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Title: Arithmetic operations without symbols are unimpaired in adults with math anxiety 

Abstract: This study characterizes a previously unstudied facet of a major causal model of math 
anxiety. The model posits that impaired “basic number abilities” can lead to math anxiety, but 
what constitutes a basic number ability remains underdefined. Previous work has raised the idea 
that our perceptual ability to represent quantities approximately without using symbols 
constitutes one of the basic number abilities. Indeed, several recent studies tested how 
participants with math anxiety estimate and compare non-symbolic quantities. However, little is 
known about how participants with math anxiety perform arithmetic operations (addition and 
subtraction) on non-symbolic quantities. This is an important question because poor arithmetic 
performance on symbolic numbers is one of the primary signatures of high math anxiety. To test 
the question, we recruited 92 participants and asked them to complete a math anxiety survey, two 
measures of working memory, a timed symbolic arithmetic test, and a non-symbolic 
“approximate arithmetic” task. We hypothesized that if impaired ability to perform operations 
was a potential causal factor to math anxiety, we should see relationships between math anxiety 
and both symbolic and approximate arithmetic. However, if math anxiety relates to precise or 
symbolic representation, only a relationship between math anxiety and symbolic arithmetic 
should appear. Our results show no relationship between math anxiety and the ability to perform 
operations with approximate quantities, suggesting that difficulties performing perceptually 
based arithmetic operations does not constitute a basic number ability linked to math anxiety. 
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1. Introduction 
Humankind has made incredible advances due to the development of formal 

mathematical structures. However, on an individual level, many view engaging with math as a 

monumental struggle, and we do not have a clear understanding of how those negative feelings 

come into being. Math anxiety (MA) is defined as feelings of tension or dread when confronted 

with the need to perform mathematics (Ashcraft & Faust, 1994; Richardson & Suinn, 1972). It is 

a widespread phenomenon that impacts the individual in myriad ways. Hart and Ganley (2019) 

found that about half of U.S. adults score at moderate to high levels of MA with women 

reporting meaningfully higher levels than men. They found no such differences between 

different racial and ethnic groups (Hart & Ganley, 2019). In the long term, MA impacts career 

prospects: those whose MA levels increase or are high during schooling are less likely to choose 

STEM careers (Ahmed, 2018), and those in STEM careers report lower levels of MA (Hart & 

Ganley, 2019; Hembree, 1990).  

One model to explain math anxiety places difficulties in basic number skills—such as 

counting or number comparison—that relate to downstream mathematic abilities as the primary 

precursor to developing MA (Beilock & Maloney, 2015; Maloney, 2016). Under this “reduced 

capacities” model, some individuals have reduced cognitive competencies that lead to lower 

math performance and the development of MA. Lending credence to this model are studies 

showing that people with high MA perform poorly on simple numerical tasks, such as 

enumeration and number comparison (Maloney et al., 2010, 2011). This model is compelling, as 

the causal mechanism is straightforward and intuitive. These skills are fundamental, so a weaker 

foundation may naturally lead to less stable future development.  
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Despite the emphasis placed on its position in the model, “basic number skills” remains 

underdefined. Theories of numerical cognition assert that one of the most basic skills for 

representing number is based on the evolutionarily ancient system that we share with many 

animals (Dehaene, 2011). The so-called approximate number system (ANS) is thought to enable 

the representation of numerosities, or the number of items in a set, and is posited to serve as a 

foundation for mathematical competence (Odic & Starr, 2018). Whether these perceptually 

based, approximate, non-symbolic, magnitude representations directly drive the acquisition of 

precise, symbolic mathematics has been hotly debated (Bugden et al., 2016, 2021; Merkley et al., 

2017; Szkudlarek & Brannon, 2017; J. Wang et al., 2017). Regardless of that debate, however, 

empirical studies especially in children do show a meaningful association between one’s 

performance in tasks involving non-symbolic magnitude representations and tasks involving 

symbolic magnitude representations (Chen & Li, 2014; Fazio et al., 2014; Schneider et al., 

2017). Thus, understanding to what extent non-symbolic magnitude processing relates to MA 

could uncover the cognitive mechanisms underlying MA.  

Hence, the approximate number system has received much attention in the math anxiety 

literature; however, the results so far are mixed (Colomé, 2019; Dietrich et al., 2015; Hart et al., 

2017; Lee & Cho, 2018; Lindskog et al., 2017; Maldonado Moscoso et al., 2020; Núñez-Peña & 

Suárez-Pellicioni, 2014). For example, Dietrich and colleagues (2015) found no relation in an 

adult population between MA and performance on a non-symbolic dot comparison task (judge 

which set of dots has a larger numerosity), as measured by error rate and response time (RT), nor 

did they find relations between MA and the Weber fraction, a calculated measure of ANS acuity. 

Likewise, Colomé (2019) replicated and extended this effect by finding no group difference (low 

vs high MA) on the dot comparison task when the size of the dots could facilitate (i.e., the larger 
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numerosity set has large dots) or hinder (i.e., the larger numerosity set has small dots) choosing 

the larger numerosity. Notably, there is a lack of research on the relation between numerosity 

processing and MA in early schooling, but to our knowledge the youngest age group tested (ages 

9-15) showed no correlation between MA and numerosity discrimination (Z. Wang et al., 2015). 

In contrast, Lindskog and colleagues (2017) found that, in adults, MA was significantly 

negatively correlated with accuracy on the dot comparison task, and that MA fully mediated the 

relationship between dot comparison accuracy and math performance.  

The literature, thus, is inconclusive, as adults with high MA do not show consistent 

differences compared to those with low MA on this purported “building block” of numerical 

thinking. One explanation is that those with high MA start with low ANS acuity but make gains 

to end up on par with their low-MA counterparts over the course of development, although this is 

unlikely given the relative stability of ANS acuity (Elliott et al., 2019; Purpura & Simms, 2018) 

and would not be entirely consistent with the findings of Maloney (2010), where adults with MA 

were slower to enumerate objects. A more plausible explanation is that using ANS to solve a 

given magnitude-related task does not qualify as “basic number skills” despite claims that ANS-

based abilities underly future math performance (e.g., J. Wang et al., 2017). That said, 

performing dot comparison utilizes limited aspects (i.e., estimation and comparison) of primitive 

skills recruiting non-symbolic magnitude representations. Indeed, research in the past decade or 

so has identified that the approximate number system enables not only estimation and 

comparison of numerosities but also operations (akin to arithmetic operations) of numerosities 

(Barth et al., 2006; McCrink & Wynn, 2004; Park & Brannon, 2013, 2014). Non-symbolic 

estimation and comparison tasks widely tested in previous studies lack the operational 

component that may more closely relate to the impaired abilities of those with MA. Although 
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ANS acuity may be similar between those with high and low MA, it is yet unknown if any 

impairment extends to ANS functions beyond simple magnitude processing, such as performing 

operations with non-symbolic quantities. 

On the other hand, math anxiety consistently relates to performance on tasks and 

processes requiring precise representations of numerical symbols. The most widely studied of 

these is symbolic arithmetic, in which those with high MA perform consistently worse than their 

low-MA counterparts (Barroso et al., 2020; Hembree, 1990; Ma, 1999). However, prior literature 

suggests both context and content of numerical symbols influence MA-related performance, 

beyond the clear relation to classroom math performance. For example, those with high MA 

struggle with representing numerical symbols even when not performing number processing, as 

evidenced by lower performance in digit (but not letter) span (Witt, 2012). Furthermore, previous 

work has indicated that adults with high MA demonstrate an attentional bias to numerical 

symbols and math-related words, as evidenced by performance in the dot probe task (Rubinsten 

et al., 2015) and numerical Stroop task (Suárez-Pellicioni et al., 2015). Taken together, these data 

indicate that MA disrupts far more than performance in math as is traditionally taught in school. 

Instead, MA seemingly relates to a wide array of processes involving the precise representation 

information that is numerical in nature, even if not used as such in context. 

To date, many studies that show differences between high and low MA groups contain 

two confounded constructs that may contribute to said differences. First is the usage of 

operations. Arithmetic operations are widely studied, and impaired ability to perform operations 

could, in theory, be a precursor that leads a student to perform worse in early math courses and 

develop MA. Second is the usage of symbols or precise representations. We operationalize 

symbols and precise representations in contrast to the approximate nature of the approximate 
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number system. For example, enumerating a series of objects (as in Maloney et al., 2010) may 

not use Arabic numerals, but requires a precise representation of the magnitude in the form of a 

verbal numeral, and thus is symbolic. In contrast, an ANS-based comparison task is based on a 

non-precise, noisy representation of numerical value and is dependent on ratio (Feigenson et al., 

2004), and thus is not symbolic. The idea that precise representations relate to MA connects 

evidence on attentional bias and other tasks that show MA differences in the absence of math. 

Research on symbols without mathematical operations have been fruitful, especially those 

studies involving math words as distractors (e.g., Hopko et al., 1998), but the question remains 

whether performing operations without symbols leads to differences among those with high and 

low math anxiety. 

The aim of our study is to tease apart the relationship between MA and its deleterious 

effects on performance at the operation and stimulus level. To do so, we modified an established 

non-symbolic arithmetic test (similar to Park & Brannon, 2014) to include a production 

component. The purpose of this modification was to bring this task more in line with the 

symbolic arithmetic test and make them both production tasks. In some trials of this modified 

task, participants watched as two quantities of dots appeared and moved behind an opaque 

occluder simulating addition. In other trials, one set of dots entered the occluder, and a second 

set exited, simulating subtraction. Participants then had to manipulate a dot array to match their 

representation of the total numerosity of dots behind the occluder. Thus, this task involved 

approximate arithmetic. All participants also completed a symbolic arithmetic test. 

We hypothesized that if operations involving numeric quantities is a primitive skill 

disrupted in MA, both approximate arithmetic and symbolic arithmetic performance should 

relate to MA status. However, if MA deficits are related specifically to symbolic processing, then 
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only symbolic arithmetic should relate to MA status. Symbolic arithmetic is known to be 

strongly related to both of spatial and verbal working memory capacities (Caviola et al., 2020; 

Szűcs et al., 2014). In addition, approximate arithmetic is also thought to involve spatial, but not 

verbal, working memory in the form of manipulation of visual items (Park and Brannon, 2014). 

Thus, we included both a spatial 2-back task (i.e., maintain and update the location of a dot’s 

position in an array across multiple trials) and a verbal 2-back task (i.e., maintain and update the 

identity of a letter across multiple trials) to account for individual differences in working 

memory as nuisance variables in our regression analyses. That is, these measures were used as 

covariates in a regression analysis in order to remove any effect of these more domain-general 

capacities in assessing the relationship between MA and arithmetic performance.  

Methods 

1.1 Participants 

92 undergraduates (female = 72; ages 18–24) from the University of Massachusetts 

Amherst were recruited for participation. 83 undergraduates (female = 71, ages 18–24) were 

included in the final analysis. The largest racial group were White participants (n = 50), followed 

by Asian participants (n = 26), and Black participants (n = 8). Furthermore, six participants 

described themselves as mixed race, and two declined to answer. Lastly, six participants 

described themselves as Hispanic/Latino. A total of nine participants were excluded due to poor 

performance on tasks (n = 7; see section 2.7), improper completion of the math anxiety 

assessment (n = 1), or computer error during the task invalidating results (n = 1). Participants 

were recruited through the departmental participant pool system and were compensated with 

course credit for their participation. All procedures were approved by the University of 

Massachusetts Amherst Institutional Review Board (IRB). 
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2.2 Materials and procedure 

Math anxiety, symbolic arithmetic, approximate arithmetic, verbal and spatial working 

memory ability were measured with the tasks described below. Participants completed the two 

arithmetical tasks first, were given a five-minute break to prevent carryover effects, and then 

completed the two working memory tasks. The order of the tasks was counterbalanced within the 

arithmetic section and within the working memory section. Participants completed the 

mathematics anxiety assessment at the end of the study. A study visit lasted approximately 60 

minutes. All the analyses were completed using Jamovi (The jamovi project, 2021) after 

completing data re-organization in R (R Core Team, 2018; Wickham et al., 2018). 

2.3 The Mathematics Anxiety Rating Scale: Brief Version (MARS-30 item) 

To assess mathematics anxiety, the brief version of the Math Anxiety Rating Scale was 

administered (Suinn & Winston, 2003). This version is a 30-item scale adapted from the original 

98-item scale. The items on the scale pertain to feelings of anxiety in academic and non-

academic mathematical situations. It is a valid and reliable measure of mathematics anxiety. 

Some representative items include being given a pop quiz in a math class, figuring out your 

monthly budget, and receiving your final mathematics grade in the mail. Participants respond 

using a 5-point Likert scale; a response of 1 indicates low anxiety while a response of 5 indicates 

high anxiety. Participants’ math anxiety score was calculated by determining the sum of their 

responses. One participant left five questions blank, so their answers were reweighted according 

to their total responses. 

Figure 1. 

Diagram of methods 
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Note. In 1a, the dotted arrow represents the movement of the dots into the occluder. This pictured trial 

simulates addition, but half the trials were subtraction trials where the dots left the occluder. In 1b, a single example 

symbolic arithmetic problem is presented. In 1c and 1d, the verbal and spatial 2-backs, respectively, are presented. 

These require a button press on each trial, with a .5 s presentation and a 2 s ISI. The dotted line circles in 1d 

represent the 6 possible locations (equidistant to the fixation cross in the center). 

2.4 Approximate arithmetic task 

For the approximate arithmetic task, participants were instructed to estimate a quantity of 

dots after watching manipulations be performed (see Figure 1a). All dot arrays were set to have a 

numerosity ranging from 9-36. For all trials, an array of dots appeared on the computer screen to 

the right or left of an opaque occluder (square), and participants watched as the dot array moved 

behind the square. On half of the trials, another dot array appeared on the other side and also 

moved behind the square (simulating addition). On the remaining half of the trials, participants 

watched as some dots exited the square to the opposing side from where the first set entered 

(simulating subtraction). Participants were then presented with a third array below the square that 

they could use to input their response. The starting numerosity for this third array was randomly 

generated within a range of ±2.5 times the true answer. They were instructed to adjust the 

quantity of dots in that array using keyboard keys (P to increase, L to decrease) to match as 

closely as possible their estimation of the number of dots behind the square. The quantity for this 

third array could never leave the boundary of ±2.5 times the true answer. Participants had no 

time limit to input their answer. Participants were told to complete the problems as quickly and 

accurately as possible for two blocks with 45 trials each. They were also told by the 

experimenter that there was no “correct” answer because of how quickly the stimuli move, but 

they should do their best to match their answer as closely as possible. Note that while this is 

empirically inaccurate, we told this to participants in order to reduce feelings of frustration or 
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anxiety related to evaluation and performance rather than the underlying representations. Practice 

problems were given prior to beginning the first block, and self-paced breaks occurred between 

blocks. To measure participant’s performance on this task, we took the absolute value of the 

difference between the participant’s answer and the true number of dots behind the square in 

each trial. Because each participant’s distribution of differences was skewed, the following 

analyses are performed with the median distance for each participant. One may wonder if 

participants verbalize the numerosities to transcode into a symbolic system to solve the task. 

Although we did not control for it in this experiment, Park and Brannon (2014) addressed this 

question by asking participants to solve approximate and symbolic arithmetic problems while 

engaging in articulatory suppression (continuously repeating a verbal syllable while solving the 

arithmetic problems). They found that articulatory suppression resulted in a decrement of 

performance only during symbolic arithmetic but not during approximate arithmetic, 

demonstrating that verbal transcoding in the approximate arithmetic task highly unlikely (Park & 

Brannon, 2014). 

2.5 Symbolic arithmetic task 

In the symbolic arithmetic task, participants were presented with 2- and 3-digit addition 

and subtraction problems in one 7-minute block. The problems were displayed one at a time on a 

computer screen using Arabic numerals and arranged in the vertical format (see Figure 1b). 

These problems were randomly pulled from a set of pre-generated problems that contained equal 

numbers of addition and subtraction (200 each) problems and equal amounts of 

carrying/borrowing per set. Participants responded using the number pad and were told to solve 

the problems as quickly and accurately as possible. Before the 7-minute block began, 

participants were given practice problems to familiarize them with the use of the number pad and 
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the requirements of the task. The total number of correct answers was calculated for each 

participant. 

2.6 Verbal 2-back working memory task 

For the verbal 2-back task, participants were presented with a stream of letters on the 

screen one at a time. The letters included “b,” “f”, “h”, “m”, “q”, and “r” because they are 

phonologically distinct. Each letter could be presented in capitalized or lowercase form, which 

were considered to be the same letter for the purposes of answering. After each letter appeared, 

participants responded via a button press to indicate whether the letter matched the one displayed 

two trials prior (see Figure 1c). Each letter was presented for 0.5 s with an inter-trial interval of 2 

s. Because there were no correct answers possible for the first two trials, they were discarded. 

After practice with feedback, participants completed four blocks of this task with 48 trials per 

block and self-paced breaks between blocks. 

2.7 Spatial 2-back working memory task 

For the spatial 2-back task, participants were presented with a series of white circles that 

appeared on the screen one at a time in any of six locations. These six locations were equidistant 

from a fixation cross in the center of the screen. Participants responded with a button press after 

each circle appeared to indicate whether the location matched the location of the circle presented 

two trials prior (see Figure 1d) All parameters and procedures for this task were the same as 

those listed above for the verbal working memory tasks. For both working memory tasks, we 

calculated the participant’s d’, a measure of sensitivity. Participants (n = 6) who had a negative 

d’ on either task were excluded from the relevant subsequent analyses. One participant had a 
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100% hit rate in the spatial working memory task (d’ = Inf). Their hit rate was substituted (hit 

rate = .999) to produce a sufficiently large d’ value that could be used in subsequent analyses.  

3 Results 

3.1 Descriptives and correlations 

 Table 1 shows the descriptive statistics for all tasks (note that the approximate arithmetic 

measures are aggregates of participant's medians). Figure 2 shows zero-order correlations and 

scatterplots across all variables. Math anxiety was significantly negatively correlated with 

performance both on the symbolic arithmetic (r = -.38) and spatial 2-back (r = -.25) tasks. As 

expected, both 2-back tasks were positively correlated with each other (r = .67), and symbolic 

arithmetic performance was correlated with performance on both the spatial (r = .26) and verbal 

(r = .31). 

 

 

Table 1. 
Descriptive statistics for all measures 

  Math Anxiety 
Score 

Approx. 
Arithmetic 

Symbolic 
Arithmetic 

Verbal WM 
d' 

Spatial WM 
d' 

N  83  83  83  83  83  

Missing  0  0  0  0  0  

Mean  79.3  9.02  50.8  1.60  1.77  

Median  79  8.50  47  1.55  1.66  

Standard deviation  17.4  2.24  20.0  0.670  0.872  

Minimum  41  4.50  14  0.157  0.0883  

Maximum  132  15.8  123  3.83  4.13  
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Figure 2. 

Correlation matrix and scatterplots for all analyzed variables 

 

Note. For the correlations, p values are presented in parentheses below the Pearson correlation value. For the 
scatterplots, the X axis is represented by the column variable, and the Y axis is represented by the row variable. 
***p < .001. **p < .01. *p < .05. †p < .1 
 

 

3.2 Approximate arithmetic analysis 

Performance on AA was measured for each participant by finding the median of the 

distribution of absolute value distances between each given answer and the trial’s true 

numerosity. If the hypothesis that those with high MA perform operations poorly is true, then we 

would expect those with high MA to have larger distances than those with low MA, on average. 
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We ran two multiple regression models to predict MA scores from approximate arithmetic 

performance. First, we ran a model with only approximate arithmetic entered as a predictor, 

which was not significant (R2
Adjusted = .002, beta = 0.304, t(82) =  0.354, p = .724). The second 

model included approximate arithmetic and both working memory measures as covariates (see 

Table 2). Although the working memory measures are highly collinear, they are included 

because they are not our regressors of interest and only serve to provide a clearer picture of the 

relationship between MA and performance. We failed to find evidence to support the above 

hypothesis, as there was no relationship between performance on approximate arithmetic and 

MA (beta = 0.218, t(82) =  0.259, p = .796).  

Table 2. 
Regression Analysis for Approximate Arithmetic Predicting Math Anxiety Score 

 95% Confidence Interval  

Predictor Estimate SE Lower Upper t p 

Intercept  87.737  9.247  69.33  106.14  9.489  < .001  

Approx. Arithmetic  0.218  0.842  -1.46  1.89  0.259  0.796  

Verbal WM d'  -2.148  3.774  -9.66  5.36  -0.569  0.571  

Spatial WM d'  -3.917  2.901  -9.69  1.86  -1.350  0.181  

Note: Adjusted R2 = .0687 

 

3.3 Symbolic arithmetic analysis 

 For the symbolic arithmetic analysis, we followed the same procedure as above using 

symbolic arithmetic performance as the independent measure of interest instead of approximate 

arithmetic performance. As shown in Table 3, the relationship between symbolic arithmetic and 

math anxiety was significant, even when accounting for each working memory difference (beta = 

-0.294, t(82) =  -3.141, p = .002). When entered as a hierarchical regression, including both 

working memory measures leads to a non-significant model (R2 = .0679, F(2,80) = 2.91, p = 
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.06), with spatial WM (beta = -3.94, t(82) = -1.365, p = .176) and verbal WM (beta = -2.16, t(82) 

= -.575, p = .567) failing to significantly predict math anxiety. Adding symbolic arithmetic in a 

second model significantly improves the change in R2 (ΔR2 = 0.104, F(1,79) = 9.87, p = .002), 

suggesting that performance on symbolic arithmetic relates to MA above and beyond the effects 

of WM. 

 

Table 3. 
Regression Analysis for Symbolic Arithmetic Predicting Math Anxiety Score 

 95% Confidence Interval  

Predictor Estimate SE Lower Upper T p 

Intercept  100.1048  5.7495  88.661  111.549  17.4110  < .001  

Symbolic Arithmetic  -0.2940  0.0936  -0.480  -0.108  -3.1414  0.002  

Verbal WM d'  0.0436  3.6283  -7.178  7.265  0.0120  0.990  

Spatial WM d'  -3.3226  2.7421  -8.781  2.135  -1.2117  0.229  

Note: Adjusted R2 = .171 

  

3.4 Post-hoc Bayesian Analysis 

 To measure the strength of evidence in favor of the null hypothesis, we ran a Bayesian 

correlation between approximate arithmetic performance and math anxiety. We did not include 

WM performance in this analysis because accounting for individual differences in WM did not 

appear to change the (lack of) relationship between approximate arithmetic performance and 

math anxiety (see appendix 1, table 1). We used the default settings on jsq package—the Jamovi 

adaptation of JASP (JASP Team, 2020)—to calculate Bayes Factors based on Pearson’s rho (Ly 

et al., 2016, 2018). The resulting correlation showed moderate evidence for the null hypothesis (r 

= .0393, BF01 = 6.86). 

3.5 Analysis of categorical math anxiety. 



18 
 

 Although we treated math anxiety as a continuous variable, it is more common to form 

groups from extreme scores and treat math anxiety as a categorical variable (e.g., Colomé & 

Núñez-Peña, 2021; Suárez-Pellicioni et al., 2014). To keep consistent with the literature, we 

divided all participants into tertiles based on their MA score to run a one-way ANOVA for 

approximate arithmetic performance. The low MA group had MA scores ranging from 35-72 

(mean = 59.8). The medium MA group scored between 72-86 (mean = 79.2) and the high MA 

group scored higher than 86 (mean = 96.2). The ANOVA revealed no difference across any of 

the groups (F = 0.441, p = .645, η2 = .011). No follow-up contrasts were run. Our results from 

the regression and ANOVA analyses suggest that the use of MA as a continuous variable 

produces results consistent with the creation of categorical MA groups. 

4. Discussion 

We hypothesized that if math anxiety compromises performance specifically related to 

precise, symbolic processing, then only symbolic arithmetic, and not approximate arithmetic, 

would predict MA status. On the other hand, if performing operations involving numeric 

quantities is a cognitive primitive that is disrupted or less developed among people with math 

anxiety, performance in both our approximate arithmetic and symbolic arithmetic tasks would 

predict MA status. We found support for the former hypothesis in that symbolic arithmetic, but 

not approximate arithmetic, was related to MA. This held true even after accounting for the two 

different types of working memory. When entered into a regression alone, the working memory 

tasks together accounted for 6.8% of the variance in MA. 

The lack of a relationship between approximate arithmetic performance and MA suggests 

that MA deficits are related specifically to symbolic processing and not to using perceptually 

based operations to manipulate numerosities. We found a relationship between symbolic 
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arithmetic and MA that is consistent and comparable with previous literature on the topic 

(Barroso et al., 2020; Hembree, 1990; Ma, 1999). However, the novel aspect of our study, which 

disentangles performing operations without the use of symbolic stimuli indicates that primitive 

operational processes are unimpaired in people with high MA. Previous work suggests that 

nonverbal quantity manipulation as in approximate arithmetic may be an important factor that 

links primitive quantitative abilities to symbolic arithmetic, although there is counterevidence 

(Hyde et al., 2014; Khanum et al., 2016; Park & Brannon, 2013, 2014; J. Wang et al., 2016, 

2017, 2021); however, see also: Bugden et al., 2021; Sasanguie et al., 2014; Szkudlarek et al., 

2021; Szkudlarek & Brannon, 2017). Furthermore, our study involved the production of a 

computed answer, rather than a binary decision between correct and incorrect options. Because 

of this, we expected similar patterns in performance by those with high and low MA in both 

symbolic and non-symbolic tasks. If operational processes without symbolic stimuli were found 

to be impaired in those with MA, then there would be potential for targeted interventions in 

childhood that could reduce early negative math experiences that lead to increased MA 

(Maloney, 2016). However, much like the work showing that ANS acuity is not impaired in 

those with MA (Colomé, 2019; Dietrich et al., 2015; Hart et al., 2016, 2017; Lee & Cho, 2018; 

Z. Wang et al., 2015), we found these operational processes were similarly unimpaired in those 

with MA. 

Our results largely align with the hypothesis that precise or symbolic representation is 

necessary to elicit performance deficits in those with MA. The relationship between MA and 

symbolic arithmetic holds while accounting for verbal and spatial working memory, despite 

approximate arithmetic failing to relate to MA entirely, which strengthens this hypothesis. 
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Our other finding relating spatial—and to a lesser extent, verbal—working memory to MA is 

consistent with early explanations of math anxiety disrupting working memory resources 

(Ashcraft & Faust, 1994; Hopko et al., 1998). Furthermore, spatial working memory has 

continued to be a topic of interest in math anxiety and could still constitute a reduced capacity 

under the causal model. 

Previous work has shown connections between spatial processing and math anxiety. Namely, 

people with high math anxiety often have difficulty with mental rotation tasks, such as matching 

3D objects or determining whether two objects are mirrored (Ferguson et al., 2015; Núñez-Peña 

et al., 2019; Sokolowski et al., 2019). Measures of visuospatial working memory also correlate 

with MA (Ashkenazi & Danan, 2017; Soltanlou et al., 2019). Our results showing a significant 

correlation between MA and spatial 2-back working memory performance are consistent with 

these previous findings.  

That said, the approximate arithmetic task requires the maintenance of information in spatial 

working memory. In order to solve the task, the participant must represent the array on the 

visuospatial sketchpad (Baddeley, 1992) and either update by integrating a new array or 

removing a separate array. Therefore, if people with high MA do have impaired spatial working 

memory, then it is not immediately clear why they did not perform worse on the approximate 

arithmetic task based on that factor alone. 

The inconsistency between findings on spatial working memory and approximate arithmetic 

can be explained by cognitive demands in each task. One possible reason concerns the spatial 

working memory task demands. The dots to be held in memory in the 2-back task were only 

shown for 0.5 s, with an inter-trial interval of 2 s. This meant that participants had to make a 

response within two seconds, which could have been challenging for those with spatial 
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processing difficulties to sustain across all 48 trials. In contrast, responses in the approximate 

arithmetic task were entirely self-paced. Thus, it may be that the challenges of the spatial 2-back 

underly the relationship between spatial working memory and math anxiety, rather than general 

spatial processing skills. 

Another possibility is that the type of cognitive demands in a 2-back spatial task is 

qualitatively different from the demands in the approximate arithmetic task. In the 2-back task, 

items in memory slots need to be constantly updated in order to perform well. In the approximate 

arithmetic task, however, a constant update is not necessary and a manipulation in the visuo-

spatial sketch pad is sufficient to perform the task well. Therefore, the 2-back task may not have 

been the best task that taps into critical spatial processes needed in approximate arithmetic.  

In addition, our results could also be explained by fear of evaluation rather than cognitive 

factors. In a study of pre-service elementary school teachers, a majority expressed that the 

emphasis on correct answers in math courses caused their math anxiety (Harper & Daane, 1998). 

It is possible that those teachers do not have a full understanding what caused their first 

experiences math anxiety. However, because our participants were also adults, they may have 

responded differently to approximate arithmetic because of the evaluation component. It is clear 

that symbolic arithmetic has a correct answer, and people asked to solve arithmetic problems 

need no clarification on the instructions. The approximate arithmetic task, however, used 

numerosities that moved far too quickly for precise enumeration to occur. Thus, it is near 

impossible for participants to consistently produce the exact quantity of hidden dots. 

Furthermore, participants were instructed to produce the quantity “as close as possible” to the 

hidden dots, further de-emphasizing that they could find the correct answer. We may have shown 
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different results had we directly instructed the participant to find the correct answer, if this 

evaluation hypothesis is true. 

Taken all together, our results highlight a potential avenue for further study regarding spatial 

processing in math anxiety and provide further evidence that basic ANS functions are 

unimpaired in adults with math anxiety. Those with high math anxiety did not perform worse on 

an approximate arithmetic task using dot arrays, despite performing poorly on a symbolic 

arithmetic task. This suggests that the ability to perform basic numerical operations is not 

hindered or reduced in adults with math anxiety, but that abilities related to manipulating 

symbolic quantities is affected. Our results, alongside the many mixed findings relating ANS 

function to MA in adults and children, suggest that the reduced cognitive capacities model’s 

causal factor of “basic number skills” should not include numerosity processing. However, we 

suggest that there may be an exception for incongruence between numerosity and other spatial 

magnitudes in non-symbolic arrays. Further work may also focus on spatial abilities that may be 

impaired and further elucidating the mechanism by which precise, symbolic representation 

interferes with performance in those with math anxiety. 
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