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Abstract 

Many species of animals exhibit an intuitive sense of number, suggesting a fundamental neural 
mechanism for representing numerosity in a visual scene. Recent empirical studies demonstrate 
that early feedforward visual responses are sensitive to numerosity of a dot array but 
substantially less so to continuous dimensions orthogonal to numerosity, such as size and spacing 
of the dots. However, the mechanisms that extract numerosity are unknown. Here we identified 
the core neurocomputational principles underlying these effects: (1) center-surround contrast 
filters; (2) at different spatial scales; with (3) divisive normalization across network units. In an 
untrained computational model, these principles eliminated sensitivity to size and spacing, 
making numerosity the main determinant of the neuronal response magnitude. Moreover, a 
model implementation of these principles explained both well-known and relatively novel 
illusions of numerosity perception across space and time. This supports the conclusion that the 
neural structures and feedforward processes that encode numerosity naturally produce visual 
illusions of numerosity. Together, these results identify a set of neurocomputational properties 
that gives rise to the ubiquity of the number sense in the animal kingdom.  
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Introduction 

Humans have an intuitive sense of number that allows numerosity estimation without counting 
(Dehaene, 2011). The prevalence of number sense across phylogeny and ontogeny (Feigenson et 
al., 2004) suggests common neural mechanisms that allow the extraction of numerosity 
information from a visual scene. While earlier empirical work highlighted the parietal cortex for 
numerosity representation (Nieder, 2016), growing evidence suggests that numerosity is 
processed at a much earlier stage. A recent study, using high-temporal resolution 
electroencephalography together with a novel stimulus design, demonstrated that early visual 
cortical activity is uniquely sensitive to the number (abbreviated as N) of a dot array in the 
absence of any behavioral response, but much less so to non-numerical dimensions that are 
orthogonal to number (i.e., size and spacing, abbreviated as Sz and Sp, respectively; see Fig. 1A) 
(Park et al., 2016). Subsequent behavioral and neural studies showed that this early cortical 
sensitivity to numerosity indicates feedforward activity in visual areas V1, V2 and V3 (Fornaciai 
et al., 2017; Fornaciai and Park, 2021, 2018). These results suggest that numerosity is a basic 
currency of perceived magnitude early in the visual stream. 

Nevertheless, it is unclear how feedforward neural activity creates a representation of numerosity 
within these brain regions. Specifically, the view of numerosity as a discrete number of items 
seems incompatible with the primary modes of information processing in the brain, such as firing 
rates and population codes, which are continuous. Indeed, some authors assume that continuous 
non-numerical magnitude information is encoded first and integrated to produce the 
representation of numerosity (Dakin et al., 2011; Gebuis et al., 2016; Leibovich et al., 2017). In 
contradiction, however, recent empirical studies demonstrate that the magnitude of visual 
cortical activity is most sensitive to number and is relatively insensitive to other continuous 
dimensions such as size and spacing of a dot array (DeWind et al., 2019; Park, 2018; Paul et al., 
2022; Van Rinsveld et al., 2020).  

What explains this insensitivity to spacing and size effects, despite robust sensitivity to number? 
Previous computational modeling studies offer some hints to this question. The computational 
model of Dehaene and Changeux (1993) explains numerosity detection based on several 
neurocomputational principles. That model (hereafter D&C) assumes a one-dimensional linear 
retina (each dot is a line segment), and responses are normalized across dot size via a 
convolution layer that represents combinations of two attributes: 1) dot size, as captured by 
difference-of-Gaussian contrast filters of different widths; and 2) location, by centering filters at 
different positions. In the convolution layer, the filter that matches the size of each dot dominates 
the neuronal activity at the location of the dot owing to a winner-take-all lateral inhibition 
process. To indicate numerosity, a summation layer pools the total activity over all the units in 
the convolution layer. While the D&C model provided a proof of concept for numerosity 
detection, it has several limitations as outlined in the discussion. Of these, the most notable is 
that strong winner-take-all in the convolution layer discretizes visual information (e.g., discrete 
locations and discrete sizes yielding a literal count of dots), which is implausible for early vision. 
As a result, the output of the model is completely insensitive to anything other than number in all 
situations, which is inconsistent with empirical data (Park et al., 2021). 
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Recently, several deep-network-based models have been applied to numerosity perception 
(Creatore et al., 2021; Kim et al., 2021; Nasr et al., 2019; Stoianov and Zorzi, 2012; Testolin et 
al., 2020). Stoianov and Zorzi (2012) developed a hierarchical generative model of the sensory 
input (images of object arrays) and demonstrated that after learning to generate its own sensory 
input, some units in the hidden layer were sensitive to numerosity irrespective of total area while 
other units were sensitive to total area irrespective of numerosity. This suggests an unsupervised 
learning mechanism for efficient coding of the sensory data that can extract statistical regularities 
of the input images. The authors provided some suggestions as to the specific 
neurocomputational principle(s) underlying the success of this model. For example, the first 
hidden layer developed center-surround representations of different sizes and the second layer 
developed a pattern of inhibitory connections to units in the first layer that encoded cumulative 
area. However, the development of center-surround detectors based on unsupervised learning is a 
common observation (Bell and Sejnowski, 1997), indicating that such results are not unique to 
displays of dot arrays, and are instead a natural byproduct of learning in the visual system. In a 
more recent study, Kim and colleagues (Kim et al., 2021) found that sensitivity and selectivity to 
numerosity was well captured in a completely untrained convolutional neural network (AlexNet) 
(Krizhevsky et al., 2012), suggesting that a repeated process of convolution and pooling is 
capable of normalizing continuous dimensions and extracting numerosity information as a 
statistical regularity of an image. However, these are “black box” models, and it is not always 
clear how these models work; these models contain many mechanisms, and it is not clear which 
mechanisms are crucial for producing numerosity-sensitive units. 

Rather than applying a complex multilayer learning model, we distill the neurocomputational 
principles that enable the visual system to be sensitive to numerosity while remaining relatively 
insensitive to non-numerical visual features. These principles are simulated in a single layer 
model that does not need to be trained. Consistent with prior work, we hypothesize that center-
surround contrast filters at different spatial scales play an important role in numerosity 
perception. In addition to this “convolution” of the input, most prior proposals entail some form 
of pooling or normalization (e.g., normalization between center-surround units). This can emerge 
across layers of visual processing, as often assumed in “max pooling” layers of a convolutional 
neural network (Scherer et al., 2010), or it can occur within a layer, as in the strong winner-take-
all lateral inhibition used in the Dehaene and Changeux (1993) model. Furthermore, some 
models contain both within layer normalization and between layer max pooling (Krizhevsky et 
al., 2012). Although the functional form of within-layer normalization is similar to between-layer 
max pooling, it differs anatomically, placing the normalized response earlier in visual 
processing. In determining the neural mechanisms that are core to numerosity, we note that a 
moderate level of within-layer normalization is consistent with “divisive normalization” 
(Carandini and Heeger, 2012), in which the response of each neuron reflects its driving input 
divided by the summation of responses from anatomically surrounding neurons (i.e., a 
normalization pool). This normalization is not as extreme as winner-take-all normalization and 
tends to preserve visual precision through graded activation responses. In the case of early 
vision, the normalization pool is spatially determined by retinotopic positions. Divisive 
normalization is known to exist throughout the cortex, reflecting the shunting inhibition of 
inhibitory interneurons that limit neural activation within a patch of cortex (Carandini and 
Heeger, 2012). A wealth of evidence indicates that divisive normalization is ubiquitous across 
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species and brain systems and hence thought to be a fundamental computation of many neural 
circuits. Thus, any theory of numerosity perception would be remiss not to include the effect of 
within-layer divisive normalization. 

To determine the contribution of divisive normalization to numerosity encoding, we 
implemented an untrained neural network with versus without divisive normalization as applied 
to center-surround filters at different spatial scales (e.g., as in V1) (Fig. 1B). The output 
simulates the summation of synchronized postsynaptic activity of a large population of neurons 
at a pre-decisional stage, consistent with previous work (Fornaciai et al., 2017; Park et al., 2016). 
Our results show that (1) hierarchically organized multiple center-surround filters of varying size 
make the network insensitive to spacing and that (2) divisive normalization implemented across 
network units makes the network additionally insensitive to size. Divisive normalization not only 
occurs over space but also over time (Huber and O’Reilly, 2003). Thus, we additionally 
implemented temporal divisive normalization to test if it explains contextual effects of 
numerosity perception (Burr and Ross, 2008; Park et al., 2021).  

 



 

   

 

6 

Figure 1. Stimulus design and computational methods. A. Properties of magnitude dimensions 
represented in three orthogonal axes defined by log-scaled number (N), size (Sz), and spacing (Sp) (Table 

1). B. Schematic illustration of the computational process from a dot-array image to the driving input 
(i.e., the model without divisive normalization), D, of the simulated neurons, versus the normalized 

response (i.e., the model with divisive normalization), R. A bitmap image of a dot array was fed into a 
convolutional layer with DoG filters in six different sizes (Eq. 1). The resulting values, after half wave 
rectification, represented the driving input. Neighborhood weight, defined by η, was multiplied by the 
driving input across all the neurons across all the filter sizes, the summation of which served as the 

normalization factor (see Eq. 2 & 3). This illustration of η is showing the case where r is defined by twice 
the size of the sigma for the DoG kernel. 

Results 

Center-surround convolution captures total pixel intensities and eliminates the effect of 
spacing 

Images of dot arrays that varied systematically across number, size, and spacing (see Materials 
and Methods) were fed into a convolutional layer with difference-of-Gaussians (DoG) filters in 
six different sizes. The driving input, D, for each filter was the convolution of a DoG with the 
display image, or a weighted sum of local pixel intensities (Fig. 1B). The summed driving input 
in each filter size showed different effects as a function of number, size, and spacing (Fig. 2A), 
but when the driving input was summed across all filter sizes it was most strongly modulated by 
both number and size equally but not by spacing (Fig. 2B), suggesting that the neural activity 
tracks total area (TA; see Table 1; Fig. 2–figure supplement 1). The effect of spacing existed in 
the fourth and sixth largest filter sizes, largely indicating effects of field area and density, 
respectively (Fig. 2A); however, the effects in these two filter sizes were in opposite directions, 
which made the overall effect very small. These results illustrate that having multiple filter sizes 
is key to normalizing the spacing dimension. In sum, the driving input of the convolutional layer 
captured total pixel intensity of the image regardless of the number or spatial configuration of 
dots.  
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Figure 2. Simulation results showing the effects of number (N), size (Sz), and spacing (Sp) on the driving 
input and normalized response of the network units. A. Summed driving input (ΣD) separately for each of 
the six filter sizes as a function of N, Sz, and Sp (see Methods for the specific values of s). B. ΣD across 

all filters is modulated by both number and size but not by spacing. C. Summed normalized response (ΣR) 
showed a near elimination of the Sz effect leaving only the effect of N. The results were simulated using r 
= 2𝜎 and 𝛾 = 2, but effects of Sz and Sp were negligible across all the tested model parameters (Fig. 2–

figure supplement 2). The value s on the horizontal axis indicates a median value for each dimension (see 
Materials and Methods).  

Divisive normalization nearly eliminates the effect of size 

We next added divisive normalization to the center-surround model, with different parameter 
values (neighborhood size and amplification factor) to determine the conditions under which 
divisive normalization might reduce or eliminate the effect of size and whether it might alter the 
absence of spacing effects in the driving input. Driving input was normalized by the 
normalization factor defined by a weighted summation of neighboring neurons and filter sizes 
(Eq. 2). The summed normalized responses, ΣR, were strongly modulated by number but much 
less so, if any, by size and spacing (Fig. 2C). The pattern of results was largely consistent across 
different parameter values for neighborhood size (r) and amplification factor (𝛾) of the 
normalization model (Fig. 2–figure supplement 2); therefore, we chose moderate values of r 
(=2) and 𝛾 (=2) for subsequent simulations. As one way to quantify these modulatory effects, a 
simple linear regression with ΣR as the dependent variable with mean centered values of N as the 
independent variable (as well as Sz and Sp in separate models) was performed. Then, the slope 
estimate was divided by the intercept estimate, so that these effects could be easily compared 
across different sets of images (see Fig. 2–figure supplement 3). This baseline-adjusted 
regression slope for N, Sz, and Sp was 0.5771, 0.0646, and 0.0321, respectively. A multiple 
regression model with summed normalized responses as the dependent measure and the three 
orthogonal dimensions (N, Sz, Sp) as the independent variables revealed a much larger 
coefficient estimate for N (b = 13.68) than for Sz (b = 1.541) and for Sp (b = 0.7809). In sum, a 
modest degree of divisive normalization eliminates the effect of size and, at the same time, does 
not alter the absence of spacing effects.  

Divisive normalization across space explains various visual illusions 

Next, we considered if the center-surround model with divisive normalization also explains some 
of the most well-known visual illusions of numerosity perception. If so, this would support the 
hypothesis that these visual illusions reflect early visual processing at the level of numerosity 
encoding, without requiring any downstream processing. In other words, early vision may be the 
root cause of both numerosity encoding and numerosity visual illusions. 

Empirical studies have long shown that irregularly spaced arrays (compared with regularly 
spaced arrays) and arrays with spatially grouped items (compared with ungrouped items) are all 
underestimated (Frith and Frit, 1972; Ginsburg, 1976; van Oeffelen and Vos, 1982). These 
illusions were indeed captured by the inclusion of divisive normalization. Irregular arrays 
yielded a 5.98% reduction (Cohen’s d = 4.23) and grouped arrays yielded a 2.99% reduction (d = 
10.02) of normalized response (Fig. 3A-B). Note that, in the absence of divisive normalization, 
there was either no effect or an effect in the opposite direction (Fig. 3–figure supplement 1). 
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The underestimation effects in the normalized response can be explained by greater 
normalization when neurons with overlapping normalization neighborhoods are activated, with 
this greater overlap occurring in subregions of the images for irregular, grouped, or connected 
(lines) dots. This explanation is functionally similar to one provided by the “occupancy model” 
(Allik and Tuulmets, 1991), but our results demonstrate that these effects emerge naturally 
within early visual processing.  

A relatively understudied visual illusion is the effect of heterogeneity of dot size on numerosity 
perception. A recent behavioral study demonstrated that the point of subjective equality was 
about 5.5% lower in dot arrays with heterogenous sizes compared with dot arrays with 
homogeneous sizes (Lee et al., 2016). Consistent with this behavioral phenomenon, our 
simulations revealed that greater heterogeneity leads to greater underestimation (Fig. 3C). As 
compared to the homogeneous array, a moderately heterogeneous array (labeled “less 
heterogenous”) yielded a 1.14% reduction (d = 2.43) and the more heterogeneous array yielded a 
5.87% reduction (d = 8.11) in the magnitude of the normalized response. This occurs because the 
summed normalized response of a single dot saturates as dot area increases (Fig. 3–figure 
supplement 2), which interacts with the heterogeneity of the dot array. As heterogeneity is 
manipulated by making some dots larger and other dots smaller while keeping total area and 
numerosity constant, this saturating effect makes the overall normalized response smaller as a 
greater number of dots deviates from the average size (the gains from making some dots larger is 
not as great as the losses from making some dots smaller). As in the case of other illusions, the 
same analysis in the absence of divisive normalization fails to produce this illusion (Fig. 3–
figure supplement 1). 
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Figure 3. Simulation of numerosity illusions. Normalized response of the network units influenced by the 
(A) regularity, (B) grouping, and (C) heterogeneity of dot arrays, as well as by (D) adaptation and (E) 
context. Error bars represent one standard deviation of the normalized response across simulations; 

however, the error bars in most cases were too small to be visualized. Spatial normalization effects (A, B, 
and C) were simulated with r = 2 and 𝛾 = 2. Temporal normalization effects (D and E) used these same 

parameters values in combination with 𝜔 = 8 and 𝛿 = 1. 

Divisive normalization across time explains numerosity adaptation and context effects 

One of the most well-known visual illusions in numerosity perception is the adaptation effect 
(Burr and Ross, 2008). We reasoned that numerosity adaptation might reflect divisive 
normalization across time, similar to adaptation with light or odor (Carandini and Heeger, 2012), 
which shifts the response curve and produces a contrast aftereffect. Closely related to temporal 
adaptation, the recently discovered temporal contextual effect of numerosity perception is an 
amplified neural response to changes in one dimension (e.g., changes in dot size) when observers 
experience a trial sequence with only changes in that dimension (Park et al., 2021). Therefore, 
we also applied the model with temporal normalization to the context effect.  

We modeled temporal divisive normalization for a readout neuron that is driven by the sum of 
the normalized responses across all units, ΣR. This summed total response (now referred to as M) 
was temporally normalized (M*) by the recency weighted average of the driving input (Eq. 4). 
Temporal normalization shifts the sigmoid response curve horizontally along the dimension of M 
to maximize the sensitivity of M* based on the recent history of stimulation. Provided that the 
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constant in the denominator is approximately equal to the current trial’s response, the results of 
spatial normalization reported above would not change by also introducing temporal 
normalization. Temporal normalization was assessed for cases of a target array of 10 dots after 
observing an array of 5 dots, 10 dots, or 20 dots with the model parameters of 𝜔 = 8 and 𝛿 = 1 
(Fig. 3D). Similar to behavioral results (Aagten-Murphy and Burr, 2016), the target of 10 dots 
was underestimated by 28.9% (d = 18.04) when the adaptor was more numerous than the target 
and was overestimated by 26.6% (d = 14.06) when the adaptor was less numerous than the 
target. This pattern held across all tested model parameters (Fig. 3–figure supplement 3). It is 
important to note that the model does not “know” the number of dots in the adaptor image. 
Instead, temporal divisive normalization compares the spatially normalized response of the 
current image to that of the adaptor image and because the spatially normalized response is 
primarily sensitive to variation in number, there is a contrast effect (e.g., “adapt high” reduces 
the response to the current image). Indeed, because the normalized response is less sensitive to 
variation in size or spacing, no adaptation effect emerges for those variables (Fig. 3–figure 
supplement 4 and Fig. 3–figure supplement 5). These results confirm that divisive 
normalization across space and time naturally produces numerosity adaptation. 

Using the same model and parameters of temporal normalization (Eq. 4), we tested if it can also 
explain longer-sequence context effects. Studies show that the effect of size is negligible in the 
context of a trial sequence that varies size, spacing, and number (Park et al., 2016), but that the 
effect of size becomes apparent when number and spacing are held constant while varying only 
size (Park et al., 2021). We simulated each of these contexts: The model saw a total of 400 dot 
arrays that varied across number, size, and spacing or else it saw 400 dot arrays that differed only 
in size (Fig. 3E). In the context where all dimensions varied, the three levels of Sz had no linear 
association with M*; the 95th percentile confidence interval of the ordinary-least-square linear 
slope of M* as a function of Sz was [-0.0243, 0.0182], which includes 0. In contrast, in the 
context where only size varied, M* was positively correlated with Sz; slope confidence interval of 
[0.00315, 0.00359], which excludes 0. This pattern held across all tested model parameters (Fig. 
3–figure supplement 6). This phenomenon can be explained by the adaptive shifting of the 
sigmoid response curve across trials. In the former case, because recent trials are often of larger 
or smaller total response as compared to the current trial, the normalization for the current trial is 
more often pushed to the nonlinear parts of the normalization curve (e.g., closer to ceiling and 
floor effects). Thus, the temporally normalized response is relatively insensitive to the small 
effect of size (keeping in mind that the effect of size is made small by spatial divisive 
normalization). In contrast, when only size varies across trials, the total response of recent trials 
is more likely to be well-matched to the total response of the current trial. As a result, the small 
effect of size is magnified in light of this temporal stability.  

Discussion 

Despite the ubiquity of number sense across animal species, it was previously unclear how 
unadulterated perceptual responses produce the full variety of numerosity perception effects. 
Recent empirical studies demonstrate that feedforward neural activity in early visual areas is 
uniquely sensitive to the numerosity but much less so, if any, to the dimension of size and 
spacing, which are continuous non-numerical dimensions that are orthogonal to numerosity. 
Despite recent advances showing that numerosity information can be extracted from a deep 
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neural network (Kim et al., 2021; Nasr et al., 2019; Stoianov and Zorzi, 2012), precisely how 
early visual areas normalize the effects of size and spacing was unclear.  

The current study identified the key neurocomputational principles involved in this process. 
First, the implementation of hierarchically organized multiple sizes of center-surround filters 
effectively normalizes spacing owing to offsetting factors (Fig. 4A). On the one hand, relatively 
smaller filters that roughly match or are slightly bigger than each dot produce a greater response 
when the dots are farther apart because their off-surround receptive fields do not overlap. On the 
other hand, relatively larger filters that cover most of the array produce a greater response when 
the dots are closer together because stimulation at the center of the on-surround receptive fields 
is maximized. When summing these opposing effects, which occur at different center-surround 
filter sizes, the overall neural activity is relatively invariant to spacing. Second, the 
implementation of divisive normalization reduces the effect of size by reducing activity at larger 
filter sizes that have overlapping normalization neighborhoods (Fig. 4B). More specifically, 
increase in size produces greater overall unnormalized activity because more filters (e.g., both 
larger and smaller) are involved in responding to larger dots whereas only smaller filters respond 
to small dots (Fig. 2B). However, normalization dampens this increase. Critically, divisive 
normalization is a within-layer effect, reflecting recurrent inhibition between center-surround 
filters owing to inhibitory interneurons. Thus, the effect of dot size is eliminated in early visual 
responses. In sum, contrast filters at different spatial scales and divisive normalization naturally 
increases sensitivity to the number of items in a visual scene. Because these neurocomputational 
principles are commonly found in visual animals, this suggests that numerosity is a natural 
property of the visual system.  

 

Figure 4. Simplified schematics explaining the mechanisms underlying the normalization of size and 
spacing. A. As spacing increases (from top to middle row) the response of small size center-surround 
filters increases (red and blue) whereas the response of large size center-surround filters decreases 

(green), with these effects counteracting each other in the total response. B. As dot size increases (from 
top to middle row), more filters are involved in responding to the dots thereby increasing the 
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unnormalized response (red and blue), but this results in a greater overlap in the neighborhoods and 
increases the normalization factor (yellow). These counteracting effects eliminate the size effect. 

A key result from the current model is that the summed normalized output of the neuronal 
activity is sensitive to numerosity but shows little variation with size and spacing. This pattern is 
consistent with neural studies finding similar results for the summed response of V1, V2, and V3 
in the absence of any behavioral judgment (Fornaciai et al., 2017; Fornaciai and Park, 2018; Paul 
et al., 2022). However, this pattern is different than the behavior of prior deep neural network-
based models of numerosity perception, which revealed many units in the deep layers that were 
sensitive to non-numerical dimensions, along with a few that were numerosity sensitive (or 
selective). Although the few units that were sensitive to numerosity could explain behavior, the 
abundance of simulated neurons sensitive to non-numerical dimensions is inconsistent with 
population-level neural activity, which fails to show sensitivity to these non-numerical 
dimensions in early visual cortex (DeWind et al., 2019; Park, 2018; Van Rinsveld et al., 2020). A 
key difference between the current model and previous computational models is the inclusion of 
divisive normalization in the center-surround convolution layer. Unlike prior models, this 
eliminated the effect of size in the early visual response, without requiring subsequent pooling 
layers (Creatore et al., 2021; Kim et al., 2021; Nasr et al., 2019; Stoianov and Zorzi, 2012; 
Testolin et al., 2020) or a decision making process that compares high versus low spatial 
frequency responses (Dakin et al., 2011).  

At first blush, the current model might be considered an extension of Dehaene and Changeux 
(1993). However, there are four ways in which the current model differs qualitatively from the 
D&C model. First, the D&C model is one-dimensional, simulating a linear retina, whereas we 
model a two-dimensional retina feeding into center-surround filters, allowing application to the 
two-dimensional images used in numerosity experiments (Fig. 1A). Second, extreme winner-
take-all normalization in the convolution layer of the D&C model implausibly limits visual 
precision by discretizing the visual response. For example, the convolution layer in the D&C 
model only knows which of 9 possible sizes and 50 possible locations occurred. In contrast, by 
using divisive normalization in the current model, each dot produces activity at many locations 
and many filter sizes despite normalization, and a population could be used to determine exact 
location and size. Third, extreme winner-take-all normalization also eliminates all information 
other than dot size and location. By using divisive normalization, the current model represents 
other attributes such edges and groupings of dots (Fig. 1B) and these other attributes provide a 
different explanation of number sensitivity as compared to D&C. For example, the D&C model 
as applied to the spacing effect between two small dots (Fig. 4A) would represent the dots as 
existing discretely at two close locations versus two far locations, with the total summed 
response being two in either case. In contrast, the current model gives the same total response for 
a different reason. Although the small filters are less active for closely spaced dots, the closely 
spaced dots look like a group as captured by a larger filter, with this addition for the larger filter 
offsetting the loss for the smaller filter. Similarly, as applied to the dot size effect (Fig. 4B), the 
D&C model would only represent the larger dots using larger filters. In contrast, the current 
model represents larger dots with larger filters and with smaller filters that capture the edges of 
the larger dots, and yet the summed response remains the same in each case owing to divisive 
normalization (again, there are offsetting factors across different filter sizes). The final difference 
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is that the D&C model does not include temporal normalization, which we show to be critical for 
explaining adaptation and context effects. 

Finally, a recent fMRI study reported that neural activity in V1 increases monotonically with 
numerosity (Paul et al., 2022), which is consistent with the current model at a surface level. The 
authors, however, concluded that this monotonic increase was better explained by aggregate 
Fourier power than by numerosity. This explanation is qualitatively different than the center-
surround and divisive normalization explanation entailed in the current model. While further 
investigation may be necessary to distinguish these hypotheses, there are two caveats to consider 
in relation to the conclusions made by Paul et al. (2022). First, Fourier power uses spatially 
unbounded sine waves that have little biological plausibility (unlike center-surround or Gabor 
filters, which are spatially limited). Second, more critically, the aggregate Fourier power metric 
used by Paul et al. (2022) aggregated only up through the first (or any nth) harmonic, but the 
value of the harmonic on the frequency spectrum is dictated by dot size and/or dot groupings. In 
other words, the Fourier metric required a priori knowledge about each image. Including all 
frequencies, regardless of dot size, would likely produce a different conclusion. It is unclear how 
the visual system could know in advance an appropriate cutoff for a harmonic, although 
development of a more biologically plausible Fourier power model might identify testable 
differences between these accounts. 

Our conclusions are primarily in terms of the qualitative effects of center-surround filtering and 
divisive normalization, which collectively produce sensitivity to numerosity. However, specific 
quantitative predictions will change depending on specific model assumptions. For instance, our 
simulations assumed a distribution of filter sizes that ranged from much smaller to much larger 
than the presented dots. The responses from filters small enough to capture edges of dots tends to 
offset the responses from filters large enough to capture local groups of dots, producing relative 
insensitivity to dot spacing and size (see Fig. 4). However, there may be extreme cases where 
this balancing act breaks down. For instance, studies found that when dots are presented in the 
periphery where receptive field sizes are larger (Li et al., 2021; Valsecchi et al., 2013) or if the 
dots are crowded and hard to individuate (Anobile et al., 2014), numerosity perception exhibits 
different behavioral characteristics. We simulated one extreme by submitting to the model 
images that contained very small dots (too small to allow edge responses) densely packed in a 
circular aperture. For this extreme, the summation of normalized responses was still primarily 
sensitive to number, but that sensitivity was smaller compared to our original simulation, and 
there was also some moderate sensitivity to size and spacing (Fig. 2–figure supplement 3). Our 
simulation also assumed an equal number of small and large center-surround filters although in 
reality there are likely fewer large filters. This assumption was made out of computational 
convenience, although we note that similar results would emerge with an unequal distribution of 
filters if the divisive normalization amplification factor scaled with filter size (e.g., if the larger 
number of small filters more strongly inhibited each other) or if the neighborhood size of 
divisive normalization scaled with filter size in a nonlinear manner. By investigating how these 
assumptions relate to behavior and physiology, future studies may provide additional 
mechanistic insights into magnitude perception in general. 

The success of this model does not necessarily imply that neuronal responses in early visual 
regions directly determine behavioral responses (Fornaciai and Park, 2018). Prior to behavior, 
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there are many downstream processing steps that incorporate other sources of information, such 
response bias and decisional uncertainty. Instead, these results, together with previous 
electrophysiology results, suggest that normalized response magnitude in early visual regions 
may be the basic currency from which numerosity judgments are made. Future work should 
explore the link between the neuronal response layer in the current model and various behavioral 
judgments. For instance, if decisional uncertainty is modeled by assuming a constant level of 
decisional noise, regardless of the visual information, then the model will naturally produce 
Weber’s scaling law of just noticeable differences considering that the normalized response 
follows a log-linear pattern as a function of numerosity (see Fig. 2C). More complex decisional 
assumptions could be introduced in an attempt to model the effects of task instructions that are 
known to bias decisions on magnitude judgment (Castaldi et al., 2019; Cicchini et al., 2016). 
More assumptions about top-down semantic influences may also explain recent coherence 
illusion results in orientation or color (DeWind et al., 2020; Qu et al., 2022), for instance if 
observers are drawn to focus on a particular feature of the stimulus when comparing two dot 
arrays. 

Another line of possible future work concerns divisive normalization in higher cortical levels 
involving neurons with more complex receptive fields. While the current normalization model 
with center-surround filters successfully explained visual illusions caused by regularity, 
grouping, and heterogeneity, other numerosity phenomena such as topological invariants and 
statistical pairing (He et al., 2015; Zhao and Yu, 2016) may require the action of neurons with 
receptive fields that are more complex than center-surround filters. For example, another well-
known visual illusion is the effect of connectedness, whereby an array with dots connected 
pairwise with thin lines is underestimated (by up to 20%) compared to the same array without the 
lines connected (Franconeri et al., 2009). This underestimation effect likely arises from barbell-
shaped pairwise groupings of dots, rather than the circularly symmetric groupings of dots that are 
captured with center-surround filters. Nonetheless, a small magnitude (6%) connectedness 
illusion emerges with center-surround filters (Fig. 3–figure supplement 7). Augmenting the 
current model with a subsequent convolution layer containing oriented line filters and oriented 
normalization neighborhoods of different sizes might increase the predicted magnitude of the 
illusion. 

In conclusion, our results indicate that divisive normalization in a single convolutional layer with 
hierarchically organized center-surround filters naturally enhances sensitivity to the discrete 
number of items in a visual scene by reducing the effects of size and spacing, consistent with 
recent empirical studies demonstrating direct and rapid encoding of numerosity (Park et al., 
2016). This account predicts that various well-known numerosity illusions across space and time 
arise naturally within the same neural responses that encode numerosity, rather than reflecting 
later stage processes. These results identify the key neurocomputational principles underlying the 
ubiquity of the number sense in the animal kingdom.  
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Methods 

Stimulus sets 

Dot arrays spanning across number, size, and spacing.  

Inputs to the neural network were visual stimuli of white dot arrays on a black background (200 
× 200 pixels). Dots were homogeneous in size within an array and were drawn within an 
invisible circular field. Any two dots in an array were at least a diameter apart from edge to edge. 
The number of dots in an array is referred to as n, the radius of each dot is referred to as rd, and 
the radius of the invisible circular field is referred to as rf. Table 1 provides mathematical 
definitions of other non-numerical dimensions based on these terms.  

Following the previously developed framework for systematic dot array construction (DeWind et 
al., 2015; Park et al., 2016), stimulus parameters of the dot arrays were distributed systematically 
within a parameter space defined by three orthogonal dimensions: log-scaled dimensions of 
number (N), size (Sz), and spacing (Sp) (Fig. 1A). N simply represents the number of dots. Sz is 
defined as the dimension that varies with individual area (IA) while holding N constant, hence 
simultaneously varying in total area (TA). Sp is defined as the dimension that varies with sparsity 
(Spar) while holding N constant, hence simultaneously varying in field area (FA). Log-scaling 
these dimensions allows N, Sz, and Sp to be orthogonal to each other and represent all of the non-
numerical dimensions of interest to be represented as a linear combination of those three 
dimensions (see Table 1). Thus, this stimulus construction framework makes is easy to visualize 
the stimulus parameters and analyze choice behavior or neural data using a linear statistical 
model. For an implementation of this framework, see the MATLAB code published in the 
following public repository: https://osf.io/s7xer/.  

Table 1. Mathematical relationship between various magnitude dimensions. 

Dimension As a function of n, rd, rf As a function of N, Sz, Sp 
Individual area (IA) 𝜋rd

2 log(IA) = ½log(Sz) – ½log(N) 
Total area (TA) n × 𝜋rd

2 log(TA) = ½log(Sz) + ½log(N) 
Field area (FA) 𝜋rf

2 log(FA) = ½log(Sp) + ½log(N) 
Sparsity (Spar) 𝜋rf

2/n log(Spar) = ½log(Sp) – ½log(N) 
Individual perimeter 
(IP) 

2𝜋rd log(IP) = log(2√𝜋) + ¼log(Sz) – ¼log(N) 

Total perimeter (TP) n × 2𝜋rd log(TP) = log(2√𝜋) + ¼log(Sz) + ¾log(N) 
Coverage (Cov) n × rd

2/ rf
2 log(Cov) = ½log(Sz) – ½log(Sp) 

Closeness (Close) 𝜋2 × rd
2 × rf

2 log(Close) = ½log(Sz) + ½log(Sp) 
Note: n = number; rd = radius of individual dot; rf = radius of the invisible circular field in which the dots are drawn. 

Across all the dot arrays, number (n) ranged between 5 to 20 dots, dot diameter (2 × rd) ranged 
between 9 to 18 pixels, field radius (rf) ranged between 45 to 90 pixels, all having five levels in 
logarithmic scale. log(N) ranged from 2.322 to 4.322 with the median of 3.322; log(Sz) ranged 
from 16.305 to 18.305 with the median of 17.305; log(Sp) ranged from 19.646 to 21.646 with the 
median of 20.646. This approach resulted in 35 unique points in the three-dimensional parameter 
space (see Fig. 1A). For each of the 35 unique points, a total of 100 dot arrays were randomly 
constructed for the simulation conducted in this study. 

https://osf.io/s7xer/
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Dot arrays for testing regularity effects. 

The ‘regular’ dot array was constructed following the previous study that first demonstrated the 
regularity effect (Ginsburg, 1976). This array contained 37 dots with rd = 3 pixels, one of which 
at the center of the image and the rest distributed in three concentric circles with the radii of 20, 
40, and 60 pixels. The ‘irregular’ arrays were constructed with the same number of and same 
sized dots randomly placed with rf = 72.5 pixels. This radius for the field area was empirically 
calculated so that the convex hull of the regular array and the mean convex hull of the irregular 
arrays were matched. Sixteen irregular arrays were used in the simulation. 

Dot arrays for testing grouping effects.  

One set of ‘ungrouped’ dot arrays and another set of ‘grouped’ dot arrays were constructed. Both 
ungrouped and grouped arrays contained 12 dots, each of which with rd = 4.5 pixels. However, in 
the ungrouped arrays the dots were randomly dispersed, while in the grouped arrays the dots 
were spatially grouped in pairs. The edge-to-edge distance between the two dots in each pair was 
approximately equal to rd. A large number of unique dot arrays were constructed using these 
criteria for each of the two sets. Then, a subset of unique arrays from each set was chosen so that 
the convex hull of the arrays between the two sets were numerically matched. A total of 16 
grouped and 16 ungrouped arrays entered the simulation. 

Dot arrays for testing heterogeneity effects. 

Three sets of dot arrays equated in the total area (TA) were created. The first set of 
‘homogeneous’ (or zero level of heterogeneity) dot arrays contained n = 15 with rd = 5 pixels 
within a circular field defined by rf = 75 pixels. The second set of ‘less heterogeneous’ dot arrays 
contained six dots with rd = 3 pixels, six dots with rd = 5 pixels, and three dots with rd = 7.5 
pixels. The last set of ‘more heterogeneous’ dot arrays contained twelve dots with rd = 2.5 pixels 
and three dots with rd = 10 pixels. Hence, the total area (TA) of all the arrays were approximately 
identical to each other while the variability of individual area (IA) differed across the sets. 
Rounding errors due to pixelation and anti-aliasing, however, caused differences the actual 
cumulative intensity measure of the bitmap images. On average, the cumulative intensity values 
(0 being black and 1 being white in the bitmap image) were comparable between the three sets of 
arrays: 1209 in the homogeneous arrays, 1194 in the less heterogeneous arrays, and 1204 in the 
more heterogeneous arrays. Sixteen arrays in each of the three sets entered the simulation. 

Neural network model with divisive normalization 

Convolution with DOG filters. 

The model consisted of a convolutional layer with difference-of-Gaussians (DoG) filters of six 
different sizes, that convolved input values of the aforementioned bitmap images displaying dot 
arrays. This architecture hence provided a structure for 200 × 200 × 6 network units (or 
simulated neurons) activated by images of dot arrays (Fig. 2). The DoG filters are formally 
defined as: 



 

   

 

17 

Γ(𝑥, 𝑦) = 𝐼 ∙ (
1

2𝜋𝜎2
𝑒
−
𝑥2+𝑦2

2𝜎2 −
1

2𝜋𝐾2𝜎2
𝑒
−
𝑥2+𝑦2

2𝐾2𝜎2),  (1) 

Where I is the input image, 𝜎2 is the spatial variance of the narrower Gaussian, and K is the 
scaling factor between the two variances. As recommended by Marr and Hildreth (Marr and 
Hildreth, 1980), K = 1.6 was used to achieve balanced bandwidth and sensitivity of the filters. 
Considering that the input values range [0 1], the DoG filters were reweighted so that the sum of 
the positive portion equals to 1 and the sum of the negative portion equals to -1, making the 
summation across all domains 0. This reweighting ensured that the response is maximized when 
the input matches the DoG filter regardless of filter size and that the filter produces a response of 
value 0 if the input is constant across a region regardless of filter size. Finally, the output of this 
convolution process was followed by half-wave rectification at each simulated neuron (Heeger, 
1991), where negative responses were replaced by zero. This stipulation sets the ‘firing 
threshold’ of the network such that the simulated neurons would not fire if the input does not 
match its DoG filter. 

Six different 𝜎 values were used (𝜎k = 1, 2, 4, 8, 16, 32 for filter size k, respectively) which 
together were sensitive enough to represent various visual features of the input images, from the 
edge of the smallest dots to the overall landscape of the entire array. The activity of each 
stimulated neuron, i, in filter size k following this convolution procedure is referred to as Di,k.  

Divisive normalization. 

Following Carandini & Heeger (Carandini and Heeger, 2012), the normalization model was 
defined as: 

𝑅𝑖,𝑘 =
𝐷𝑖,𝑘
𝛾

𝑐+∑ 𝜂(𝑖,𝑗,𝑘)𝐷𝑗,𝑘
𝛾

𝑗,𝑘
 ,   (2) 

where distance similarity η(i,j) is defined as: 

𝜂(𝑖,𝑗,𝑘) = 𝑒
−
𝑑(𝑖,𝑗)

𝑟𝑘  .   (3) 

Di is the driving input of neuron i (i.e., the output of the convolution procedure described above), 
d(i,j) is the Euclidean distance between neuron i and neuron j in any filter size, c is a constant that 
prevents division by zero. The denominator minus this constant, which was set to 1, is referred to 
as the normalization factor. The parameter rk, defined for each filter size, serves to scale between 
local and global normalization. As rk gets larger, activities from broader set of neurons constitute 
the normalization factor. In our model, rk was defined as a scaling factor of 𝜎k (e.g., rk = 𝜎k, rk = 
2𝜎k, or rk = 4𝜎k), so that neurons with larger filter sizes have their normalization factor computed 
from broader pool of neighboring neurons. The parameter 𝛾 determines the degree of 
amplification of individual inputs and serves to scale between winner take all and linear 
normalization. Ri,k represents the normalized response of neuron i in filter size k.  



 

   

 

18 

Modelling temporal modulation of network units. 

Normalized responses of simulated neurons were further modeled to capture temporal 
modulations, with another normalization process this time working across time. First, a read out 
neuron was assumed that summed up the normalized responses across all the neurons, ΣRi,k. This 
single firing activity, now referred to as M, underwent the following temporal normalization 
process that resulted in the normalized activity M*: 

𝑀𝑇
∗ =

𝑀𝑇
δ

𝑐+∑𝑡=1
𝑇 𝜂𝑡𝑀𝑡

δ.   (4) 

The temporal distance η is defined as: 

𝜂𝑡 = 𝑒−
𝑑

ω,  (5) 

where d is the distance between time point t and T. As in Eq. 2 and 3, c is a constant that 
prevents division by zero, which was set to 1 for convenience. The parameter 𝜔 determines the 
amount of recent history contributing to the normalization factor, and the parameter 𝛿 determines 
the degree of amplification of Mt.  

The MATLAB code used to implement the model can be found in the following public 
repository: https://osf.io/4rwjs/. 
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Title and Legend for Figure Supplements 

Figure 2 – Figure supplement 1. Additional illustration concerning the driving input. Correlation 
between summed driving input, ΣD, and log-scaled total area (TA), total perimeter (TP), and 
number (N). 

Figure 2 – Figure supplement 2. Simulation results showing the effects of number (N), size (Sz), 
and spacing (Sp) on the normalized response (i.e., the model with divisive normalization) of the 
network units as a function of neighborhood size (r) and amplification factor (𝛾). Greater r 
resulted in a flatter curve for the size effect, and this flattening became more pronounced as 𝛾 
increased, with the combination of high values for both parameters producing a modest negative 
effect of size as well as a modest positive effect of spacing. More specifically, the combination 
of high r and 𝛾 values produces a winner-take-all process across large regions of the display. 
Greater size, in these cases, thus leads to greater normalization factor (denominator) which 
results in reduced normalization activity, although the extent of this normalization depends on 
how far away the other dots are located (e.g., less normalization with spacing). Although this is 
an interesting phenomenon, empirical neural and behavioral studies show a positive effect of 
size, if any. Hence, larger values of r and 𝛾 in this model do not seem to be plausible in the case 
of numerosity perception. Therefore, we chose moderate values of r (=2) and 𝛾 (=2) for 
subsequent simulations. 

Figure 2 – Figure supplement 3. Simulation results from images of densely packed dot arrays 
with extremely high numerosity. (A) The dots arrays were systematically constructed ranging 
equally across the dimensions of N, Sz, and Sp, which was achieved by using the following 
parameters: number (n) = from 90 to 360, dot radius (rd) = from 1 to 2 pixels, field radius (rf) = 
from 45 to 90 pixels. For each point in the 2×2×2 parameters space, 16 unique arrays were 
created. (B) Examples of dot array images are shown. These images were submitted to the 
current computational model with the same parameters used in our original analysis (r = 2𝜎 and 
𝛾 = 2). (C) Summed driving input (ΣD) was modulated primarily by N and Sz. Summed 
normalized response (ΣR) was most modulated by N but also by Sz and Sp to some degree. The 
slope of the linear fit to N, Sz, and Sp adjusted by the baseline (the slope estimate divided by the 
intercept estimate in the simple regression) was 0.4086, 0.1958, and 0.1488, respectively. Note 
that this baseline-adjusted slope allows comparison of relative change in the response driven by 
N, Sz, and Sp, despite differences in the baseline activity across different sets of images. In our 
original simulation, the baseline-adjusted slopes for N, Sz, and Sp were 0.5771, 0.0646, and 
0.0321, respectively. Thus, the same computational network when representing much more 
densely packed dot arrays seems to show relatively decreased sensitivity to numerosity. These 
results indicate that neural sensitivity to various magnitude dimensions and the degree of that 
sensitivity differ based on the assumptions about the distribution of filters and filter sizes. 

Figure 3 – Figure supplement 1. Simulation of visual illusions considering the driving input (i.e., 
the model without divisive normalization). No underestimation was observed in any of these 
cases. If any, irregularly spaced arrays (by 2.19%), grouped arrays (by 1.98%), and more 
heterogeneous arrays (by 3.06%) were overestimated based on their driving input. In sum, 
without divisive normalization, the model failed to explain the typically observed visual 
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illusions. Error bars indicate one standard deviation of the normalized response across 
simulations. 

Figure 3 – Figure supplement 2. Effects of single dots. A. Images of small (radius = 3.5), 
medium (radius = 5), and large (radius = 7) singly presented dots were fed into the computational 
model, and the driving input and the normalized response of the units with the receptive fields 
(RF) targeting the dots were computed. As expected, driving input was nearly perfectly 
correlated with area of the dots (r = 0.9983). In contrast, normalized response showed a linear 
relationship with the radius, which meant a logarithmic relationship with area. This occurs 
because a larger dot involves a greater number of filters overlapping with the dot (i.e., greater 
driving input), but this greater number of filters leads to a greater normalization factor (increase 
in the denominator of divisive normalization). In other words, the normalized response becomes 
tempered in a non-linear way, producing a saturating normalized response as a function of 
increasing dot area. B. Schematic illustration of the saturating effect of normalized response for a 
single dot (within a hypothetical dot array) as a function of the area of the dot. Heterogeneous 
arrays are created by holding the total area and numerosity constant while changing individual 
dot size. Therefore, when medium-sized dots (M) are replaced with large dots (L), the same 
number of replacements must be done to go from medium-size dots (M) to small dots (S). 
However, because of the saturating effect, there is a greater decrease in normalized response than 
an increase in normalized response. Thus, the overall normalized response becomes necessarily 
smaller in a heterogeneous array compared to a homogeneous array. 

Figure 3 – Figure supplement 3. Adaptation effects as a function of model parameters. In this 
simulation, the target of 10 dots was preceded by an adaptor of 5, 10, or 20 dots. Temporal 
normalization could be understood in terms of a sigmoid response curve with the amplification 
factor (𝛿) determining the slope of the curve and the recency weighting factor (𝜔) determining 
the horizontal position of the curve. Smaller 𝜔 values resulted in a relative overestimation of the 
normalized response to the target, which can be explained by the relative leftward horizontal 
shift of the sigmoid response curve and hence relative increase in normalized activity (non-
linearly as a function of driving input). Larger 𝛿 values resulted in greater under- and over-
estimation effects, which can be explained by the sharpening of the sigmoid response curve. 
Error bars indicate one standard deviation of the normalized response across simulations. 

Figure 3 – Figure supplement 4. Adaptation effects along the size dimension. The target of 
medium-sized array was preceded by an adaptor of small-, medium-, or large-sized array. No 
systematic pattern of adaptation was observed in these simulations. Error bars indicate one 
standard deviation of the normalized response across simulations. 

Figure 3 – Figure supplement 5. Adaptation effects along the spacing dimension. The target of 
medium-spaced array was preceded by an adaptor of small-, medium-, or large-spaced array. No 
systematic pattern of adaptation was observed in these simulations. Error bars indicate one 
standard deviation of the normalized response across simulations. 

Figure 3 – Figure supplement 6. Context effects as a function of model parameters. When the 
model saw 400 dot arrays that varied randomly across number, size, and spacing, the normalized 
responses to images corresponding to small, medium, and large sizes (Sz) showed no association 
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with size. When then model saw 400 dot arrays that differed only in size, the normalized 
responses were strongly associated with size. Such a pattern was consistent across all the 
simulations over various amplification factors (𝛿) and recency weighting factors (𝜔) tested. Error 
bars represent one standard deviation of the normalized response across simulations. Note that 
the error bars in the exclusive change in size conditions are extremely small. 

Figure 3 – Figure supplement 7. Simulation of the connectedness illusion. In order to simulate 
the connectedness illusion, one set of “connected” dot arrays and another set of “unconnected” 
dot arrays were constructed. First, a large number of dot arrays with n = 10, rd = 6.5 pixels, and rf 
= 64 pixels were created. Then, connected dot arrays were constructed by connecting the centers 
of two dots with a thin white line that was 2 pixels in width. The resulting images were visually 
checked, and all the images in which the lines cross or touch other lines or dots were removed 
from the set. Then, unconnected dot arrays were constructed from those connected dot arrays by 
breaking the midpoints of the interconnecting lines and rotating those broken lines about the 
center of each dot by ±30 degrees in either direction randomly determined. The resulting images 
were checked again for any cross over of lines, in which case both that image and the 
corresponding connected image were removed. A total of 16 connected and 16 unconnected 
arrays entered the simulation. The connected arrays were underestimated by over 6% (Cohen’s d 
= 5.72). Such an underestimation was not observed when considering the driving input (i.e., the 
model without divisive normalization). Error bars represent one standard deviation of the 
normalized response across simulations. 
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