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ABSTRACT

Due to the promising future of Automated ProgramRepair (APR), re-

searchers have proposed various APR techniques, including heuristic-

based, template-based, and constraint-based techniques. Among

such classic APR techniques, template-based techniques have been

widely recognized as state of the art. However, such template-based

techniques require predefined templates to perform repair, and their

effectiveness is thus limited. To this end, researchers have lever-

aged the recent advances in Deep Learning to further improve APR.

Such learning-based techniques typically view APR as a Neural

Machine Translation problem, using the buggy/fixed code snippets

as the source/target languages for translation. In this way, such

techniques heavily rely on large numbers of high-quality bug-fixing

commits, which can be extremely costly/challenging to construct

and may limit their edit variety and context representation.

In this paper, we aim to revisit the learning-based APR prob-

lem, and propose AlphaRepair, the first cloze-style (or infilling-style)

APR approach to directly leveraging large pre-trained code models

for APR without any fine-tuning/retraining on historical bug fixes.

Our main insight is instead of modeling what a repair edit should

look like (i.e., a NMT task), we can directly predict what the correct

code is based on the context information (i.e., a cloze or text infilling

task). Although our approach is general and can be built on various

pre-trained code models, we have implemented AlphaRepair as

a practical multilingual APR tool based on the recent CodeBERT

model. Our evaluation of AlphaRepair on the widely used Defects4J

benchmark shows for the first time that learning-based APR without

any history bug fixes can already outperform state-of-the-art APR

techniques. We also studied the impact of different design choices

and show that AlphaRepair performs even better on a newer ver-

sion of Defects4J (2.0) with 3.3X more fixes than best performing

baseline, indicating that AlphaRepair can potentially avoid the

dataset-overfitting issue of existing techniques. Additionally, we

demonstrate the multilingual repair ability of AlphaRepair by eval-

uating on the QuixBugs dataset where AlphaRepair achieved the

state-of-the-art results on both Java and Python versions.
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1 INTRODUCTION

Software systems are all-pervasive in everyday life frommonitoring

financial transactions [69], controlling transportation systems [73]

to aiding healthcare tools [8]. Software bugs in these systems can af-

fect people around the globe and cost billions in financial losses [10].

To fix such bugs, developers often need to invest significant manual

effort, e.g., it is estimated that developers spend 35 to 50% of their

time debugging software systems [56]. To reducemanual debugging

efforts, Automated Program Repair (APR) techniques have been

proposed to automatically generate patches to fix the bugs [24].

A popular approach for APR is Generate and Validate (G&V) [25,

29, 35, 38, 39, 44, 45, 49, 53, 61, 74]. To start off, fault localiza-

tion [3, 40, 41, 58, 75, 79] is often used to reduce the search space by

computing the suspicious program locations that likely caused the

bug. Using these potential buggy locations, the G&V techniques

will generate a list of candidate patches. Each candidate patch is

compiled and validated against the test suite. Patches that success-

fully pass all tests are called plausible patches. However, tests often

cannot cover all possible behaviors of the program [61], hence a

plausible patch might still fail under other inputs. Therefore, plau-

sible patches are further inspected by developers to determine the

final correct patches that correctly fix the underlying bug.

Depending on how patches are generated, traditional APR tech-

niques can be categorized into heuristic-based [38, 39, 74], constraint-

based [17, 37, 55], and template-based [29, 35, 44, 45, 53]. Among

all traditional techniques, template-based APR techniques, which

leverage pre-defined fix patterns to transform buggy code snip-

pets into correct ones, have been widely recognized as state of the

art [7, 25, 44]. These fix patterns target specific types of bugs (e.g.,

null pointer exception) and patterns in the source code, and are of-

ten crafted by human experts.While effective, there is an upper limit

to the number of candidate patches that such pre-defined templates

can generate. Therefore, to increase the expressiveness of the edits,
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researchers have recently utilized Machine Learning (ML) or Deep

Learning (DL) techniques for patch generation [14, 32, 42, 51, 80].

Learning-based APR techniques often leverage the recent ad-

vances in DL to train a neural network that transforms the original

buggy program into the fixed version. These techniques [14, 19, 32,

42, 51, 80] typically view the problem of program repair as a Neural

Machine Translation (NMT) [66] problem and use NMT models

from the field of Natural Language Processing (NLP), where the

model input is a language sequence and the output is a translated

sequence in another language. Researchers have used NMT models

for program repair where instead of translating natural languages,

the models aim to turn a buggy code into the fixed version. These

NMT models are typically made up of an encoder and decoder pair

where the encoder captures the buggy code elements with its con-

text while the decoder takes in the encoded representation and

generates a fixed version. To facilitate APR, such models must be

trained using pairs of buggy and patched code. Despite being an

effective APR approach, existing learning-based techniques face

the following issues:

1) Quality of training data. Current learning-based APR tools

require training or fine-tuning of the models by using historical

bug fixes, i.e., pairs of buggy and patch code. This data is usually

obtained by scraping open-source projects to find specific commits

that are about bug fixes. However, this relies on various handcrafted

heuristics. For example, to find the bug fixing commits, keywords

such as bug, fix, patch, solve, issue, problem are often used to filter

the commits [16, 30, 51, 80]. Individual bug-fixing commits can

also include unrelated edits such as refactoring or new feature

implementation [33]. As a result, the extracted data can contain

various irrelevant commits and unrelated code changes within bug

fixing commits, adding noise to the training dataset.

2) Quantity of training data. Compared to large amount of open-

source code snippets that are available in the wild, the amount

of bug fixes is limited. To reduce the effect of the aforementioned

issue of a commit containing irrelevant changes from bug fixes,

learning-based APR tools usually limit the commits in their dataset

to ones with few lines of changes [32, 42, 51, 80], further limiting

the amount of training data. By training on such limited historical

fixes, current learning-based tools might restrict the edit variety of

their approach only on what is in their training data.

3) Context representation. To provide a correct fix to a buggy code

snippet, the context before and after are crucial in providing useful

syntactic/semantic information. Current learning-based APR tools

first pass the context including the buggy code elements into an

encoder as plain texts [32, 51] or structured representations [42, 80].

The encoded context is then used directly or combined with a

separate encoding of the buggy code snippet as input to the decoder.

However, this process is unnatural since it is challenging for the

models to distinguish the patch location within the context, or

effectively merge the separate bug/context encodings. As a result,

such techniques may miss intricate relations between a patch and

its context, such as the proximity of each code element that provides

important syntax/semantic information.

Our Work. We present AlphaRepair ś the first cloze-style (or

infilling-style) APR approach that uses large pre-trained code mod-

els under a zero-shot learning setting [36] to directly generate

patches, i.e., without any additional training or fine-tuning on bug-

fixing datasets. Different from all existing learning-based APR tech-

niques, our main insight is that instead of modeling what a repair

edit should look like, we can directly model/predict what the correct

code is based on the context information (like a cloze [1, 67] or łtext

infillingž task). In this way, our cloze-style APR can avoid all above

limitations of the existing techniques: 1) it completely frees APR

from historical bug fixes, 2) it can simply get trained on all possible

open-source projects in the wild for massive training, 3) it is directly

pre-trained to model patches based on the surrounding context, and

thus can effectively encode the intricate relations between patches

and their contexts. Furthermore, while it is non-trivial to adapt

prior APR techniques for a new language (due to a huge amount

of code/data engineering work for preparing historical bug fixes),

under our cloze-style APR, extending APR to a new language can

be as simple as mining a new code corpus in the new language!

While our cloze-style APR is generalizable to various pre-trained

models, in this paper, we implement AlphaRepair with one recent

pre-trained code model, CodeBERT [23]. Unlike current learning-

based APR tools which use limited numbers of bug fixes as training

data, CodeBERT is directly pre-trained using millions of code snip-

pets from open-source projects, allowing it to provide a variety

of edit types to fix different bugs. We directly leverage the initial

training objective of Masked Language Model (MLM) [18] - predict-

ing/recovering randomly masked out tokens used in CodeBERT to

perform zero-shot learning for APR. We first prepare model inputs

where each potentially buggy line is replaced with a mask line. We

then query CodeBERT to fill the mask line with replacement tokens

to produce candidate patches for a buggy program input. This al-

lows us to directly perform zero-shot learning (with no fine-tuning)

since we use the same tasks as defined in MLMś instead of predict-

ing random mask tokens, we generate predictions by masking out

only the buggy code snippet. Note that to improve the patch search

space, the mask lines are designed to systematically reuse parts of

the buggy line. Furthermore, the bidirectional nature of CodeBERT

(and MLM) also allows us to naturally capture both the contexts

before and after the buggy location for effective patch generation.

Contribution. This paper makes the following contributions:

• Direction/Dimension This paper opens a new dimension

for cloze-style APR to directly query large pre-trained code

models under a zero-shot learning setting. Compared with

existing learning-based APR techniques, our approach does

not need any additional fine-tuning/retraining using histori-

cal bug fixes and can be easily adopted for multiple program-

ming languages. Additionally, we demonstrate the efficacy

of directly applying large pre-trained models for generating

code fixes for real-world systems, which previously were

mainly tested on generating simple/small programs [5, 13].

• Technique While our idea is general and can leverage vari-

ous existing pre-trained code models, we have built AlphaRe-

pair as a practical APR tool based on the recent CodeBERT

model. We leveraged the original training objective of Code-

BERT using specific inputs of mask lines for direct program

repair. We used a variety of different mask line templates and

further propose probabilistic patch ranking to boost APR.
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language tasks. CodeGPT [50] adopts the original GPT architec-

ture and trains a generative model from scratch using Python and

Java functions. Codex [13] is a GPT-based code model created by

fine-tuning a larger GPT-3 model [9] for generating Python func-

tions based on natural language descriptions. CodeBERT [23] and

GraphCodeBERT [27] are BERT-based models for programming

tasks, and are trained using theMLM training objective. GraphCode-

BERT additionally encodes simple data flow information to aid in

code representation. CodeTrans [22], CodeT5 [72] and PLBART [4]

are unified encoder-decoder models [63] which uses denoising

sequence-to-sequence training objectives to pre-train both the en-

coder and decoder for various coding tasks.

In this paper, we directly use large pre-trained models for cloze-

style APR via zero-shot learning. While our cloze-style APR idea

is general and can be achieved using all above pre-trained models,

we demonstrate its potential by using the simple CodeBERT model.

CodeBERT is trained using the MLM objective which can be used

to generate replacement code for buggy code snippets. Also, Code-

BERT is bidirectional in nature, allowing it to capture both contexts

before and after for patch generation.

3 APPROACH

In this section, we introduce cloze-style APR, a new direction for

learning-based APR that directly learns from the large number of

code snippets available in the wild to generate patches. Different

from all prior learning-based APR techniques, instead of viewing

APR as a task of turning a buggy code snippet into a fixed code

snippet, we can directly learn what the correct code should look

like given its surrounding context. We view the problem as a cloze

task [1, 67] where we replace the buggy snippet with blanks/masks

and query pre-trained models [6] to fill the blanks with the correct

code snippet. This problem setup does not require access to any dataset

containing pairs of buggy and patched code versions and our approach

can directly make use of the existing large pre-trained models to

automatically generate code repairs.

Although our approach is general, in this work, we re-purpose

the recent CodeBERT [23] model for program repair. The training

objective for CodeBERT uses Masked Language Model (MLM) [18]

where given an input sequence of tokens 𝑋 = {𝑥1, 𝑥2, ...𝑥𝑛}, a

random set of tokens in 𝑋 is replaced with mask tokens to generate

a new mask sequence 𝑋𝑚𝑎𝑠𝑘𝑒𝑑 . The training goal is to output the

original tokens in𝑋𝑚𝑎𝑠𝑘𝑒𝑑 which have beenmasked out, i.e. recover

𝑋 given 𝑋𝑚𝑎𝑠𝑘𝑒𝑑 . Given predictor 𝑃 which outputs the probability

of a token, the MLM loss function can be formulated as:

L𝑀𝐿𝑀 =

∑︁

𝑖∈𝑚𝑎𝑠𝑘𝑒𝑑

− log(𝑃 (𝑥𝑖 |𝑋𝑚𝑎𝑠𝑘𝑒𝑑 )) (1)

The MLM training objective allows us to directly use CodeBERT

for program repair where instead of randomly masking out tokens,

wemask out all tokens which are part of the buggy code snippet. We

then use CodeBERT under a zero-shot learning setting for program

repair where we recover the correct tokens in place of the mask

buggy tokens. As a result, AlphaRepair does not require any addi-

tional retraining or fine-tuning stage on bug fixing datasets since

the MLM training is done as part of the pre-training tasks in Code-

BERT. While our basic idea is applicable for APR at different levels,

following state-of-the-art learning-based APR tools [32, 51, 80],

we focus on single line patches in this work. Figure 2 provides an

overview of our approach:

• Step 1 (Section 3.1): We first take in a buggy project and

separate the surrounding context and the buggy line accord-

ing to fault localization information. We encode both the

context before and after into token representations. Addi-

tionally, we also encode the buggy line as a comment in the

natural language input for CodeBERT.

• Step 2 (Section 3.2): Using the buggy line, we generate

multiple mask lines using templates (replace entire line,

replace starting/ending part of line, etc). Each mask line

replaces the buggy line and is tokenized together with the

surrounding context as inputs to CodeBERT.

• Step 3 (Section 3.3): We iteratively query CodeBERT to

generate candidate patches using mask lines. Each patch

replaces the mask line with a generated code line.

• Step 4 (Section 3.4): We use CodeBERT again to provide

patch ranking by computing the score of the generated patch

using the joint probability of the generated tokens.

• Step 5 (Section 3.5): We compile each candidate patch and

validate it against the test suite. Finally, we output a list of

plausible patches for developers to examine.

3.1 Input Processing

To generate the inputs for AlphaRepair, first we extract the buggy

line and surrounding context from the buggy project. We use the

CodeBERT tokenizer which is built using byte-level byte pair en-

coding (BBPE) ś a technique to reduce the size of the vocabulary by

breaking uncommon long words into subwords that are found com-

monly in the corpus [71]. BBPE has been used in various models

and shown to mitigate Out of Vocabulary issues [47, 62].

Figure 3 provides an example input of a buggy program. We

first define our tokenization structure, a list of tokens as inputs for

CodeBERT. We tokenize both the context before and after and sand-

wich the mask line (placeholders for what CodeBERT will predict,

described in Section 3.2) between them. For program repair, the

buggy line itself is also important to generate a patch. However, it

does not make sense to include it as a part of the context since we

aim to generate code to replace it.

To capture the encoding for the buggy line, we make use of

the bimodal nature of CodeBERT where it can take in both pro-

gramming language and also natural language (comments). We

transform the original buggy line into a comment by surrounding it

with the block comment characters (/* comment */). Recall Equation

1 which describes the basic MLM loss function, where 𝑋𝑚𝑎𝑠𝑘𝑒𝑑 is a

mask sequence. 𝑋𝑚𝑎𝑠𝑘𝑒𝑑 in CodeBERT concatenates both natural

language and code tokens such that 𝑋𝑚𝑎𝑠𝑘𝑒𝑑 =𝑊𝑚𝑎𝑠𝑘𝑒𝑑 ,𝐶𝑚𝑎𝑠𝑘𝑒𝑑 ,

where𝑊𝑚𝑎𝑠𝑘𝑒𝑑 and 𝐶𝑚𝑎𝑠𝑘𝑒𝑑 are mask sequences of natural lan-

guage and code token sequences. The original MLM loss function

is now:

L𝑏𝑖𝑚𝑜𝑑𝑎𝑙_𝑀𝐿𝑀 =

∑︁

𝑖∈𝑚𝑎𝑠𝑘𝑒𝑑

− log(𝑃 (𝑥𝑖 |𝑊𝑚𝑎𝑠𝑘𝑒𝑑 ,𝐶𝑚𝑎𝑠𝑘𝑒𝑑 )) (2)

This way CodeBERT learns both modalities of function represen-

tation (natural language and function code). AlphaRepair makes

use of this additional understanding and transforms the buggy line

into a comment. Together the comment buggy line, context before,
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whose values have not yet been decided, and the conditional probabil-

ity does not account for the future concrete values of those mask tokens.

Thus, we use this probability value as a proxy only temporarily

and further re-assign the likelihood after (described in Section 3.4)

for more precise patch ranking. In each iteration, we use the temp

joint score to keep only the top 3 highest score generated token

sequences. We repeat this process until we finish generating tokens

for all mask tokens in our input.

By generating tokens sequentially, we guarantee that when gen-

erating any mask tokens, CodeBERT has at least one side of the

immediate context. This helps with generating more syntactically

correct candidate patches since CodeBERT can use the previous

immediate context to inform what the best next tokens should

be. This process is similar to beam search commonly used in code

or natural language generation tasks [66]. One difference is that

traditional code generation can accurately calculate the likelihood

of a sequence as the average of the log conditional probability of

the generated tokens. For our approach, the naive average is only

an approximation of the likelihood since the probability outputs

for tokens in the beginning of the mask line do not include future

generated tokens. To address this issue, we further re-rank each

candidate patch by re-querying CodeBERT to obtain an accurate

likelihood value as shown in Section 3.4.

3.4 Patch Re-Ranking

The re-ranking procedure makes use of the CodeBERT model again.

The key idea is to provide an accurate score (i.e. likelihood) for each

patch after it is fully generated for more effective patch ranking.

We start with the complete patch with all the generated tokens.

We then mask out only one of the tokens and query CodeBERT to

obtain the conditional probability of that token. We apply the same

process for all other previous mask token locations and compute the

joint score which is an average of the individual token probabilities.

Given𝑛 generated tokens in a sequence:𝑇 = {𝑡1, 𝑡2, ...𝑡𝑛}, let𝐶 (𝑇, 𝑡)

be the CodeBERT conditional probability when masking out only

token 𝑡 in the sequence 𝑇 , the joint score is defined as:

joint score (T) =
1

𝑛

𝑛∑︁

𝑖=1

log(𝐶 (𝑇, 𝑡𝑖 )) (4)

The joint score can now be understood as the conditional prob-

ability of the generated sequence (i.e. given both contexts before

and after, what is the likelihood of the generated patch according

to CodeBERT?). This is done for all patches generated across all

mask generation strategies (complete, partial, and template mask).

We divide it by 𝑛 to account for the token length difference since

different mask lines have different numbers of mask tokens.

Figure 5b shows an example of the re-ranking process. We use

the 3 patches from the patch generation example and for each of

them mask out the first token and obtain the probability value from

CodeBERT. We repeat this process for the other two tokens and

finally we end up with joint scores for all 3 patches. We use the

joint scores to provide a ranking for each patch. By re-querying

CodeBERT to obtain the joint score we can provide more accurate

patch ranking that allows for prioritization when only a subset of

generated patches can be validated.

3.5 Patch Validation

For each candidate patch we generate, we apply the corresponding

changes to the buggy file. We compile each patch and filter out any

patches that fail to compile. We then run the test suite against each

compiled patch to find plausible patches that pass all the tests.

4 EXPERIMENTAL DESIGN

4.1 Research Questions

In this paper, we study the following research questions:

• RQ1: How does AlphaRepair compare against state-of-the-

art APR tools?

• RQ2: How do different configurations impact the perfor-

mance of AlphaRepair?

• RQ3:What is the generalizability of AlphaRepair for addi-

tional projects and multiple programming languages?

We demonstrate the effectiveness of AlphaRepair by comparing

against both state-of-the-art traditional and learning-based APR

tools with perfect fault localization - the exact fix location of the

bug is provided and not perfect fault localization - use the suspi-

cious locations generated by fault localization [75] as inputs. Note

that the former is the preferred or only comparison setting for all

recent learning-based techniques since it eliminates the impact of

other factors (such as fault localization) and can show the pure

potential of different patch generation strategies [32, 51, 68, 80].

Therefore, this paper also uses perfect fault localization by default

unless specifically mentioned. We also show the contribution for

each of our design components by conducting an ablation study.

Finally, we evaluate the generalizability of AlphaRepair to addi-

tional projects in Defects4J 2.0 and QuixBugs. Additionally, we also

evaluate multilingual repair capability of AlphaRepair by testing

on the Python version of QuixBugs.

4.2 Implementation

AlphaRepair is implemented in Python with PyTorch [60] imple-

mentation of the CodeBERT model. We directly reuse the model

parameters of the pre-trained CodeBERT model. For perfect fault

localization patch generation, we use a beam width of 25 and gen-

erate at most 5,000 patches which is comparable to other baselines

[32, 51]. For not perfect fault localization patch generation, we

use a beam width of 5 and consider the top 40 most suspicious

lines same as the recent Recoder tool [80]. We use Ochiai fault

localization [3], same as previous approaches [44, 80]. For patch

validation, we use the UniAPR tool [11]. All patches generated

are validated and we evaluate AlphaRepair on an 8-core worksta-

tion with Intel i7 10700KF Comet Lake CPU @3.80GHz and 16GB

RAM, running Ubuntu 20.04.3 LTS and OpenJDK Java 64-Bit Server

version 1.8.0_312 with NVIDIA GeForce RTX 3080 Ti GPU. For

all our experiments, we set a time-out of 5-hour end-to-end time

limit for fixing one bug, consistent with previouslearning-based

tools [42, 51, 65, 80].

4.3 Subject Systems

For evaluation, we use the widely used benchmark of Defects4J

[34]. Defects4J is a collection of reproducible bugs from open-source
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Table 1: Baseline comparisons with perfect fault localization

Project AlphaRepair Recoder TBar CURE CoCoNuT PraPR DLFix SequenceR

Chart 9 10 11 10 7 7 5 3

Closure 23 21 16 14 9 12 11 3

Lang 13 11 13 9 7 6 8 2

Math 21 18 22 19 16 10 13 6

Mockito 5 2 3 4 4 3 1 0

Time 3 3 3 1 1 3 2 0

Total Correct / Plausible 74 / 109 65 / 112 68 / 95 57 / 104 44 / 85 41 / 146 40 / 68 14 / 19

Table 2: Baseline comparisons w/o perfect fault localization

Tool Correct / Plaus. Tool Correct / Plaus.

AlphaRepair 50 / 90 CapGen 22 / 25

Recoder 49 / 96 JAID 25 / 31

AVATAR 27 / 53 SketchFix 19 / 26

DLFix 30 / 65 NOPOL 5 / 35

TBar 42 / 81 jGenProg 5 / 27

PraPR 41 / 146 jMutRepair 4 / 17

SimFix 34 / 56 jKali 1 / 22

FixMiner 25 / 31

where the length checks can be placed on different expressions

not just simple array variables. Furthermore, AlphaRepair also

captures the context after and identifies the usage of k in accessing

i.getArguments() to insert the correct length check.

Figure 7b shows another bug that only AlphaRepair can fix. The

correct fix is to insert an additional case statement to handle the

missing case. This is a difficult bug to fix since it does not just

slightly mutate any existing code line, but a completely new line

needs to be added to handle a specific case in the program execution

(when c is \0). AlphaRepair can generate the correct fix for this

bug by identifying its surrounding context. A case statement makes

sense to insert here given the context of switch block and other

case statements. CodeBERT is able to generate the appropriate case

since other case statements use similar identifier formats (\n, \r).

The outcome of the case also follows similarity to nearby context

by adding block sb.append(); break;. Traditional APR tools can-

not fix this bug since it requires adding a new semantic line into

the program which is beyond the ability of traditional APR tools

built for modifying existing lines or inserting simple statements

(try catch, null pointer checker, etc). Learning-based APR tools also

struggle with generating the correct patch for this bug since the

added line does not fit a common edit pattern found in the training

dataset. By observing the surrounding context and using previously

seen examples (repeating case statements in other projects), Al-

phaRepair can generate the correct fix for this bug. These examples

combined with the new state-of-the-art results achieved show that

AlphaRepair opens up a new promising direction for APR.

5.1.2 Not Perfect Fault Localization. We also compare against state-

of-the-art tools without perfect fault localization. Table 2 shows the

performance of AlphaRepair with other techniques also evaluated

under this setting. AlphaRepair is able to produce 50 correct patches

which outperforms previous state-of-the-art tools. Additionally,

AlphaRepair is able to correctly fix 7 unique bugs (the highest among

all studied techniques) that cannot be fixed by any other technique.

For not perfect fault localization, since we do not have access to the

ground truth location of the bug, AlphaRepair generates patches for

multiple suspicious lines. To account for this, we lower the beam

width of AlphaRepair for this setting in order to generate fewer

Table 3: Component contribution

Component #Correct Patch #Plausible Patch

Complete mask +20 +29

Partial begin +13 +24

Partial end +15 +21

Template +21 +30

Comment buggy line +5 +5

Total 74 109

patches per suspicious line. In this experiment, we show that even

with the reduced number of patches generated per suspicious line,

AlphaRepair can still achieve state-of-the-art results.

5.2 RQ2: Ablation Study

To study the contribution of adding different components in the

design of AlphaRepair, we conduct an ablation study. Table 3 con-

tains the result with each row representing one component and the

increase in number of correct/plausible patches AlphaRepair can

produce. To show how each mask generation strategy (Section 3.2)

improves the number of bugs fixed, we start with the most basic

strategy and iteratively add more complex masking strategies. To

begin with, we only use complete mask where the entire buggy

line is replaced with all mask tokens. This is the case where we

give CodeBERT the entire freedom to generate any variety of edits.

However, this is often not desirable as the search space grows ex-

ponentially with the number of mask tokens and it becomes hard

for CodeBERT to obtain a correct fix. We observe that we only

achieve 20 correct patches when solely using this mask generation

strategy. We obtain increases in correct patches generated as we

start to use more mask generation strategies. The highest increase

in performance is the usage of template mask lines which add an

additional 21 new fixes. Compared to complete mask, template

mask only masks out certain parts of the buggy line (parameter,

boolean expression, function calls). This allows CodeBERT to fill

out only a small number of mask tokens which limits the search

space and allows AlphaRepair to quickly find the correct patch. In

addition, we also see an increase in performance when we add the

encoding for the commented version of the buggy line as input to

CodeBERT. The buggy line itself is important for patch generation

since it contains important information such as specific variables

used and the type of line. This demonstrates that AlphaRepair is

able to make use of the buggy line to help guide the generation of

valid fixes. Combining all components in AlphaRepair we are able

to achieve the final number of correct patches generated.

After the patch generation process, AlphaRepair re-queries Code-

BERT again to generate more accurate ranking of each patch. To

evaluate the effectiveness of our patch ranking strategy, we com-

pare the order of the correct patches with and without re-ranking.

Figure 8 shows the patch ranking of all correct patches generated
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trained on Java, Python, Go, PHP, JavaScript, and Ruby code snip-

pets, this allows AlphaRepair to be directly used for multilingual

repair tasks with minimal modifications.

6 THREATS TO VALIDITY

Internal One internal threat to validity comes from our manual

analysis on the correctness of the patches. To this end, the authors

carefully looked through all plausible patches and had detailed

discussions in order to determine if a patch is correct. We have also

released all correct patches for public evaluation along with the

code to reproduce our experiments [2].

Another internal threat is the direct usage of the CodeBERT

model. The evaluation benchmark of Defects4J could overlap with

the training data used in CodeBERTwhich consists of over 6 million

code functions. To address this, we calculated the number of fixed

functions in Defects4J that are in the CodeBERT training dataset.

Overall, there are 65 out of 391 (16.6%) Defects4J 1.2 bugs and 9

out of 82 (11.0%) Defects4J 2.0 bugs that are present in the original

training data. Out of the 74 and 36 bugs that AlphaRepair can

correctly fix in Defects4J 1.2 and 2.0, 10 and 5 (13.5% and 13.9%)

bugs have their corresponding developer patch in the CodeBERT

training data. For the 15 bugs, we manually perturb the buggy code

(change variable names, add empty while, if statements, etc) and

use the perturbed version for repair. We observe that AlphaRepair

is still able to generate the correct fixes for all 15 bugs. We believe

this adequately shows that AlphaRepair is not simply overfitting to

patches that are present in the original CodeBERT training dataset.

Furthermore, the overall comparison results if we were to exclude

the 15 overlapping bug fixes would still improve on state-of-the-art

baselines (64 vs 63 on best baseline in Defects4J 1.2 and 31 vs 10 on

best baseline in Defects4J 2.0). Note QuixBugs dataset is not part of

the CodeBERT training data. Future work to address this even more

is to retrain the entire CodeBERT model by taking out all patched

functions in original data and then re-evaluate AlphaRepair.

Additionally, another internal threat is the experimental setup

causing potential differences in results. For example, a longer time-

out threshold or faster machine can lead to more bug fixes. To this

end, we adopt an ordinary machine configuration (detailed in Sec-

tion 4.2) and follow prior learning-based APR tools [42, 51, 65, 80]

by setting a 5-hour end-to-end timeout for fixing each bug. Further-

more, we follow the common practice in APR by directly taking

bug fix results from previous studies instead of directly running

the APR tools. To completely address this threat, one would need

rerun the results from all the selected baselines APR tools on the

same machine with the same time-out threshold.

External The main external threat to validity comes from the

evaluation benchmarks we chose. Our claims on the performance

of AlphaRepair may not translate to other datasets. To address

this threat, we evaluate the generalizability of AlphaRepair on

a newer dataset - Defects4J 2.0. We also evaluate our claim on

the generalization to other programming languages by studying

AlphaRepair on both the Python and Java versions of QuixBugs.

7 CONCLUSION

We propose and implement AlphaRepair, the first cloze-style APR

technique that leverages large pre-trained code model directly for

repair under a zero-shot learning setting. This opens a new dimen-

sion for multilingual learning-based APR that does not require any

fine-tuning on repair datasets. We build AlphaRepair using Code-

BERT and design inputs to make use of the pre-training objective

of CodeBERT to directly generate fix lines from the surrounding

context. We evaluate AlphaRepair on popular Java benchmarks of

Defects4J and QuixBugs to show that AlphaRepair achieves new

state of the art with the highest improvement being 3.3X more bugs

fixed than best baseline in Defects4J 2.0. We further demonstrate

the multilingual ability of AlphaRepair on the Python version of

QuixBugs where we achieved similar results compared to Java.
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