraining on historical bug fixes.
Our main insight is instead of modeling what a repair edit should
look like (i.e., a NMT task), we can directly predict what the correct
code is based on the context information (i.e., a cloze or text infilling
task). Although our approach is general and can be built on various
pre-trained code models, we have implemented AlphaRepair as
a practical multilingual APR tool based on the recent CodeBERT
model. Our evaluation of AlphaRepair on the widely used Defects4]
benchmark shows for the first time that learning-based APR without
any history bug fixes can already outperform state-of-the-art APR
techniques. We also studied the impact of different design choices
and show that AlphaRepair performs even better on a newer ver-
sion of Defects4] (2.0) with 3.3X more fixes than best performing
baseline, indicating that AlphaRepair can potentially avoid the
dataset-overfitting issue of existing techniques. Additionally, we
demonstrate the multilingual repair ability of AlphaRepair by eval-
uating on the QuixBugs dataset where AlphaRepair achieved the
state-of-the-art results on both Java and Python versions.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE 22, November 14—18, 2022, Singapore, Singapore

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9413-0/22/11...$15.00
https://doi.org/10.1145/3540250.3549101

Lingming Zhang
University of Illinois Urbana-Champaign
lingming@illinois.edu

CCS CONCEPTS

« Computer systems organization — Neural networks; « Soft-
ware and its engineering — Software testing and debugging.

KEYWORDS

Automated Program Repair, Deep Learning, Zero-shot Learning

ACM Reference Format:

Chungiu Steven Xia and Lingming Zhang. 2022. Less Training, More Repair-
ing Please: Revisiting Automated Program Repair via Zero-Shot Learning.
In Proceedings of the 30th ACM Joint European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering (ESEC/FSE
’22), November 14-18, 2022, Singapore, Singapore. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3540250.3549101

1 INTRODUCTION

Software systems are all-pervasive in everyday life from monitoring
financial transactions [69], controlling transportation systems [73]
to aiding healthcare tools [8]. Software bugs in these systems can af-
fect people around the globe and cost billions in financial losses [10].
To fix such bugs, developers often need to invest significant manual
effort, e.g., it is estimated that developers spend 35 to 50% of their
time debugging software systems [56]. To reduce manual debugging
efforts, Automated Program Repair (APR) techniques have been
proposed to automatically generate patches to fix the bugs [24].

A popular approach for APR is Generate and Validate (G&V) [25,
29, 35, 38, 39, 44, 45, 49, 53, 61, 74]. To start off, fault localiza-
tion [3, 40, 41, 58, 75, 79] is often used to reduce the search space by
computing the suspicious program locations that likely caused the
bug. Using these potential buggy locations, the G&V techniques
will generate a list of candidate patches. Each candidate patch is
compiled and validated against the test suite. Patches that success-
fully pass all tests are called plausible patches. However, tests often
cannot cover all possible behaviors of the program [61], hence a
plausible patch might still fail under other inputs. Therefore, plau-
sible patches are further inspected by developers to determine the
final correct patches that correctly fix the underlying bug.

Depending on how patches are generated, traditional APR tech-
niques can be categorized into heuristic-based [38, 39, 74], constraint-
based [17, 37, 55], and template-based [29, 35, 44, 45, 53]. Among
all traditional techniques, template-based APR techniques, which
leverage pre-defined fix patterns to transform buggy code snip-
pets into correct ones, have been widely recognized as state of the
art [7, 25, 44]. These fix patterns target specific types of bugs (e.g.,
null pointer exception) and patterns in the source code, and are of-
ten crafted by human experts. While effective, there is an upper limit
to the number of candidate patches that such pre-defined templates
can generate. Therefore, to increase the expressiveness of the edits,

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

researchers have recently utilized Machine Learning (ML) or Deep
Learning (DL) techniques for patch generation [14, 32, 42, 51, 80].

Learning-based APR techniques often leverage the recent ad-
vances in DL to train a neural network that transforms the original
buggy program into the fixed version. These techniques [14, 19, 32,
42, 51, 80] typically view the problem of program repair as a Neural
Machine Translation (NMT) [66] problem and use NMT models
from the field of Natural Language Processing (NLP), where the
model input is a language sequence and the output is a translated
sequence in another language. Researchers have used NMT models
for program repair where instead of translating natural languages,
the models aim to turn a buggy code into the fixed version. These
NMT models are typically made up of an encoder and decoder pair
where the encoder captures the buggy code elements with its con-
text while the decoder takes in the encoded representation and
generates a fixed version. To facilitate APR, such models must be
trained using pairs of buggy and patched code. Despite being an
effective APR approach, existing learning-based techniques face
the following issues:

1) Quality of training data. Current learning-based APR tools
require training or fine-tuning of the models by using historical
bug fixes, i.e., pairs of buggy and patch code. This data is usually
obtained by scraping open-source projects to find specific commits
that are about bug fixes. However, this relies on various handcrafted
heuristics. For example, to find the bug fixing commits, keywords
such as bug, fix, patch, solve, issue, problem are often used to filter
the commits [16, 30, 51, 80]. Individual bug-fixing commits can
also include unrelated edits such as refactoring or new feature
implementation [33]. As a result, the extracted data can contain
various irrelevant commits and unrelated code changes within bug
fixing commits, adding noise to the training dataset.

2) Quantity of training data. Compared to large amount of open-
source code snippets that are available in the wild, the amount
of bug fixes is limited. To reduce the effect of the aforementioned
issue of a commit containing irrelevant changes from bug fixes,
learning-based APR tools usually limit the commits in their dataset
to ones with few lines of changes [32, 42, 51, 80], further limiting
the amount of training data. By training on such limited historical
fixes, current learning-based tools might restrict the edit variety of
their approach only on what is in their training data.

3) Context representation. To provide a correct fix to a buggy code
snippet, the context before and after are crucial in providing useful
syntactic/semantic information. Current learning-based APR tools
first pass the context including the buggy code elements into an
encoder as plain texts [32, 51] or structured representations [42, 80].
The encoded context is then used directly or combined with a
separate encoding of the buggy code snippet as input to the decoder.
However, this process is unnatural since it is challenging for the
models to distinguish the patch location within the context, or
effectively merge the separate bug/context encodings. As a result,
such techniques may miss intricate relations between a patch and
its context, such as the proximity of each code element that provides
important syntax/semantic information.

Our Work. We present AlphaRepair - the first cloze-style (or
infilling-style) APR approach that uses large pre-trained code mod-
els under a zero-shot learning setting [36] to directly generate

Chungiu Steven Xia and Lingming Zhang

patches, i.e., without any additional training or fine-tuning on bug-
fixing datasets. Different from all existing learning-based APR tech-
niques, our main insight is that instead of modeling what a repair
edit should look like, we can directly model/predict what the correct
code is based on the context information (like a cloze [1, 67] or “text
infilling” task). In this way, our cloze-style APR can avoid all above
limitations of the existing techniques: 1) it completely frees APR
from historical bug fixes, 2) it can simply get trained on all possible
open-source projects in the wild for massive training, 3) it is directly
pre-trained to model patches based on the surrounding context, and
thus can effectively encode the intricate relations between patches
and their contexts. Furthermore, while it is non-trivial to adapt
prior APR techniques for a new language (due to a huge amount
of code/data engineering work for preparing historical bug fixes),
under our cloze-style APR, extending APR to a new language can
be as simple as mining a new code corpus in the new language!
While our cloze-style APR is generalizable to various pre-trained
models, in this paper, we implement AlphaRepair with one recent
pre-trained code model, CodeBERT [23]. Unlike current learning-
based APR tools which use limited numbers of bug fixes as training
data, CodeBERT is directly pre-trained using millions of code snip-
pets from open-source projects, allowing it to provide a variety
of edit types to fix different bugs. We directly leverage the initial
training objective of Masked Language Model (MLM) [18] - predict-
ing/recovering randomly masked out tokens used in CodeBERT to
perform zero-shot learning for APR. We first prepare model inputs
where each potentially buggy line is replaced with a mask line. We
then query CodeBERT to fill the mask line with replacement tokens
to produce candidate patches for a buggy program input. This al-
lows us to directly perform zero-shot learning (with no fine-tuning)
since we use the same tasks as defined in MLM- instead of predict-
ing random mask tokens, we generate predictions by masking out
only the buggy code snippet. Note that to improve the patch search
space, the mask lines are designed to systematically reuse parts of
the buggy line. Furthermore, the bidirectional nature of CodeBERT
(and MLM) also allows us to naturally capture both the contexts
before and after the buggy location for effective patch generation.

Contribution. This paper makes the following contributions:

¢ Direction/Dimension This paper opens a new dimension
for cloze-style APR to directly query large pre-trained code
models under a zero-shot learning setting. Compared with
existing learning-based APR techniques, our approach does
not need any additional fine-tuning/retraining using histori-
cal bug fixes and can be easily adopted for multiple program-
ming languages. Additionally, we demonstrate the efficacy
of directly applying large pre-trained models for generating
code fixes for real-world systems, which previously were
mainly tested on generating simple/small programs [5, 13].

e Technique While our idea is general and can leverage vari-
ous existing pre-trained code models, we have built AlphaRe-
pair as a practical APR tool based on the recent CodeBERT
model. We leveraged the original training objective of Code-
BERT using specific inputs of mask lines for direct program
repair. We used a variety of different mask line templates and
further propose probabilistic patch ranking to boost APR.

Less Training, More Repairing Please

4
context Context

bug line fix line
context context

Buggy Code Encoded Representation Fixed Code

a) NMT Repair Overview

mq ‘ I want to build a repair ‘
Decoder Encoder

‘I want to build a repair ‘ | I <mask> to build a <mask>

‘ I want to build a repair

‘ to repair I a build want ‘

Decoder Only Encoder Only Encoder-Decoder
GPT BERT 5
b) Large Language Model Overview

Figure 1: NMT and large language model overview

o Extensive Study We have compared AlphaRepair with state-
of-the-art Java APR tools (both traditional and learning-
based) on Defects4] [34]. The results show that AlphaRepair
can outperform all existing tools on the widely studied De-
fects4]J 1.2, improving the number of fixed bugs from 68 to
74 and fixing 8 unique bugs that no prior work can fix. More
surprisingly, AlphaRepair even fixes 3.3X more bugs than
the best baseline on the newly included bugs in Defects4]
2.0, demonstrating that AlphaRepair can avoid the dataset-
overfitting issue of existing APR techniques. Moreover, we
have also studied AlphaRepair on both the Java and Python
versions of the widely studied QuixBugs dataset [43]. The
results not only confirm that AlphaRepair can outperform
all existing APR techniques (in both Java and Python), but
also demonstrate the multilingual capability of AlphaRepair.

2 BACKGROUND
2.1 Learning-based APR

Deep Learning (DL) [26] is a powerful learning mechanism to learn
from large amounts of data used in many domains of Machine
Learning. Researchers have leveraged DL techniques for APR by
viewing the problem of program repair as a Neural Machine Transla-
tion (NMT) [66] task of turning a buggy code snippet into a patched
version. These learning-based APR tools are typically built using
the encoder-decoder architecture. Figure 1a shows the workflow of
these learning-based repair tools. The encoder takes in the buggy
line and its surrounding context as input and outputs an encoded
representation. The decoder uses the encoded representation to
generate a new code line to replace the buggy line. SequenceR [14]
is a sequence-to-sequence network built using a Long Short-Term
Memory (LSTM) [28] encoder and decoder network for program
repair. DLFix [42] encodes the input code as an Abstract Syntax
Tree then uses a tree-based Recurrent Neural Network [64] as a
part of the encoder and decoder network to generate patches. Co-
CoNuT [51] proposes a new NMT architecture which encodes the
context and buggy line separately. It also leverages multi-stage
attention to increase the amount of important information passed
on from the encoder to the decoder. In order to improve the syntac-
tic correctness, before training on code fix pairs, CURE [32] first
pre-trains the NMT model on a large corpus of developer code.
Furthermore, CURE uses a static checking strategy to only generate
patches with valid identifiers. More recently, Recoder [80] modi-
fies the NMT model by using a syntax-guided decoder designed to
generate syntactically correct edits on an input buggy code snippet.

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

Recent study has shown that learning-based APR tools can
achieve the state of the art in APR [32, 80]. However, they are
still limited by their need for pairs of buggy and fixed versions as
training data. These buggy and fixed code pairs are challenging
to obtain as handcrafted heuristics are used to identify bug fixing
commits and individual commits can contain other code changes
apart from bug fixing, adding noise to the dataset. Additionally,
learning-based APR tools learn bug patterns and corresponding
patch fixes from the training data in order to automatically generate
patches for unseen buggy code. This means it is hard for learning-
based APR tools to generalize to fix patterns that are not present
in their training dataset. Furthermore, it can be tricky for current
learning-based APR tools to encode the context surrounding buggy
code elements causing the generated patches to miss important syn-
tax and semantic information. Interestingly, although pre-trained
code models have also been adopted for APR recently [19, 32, 54],
they are still leveraged to learn from a large number of historical
bug fixes, thus still suffering from the above limitations of existing
learning-based techniques.

In this paper, we address these issues by using large pre-trained
code model, trained on massive amount of open-source code, di-
rectly for cloze-style APR without the need to train or fine-tune on
any smaller dataset of buggy and fixed code.

2.2 Large Pre-trained Code Models

Recent popularity in Natural Language Processing (NLP) has led to
development of large pre-trained models that use large amounts
of data. To make use of the massive unlabeled training data, pre-
trained models apply self-supervised objectives, e.g., Masked Lan-
guage Model (MLM) - where some training data is artificially
masked and the training objective is to predict/recover the real
data. A common component of large pre-trained language models
is a Transformer [70]. It contains an encoder made up of multiple
differentiable self-attention layers in order to learn representation
and also a decoder used to generate output. Figure 1b shows the
three categories of large pre-trained language models. GPT [62] is a
large generative model which uses only the decoder component to
predict the next token output given all previous tokens. This type
of decoder is autoregressive where a sequence is generated by iter-
atively inputting all previous tokens in order to generate the next
one. BERT [18] is another type of large pre-trained model which
contains only the encoder component. BERT is designed to learn a
representation of the data and is trained using the MLM objective.
A small percentage of tokens in the training data will be replaced
by a mask token, where the goal is to train BERT to predict the true
value of the mask token. To combine the usage of both encoder and
decoder, encoder-decoder models have also been used to build large
pre-trained language models. Models such as T5 [63] are designed
for sequence-to-sequence tasks where the training objective aims
to recover the correct output sequence given the original input
(English to French, corrupted to uncorrupted, etc). These large pre-
trained language models can be fine-tuned for downstream NLP
tasks such as text summarization [46], text classification [77], as
well as question and response text generation [15].

Researchers have extended encoder, decoder and encoder-decoder
models to build large pre-trained models for various programming

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

language tasks. CodeGPT [50] adopts the original GPT architec-
ture and trains a generative model from scratch using Python and
Java functions. Codex [13] is a GPT-based code model created by
fine-tuning a larger GPT-3 model [9] for generating Python func-
tions based on natural language descriptions. CodeBERT [23] and
GraphCodeBERT [27] are BERT-based models for programming
tasks, and are trained using the MLM training objective. GraphCode-
BERT additionally encodes simple data flow information to aid in
code representation. CodeTrans [22], CodeT5 [72] and PLBART [4]
are unified encoder-decoder models [63] which uses denoising
sequence-to-sequence training objectives to pre-train both the en-
coder and decoder for various coding tasks.

In this paper, we directly use large pre-trained models for cloze-
style APR via zero-shot learning. While our cloze-style APR idea
is general and can be achieved using all above pre-trained models,
we demonstrate its potential by using the simple CodeBERT model.
CodeBERT is trained using the MLM objective which can be used
to generate replacement code for buggy code snippets. Also, Code-
BERT is bidirectional in nature, allowing it to capture both contexts
before and after for patch generation.

3 APPROACH

In this section, we introduce cloze-style APR, a new direction for
learning-based APR that directly learns from the large number of
code snippets available in the wild to generate patches. Different
from all prior learning-based APR techniques, instead of viewing
APR as a task of turning a buggy code snippet into a fixed code
snippet, we can directly learn what the correct code should look
like given its surrounding context. We view the problem as a cloze
task [1, 67] where we replace the buggy snippet with blanks/masks
and query pre-trained models [6] to fill the blanks with the correct
code snippet. This problem setup does not require access to any dataset
containing pairs of buggy and patched code versions and our approach
can directly make use of the existing large pre-trained models to
automatically generate code repairs.

Although our approach is general, in this work, we re-purpose
the recent CodeBERT [23] model for program repair. The training
objective for CodeBERT uses Masked Language Model (MLM) [18]
where given an input sequence of tokens X = {x1,x2,..xn}, a
random set of tokens in X is replaced with mask tokens to generate
a new mask sequence Xp,,;skeq- The training goal is to output the
original tokens in X;;,45xeq Which have been masked out, i.e. recover
X given Xy, asked- Given predictor P which outputs the probability
of a token, the MLM loss function can be formulated as:

Lum =), —log(P(xilXmasked)) (1)
i€emasked

The MLM training objective allows us to directly use CodeBERT
for program repair where instead of randomly masking out tokens,
we mask out all tokens which are part of the buggy code snippet. We
then use CodeBERT under a zero-shot learning setting for program
repair where we recover the correct tokens in place of the mask
buggy tokens. As a result, AlphaRepair does not require any addi-
tional retraining or fine-tuning stage on bug fixing datasets since
the MLM training is done as part of the pre-training tasks in Code-
BERT. While our basic idea is applicable for APR at different levels,
following state-of-the-art learning-based APR tools [32, 51, 80],

Chungiu Steven Xia and Lingming Zhang

we focus on single line patches in this work. Figure 2 provides an
overview of our approach:

e Step 1 (Section 3.1): We first take in a buggy project and
separate the surrounding context and the buggy line accord-
ing to fault localization information. We encode both the
context before and after into token representations. Addi-
tionally, we also encode the buggy line as a comment in the
natural language input for CodeBERT.

e Step 2 (Section 3.2): Using the buggy line, we generate
multiple mask lines using templates (replace entire line,
replace starting/ending part of line, etc). Each mask line
replaces the buggy line and is tokenized together with the
surrounding context as inputs to CodeBERT.

e Step 3 (Section 3.3): We iteratively query CodeBERT to
generate candidate patches using mask lines. Each patch
replaces the mask line with a generated code line.

e Step 4 (Section 3.4): We use CodeBERT again to provide
patch ranking by computing the score of the generated patch
using the joint probability of the generated tokens.

o Step 5 (Section 3.5): We compile each candidate patch and
validate it against the test suite. Finally, we output a list of
plausible patches for developers to examine.

3.1 Input Processing

To generate the inputs for AlphaRepair, first we extract the buggy
line and surrounding context from the buggy project. We use the
CodeBERT tokenizer which is built using byte-level byte pair en-
coding (BBPE) - a technique to reduce the size of the vocabulary by
breaking uncommon long words into subwords that are found com-
monly in the corpus [71]. BBPE has been used in various models
and shown to mitigate Out of Vocabulary issues [47, 62].

Figure 3 provides an example input of a buggy program. We
first define our tokenization structure, a list of tokens as inputs for
CodeBERT. We tokenize both the context before and after and sand-
wich the mask line (placeholders for what CodeBERT will predict,
described in Section 3.2) between them. For program repair, the
buggy line itself is also important to generate a patch. However, it
does not make sense to include it as a part of the context since we
aim to generate code to replace it.

To capture the encoding for the buggy line, we make use of
the bimodal nature of CodeBERT where it can take in both pro-
gramming language and also natural language (comments). We
transform the original buggy line into a comment by surrounding it
with the block comment characters (/* comment */). Recall Equation
1 which describes the basic MLM loss function, where X, ;skeq 1s @
mask sequence. X, ;skeq in CodeBERT concatenates both natural
language and code tokens such that X, ;sked = Winasked» Crmasked»
where Wy, ;sked and Cpyaskeqd are mask sequences of natural lan-
guage and code token sequences. The original MLM loss function
is now:

Lyimodal_MLM = Z —log(P(xi|Wmasked> Cmasked)) (2)
i€emasked

This way CodeBERT learns both modalities of function represen-

tation (natural language and function code). AlphaRepair makes

use of this additional understanding and transforms the buggy line

into a comment. Together the comment buggy line, context before,

Less Training, More Repairing Please

Buggy
Project

A

Context Before
Context Before
Buggy Line
Context After
Context After

Buggy Line
w/ Context

A h
Context Before

Context Before
= e

Context Before
Mask Line :
Context After
Context After

Processed
Masked Input

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

| Pre-trained CodeBert Model

3

Context Before

2 Context Before

Context Before

Context Before|"
Context Before|
Candidate Fix
Context After
Context After

Context Befo

Context Before |
Context Before
Candidate Fix
Context After
Context After

Candidate
Patches

Ranked Candidate
Patches

Figure 2: AlphaRepair overview

Context Befol

Context Before "
Context Before
Plausible Fix
Context After
Context After

Ranked Plausible
Patches

public LegendItemCollection getlLegendItems() {
LegendItemCollection result = new LegendItemCollection();
if (this.plot == null) {

Context — return result;
before }
int index = this.plot.getIndexOf(this);
CategoryDataset dataset = this.plot.getDataset(index);
Buggy o _
line — if (dataset != null) {

return result;

int seriesCount = dataset.getRowCount();
if (plot.getRowRenderingOrder().equals(SortOrder.ASCENDING)) {
for (int i = @; i < seriesCount; i++) {
if (isSeriesVisibleInLegend(i)) {
LegendItem item = getlLegendItem(index, i);

l

Context
after

Tokenization
Structure
| Max 512 |
! tokens
/*if (dataset != null) {*/
Comment Context Mask Context
buggy line before Line after

Figure 3: Example input for AlphaRepair

Complete mask if (fnType != null) {

line replace <mask><mask> <mask><mask>

line before <mask><mask> <mask><mask>

if (fnType != null) {

line after <mask><mask> <mask><mask>

Partial mask return foundDigit && !hasExp;

partial after <mask><mask> ... <mask> !hasExp;

partial before return <mask><mask> ... <mask>

Template mask primitiveValues.put(double.class, 0);

method replace <mask><mask>. ..<mask>(double.class, 0);

parameter replace primitiveValues.put(<mask><mask>..<mask>);
single replace primitiveValues.put(double.class, <mask>);
add parameter primitiveValues.put(double.class, 0, <mask>);
Template mask if (endIndex < @) {
expression replace if (<mask><mask>...<mask>) {
more ||/&& cond if (endIndex < @ || <mask>..<mask>) {
replace operator if (endIndex <mask> 0) {

Figure 4: Different strategies to generate mask lines
mask line and context after are tokenized as input for CodeBERT.
To maximize the context we can encode, we start from the buggy
line and increase the context size (lines away from the buggy code)

until we reach the maximum CodeBERT input token size of 512.

3.2 Mask Generation

In order to generate patches, we replace the buggy line with a
mask line. Mask line is defined as a line with one or more mask
tokens - <mask>. We use CodeBERT to fill each mask token with a

replacement code token and together the filled mask line becomes
a generated patch line. Figure 4 shows the 3 strategies we use to
generate a mask line: complete, partial and template mask.

Complete mask. The simplest strategy is to replace the entire
buggy line with a line containing only mask tokens. We refer to this
as line replacement since we ask CodeBERT to generate a new line
to replace the buggy line. We also generate mask lines where we
add mask tokens before/after the buggy line. These represent bug
fixes where a new line is inserted before/after the buggy location.

Partial mask. Another strategy of generating mask lines is by
reusing partial code from the buggy line. We first separate the buggy
line into its individual tokens and then keep the last/first token and
replace all other tokens before/after with the mask tokens. We then
repeat this process but append more tokens from the original buggy
line to generate all the possible versions of partial mask lines.

For example, in the partial before strategy in Figure 4, we start
with generating a mask line of return <mask><mask>...<mask> by
keeping the first token of return. Then we generate another mask
line by keeping the first two tokens (return foundDigit) to generate
return foundDigit <mask><mask>...<mask>. In total, we generate
(L — 1) number of mask lines, where L is the number of tokens in
the buggy line, for both partial after and before generation method.

This approach is motivated by patches where the fix will reuse
parts of the buggy line. By prepending and appending the mask
line with a part of the buggy line, we can reduce the number of
tokens CodeBERT needs to generate for a correct fix. Furthermore,
the partial buggy code acts like initial starting point for CodeBERT
to start generating tokens by providing important context.

Template mask. We implemented several template-based mask
line generation strategies targeting conditional and method invo-
cation statements as they are two of the most common bug pat-
terns [25, 38, 57]. Additionally, several traditional APR tools [17,
21, 48, 76] focus solely on fixing conditional statement related bugs,
showing the importance of targeting common bug patterns. Unlike
the previous 2 strategies, template mask can only be generated
for specific buggy lines. The first set of templates are designed to
target buggy method invocations. Method replacement will replace
the method call name with mask tokens. This represents asking
CodeBERT to generate a replacement method call using the same
parameters as before. We also use several parameter based changes:
replacing the entire inputs with mask tokens, replacing one param-
eter with mask tokens, and adding additional parameter(s) (more
than one parameters can be added since we vary the number of
mask tokens, therefore CodeBERT can add multiple parameters).
We also designed template mask lines for conditional statements
in the form of a Boolean expression. We generate mask lines that

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

Initial Input Mask if (endIndex < @ || <mask><mask><mask>) {

CodeBERT

Query
temp joint score First Round
-1.47 if (endIndex < @ || startIndex <mask><mask>) {
-1.75 if (endIndex < @ || endIndex <mask><mask>) {
-2.41 if (endIndex < @ || emptyRange <mask><mask>) {
lCodeBERT
temp joint score | second Round ¥ QU€TY
-1.37 if (endIndex < @ || endIndex >= <mask>) {
-1.77 if (endIndex < @ || startIndex == <mask>) {
-1.83 if (endIndex < @ || startIndex < <mask>) {
CodeBERT
temp joint score Final Output Query
-1.43 if (endIndex < @ || startIndex <) {
-2.04 if (endIndex < @ || startIndex == -1) {
-2.12 if (endIndex < @ || endIndex >=) {

a) Patch Generation

Re-ranking First Token

if (endIndex < @ || <mask><) {
if (endIndex < @ || <mask>== -1) { o
0,
if (endIndex < @ || <mask>>=) { %’@
(/OA 6:?}
Re-ranking Second Token fa
if (endIndex < @ || startIndex <mask>) { joint score
. CodeBERT _1.54
if (endIndex < @ || startIndex <mask>-1) { W z
if (endIndex < @ || endIndex <mask>) { -2.10
Re-ranking Final Token ‘2;83 -4.55
&
if (endIndex < @ || startIndex < <mask>) { q,oéﬁ\@d

if (endIndex < @ || startIndex == <mask>) {
if (endIndex < @ || endIndex >= <mask>) {
b) Patch Re-ranking

Figure 5: Patch generation and re-ranking example

replace the entire Boolean expression or add additional and/or
expressions by appending the statement with mask tokens. Addi-
tionally, we also identify common operators (<, >, >=, ==, 8&&, ||,
etc) and replace them directly in the buggy line with mask tokens.

These template-based mask line generations are inspired by
common fixes for many bugs [25, 38, 57] and also previous APR
tools that utilize preset templates to fix bugs [29, 35, 44, 45, 53].
These simple generated templates serve a similar functionality to
the partial masks in providing more starting code for CodeBERT
to generate potential patches. For a fix that only needs to modify a
small part of the buggy code, CodeBERT only needs to generate a
small number of tokens using mask lines from the template masks.
By including a larger portion of the buggy code, we reduce the
search space CodeBERT has to consider.

For each generated mask line, we increase the number of gen-
erated tokens from 1 until the total number of tokens in that line
becomes (L + 10) where L is the number of tokens in the original
buggy line. For example, if we use the “partial-after” strategy on a
buggy line with L of 12 and we keep the first 5 original tokens, we
will vary the number of masked tokens from 1 to 17. This process
is done for each masking strategy that we apply (except for the
replace operator strategy where we only replace common opera-
tors with a single mask token). We apply the input processing step
(Section 3.1) for each mask line to obtain a list of processed inputs
for CodeBERT.

3.3 Patch Generation

In order to generate a patch that replaces the original buggy code,
we use CodeBERT to generate code token for every mask token in

Chunqiu Steven Xia and Lingming Zhang

our input. To this end, we leverage the original training objective
of mask replacement used in CodeBERT. CodeBERT is trained by
predicting the correct token value that has been replaced with a
mask token given its surrounding context. For each mask token,
CodeBERT outputs a probability for each token in its vocabulary to
replace the mask token. Typically, during training, a small percent-
age of tokens is masked out (< 15%) and the model will attempt to
predict the actual token that has been replaced.

The task we have is similar to the original training objective
of CodeBERT where we also preprocessed the inputs such that a
small set of tokens has been masked out. However, a key difference
between our input and the masked training data is our mask tokens are
grouped together. A distinguished feature of CodeBERT and BERT
family of models [18, 23, 27, 47] is the bidirectional nature where
each token representation is predicated not only on context before
but also context after. In order to generate replacement tokens for
the mask tokens, CodeBERT looks at the tokens before and after the
mask location. This works well for the training objective since the
mask tokens are spread out where each token has sufficient tokens
before/after to give context. However, for our input data, the mask
tokens are together. To generate an output for a mask token in the
middle, the immediate context before/after are all mask tokens.

In order to facilitate token generation for grouped mask tokens,
we iteratively output tokens by replacing mask tokens with previ-
ously generated tokens. Figure 5a shows an example of how this pro-
cess is done. We start with the initial input mask line of if (endIndex
<@ || <mask><mask><mask>) { and use CodeBERT to determine the
top N most probable replacement tokens for the first mask token. N
is the beam width and is an adjustable parameter for our approach.
In this example, N is 3 meaning we take the top 3 most likely token
along with its conditional probability. In the next iteration, we query
CodeBERT again by replacing the first mask token with the top 3
replacement tokens (1.startIndex, 2.endIndex, 3.emptyRange)to
find the top 3 token pairs with the highest joint conditional proba-
bility (1.startIndex <, 2.startIndex ==, 3.endIndex >=). We call
this joint conditional probability value temp joint score. Given n
as the mask token length, T = {t1,...tp, MASKp+1,...MASKp } as
the mask line with p tokens generated so far (p <= n), let C*(T, t)
be the CodeBERT conditional probability of generating ¢ when all
tokens in T after and including ¢ have been masked out, the temp
joint score is defined as:

P
1 Sk
temp joint score (T)=1—) E log(C* (T, t;)) (3)

i=1

We note here that the temp joint score does not represent the
actual probability of the generated token once the complete line
has been generated (all mask tokens have been replaced). This
is because CodeBERT uses both context before and after when
determining the likelihood of a replacement token, the probabil-
ity value does not account for the mask tokens to be generated
in future. When computing the temp joint score of a token se-
quence ({t1, wtp—1,tp, MASKp+1, ...MASKy,}) in the mask line T,
CodeBERT sees the values of the tokens before ¢, ({t1,...tp-1}),
however all tokens after are masked out ({MASKp+1, ...MASKy}).
That said, the temp joint score is conditioned on the mask tokens

Less Training, More Repairing Please

whose values have not yet been decided, and the conditional probabil-
ity does not account for the future concrete values of those mask tokens.
Thus, we use this probability value as a proxy only temporarily
and further re-assign the likelihood after (described in Section 3.4)
for more precise patch ranking. In each iteration, we use the temp
joint score to keep only the top 3 highest score generated token
sequences. We repeat this process until we finish generating tokens
for all mask tokens in our input.

By generating tokens sequentially, we guarantee that when gen-
erating any mask tokens, CodeBERT has at least one side of the
immediate context. This helps with generating more syntactically
correct candidate patches since CodeBERT can use the previous
immediate context to inform what the best next tokens should
be. This process is similar to beam search commonly used in code
or natural language generation tasks [66]. One difference is that
traditional code generation can accurately calculate the likelihood
of a sequence as the average of the log conditional probability of
the generated tokens. For our approach, the naive average is only
an approximation of the likelihood since the probability outputs
for tokens in the beginning of the mask line do not include future
generated tokens. To address this issue, we further re-rank each
candidate patch by re-querying CodeBERT to obtain an accurate
likelihood value as shown in Section 3.4.

3.4 Patch Re-Ranking

The re-ranking procedure makes use of the CodeBERT model again.
The key idea is to provide an accurate score (i.e. likelihood) for each
patch after it is fully generated for more effective patch ranking.
We start with the complete patch with all the generated tokens.
We then mask out only one of the tokens and query CodeBERT to
obtain the conditional probability of that token. We apply the same
process for all other previous mask token locations and compute the
joint score which is an average of the individual token probabilities.
Given n generated tokens in a sequence: T = {t1, to, ...tn }, let C(T, t)
be the CodeBERT conditional probability when masking out only
token ¢ in the sequence T, the joint score is defined as:

joint score (T) = % Z log(C(T, t;)) 4)
i=1

The joint score can now be understood as the conditional prob-
ability of the generated sequence (i.e. given both contexts before
and after, what is the likelihood of the generated patch according
to CodeBERT?). This is done for all patches generated across all
mask generation strategies (complete, partial, and template mask).
We divide it by n to account for the token length difference since
different mask lines have different numbers of mask tokens.

Figure 5b shows an example of the re-ranking process. We use
the 3 patches from the patch generation example and for each of
them mask out the first token and obtain the probability value from
CodeBERT. We repeat this process for the other two tokens and
finally we end up with joint scores for all 3 patches. We use the
joint scores to provide a ranking for each patch. By re-querying
CodeBERT to obtain the joint score we can provide more accurate
patch ranking that allows for prioritization when only a subset of
generated patches can be validated.

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

3.5 Patch Validation

For each candidate patch we generate, we apply the corresponding
changes to the buggy file. We compile each patch and filter out any
patches that fail to compile. We then run the test suite against each
compiled patch to find plausible patches that pass all the tests.

4 EXPERIMENTAL DESIGN

4.1 Research Questions

In this paper, we study the following research questions:

e RQ1: How does AlphaRepair compare against state-of-the-
art APR tools?

e RQ2: How do different configurations impact the perfor-
mance of AlphaRepair?

e RQ3: What is the generalizability of AlphaRepair for addi-
tional projects and multiple programming languages?

We demonstrate the effectiveness of AlphaRepair by comparing
against both state-of-the-art traditional and learning-based APR
tools with perfect fault localization - the exact fix location of the
bug is provided and not perfect fault localization - use the suspi-
cious locations generated by fault localization [75] as inputs. Note
that the former is the preferred or only comparison setting for all
recent learning-based techniques since it eliminates the impact of
other factors (such as fault localization) and can show the pure
potential of different patch generation strategies [32, 51, 68, 80].
Therefore, this paper also uses perfect fault localization by default
unless specifically mentioned. We also show the contribution for
each of our design components by conducting an ablation study.
Finally, we evaluate the generalizability of AlphaRepair to addi-
tional projects in Defects4] 2.0 and QuixBugs. Additionally, we also
evaluate multilingual repair capability of AlphaRepair by testing
on the Python version of QuixBugs.

4.2 Implementation

AlphaRepair is implemented in Python with PyTorch [60] imple-
mentation of the CodeBERT model. We directly reuse the model
parameters of the pre-trained CodeBERT model. For perfect fault
localization patch generation, we use a beam width of 25 and gen-
erate at most 5,000 patches which is comparable to other baselines
[32, 51]. For not perfect fault localization patch generation, we
use a beam width of 5 and consider the top 40 most suspicious
lines same as the recent Recoder tool [80]. We use Ochiai fault
localization [3], same as previous approaches [44, 80]. For patch
validation, we use the UniAPR tool [11]. All patches generated
are validated and we evaluate AlphaRepair on an 8-core worksta-
tion with Intel i7 10700KF Comet Lake CPU @3.80GHz and 16GB
RAM, running Ubuntu 20.04.3 LTS and Open]DK Java 64-Bit Server
version 1.8.0_312 with NVIDIA GeForce RTX 3080 Ti GPU. For
all our experiments, we set a time-out of 5-hour end-to-end time
limit for fixing one bug, consistent with previouslearning-based
tools [42, 51, 65, 80].

4.3 Subject Systems

For evaluation, we use the widely used benchmark of Defects4]
[34]. Defects4] is a collection of reproducible bugs from open-source

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

projects in Java. We first use Defects4] version 1.2 to answer re-
search questions 1 and 2. Defects4] 1.2 contains 391 bugs (after
removing 4 depreciated bugs) across 6 different Java projects. To ad-
dress research question 3, we use Defects4] 2.0 which adds 438 bugs
on top of Defects4] 1.2. Since AlphaRepair is designed for single
line bug fixing, we evaluate only on the 82 single line bugs present
in the new bugs in Defects4] 2.0, this setup is similar to previous
single line APR tools [14, 32, 51, 80]. We also use QuixBugs [43]
that contains 40 small classic algorithms with single line bugs used
to evaluate many APR tools [19, 20, 32, 51, 78, 80]. QuixBugs con-
tains both Python and Java versions of the same buggy programs.
We evaluate AlphaRepair on both Python and Java versions to
demonstrate the multilingual ability of our tool.

4.4 Compared Techniques

We compare AlphaRepair against state-of-the-art baselines con-
taining both learning-based and also traditional APR tools. For
learning-based APR, we choose 6 recently published tools evaluated
on Java or Python bug datasets: Recoder (Java) [80], DeepDebug
(Python) [19], CURE (Java) [32], CoCoNuT (Java and Python) [51],
DLFix (Java) [42], and SequenceR (Java) [14]. These tools use NMT
models to generate patches given the buggy line and surrounding
context. Following the most recent Recoder work, we also compare
against 12 state-of-the-art traditional single-hunk APR tools: TBar
[44], PraPR [25], AVATAR [45], SimFix [31], FixMiner [35], Cap-
Gen [74], JAID [12], SketchFix [29], NOPOL [17], jGenProg [52],
jMutRepair [53] and jKali [53]. In total, our baseline comparisons
comprise of 18 different APR tools.

Following prior work [25, 32, 44, 51, 80], we use patch correct-
ness results gathered from previous papers [25, 32, 80] for Defects4]
1.2 evaluation and remove depreciated bugs. We use the recently
updated results of Recoder by the authors [59] instead of the out-
dated results in the original paper [80]. For many tools, we can
only obtain either perfect fault localization or not perfect fault lo-
calization, therefore we only compare against baselines where the
evaluation is under the same localization setting. For Defects4] 2.0
evaluation, we directly run the two best performing baselines of
TBar (template-based) and Recoder (learning-based) with perfect
fault localization under the same setting as our tool and report
the results. For QuixBugs evaluation, we compare against several
learning-based APR tools since they have shown to perform the
best on QuixBugs for both Java and Python. All baseline results on
QuixBugs are taken from previous papers/experiments [19, 32, 80].

For evaluating our technique against state-of-the-art tools, we
use the standard metrics of both plausible patches that just pass the
entire test suite of a project, and correct patches that are syntacti-
cally or semantically equivalent to the developer patches. Following
the common practice for APR, the correct patches are determined by
manually inspecting each plausible patch for semantic equivalency.

5 RESULT ANALYSIS

5.1 RQ1: Comparison against state-of-the-art

5.1.1 Perfect Fault Localization. We first compare AlphaRepair
with state-of-the-art learning-based and traditional APR tools under
the preferred perfect fault localization setting. Table 1 shows the
performance of AlphaRepair along with other baselines that also

Chunqiu Steven Xia and Lingming Zhang

CoCoNut TBar

AlphaRepair 0 CURE AlphaRepair [CURE

DLFix Recoder Others Recoder

a) with learning-based APR tools b) with all tools

Figure 6: Correct patch Venn diagrams for Defects4] 1.2

int k = 0;

for (Matcher m : matchers) {

- if (m instanceof CapturesArguments) {

+ if (m instanceof CapturesArguments && i.getArguments().length > k) {
((CapturesArguments) m).captureFrom(i.getArguments()[k]);

mask type: template mask - more && condition
mask line: if (m instanceof CapturesArguments && <mask>...<mask>) {
bug-ID: Mockito 34 a)

char ¢ = s.charAt(i);

switch (c¢) {

+ case '\@': sb.append("\\@"); break;
case '\n': sb.append("\\n"); break;
case '\r': sb.append("\\r"); break;

mask type: complete mask - line replace
mask line: <mask>...<mask> case '\n': sb.append("\\n"); break;
bug-ID: Closure 77 b)

Figure 7: Example bug fixes in Defects4] 1.2

use perfect fault localization. AlphaRepair can successfully generate
correct fixes for 74 bugs which outperforms all previous baselines
including both traditional and learning-based APR techniques.

To show the effectiveness of AlphaRepair further, we evaluate
the number of unique bugs that only AlphaRepair can fix. We first
compare against learning-based APR tools. Figure 6a shows the
unique fixes of AlphaRepair and other learning-based tools (we
exclude SequenceR since it has 0 unique bug fixes). We observe
that AlphaRepair is able to fix the most number of unique bugs
of 14. Figure 6b shows the unique fixes of AlphaRepair, the 3 best
performing baselines and all other APR tools combined (Others
in Figure 6b). We observe that AlphaRepair is able to fix the most
number of unique bugs of 8. This also demonstrates that AlphaRe-
pair can be used together with other techniques to further increase
the number of correct patches that can be generated.

We provide a few examples of unique bugs that only AlphaRepair
can fix. Figure 7a shows a bug with a missing length check on the
array obtained from i.getArguments(). This is a difficult bug for
both traditional and learning-based tools to fix since the array used
is not a variable but is obtained from a method call. Traditional
APR tools such as template-based tools can detect that the method
call returns an array, however it would be infeasible to add a length
check for every such case as the search space would be too huge
to traverse. Learning-based tools rely on bug fixing changes for
training data. While there could be many inserted length check fixes,
this specific example, inserting a length check on a return value
from a method call, can be rare to find in the dataset. AlphaRepair
can fix this bug since the usage of the CodeBERT model does not
require any bug fix code pairs and learns directly from large amount
of open-source data where many of them contain similar code

Less Training, More Repairing Please

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

Table 1: Baseline comparisons with perfect fault localization

Project H AlphaRepair ‘ Recoder ‘ TBar ‘ CURE ‘ CoCoNuT ‘ PraPR ‘ DLFix | SequenceR
Chart 9 10 11 10 7 7 5 3

Closure 23 21 16 14 9 12 11 3
Lang 13 11 13 9 7 6 8 2
Math 21 18 22 19 16 10 13 6

Mockito 5 2 3 4 4 3 1 0
Time 3 3 3 1 1 3 2 0

Total Correct / Plausible 74/ 109 65/112 | 68/95 | 57/ 104 44/ 85 41/146 | 40/ 68 14/19

Table 2: Baseline comparisons w/o perfect fault localization

‘ Tool H Correct / Plaus. ‘ Tool H Correct / Plaus. ‘
AlphaRepair 50/90 CapGen 22/25
Recoder 49/ 96 JAID 25/31
AVATAR 27 /53 SketchFix 19/ 26
DLFix 30/ 65 NOPOL 5/35
TBar 42/ 81 jGenProg 5/27
PraPR 41/ 146 jMutRepair 4/17
SimFix 34/56 jKali 1/22
FixMiner 25/31

where the length checks can be placed on different expressions
not just simple array variables. Furthermore, AlphaRepair also
captures the context after and identifies the usage of k in accessing
i.getArguments() to insert the correct length check.

Figure 7b shows another bug that only AlphaRepair can fix. The
correct fix is to insert an additional case statement to handle the
missing case. This is a difficult bug to fix since it does not just
slightly mutate any existing code line, but a completely new line
needs to be added to handle a specific case in the program execution
(when c is \0). AlphaRepair can generate the correct fix for this
bug by identifying its surrounding context. A case statement makes
sense to insert here given the context of switch block and other
case statements. CodeBERT is able to generate the appropriate case
since other case statements use similar identifier formats (\n, \r).
The outcome of the case also follows similarity to nearby context
by adding block sb.append(); break;. Traditional APR tools can-
not fix this bug since it requires adding a new semantic line into
the program which is beyond the ability of traditional APR tools
built for modifying existing lines or inserting simple statements
(try catch, null pointer checker, etc). Learning-based APR tools also
struggle with generating the correct patch for this bug since the
added line does not fit a common edit pattern found in the training
dataset. By observing the surrounding context and using previously
seen examples (repeating case statements in other projects), Al-
phaRepair can generate the correct fix for this bug. These examples
combined with the new state-of-the-art results achieved show that
AlphaRepair opens up a new promising direction for APR.

5.1.2 Not Perfect Fault Localization. We also compare against state-
of-the-art tools without perfect fault localization. Table 2 shows the
performance of AlphaRepair with other techniques also evaluated
under this setting. AlphaRepair is able to produce 50 correct patches
which outperforms previous state-of-the-art tools. Additionally,
AlphaRepair is able to correctly fix 7 unique bugs (the highest among
all studied techniques) that cannot be fixed by any other technique.
For not perfect fault localization, since we do not have access to the
ground truth location of the bug, AlphaRepair generates patches for
multiple suspicious lines. To account for this, we lower the beam
width of AlphaRepair for this setting in order to generate fewer

Table 3: Component contribution

Component ‘ ‘ #Correct Patch ‘ #Plausible Patch ‘
Complete mask +20 +29
Partial begin +13 +24
Partial end +15 +21
Template +21 +30
Comment buggy line +5 +5
Total 74 109

patches per suspicious line. In this experiment, we show that even
with the reduced number of patches generated per suspicious line,
AlphaRepair can still achieve state-of-the-art results.

5.2 RQ2: Ablation Study

To study the contribution of adding different components in the
design of AlphaRepair, we conduct an ablation study. Table 3 con-
tains the result with each row representing one component and the
increase in number of correct/plausible patches AlphaRepair can
produce. To show how each mask generation strategy (Section 3.2)
improves the number of bugs fixed, we start with the most basic
strategy and iteratively add more complex masking strategies. To
begin with, we only use complete mask where the entire buggy
line is replaced with all mask tokens. This is the case where we
give CodeBERT the entire freedom to generate any variety of edits.
However, this is often not desirable as the search space grows ex-
ponentially with the number of mask tokens and it becomes hard
for CodeBERT to obtain a correct fix. We observe that we only
achieve 20 correct patches when solely using this mask generation
strategy. We obtain increases in correct patches generated as we
start to use more mask generation strategies. The highest increase
in performance is the usage of template mask lines which add an
additional 21 new fixes. Compared to complete mask, template
mask only masks out certain parts of the buggy line (parameter,
boolean expression, function calls). This allows CodeBERT to fill
out only a small number of mask tokens which limits the search
space and allows AlphaRepair to quickly find the correct patch. In
addition, we also see an increase in performance when we add the
encoding for the commented version of the buggy line as input to
CodeBERT. The buggy line itself is important for patch generation
since it contains important information such as specific variables
used and the type of line. This demonstrates that AlphaRepair is
able to make use of the buggy line to help guide the generation of
valid fixes. Combining all components in AlphaRepair we are able
to achieve the final number of correct patches generated.

After the patch generation process, AlphaRepair re-queries Code-
BERT again to generate more accurate ranking of each patch. To
evaluate the effectiveness of our patch ranking strategy, we com-
pare the order of the correct patches with and without re-ranking.
Figure 8 shows the patch ranking of all correct patches generated

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

Chunqiu Steven Xia and Lingming Zhang

—— rerank
—— no_rerank

Figure 8: Patch ranking of 74 correct fixes with and without using patch re-ranking (lower is better)

Table 4: Baseline comparisons on Defects4] 2.0

| Projects H AlphaRepair | Recoder | TBar |
Cli 5/5 1/3 0/3
Codec 6/7 2/4 1/3
Collections 0/1 0/0 0/0
Compress 1/3 1/3 1/2
Csv 1/2 1/3 1/3
Gson 2/3 0/1 0/0
JacksonCore 3/3 2/3 1/2
JacksonDatabind 8/9 2/2 1/4
JacksonXml 0/0 0/0 0/0
Jsoup 9/16 2/4 3/8
JxPath 1/1 0/0 0/0
Total Correct / Plausible 36 /50 11/23 | 8/25

html.attributes().put(attribute);

- } else if (StringUtil.in(name, "base", "basefont", "bgsound", "command",
“link", "meta", "noframes", "style", "title")) {
+ } else if (StringUtil.in(name, "base", "basefont", "bgsound", "script”,
“command", "link", "meta", "noframes", "style", "title")) {
return tb.process(t, InHead);
} else if (name.equals("body")) {

mask type: template mask - add parameter

mask line: } else if (StringUtil.in(name, "base", "basefont", "bgsound",
<mask>...<mask>, "command", "link", "meta", "noframes", "style", "title")) {
bug-ID: Jsoup 15

Figure 9: Example bug fix in Defects4] 2.0

Table 5: Baseline comparisons on QuixBugs
| Tool || AlphaRepair | CURE | DeepDebug | Recoder ‘ CoCoNuT

Java 28 /30 26/ 35 -/- 17 /17 13/ 20
Python 27 /32 -/~ 21/22 -/- 19/21

with and without re-ranking (dotted line represents the average
patch ranking for each strategy). We observe that on average the
correct patch is ranked 612th without using the re-ranking strategy.
When using re-ranking, the correct patch on average is ranked
418th (31.7% reduction). Furthermore, 61 out of 74 correct patches
are ranked higher after re-ranking compared to before. As men-
tioned in Section 3.3, the temp joint score (no re-ranking) is not an
accurate representation of the actual likelihood of the generated
tokens since it is conditioned on mask tokens where the concrete
values are not yet determined. By re-ranking the patches gener-
ated, we make sure that the joint score is calculated without any
mask tokens, providing an accurate likelihood calculation. This
demonstrates that the patch re-ranking process in AlphaRepair
can effectively order the patches and prioritize patches that are
ranked higher in case that only a subset of generated patches can
be validated.

5.3 RQ3: Generalizability of AlphaRepair

5.3.1 Defects4) 2.0. To demonstrate the generalizability on addi-
tional projects and bugs and confirm that AlphaRepair is not simply
overfitting to bugs in Defects4] 1.2, we evaluate AlphaRepair on the

82 single line bugs in Defects4] 2.0 dataset. Table 4 shows the results
compared against other baselines on Defects4] 2.0. We observe Al-
phaRepair is able to achieve the highest number of correct patches
of 36 (3.3X more than top baseline). Defects4] 2.0 contains a harder
set of projects for APR with different variety of fixes compare to De-
fects4] 1.2. We observe that while template-based tools such as TBar
was able to generate a high amount of correct patches for Defects4]
1.2, the number of correct patches it can generate for Defects4] 2.0 is
limited. Learning-based tools such as Recoder will also suffer from
moving to a harder evaluation dataset since the edits are learnt from
training datasets which might not be present in Defects4] 2.0. In
contrast, AlphaRepair does not use any fine-tuning on specific bug
datasets which makes it less prone to suffer from generalizability
issues of traditional template-based or learning-based tools.

Figure 9 shows an example of a bug from Defects4] 2.0 dataset
that only AlphaRepair can fix. In this example, the code checks
if the variable name is one of the string literals. The bug is caused
by missing a string literal of "script”. This bug is particularly
hard to fix for both traditional and learning-based APR tools. For
traditional tools such as template-based ones, designing this specific
pattern can be hard as it requires insertion of a seemingly arbitrary
literal of "script". For learning-based tools, it faces the similar
problem in lack of example bug fix pairs where the fix is to insert
this particular string literal. In order to generate a correct fix of this
bug, one must understand the semantic meaning of the code. Upon
further inspection, the string literals in this conditional statement
are all HTML tags. AlphaRepair can generate the valid HTML string
literal of "script" by understanding that the surrounding context
deals with HTML documents and tags. Additionally, we observe
other patches generated by AlphaRepair for this bug include other
valid HTML tags such as "head", "html", "font", etc. The specific
example and improvement in repair effectiveness over the baselines
demonstrate the generalizability of AlphaRepair.

5.3.2 QuixBugs. We show the multilingual repair capability of Al-
phaRepair by evaluating on the QuixBugs dataset, which contains
both Java and Python versions of buggy programs. Table 5 shows
the results against state-of-the-art Java and Python APR tools. We
observe that AlphaRepair is able to achieve the highest number
of correct patches in both Java and Python (28 and 27). We also
observe that AlphaRepair is the only tool out of the baselines that
can be directly used for multilingual repair (CoCoNuT trains 2 sepa-
rate models). Traditional learning-based tools require access to bug
fixing datasets which are often only in one programming language,
restricting the ability for them to be used in a multilingual setting.
Unlike traditional learning-based APR tools, CodeBERT is jointly

Less Training, More Repairing Please

trained on Java, Python, Go, PHP, JavaScript, and Ruby code snip-
pets, this allows AlphaRepair to be directly used for multilingual
repair tasks with minimal modifications.

6 THREATS TO VALIDITY

Internal One internal threat to validity comes from our manual
analysis on the correctness of the patches. To this end, the authors
carefully looked through all plausible patches and had detailed
discussions in order to determine if a patch is correct. We have also
released all correct patches for public evaluation along with the
code to reproduce our experiments [2].

Another internal threat is the direct usage of the CodeBERT
model. The evaluation benchmark of Defects4] could overlap with
the training data used in CodeBERT which consists of over 6 million
code functions. To address this, we calculated the number of fixed
functions in Defects4] that are in the CodeBERT training dataset.
Overall, there are 65 out of 391 (16.6%) Defects4] 1.2 bugs and 9
out of 82 (11.0%) Defects4] 2.0 bugs that are present in the original
training data. Out of the 74 and 36 bugs that AlphaRepair can
correctly fix in Defects4] 1.2 and 2.0, 10 and 5 (13.5% and 13.9%)
bugs have their corresponding developer patch in the CodeBERT
training data. For the 15 bugs, we manually perturb the buggy code
(change variable names, add empty while, if statements, etc) and
use the perturbed version for repair. We observe that AlphaRepair
is still able to generate the correct fixes for all 15 bugs. We believe
this adequately shows that AlphaRepair is not simply overfitting to
patches that are present in the original CodeBERT training dataset.
Furthermore, the overall comparison results if we were to exclude
the 15 overlapping bug fixes would still improve on state-of-the-art
baselines (64 vs 63 on best baseline in Defects4] 1.2 and 31 vs 10 on
best baseline in Defects4] 2.0). Note QuixBugs dataset is not part of
the CodeBERT training data. Future work to address this even more
is to retrain the entire CodeBERT model by taking out all patched
functions in original data and then re-evaluate AlphaRepair.

Additionally, another internal threat is the experimental setup
causing potential differences in results. For example, a longer time-
out threshold or faster machine can lead to more bug fixes. To this
end, we adopt an ordinary machine configuration (detailed in Sec-
tion 4.2) and follow prior learning-based APR tools [42, 51, 65, 80]
by setting a 5-hour end-to-end timeout for fixing each bug. Further-
more, we follow the common practice in APR by directly taking
bug fix results from previous studies instead of directly running
the APR tools. To completely address this threat, one would need
rerun the results from all the selected baselines APR tools on the
same machine with the same time-out threshold.

External The main external threat to validity comes from the
evaluation benchmarks we chose. Our claims on the performance
of AlphaRepair may not translate to other datasets. To address
this threat, we evaluate the generalizability of AlphaRepair on
a newer dataset - Defects4] 2.0. We also evaluate our claim on
the generalization to other programming languages by studying
AlphaRepair on both the Python and Java versions of QuixBugs.

7 CONCLUSION

We propose and implement AlphaRepair, the first cloze-style APR
technique that leverages large pre-trained code model directly for

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

repair under a zero-shot learning setting. This opens a new dimen-
sion for multilingual learning-based APR that does not require any
fine-tuning on repair datasets. We build AlphaRepair using Code-
BERT and design inputs to make use of the pre-training objective
of CodeBERT to directly generate fix lines from the surrounding
context. We evaluate AlphaRepair on popular Java benchmarks of
Defects4] and QuixBugs to show that AlphaRepair achieves new
state of the art with the highest improvement being 3.3X more bugs
fixed than best baseline in Defects4] 2.0. We further demonstrate
the multilingual ability of AlphaRepair on the Python version of
QuixBugs where we achieved similar results compared to Java.

ACKNOWLEDGMENTS

We appreciate the insightful comments from the anonymous re-
viewers. This work was partially supported by National Science
Foundation under Grant Nos. CCF-2131943 and CCF-2141474, as
well as Kwai Inc.

REFERENCES

[1] 2022. Cloze wiki page. https://en.wikipedia.org/wiki/Cloze_test.

[2] 2022. AlphaRepair Dataset. https://zenodo.org/record/6819444.

[3] Rui Abreu, Peter Zoeteweij, and Arjan J.C. van Gemund. 2007. On the Accuracy of
Spectrum-based Fault Localization. In Testing: Academic and Industrial Conference
Practice and Research Techniques - MUTATION (TAICPART-MUTATION 2007). 89—
98.

[4] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang.
2021. Unified Pre-training for Program Understanding and Generation.
arXiv:2103.06333 [cs.CL]

[5] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk
Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le,
et al. 2021. Program synthesis with large language models. arXiv preprint
arXiv:2108.07732 (2021).

[6] Alexei Baevski, Sergey Edunov, Yinhan Liu, Luke Zettlemoyer, and Michael
Auli. 2019. Cloze-driven pretraining of self-attention networks. arXiv preprint
arXiv:1903.07785 (2019).

[7] Samuel Benton, Xia Li, Yiling Lou, and Lingming Zhang. 2020. On the Effective-
ness of Unified Debugging: An Extensive Study on 16 Program Repair Systems.
In ASE. 907-918.

[8] Dalvin Brown. 2021. Hospitals turn to artificial intelligence to help with
an age-old problem: Doctors’ poor bedside manners. The Washington Post
(2021). https://www.washingtonpost.com/technology/2021/02/16/virtual-ai-
hospital-patients/.

[9] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,

Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,

Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin

Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya

Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.

(2020). arXiv:2005.14165 [cs.CL]

2002. Software Errors Cost U.S. Economy $59.5 Billion Annually. NIST News

Release (2002). http://www.abeacha.com/NIST_press_release_bugs_cost.html.

[11] Lingchao Chen, Yicheng Ouyang, and Lingming Zhang. 2021. Fast and Precise On-

the-Fly Patch Validation for All. In 2021 IEEE/ACM 43rd International Conference

on Software Engineering (ICSE). 1123-1134.

Liushan Chen, Yu Pei, and Carlo A. Furia. 2017. Contract-based program re-

pair without the contracts. In 2017 32nd IEEE/ACM International Conference on

Automated Software Engineering (ASE). 637-647.

[13] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei,

[10

[12

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

[14]

[15]

[16

(7

[18]

[19]

[20]

[21]

[22]

[23]

[24

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[33]

[34

Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large
Language Models Trained on Code. arXiv:2107.03374 [cs.LG]

Zimin Chen, Steve Kommrusch, Michele Tufano, Louis-Noél Pouchet, Denys
Poshyvanyk, and Martin Monperrus. 2019. SequenceR: Sequence-to-Sequence
Learning for End-to-End Program Repair. IEEE Transaction on Software Engineer-
ing (2019).

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael
Collins, and Kristina Toutanova. 2019. BoolQ: Exploring the Surprising Difficulty
of Natural Yes/No Questions. arXiv:1905.10044 [cs.CL]

Valentin Dallmeier and Thomas Zimmermann. 2007. Extraction of Bug Localiza-
tion Benchmarks from History. In Proceedings of the Twenty-Second IEEE/ACM
International Conference on Automated Software Engineering (Atlanta, Georgia,
USA) (ASE °07). Association for Computing Machinery, New York, NY, USA,
433-436.

Favio DeMarco, Jifeng Xuan, Daniel Le Berre, and Martin Monperrus. 2014. Au-
tomatic Repair of Buggy If Conditions and Missing Preconditions with SMT. In
Proceedings of the 6th International Workshop on Constraints in Software Test-
ing, Verification, and Analysis (Hyderabad, India) (CSTVA 2014). Association for
Computing Machinery, New York, NY, USA, 30-39.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv:1810.04805 [cs.CL]

Dawn Drain, Colin B. Clement, Guillermo Serrato, and Neel Sundaresan. 2021.
DeepDebug: Fixing Python Bugs Using Stack Traces, Backtranslation, and Code
Skeletons. arXiv:2105.09352 [cs.SE]

Thomas Durieux, Fernanda Madeiral, Matias Martinez, and Rui Abreu. 2019.
Empirical Review of Java Program Repair Tools: A Large-Scale Experiment on
2,141 Bugs and 23,551 Repair Attempts. In Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering (Tallinn, Estonia) (ESEC/FSE 2019). Association
for Computing Machinery, New York, NY, USA, 302-313.

Thomas Durieux and Martin Monperrus. 2016. DynaMoth: Dynamic Code Synthe-
sis for Automatic Program Repair. In 2016 IEEE/ACM 11th International Workshop
in Automation of Software Test (AST). 85-91.

Ahmed Elnaggar, Wei Ding, Llion Jones, Tom Gibbs, Tamas Feher, Christoph
Angerer, Silvia Severini, Florian Matthes, and Burkhard Rost. 2021. CodeTrans:
Towards Cracking the Language of Silicon’s Code Through Self-Supervised Deep
Learning and High Performance Computing. arXiv:2104.02443 [cs.SE]
Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming
Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020.
CodeBERT: A Pre-Trained Model for Programming and Natural Languages.
arXiv:2002.08155 [cs.CL]

Luca Gazzola, Daniela Micucci, and Leonardo Mariani. 2019. Automatic Software
Repair: A Survey. IEEE Transactions on Software Engineering 45, 1 (2019), 34-67.
Ali Ghanbari, Samuel Benton, and Lingming Zhang. 2019. Practical Program
Repair via Bytecode Mutation. In Proceedings of the 28th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis (Beijing, China) (ISSTA 2019).
ACM, New York, NY, USA, 19-30.

Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning.
MIT Press, Cambridge, MA, USA. http://www.deeplearningbook.org.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long
Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano, Shao Kun
Deng, Colin Clement, Dawn Drain, Neel Sundaresan, Jian Yin, Daxin Jiang, and
Ming Zhou. 2021. GraphCodeBERT: Pre-training Code Representations with
Data Flow. arXiv:2009.08366 [cs.SE]

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long Short-term Memory. Neural
computation 9 (12 1997), 1735-80.

Jinru Hua, Mengshi Zhang, Kaiyuan Wang, and Sarfraz Khurshid. 2018. Sketch-
Fix: A Tool for Automated Program Repair Approach Using Lazy Candidate
Generation (ESEC/FSE 2018). Association for Computing Machinery, New York,
NY, USA, 888-891.

Jiajun Jiang, Luyao Ren, Yingfei Xiong, and Lingming Zhang. 2019. Inferring
Program Transformations From Singular Examples via Big Code. In 2019 34th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
255-266.

Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen.
2018. Shaping program repair space with existing patches and similar code. In
Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2018, Amsterdam, The Netherlands, July 16-21, 2018, Frank
Tip and Eric Bodden (Eds.). ACM, 298-309.

Nan Jiang, Thibaud Lutellier, and Lin Tan. 2021. CURE: Code-Aware Neural
Machine Translation for Automatic Program Repair. 2021 IEEE/ACM 43rd Inter-
national Conference on Software Engineering (ICSE) (May 2021).

Yanjie Jiang, Hui Liu, Nan Niu, Lu Zhang, and Yamin Hu. 2021. Extracting Concise
Bug-Fixing Patches from Human-Written Patches in Version Control Systems.
In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).
686-698.

René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4]: A Database of
Existing Faults to Enable Controlled Testing Studies for Java Programs (ISSTA

[35

[36

[37

"
&,

[39

[40]

[41

=
L)

[43

[44

[45

o
=

[51

[52

[53

(54

[55

Chungiu Steven Xia and Lingming Zhang

2014). Association for Computing Machinery, New York, NY, USA, 437-440.
Anil Koyuncu, Kui Liu, Tegawendé F. Bissyandé, Dongsun Kim, Jacques Klein,
Martin Monperrus, and Yves Le Traon. 2020. FixMiner: Mining relevant fix
patterns for automated program repair. Empir. Softw. Eng. 25, 3 (2020), 1980—
2024.

Christoph H. Lampert, Hannes Nickisch, and Stefan Harmeling. 2009. Learning
to detect unseen object classes by between-class attribute transfer. In 2009 IEEE
Conference on Computer Vision and Pattern Recognition. 951-958.

Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser.
2017. S3: Syntax- and Semantic-Guided Repair Synthesis via Programming by
Examples (ESEC/FSE 2017). Association for Computing Machinery, New York,
NY, USA, 593-604.

Xuan Bach D. Le, David Lo, and Claire Le Goues. 2016. History Driven Program
Repair. In 2016 IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), Vol. 1. 213-224.

Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2012.
GenProg: A Generic Method for Automatic Software Repair. IEEE Transactions
on Software Engineering 38, 1 (2012), 54-72.

Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang. 2019. Deepfl: Integrating
multiple fault diagnosis dimensions for deep fault localization. In Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis.
169-180.

Xia Li and Lingming Zhang. 2017. Transforming programs and tests in tandem for
fault localization. Proceedings of the ACM on Programming Languages 1, OOPSLA
(2017), 1-30.

Yi Li, Shaochua Wang, and Tien N. Nguyen. 2020. DLFix: Context-Based Code
Transformation Learning for Automated Program Repair. In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering (Seoul, South
Korea) (ICSE "20). Association for Computing Machinery, New York, NY, USA,
602-614.

Derrick Lin, James Koppel, Angela Chen, and Armando Solar-Lezama. 2017.
QuixBugs: A Multi-Lingual Program Repair Benchmark Set Based on the Quixey
Challenge (SPLASH Companion 2017). Association for Computing Machinery,
New York, NY, USA, 55-56.

Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé. 2019. TBar:
Revisiting Template-Based Automated Program Repair. Association for Computing
Machinery, New York, NY, USA, 31-42.

Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé. 2019.
AVATAR: Fixing Semantic Bugs with Fix Patterns of Static Analysis Violations.
In Proceedings of the 26th IEEE International Conference on Software Analysis,
Evolution, and Reengineering. IEEE, 456-467.

Yang Liu. 2019. Fine-tune BERT for Extractive Summarization.
arXiv:1903.10318 [cs.CL]

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A
Robustly Optimized BERT Pretraining Approach. arXiv:1907.11692 [cs.CL]

Fan Long and Martin Rinard. 2015. Staged Program Repair with Condition
Synthesis. In Proceedings of the 2015 10th Joint Meeting on Foundations of Soft-
ware Engineering (Bergamo, Italy) (ESEC/FSE 2015). Association for Computing
Machinery, New York, NY, USA, 166-178.

Yiling Lou, Ali Ghanbari, Xia Li, Lingming Zhang, Haotian Zhang, Dan Hao,
and Lu Zhang. 2020. Can automated program repair refine fault localization? a
unified debugging approach. In Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 75-87.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio
Blanco, Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou,
Linjun Shou, Long Zhou, Michele Tufano, Ming Gong, Ming Zhou, Nan Duan,
Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie Liu. 2021. CodeXGLUE:
A Machine Learning Benchmark Dataset for Code Understanding and Generation.
arXiv:2102.04664 [cs.SE]

Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei, and
Lin Tan. 2020. CoCoNuT: Combining Context-Aware Neural Translation Models
Using Ensemble for Program Repair. In Proceedings of the 29th ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis (Virtual Event, USA) (ISSTA
2020). Association for Computing Machinery, New York, NY, USA, 101-114.
Matias Martinez, Thomas Durieux, Jifeng Xuan, Romain Sommerard, and Martin
Monperrus. 2015. Automatic Repair of Real Bugs: An Experience Report on the
Defects4] Dataset. arXiv:1505.07002 [cs.SE]

Matias Martinez and Martin Monperrus. 2016. ASTOR: A Program Repair Li-
brary for Java (Demo). In Proceedings of the 25th International Symposium on
Software Testing and Analysis (Saarbriicken, Germany) (ISSTA 2016). Association
for Computing Machinery, New York, NY, USA, 441-444.

Ehsan Mashhadi and Hadi Hemmati. 2021. Applying codebert for automated pro-
gram repair of java simple bugs. In 2021 IEEE/ACM 18th International Conference
on Mining Software Repositories (MSR). IEEE, 505-509.

Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scalable
multiline program patch synthesis via symbolic analysis. In Proceedings of the

Less Training, More Repairing Please

[56]

[57

[58]

[59

[60
[61]

[62]

[63

[64]

(65

[66

[67]

[68

[69]

38th International Conference on Software Engineering. ACM, 691-701.
Devon H. O’Dell. 2017. The Debugging Mindset. acmqueue (2017).
//queue.acm.org/detail.cfm?id=3068754/.

Kai Pan, Sunghun Kim, and E. James Whitehead. 2009. Toward an Understanding
of Bug Fix Patterns. Empirical Softw. Engg. 14, 3 (jun 2009), 286-315.

Mike Papadakis and Yves Le Traon. 2015. Metallaxis-FL: mutation-based fault
localization. Software Testing, Verification and Reliability 25, 5-7 (2015), 605-628.
pkuzgh/Recoder 2022. Recoder correct patches update. https://github.com/
pkuzqh/Recoder/commit/fae824702b8eeedc17d3394d5ff0bae325a18aed.
PyTorchWebPage 2018. PyTorch. http://pytorch.org.

Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. 2015. An Analysis of
Patch Plausibility and Correctness for Generate-and-Validate Patch Generation
Systems. In Proceedings of the 2015 International Symposium on Software Testing
and Analysis (Baltimore, MD, USA) (ISSTA 2015). Association for Computing
Machinery, New York, NY, USA, 24-36.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language Models are Unsupervised Multitask Learners. (2019).
Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yangi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring
the Limits of Transfer Learning with a Unified Text-to-Text Transformer.
arXiv:1910.10683 [cs.LG]

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. 1985. Learning
internal representations by error propagation. Technical Report. California Univ
San Diego La Jolla Inst for Cognitive Science.

Seemanta Saha, Ripon K. Saha, and Mukul R. Prasad. 2019. Harnessing Evolution
for Multi-Hunk Program Repair. In Proceedings of the 41st International Conference
on Software Engineering (Montreal, Quebec, Canada) (ICSE '19). IEEE Press, 13-24.
Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to Sequence
Learning with Neural Networks. arXiv:1409.3215 [cs.CL]

Wilson L Taylor. 1953. “Cloze procedure”: A new tool for measuring readability.
Journalism quarterly 30, 4 (1953), 415-433.

Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin
White, and Denys Poshyvanyk. 2018. An Empirical Investigation into Learning
Bug-Fixing Patches in the Wild via Neural Machine Translation. Association for
Computing Machinery, New York, NY, USA, 832-837.

Alina Tugend. 2021. A Smarter App Is Watching Your Wallet. The New York
Times (2021). https://www.nytimes.com/2021/03/09/business/apps-personal-

https:

[70

(71

[72]

[75]

[76

=
)

[79

[80

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

finance-budget.html.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. CoRR abs/1706.03762 (2017). arXiv:1706.03762

Changhan Wang, Kyunghyun Cho, and Jiatao Gu. 2019. Neural Machine Trans-
lation with Byte-Level Subwords. arXiv:1909.03341 [cs.CL]

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C. H. Hoi. 2021. CodeT5:
Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Under-
standing and Generation. arXiv:2109.00859 [cs.CL]

RW. Webster and D. Hess. 1993. A real-time software controller for a digital
model railroad system. In [1993] Proceedings of the IEEE Workshop on Real-Time
Applications. 126-130.

Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2018.
Context-Aware Patch Generation for Better Automated Program Repair. In Pro-
ceedings of the 40th International Conference on Software Engineering (Gothenburg,
Sweden) (ICSE ’18). Association for Computing Machinery, New York, NY, USA,
1-11.

W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A
Survey on Software Fault Localization. IEEE Transactions on Software Engineering
42, 8 (2016), 707-740.

Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang Huang, and Lu
Zhang. 2017. Precise Condition Synthesis for Program Repair. In 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE). 416-426.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov,
and Quoc V. Le. 2020. XLNet: Generalized Autoregressive Pretraining for Lan-
guage Understanding. arXiv:1906.08237 [cs.CL]

He Ye, Matias Martinez, Thomas Durieux, and Martin Monperrus. 2019. A
Comprehensive Study of Automatic Program Repair on the QuixBugs Benchmark.
In 2019 IEEE 1st International Workshop on Intelligent Bug Fixing (IBF). 1-10.
Lingming Zhang, Lu Zhang, and Sarfraz Khurshid. 2013. Injecting mechanical
faults to localize developer faults for evolving software. ACM SIGPLAN Notices
48, 10 (2013), 765-784.

Qihao Zhu, Zeyu Sun, Yuan-an Xiao, Wenjie Zhang, Kang Yuan, Yingfei Xiong,
and Lu Zhang. 2021. A Syntax-Guided Edit Decoder for Neural Program Repair.
Association for Computing Machinery, New York, NY, USA, 341-353.

	Abstract
	1 Introduction
	2 Background
	2.1 Learning-based APR
	2.2 Large Pre-trained Code Models

	3 Approach
	3.1 Input Processing
	3.2 Mask Generation
	3.3 Patch Generation
	3.4 Patch Re-Ranking
	3.5 Patch Validation

	4 Experimental design
	4.1 Research Questions
	4.2 Implementation
	4.3 Subject Systems
	4.4 Compared Techniques

	5 Result Analysis
	5.1 RQ1: Comparison against state-of-the-art
	5.2 RQ2: Ablation Study
	5.3 RQ3: Generalizability of AlphaRepair

	6 Threats to Validity
	7 Conclusion
	References

