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Abstract—In recent years, many accelerators have been pro-
posed to efficiently process sparse tensor algebra applications
(e.g., sparse neural networks). However, these proposals are
single points in a large and diverse design space. The lack of
systematic description and modeling support for these sparse
tensor accelerators impedes hardware designers from efficient
and effective design space exploration.

This paper first presents a unified taxonomy to systematically
describe the diverse sparse tensor accelerator design space.
Based on the proposed taxonomy, it then introduces Sparseloop,
the first fast, accurate, and flexible analytical modeling frame-
work to enable early-stage evaluation and exploration of sparse
tensor accelerators. Sparseloop comprehends a large set of
architecture specifications, including various dataflows and
sparse acceleration features (e.g., elimination of zero-based
compute). Using these specifications, Sparseloop evaluates a
design’s processing speed and energy efficiency while account-
ing for data movement and compute incurred by the employed
dataflow, including the savings and overhead introduced by the
sparse acceleration features using stochastic density models.

Across representative accelerator designs and workloads,
Sparseloop achieves over 2000× faster modeling speed than
cycle-level simulations, maintains relative performance trends,
and achieves 0.1% to 8% average error. The paper also presents
example use cases of Sparseloop in different accelerator design
flows to reveal important design insights.

Keywords-Tensor computation; Hardware Accelerator; Ana-
lytical modeling

I. INTRODUCTION

Sparse tensor algebra is widely used in many important

applications, such as scientific simulations [1], computer

graphics [2], graph algorithms [3], [4], and deep neural

networks (DNNs) [5], [6]. Depending on the sparsity char-

acteristics of the tensors (e.g., sparsity, distribution of zero

locations), sparse tensor algebra can introduce a significant

number of ineffectual computations, whose results can be

easily derived by applying the simple algebraic equalities of

X×0 = 0 and X+0 = X , without reading all the operands

or doing the computations [7], [8].

As a result, many performant and energy-efficient sparse

tensor algebra accelerators have been proposed to exploit

ineffectual computations to reduce data movement and com-

pute [9], [10], [11], [8], [12], [13], [14], [15], [16], [17],

[18], [19], [20], [21]. Based on the properties of its target

applications (e.g., convolution or matrix multiplication),

each accelerator design proposes its unique hardware sup-

port. Various accelerators can: propose different architecture

topology (e.g., number of storage levels); employ different

dataflows [9] (i.e., the rules for scheduling data movement

and compute in space and time); use different encoding to

compress sparse tensors (e.g., bitmask encoding); and design

different hardware to eliminate operations associated with

ineffectual computations (e.g., intersection units). The joint

design space for all these hardware mechanisms is therefore

large and diverse.

To characterize either a single specific design or many de-

signs as part of design space exploration, hardware designers

can benefit from a modeling framework that is:

• Flexible: is capable of modeling a diverse range of

potential designs with hardware support for different

dataflows, compression encodings, etc.

• Fast: produces simulation results quickly. This is par-

ticularly important because properly characterizing a

specific design requires finding the best schedule, i.e.,

mapping, for a given workload, which generally re-

quires a search of a large mapspace [22], [23], [24].

• Accurate: produces simulation results correctly in both

mapspace and design space exploration.

However, to the authors’ knowledge, none of the existing

modeling approaches for tensor accelerators provide the

desired capabilities (Table I). On the one hand, cycle-level
design-specific models [9], [10], [11], [8], [25], [12], [26],

[27], [13], [14], [15], [28] capture the detailed implementa-

tions for their target designs (e.g., memory control signals)

and thus are very accurate. However, such models impede

users from mapspace exploration due to their slow simula-

tion speed and design space exploration due to their limited

parameterization support. On the other hand, analytical

models perform mathematical computations to analyze the

important high-level characteristics of a class of accelerators

and are fast. However, the existing general analytical models
are only flexible for dense accelerator designs [24], [29],

[30], [31], [32], [33], [34], [35], [36], [37], i.e., they do not

reflect the impact of sparsity-aware acceleration techniques,

resulting in inaccurate modeling.

To address the limitations of existing work, we present
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Accuracy Speed Flexibility Support
Sparsity?

Cycle-Level
Design-Specific

Very High Slow Low Yes

General Analytical High Fast High No
Our Work High Fast High Yes

Table I: Comparison of existing tensor accelerator simulation

frameworks with our proposed Sparseloop framework.

Sparseloop1, the first analytical modeling framework for fast,

accurate, and flexible evaluations of sparse (and dense) ten-

sor accelerators, enabling early-stage exploration of the large

and diverse sparse tensor accelerator design space. Table I

compares Sparseloop to existing simulation frameworks.

This work makes the following key contributions:
(1) To systematically describe the large and diverse sparse

tensor accelerator design space, we propose a taxonomy to

classify the various sparsity-aware acceleration techniques

into three sparse acceleration features (SAFs): representa-

tion format, gating, and skipping.

(2) Based on the SAF classification, we propose Sparseloop,

an analytical modeling framework for tensor accelerators.

• To both faithfully reflect workload data’s impact on

accelerator performance and ensure simulation speed,

Sparseloop performs analysis based on statistical char-

acterizations of nonzero value locations in the tensors.

• To keep the modeling complexity tractable and

allow support for emerging workloads/designs,

Sparseloop splits its modeling process into discrete

steps, each of which focuses on evaluating a distinct

design aspect (e.g., dataflow, sparse acceleration

features). This decoupling allows modeling of both

dense and sparse designs in one infrastructure.

(3) With representative accelerator designs and workloads,

we show that Sparseloop is fast, accurate, and flexible:

• Sparseloop runs more than 2000× faster than a cycle-

level simulator.

• Sparseloop maintains relative performance trends and

achieves 0.1% to 8% average error across designs.

• Sparseloop allows comparison of designs with differ-

ent dataflows and sparse acceleration features, running

workloads with various sparsity characteristics.

• Sparseloop can reveal design insights during accel-

erator design flows. Our case studies demonstrate

Sparseloop’s flexibility to quickly compare and explore

diverse designs with different architectures, dataflows,

and SAFs running various workloads.

II. BACKGROUND AND MOTIVATION

In this section, we illustrate the complexity of describing

and evaluating the sparse tensor accelerator design space.

1Sparseloop is open-source and publicly available at [38].

A. Large and Unstructured Design Space

Sparse tensor accelerators often employ different

dataflows to exploit data reuse across multiple storage levels

and feature various sparsity-aware acceleration techniques

to eliminate data storage for zeros and ineffectual operations
(IneffOps), i.e., arithmetic operations and storage accesses

associated with ineffectual computations. The vast number

of potential design choices lead to a large and diverse

design space.

Nonetheless, there is little structure in the design space for

sparse tensor accelerators, as each prior design uses different

terminology to describe a point in the design space. We

present the design decisions made by representative designs

to show the lack of uniformity in their architecture proposals.

For example, Eyeriss [9] uses a row-stationary dataflow,

a RLC encoding for data stored in DRAM, and storage

and compute units that stay idle for IneffOps. With the

same dataflow, Eyeriss V2 [10] employs a compressed
sparse column encoding for both on-chip and DRAM data,

and avoids spending cycles for IneffOps by performing

intersections near the compute units. SCNN [11] also uses

a similar intersection-based acceleration, but features a

PlanarTiled-InputStationary-CartesianProduct dataflow and

compressed-sparse-block encoding. ExTensor [8] proposes a

hybrid dataflow and a hierarchical encoding. It introduces

the hierarchical-elimination acceleration technique, which

aggressively eliminates IneffOps at multiple storage levels

long before data reaches compute. Dual-side sparse tensor

core (DSTC) [21] uses an output-stationary dataflow and

two-level BitMap encoding. It designs an operand-collector
hardware unit tailored to its dataflow to provide enough

bandwidth after elimination of IneffOps.

Since different accelerators propose different sets of

implementation choices, often described in design-specific

naming conventions, it is challenging for designers to have

a systematic understanding of the proposed dataflow and

acceleration techniques in the design space, let alone a mod-

eling framework to compare these designs systematically.

B. Sparsity Impacts Design Behavior

Evaluating the complex design space of sparse tensor

accelerators is further complicated by the impact of the ten-

sor sparsity characteristics, which include the density (i.e.,
percentage of nonzero values in each tensor, 1−sparsity) and

the locations of nonzero values in each tensor.

To demonstrate this entanglement, we compare two de-

signs supporting different data representations. For simplic-

ity, both accelerators employ the same dataflow:

(1) Bitmask (Eyeriss-like): The first design supports bit-

mask encoding to represent sparse operand tensors. Bitmask

uses a single bit to encode whether each value is nonzero

or not. In each cycle, the design uses each bit to decide

whether its storage and compute units should stay idle to
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Figure 1: Processing speed and energy efficiency of archi-

tectures with different data representation support running

sparse matrix multiplication workloads. Design behavior is

dependent on data representations and tensor densities.

save energy, but it does not improve processing speed.2

(2) Coordinate list (SCNN-like): The second design em-

ploys a coordinate list encoding [39], [40], which indicates

the location of each nonzero value via a list of its coordinates

(i.e., the indices in each dimension). Since the coordinate

information directly points to the next effectual computation,

the design only spends cycles on effectual operations, thus

saving both energy and time.

In Fig. 1, we compare the processing speed and energy

efficiency of the two designs running sparse matrix multipli-

cation workloads of different densities. As shown in Fig. 1,

the best design choice is a function of the input density.

More specifically, since the bitmask-based design does not

improve processing speed, with low-density tensors, bitmask
always runs slower than coordinate list. However, since

coordinate list needs to encode the exact coordinates with

multiple bits, it incurs more significant encoding overhead

per nonzero value. As the tensors become denser, coordinate
list leads to lower energy efficiency and/or processing speed.

This trend has also been observed in Sigma [15].

Even just varying the input tensor density, we already see

non-trivial interactions between the benefits introduced by

eliminated IneffOps and compressed sparse tensors, and the

overhead introduced by extra encoding information. A more

involved case study in Sec. VII-A will further showcase the

complex interactions between dataflows, sparsity-aware ac-

celeration techniques, and workload sparsity characteristics,

illustrating the importance of co-designing various design

aspects. Thus, for hardware designers to efficiently explore

the trade-offs of various design decisions, there is a strong

need to have a fast modeling framework that, in addition
to evaluating various dataflows, recognizes the impact of
the different acceleration techniques and tensor sparsity
characteristics on processing speed and energy efficiency.

Our proposal: To address these two issues, we first in-

troduce a new classification of the various sparsity-aware

acceleration techniques (Sec. III), which unifies how to qual-

itatively describe these techniques in a systematic manner.

2Of course, there exist other designs that use bitmasks to save both energy
and time [17], [25]

Leveraging this taxonomy, we then propose an analytical

modeling framework, Sparseloop, which quantitatively eval-

uates the diverse sparse tensor accelerator designs (Sec. IV

to Sec. V-D). We show that Sparseloop is fast, accurate, and

flexible in Sec. VI-B, VI-C, and VII.

III. DESIGN SPACE CLASSIFICATION

The first step toward a systematic modeling framework is

to have a unified taxonomy to describe various sparse tensor

accelerators. We propose a new classification framework that

simplifies how to describe a specific design in the complex

design space. We then demonstrate how prior designs can

be described in a straightforward manner.

A. High-Level Sparse Acceleration Features

To systematically describe sparse tensor accelerators in

the design space, we classify common sparsity-aware ac-

celeration techniques into three orthogonal high-level cate-

gories:

• Representation format

• Gating IneffOps

• Skipping IneffOps

We call each category a sparse acceleration feature (SAF).

1) Representation Format: Representation format refers

to the choice of encoding the locations of nonzero val-

ues in the tensor. To describe a representation format, we

adopt a hierarchical expression that combines multiple per-

dimension formats, similar to [41], [39], [40].

As shown in Fig. 2, we introduce several commonly used

per-dimension formats with an example 1D tensor, i.e., a

vector. The most basic format is Uncompressed (U), which

represents the tensor with its exact values, thus directly

showing the locations of nonzero values. U is identical to

the original vector. However, to save storage space, and

thus implicitly save energy (and time) associated with zero

value accesses, sparse tensor accelerators tend to employ

compressed formats, which represent a tensor with only

nonzero values and some additional information about their

original locations or coordinate [41], [39], [40]. We call

this information metadata. We introduce four per-dimension

compressed formats3.

• Coordinate Payload (CP): the coordinates of each

nonzero value are encoded with multiple bits. The

payloads are either the nonzero value or a pointer to

another dimension. CP explicitly lists the coordinates

and the corresponding payloads.

• Bitmask (B): a single bit is used to encode whether each

coordinate is nonzero or not.

• Run Length Encoding (RLE): multiple bits are used to

encode the run length, which represents the number of

3Of course, many more per-dimension formats exist and can be incor-
porated modularly into Sparseloop.
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Figure 2: Example representation formats of a vector A.

Purple vectors refer to metadata used to identify the original

locations of the nonzero values.

Example Classic
Representation Formats

Hierarchical
Description

Compressed Sparse Row (CSR) [42] UOP-CP
2D Coordinate List (COO) [43] CP2

3D Compressed Sparse Fibers (CSF) [44] CP-CP-CP

Table II: Example representation formats and their hierar-

chical description based on per-dimension formats.

zeros between nonzeros (e.g., an r-bit run length can

encode up to a 2r − 1 run of zeros).

• Uncompressed Offset Pairs (UOP): multiple bits are

used to encode the start (inclusive) and end (nonin-

clusive) positions of nonzero values.

As shown in Table II, full tensor representation formats

can be described by combing the per-dimension formats in a

hierarchical fashion. For example, CSR (compressed sparse

row) [42] can be described by UOP-CP: Top level UOP

encodes the start and end locations of the nonzeros in each

row; bottom level CP encodes the exact column coordinates

and its associated nonzeros. A format can also split and/or

flattened tensor dimensions (e.g., 2D COO flattens multiple

dimensions into one dimension represented by CP with

tuples as coordinates). We use a superscript to indicate the

number of flattened dimensions.

2) Gating: Gating exploits the existence of IneffOps by

letting the storage and compute units stay idle during the

corresponding cycles. As a result, it saves energy but does

not change processing speed. Gating can be applied to both

compute and storage units in the architecture.

We use the dot-product workload in Fig. 3a to illustrate

the impact of gating. Each row of Fig. 3b corresponds to a

specific SAF implementation, each column is a processing

step, and each cell lists the operations happening at the step.

The first row presents the baseline processing without any

SAFs applied, so it performs all IneffOps and takes six steps

to complete.

The second row in Fig. 3b shows the result of applying

gating to compute units, Gate Compute. The compute unit

checks whether operands are zeros and stays power-gated if

at least one operand is zero.

When gating is applied to storage units, it can be based

on one of two approaches:

(1) Leader-follower intersection checks one operand, and if

this operand is zero, it avoids accessing the other operand.

We call the checked operand the leader and the operand

with gated access the follower. In our classification, gating

based on leader-follower intersection is represented by an

arrow that points from the leader to the follower, i.e.,
Gate Follower ← Leader. The third row in Fig. 3b

shows Gate B ← A. Note that this approach may not

eliminate all IneffOps (e.g., step three in the example),

and the savings introduced depend on the leader operand’s

sparsity characteristics.

(2) Double-sided intersection checks both operands (usually

just via their associated metadata), and if either of them

is zero, it does not access either operands’ data. Double-

sided intersection is represented with a double-sided arrow

that points to both operands, i.e., Operand0 ↔ Operand1.

Double-sided intersection eliminates all IneffOps but may

require more complex hardware.

In addition to reducing storage accesses, gating applied to

a storage unit also leads to implicit gating of the compute

unit connected to it (e.g., step one in the third row of

Fig. 3b), as the compute unit can now use the check for

the storage unit to power-gate itself.

3) Skipping: Skipping refers to exploiting IneffOps by

not spending the corresponding cycles. Since skipping di-

rectly skips to the next effectual computation, it saves both

energy and time. Similar to gating, skipping can be applied

to both the compute and storage units.

When skipping is applied to compute units, the compute

units directly look for the next pair of operands until it

finds effective computations to perform. When skipping is

applied to storage units, it can also be based on leader-

follower intersection or double-sided intersection. However,

instead of letting the storage stay idle, with skipping applied,

cycles are only spent on effectual accesses. The last row

in Fig. 3b shows an example implementation of skipping

B reads based on A’s values (Skip B ← A). Similar to

gating, a leader-follower implementation of skipping can still

introduce some IneffOps, and skipping at storage can lead

to implicit skipping at the compute units. Since skipping

needs to quickly locate the next effectual operation to skip

to, it usually requires more complex hardware than gating

does (e.g., ExTensor’s intersection unit implements smart

look-ahead optimizations to locate effectual operations in

time [8]). Inefficient implementations can lead to more

overhead than savings in time and energy.

B. Dataflow is Orthogonal to Sparsity-Aware Acceleration

In addition to the SAFs, dataflow choice is another impor-

tant decision made by various accelerators [45]. A taxonomy

of dataflows for various tensor algebra workloads has already

been well studied in existing work (e.g., for DNNs [45], [40],

and matrix multiplications [16], [13], [14]).

We make the observation that the dataflow choice is or-
thogonal to the chosen SAFs. Dataflows define the schedul-

ing of data movement and compute in time and space, and

SAFs define the actual amount of data that is moved or
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(a) (b)

Figure 3: (a) Sparse dot product workload. (b) Example ways of processing the example workload. 1st row: baseline

processing without SAFs; 2nd row: Gating applied to compute; 3rd row: Gating applied to B reads based on A’s values; 4th

row: Skipping applied to B reads based on A’s values.

Design Workload Format4 Gating/Skipping

Eyeriss [9] DNN
offchip: I/O: B-RLE W:U
onchip: I: UB O/W:U

Innermost Storage : Gate W ← I , Gate O ← I

Eyeriss V2 [10] DNN I/W: B-UOP-CP O:U Innermost Storage : Skip W ← I , Skip O ← I &W ; Gate Compute

SCNN [11] DNN I/W: B-UOP-RLE O: U Innermost Storage : Skip W ← I , Skip O ← I &W ; Gate Compute

ExTensor [8] MM A/B: UOP-CP×5 Z: U All Storage : Skip A ↔ B, Skip Z ← A&B

DSTC [21] MM A/B: B-B Z: U 2nd-to-innermost & Innermost Storage : Skip A ↔ B, Skip Z ← A&B

Table III: Summary of representative sparse tensor accelerators described with the proposed SAFs based on tensors from

example target workloads. For DNN: I: input activation, W: Weights, O: output activation. For Matrix Multiplication (MM):

A,B: operand tensors, Z: result tensor. Note that the designs have different dataflows, which are not listed.

Figure 4: Example of combining compressed format, skip-

ping, and gating SAFs in one design.

number of computes performed. As a result, the space of

sparse tensor accelerators is the cross product of dataflow

choices and SAF choices (further information on how this

impacts modeling is in Section IV). Of course, a particular

dataflow might mesh well with a specific SAF implementa-

tion, leading to an efficient design, while another may not.

C. Describing Sparse Tensor Accelerators

General accelerator designs often implement multiple

SAFs that work well with each other to efficiently im-

prove hardware performance. Fig. 4 illustrates the idea

with a simple example, for the same workload in Fig. 3a,

Fig. 4 employs a CP representation format for vector A,

Skip B ← A and Gate Compute. By representing A with

CP, Skip B ← A is implemented by directly reading the

appropriate B values based on A’s metadata. Furthermore,

by applying Gate Compute, Fig. 4 eliminates the compute

unit’s IneffOps for cases with nonzero A and zero B.

Realistic sparse tensor accelerators often feature multiple

storage levels to exploit data reuse opportunities and a set

of spatial compute units for parallel computation. Thus,

to systematically describe each design, we need to define

the SAFs implemented at each level in the architecture.

Based on our proposed classification, Table III describes

the acceleration techniques of the representative designs

introduced in Sec. II.

For example, SCNN [11], a sparse DNN accelerator, uses

a three-level, B-UOP-RLE representation format4 to com-

press input activation (IA) and weights (W). In the innermost

storage level, i.e., the level closest to the compute units,

SCNN performs SkipW ← IA and Skip OA ← IA&W ,

where OA refers to output activation. Gating is applied to

compute units, i.e., Gate Compute, to eliminate leftover

IneffOps, similar to Fig. 4’s strategy. ExTensor [8] is an

accelerator for general sparse tensor algebra. We use ma-

trix multiplication as an example workload, which involves

operand tensors A, B and result tensor Z. ExTensor partitions

and compresses tensors with a six-level format and performs

Skip A ↔ B and Skip Z ← A&B at all storage levels.

4Some per-dimension formats are applied to split or flattened dimensions.
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Thus we hope it is clear how this taxonomy allows the

design-specific terminologies in existing proposals to be

translated into systematic descriptions. More importantly,

it also allows future sparse accelerators to be described

accurately and compared qualitatively in the same way.

IV. SPARSELOOP OVERVIEW

The design space taxonomy in Sec. III lays the foun-

dation for the modeling methodologies of Sparseloop, an

analytical modeling framework that quantitatively evaluates

the processing speed and energy efficiency of sparse tensor

accelerators. In this section, we will discuss the modeling

challenges and Sparseloop’s key methodologies to address

those challenges.

A. Modeling Challenges

There are three key challenges associated with ensuring

the modeling framework’s speed, accuracy, and flexibility.

Multiplicative factors of the design space. To faithfully

model various sparse tensor accelerator designs, the analysis

framework needs to understand the compound impact of

their sparsity-specific design aspects (e.g., the diverse SAFs

shown in Table III) together with general design aspects

(e.g., architecture topology, dataflow, etc.). Simultaneously

modeling the interactions between a considerable number

of design aspects incurs high complexity, slowing down the

modeling process. Building specific models for each design

cannot scale to cover the entire design space, either.

Tradeoff between accuracy and modeling speed. High fi-

delity modeling requires time-consuming sparsity-dependent

analysis. Since sparsity characteristics impact a sparse accel-

erator’s performance, carefully examining the exact data in

each tensor could ensure accuracy. However, the downside

of actual-data based analysis is that it can cause intolerable

slowdown during mapspace exploration, especially for work-

loads with numerous and evolving data sets, e.g., DNNs.

Evolving designs/workloads. Finally, diverse and con-

stantly evolving designs/workloads require flexibility and

extendability in the modeling framework. Since the inter-

actions between the processing schedules and workload

data characteristics are convoluted, the framework must be

flexible and modularized enough to allow easy extensions

for future designs/workloads.

B. Sparseloop Solutions to the Challenges

To solve the challenges, Sparseloop makes two important

observations for sparse accelerator modeling: (1) the runtime

behaviors of sparse accelerators (e.g., number of storage

accesses and computes) can be progressively modeled; (2)

the sparsity-dependent behavior in sparse accelerators can

be statistically modeled with negligible errors.

Based on observation (1), to maintain modeling com-

plexity, Sparseloop performs decoupled modeling of distinct

design aspects: Sparseloop evaluates dataflow independent

Figure 5: Sparseloop High-Level Framework.

of SAFs, as the storage accesses and computes introduced

by the dataflow are irrelevant to how the IneffOps get elim-

inated; Sparseloop evaluates SAFs independent of micro-

architecture, as the number of eliminated IneffOps intro-

duced by the SAFs is orthogonal to the cost of performing

each elimination or the savings brought by each eliminated

IneffOp. Thus, as Fig. 5 shows, Sparseloop’s modeling pro-

cess is split into three steps, each with tractable complexity.

• Dataflow modeling: analyzes the uncompressed data

movement and dense compute, i.e., dense traffic, in-

curred by the user-specified mapping input.

• Sparse modeling: analyzes and reflects the impact of

SAFs by filtering the dense traffic to produce sparse

data movement and sparse compute, i.e., sparse traffic.

• Micro-architecture modeling: analyzes the exact hard-

ware operation cost (e.g., multi-word storage access

cost) and generates the final energy consumption and

processing speed based on the sparse traffic.

Based on observation (2), Sparseloop enables systematic

recognition of the impact of SAFs at the sparse model-

ing step. To balance accuracy and speed, sparse modeling

performs analysis based on statistical characterizations of

nonzero value locations in workload tensors and their sub-

tensors, by leveraging various statistical density models.

Finally, as shown in Fig. 5, to ensure extendability, the

sparse modeling step interacts with statistical density models

and per-dimension format models as decoupled modules so

that these models can be extended to support future sparse

workloads and representation formats.

V. SPARSELOOP FRAMEWORK

We first discuss the inputs to Sparseloop in Sec. V-A, and

describe the modeling steps in Sec. V-B, V-C, and V-D.

A. Inputs

As shown in Fig. 5, Sparseloop needs four inputs: work-

load specification, architecture specification, SAFs specifi-

cation, and mapping or mapspace constraints. Fig. 6 shows

a set of example specifications to show the input semantics,

and more detailed syntax can be found at [38].

Workload specification describes the shape and statistical

density characteristics of the workload tensors (e.g., in
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Figure 6: Example input specifications to Sparseloop. Blank

spaces in the workload tensors refer to locations with zeros.

The locations of zeros are just for illustrative purposes.

Fig. 6, A is 4x4 and has a density of 25% with a uniform

distribution). Workload specification also includes the tensor

algorithm specification, which is based on the well-known

Einsum notation [46], [41] (e.g., the matrix multiplication

kernel is specified as Zm,n =
∑

k Am,k × Bk,n, where the

A and B values along the same k dimension are reduced and

the m and n dimensions are populated to the output tensor

Z). Sparseloop understands any algorithm described with

an extended Einsum notation, similar to existing works [24],

[8].

Architecture specification describes the hardware organi-

zation of the architecture (e.g., two levels of storage and four

compute units) and the hardware attributes of the component

in the architecture (e.g., Backing Storage is 128kB).

SAFs specification describes the SAFs applied to the stor-

age or compute levels and the relevant attributes associated

with each SAF (e.g., Fig. 6 specifies skipping at Buffer, with

A as the leader and B as the follower).

Mapping describes an exact schedule for processing the

workload on the architecture. It is represented by a set

of loops [24]. Each iteration of the for loop represents a

time step, and the iterations in a parallel-for loop repre-

sent operations happen simultaneously at different spatial

instances (e.g., n1s loop shows that different columns of B

are simultaneously processed in four Buffers).

Mapspace Constraints describes a set of constraints on al-

lowed schedule (e.g., allowed loop orders). Sparseloop then

explores the potential mappings that satisfy the provided

partial loops and locates the best one for a specific workload.

B. Step One: Dataflow Modeling

Dataflow modeling derives the uncompressed data move-

ment and dense compute, which we refer to as the dense
traffic. Such dense analysis has been studied in several

Figure 7: (a) Example coordinate-space tiling for tensor A

based on inputs specified in Fig. 6. The shades represent

tiles processed at different time steps. (b) Fiber tree repre-

sentation of the tensor A. Each level of the tree corresponds

to a rank of the tensor and contains one or more fibers that

correspond to the rows or columns of the tensor. The leaves

of the tree are the (nonzero) data values of the tensor.

existing works [24], [32], [29], [47], [31]. Since each mod-

eling step in Sparseloop is well-abstracted, various strategies

can be plugged into Sparseloop’s modeling process. In our

implementation, we adopt Timeloop’s [24] strategy.

Dataflow modeling is performed based on an abstract

architecture topology (e.g., Fig. 7a shows the abstract rep-

resentation of the architecture in Fig. 6), workload tensors’

shapes, and the specified mapping. According to the map-

ping, each workload tensor is hierarchically partitioned into

smaller tiles based on coordinates, with each tile stored

in a specific storage level, and this process is referred to

as coordinate-space tiling [40]. For example, in Fig. 7a,

at L1, the tensor A in Fig. 6 is partitioned into four tiles

(with different shades of blue) based on the m1 for loop
in the mapping, each of which is a row of the tensor.

Each tile is then sequentially sent to L0. To derive the

data movement for each storage level, dataflow modeling

analyzes the stationarity of the tiles and the amount of

data transferred, both temporally and spatially, between

consecutive tiles. The number of computes is derived based

on the input tensor algorithm. More detailed description of

dense traffic calculations can be found in Timeloop [24].

C. Step Two: Sparse Modeling

The sparse modeling step is responsible for reflecting the

overhead and savings introduced by various SAFs. As shown

in Fig. 8, sparse modeling first evaluates the impact of SAFs

locally on per-tile traffic with SAF-specific analyzers, i.e.,
the Gating/Skipping Analyzer and the Format Analyzer, and

then post processes the local traffic with simple scaling to

reflect SAFs’ impact on overall traffic.

Such decomposition of local and global traffic analysis

allows sparse modeling to reflect SAFs’ impact on top of
the dense traffic to produce sparse traffic for storage and

compute units. We now discuss how each module in Fig. 8

interacts with others and the insight behind this design.
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Figure 8: Various modules in sparse modeling step. Hashed

red arrows refer to inputs and outputs of this step. The mod-

ules are labeled with their corresponding section numbers.

1) Format-Agnostic Tensor Description: As shown in

Fig. 8, to allow tractable complexity and extendability,

sparse modeling performs decoupled analysis of SAFs with

different analyzers. Describing sparsity characteristics inde-

pendent of representation format is core to performing such

decoupled analysis. We adopt the fibertree concept [40] to

achieve format-agnostic tensor description. In Fig. 7b, we

present the fibertree representation of the sparse tensor A

stored in L1 of Fig. 7a. With the example, we first introduce

the key fibertree concepts relevant to Sparseloop.

In fibertree terminology, each dimension of a tensor is

called a rank5 and is named. Thus this 2D tensor has 2

ranks, with the rows being named M (rank1), and columns

being named K (rank0). In Fig. 7b, each level of the

tree corresponds to a tensor rank in a specific order. Each

rank contains one or more fibers, representing the rows

or columns of the tensor. Each fiber contains a set of

coordinates and their associated payloads. For intermediate

ranks, the payload is a fiber from a lower rank (e.g.,
coordinate 0 in rank1 has a fiber in rank0 as its payload);

for the lowest rank, the payload is a simple value. By

omitting the coordinate for all-zero payloads, i.e., empty

elements, a fibertree-based description accurately reflects the

tensor’s sparsity characteristics (e.g., rank1’s fiber having

empty coordinate 2 indicates that the third row is all-zero).

Each fiber in the tree corresponds to a tile being pro-

cessed. For example, in Fig. 7, the first tile processed in L0
corresponds to the first fiber in Rank K. Thus, fibertree-based

description enables format-agnostic sparsity-dependent anal-

ysis: to analyze the tiles of interest, the analyzers can

examine the appropriate fibers to obtain sparsity information

independent of the tensor’s representation format.

2) Statistical Density Models: Examining every fiber

(thus analyzing the behavior of every tile) is too time-

5A rank can also correspond to split or flattened dimensions.

Figure 9: Fiber density probabilities for fibers with various

shapes in a tensor with 50% randomly distributed nonzeros.

Density Models Sparsity Pattern Example Applications

Fixed
structured

Even distribution
Coord. independent

Structurally pruned
DNNs [18]

Uniform Random distribution
Coord. independent

Randomly pruned DNNs
[21] & Activation sparsity

Banded Diagonal distribution
Coord. dependent

SuiteSparse [48]
Scientific simulations [49]

Actual
Data

Non-statistical
Coord. dependent

Graph analytics with
special patterns [4]

Table IV: Summary of density models supported by

Sparseloop. New models can be easily added via

Sparseloop’s interface.

consuming for mapspace and design space exploration.

To enable faster analysis, Sparseloop performs statistical

characterizations of the fibers in the fibertree. As shown in

Fig. 8, Sparseloop can use various statistical density models

of the workload tensor to derive statistical density for fibers

in each rank (e.g., for the example in Fig. 7b, the fibers in

rank0 have a density of 50% with a probability of 0.75 and a

density of 0% with a probability of 0.25). For a given density

model, the derived statistical density can differ significantly

across fibers with different shapes (i.e., fibers from different

ranks in the tree). For example, Fig. 9 shows the distribution

of fiber densities in a tensor with uniformly distributed non-

zero values. In a uniform distribution, a tile’s shape varies

inversely with the deviation in its density.

To estimate the density of fibers with a given shape, a

density model either performs coordinate-independent mod-

eling (i.e., fibers at different coordinates have similar density

distributions) or coordinate-dependent modeling (i.e., fiber’s

density is a function of its coordinates). Sparseloop sup-

ports four popular density models: fixed-structured, uniform,
banded, and actual data. Table IV describes their properties

and use cases in terms of relevant applications (e.g., ran-

domly pruned DNNs [21] and scientific simulations [49]).

The modularized implementation of density models ensures

Sparseloop’s extensibility to modeling of emerging work-

loads with different nonzero value distributions.

3) Format Analyzer: With fibers statistically character-

ized, the format analyzer is responsible for deriving the rep-

resentation overhead for the tiles stored in different storage

levels. Since different tiles correspond to different fibers,

it’s important for the analyzer to identify the tile in each
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Figure 10: Example mappings that lead to intersections with

different impact.

storage and obtain the appropriate statistical characterization

of the corresponding fiber from the format-agnostic tensor
characterization module.

As shown in Fig. 8, for each fiber, the analyzer statistically

models the overhead of each rank with the appropriate per-

rank Format Model. Different formats introduce different

amounts of overhead. For example, the RLE format model

calculates the overhead based on the number of non-empty

elements in the fiber, OverheadRLE = #non-empty-

elements × run length bitwidth; whereas, the bitmask

(B) format model produces the same overhead regardless

of fiber density, OverheadB = total# elements × 1.

The statistical format overhead allows Sparseloop to derive

important analytical estimations, e.g., the average and worst-

case overhead. Sparseloop supports five per-rank format

models: B, CP, UOP, RLE, and Uncompressed B, and thus

supports any representation format that can be described

with these models. The framework can be easily extended

to support other formats.

4) Gating/Skipping Analyzer: The Gating/Skipping Ana-
lyzer evaluates the amount of eliminated IneffOps introduced

by each gating/skipping SAF. Since gating/skipping focuses

on improving efficiency for each tile being transferred

and/or each compute being performed, regardless of the total

number of operations, the analyzer evaluates the impact of

SAFs locally on per-tile traffic and breaks down the original

per-tile dense traffic into three fine-grained action types: i)

actually happened, ii) are skipped, and iii) are gated.

As discussed in Sec. III, gating/skipping is based on

various intersections, which eliminate IneffOps by locating

the empty tiles, i.e., tiles with all zeros. In a leader-follower

intersection, when the leader tile is empty, the IneffOps

associated with the follower are eliminated. Whereas in

a double-sided intersection, any tile being empty leads to

eliminations of IneffOps associated with the other tile. Since

a double-sided intersection can be modeled as a pair of

leader-follower intersections (B ↔ A = B ← A+A ← B),

we focus on discussing the modeling of SAFs based on

leader-follower intersections.

The key to modeling the amount of eliminated IneffOps

introduced by a SAF based on leader-follower intersection is

to correctly identify the associated leader and follower tiles,

and thus the fibers representing the tiles in the fibertree.

Since different fibers can have significantly different prob-

ability of being empty, the same SAF can lead to different

impacts. We observe that the leader and follower tiles of a

specific intersection can be determined based on the data

reuse defined in the mapping. For example, Fig. 10 shows

two mappings that lead to different intersection behaviors for

SkipB ← A at Buffer. In Mapping 1 , since the innermost

k0 loop iterates through different pairs of A and B values,

a specific Bk,n is only used to compute with a single Am,k.

Thus, the leader tile is a single A value and the follower

tile is a single B value, i.e., if Am,k is zero, the access to

Bk,n will be eliminated. Whereas in Mapping 2 , since the

innermost m0 loop only iterates through different A values,

a specific Bk,n is reused across A0:3,k (i.e., a column of

A). Thus, the leader tile is A0:3,k and the follower tile is a

single B value Bk,n, i.e., if the entire column of A is empty,

the access to Bk,n will be eliminated. Since it is less likely

for the entire column of A to be empty, under Mapping 2 ,

SkipB ← A eliminates fewer IneffOps (e.g., columns of A

are never empty in Fig. 6).

Based on the mapping and the statistical fibertree charac-

terization, the analyzer defines the behaviors of each gating

or skipping SAF, and derives a breakdown of the original

dense traffic for each tile into fine-grained action types

(e.g., for each B tile transferred from Buffer to Compute,

there are 50% skipped reads, 50% actual reads, 0% gated

reads). Furthermore, when a gating/skipping SAF is applied

to upper storage levels in the architecture, the analyzer

propagates the savings introduced to lower levels (e.g., for

the architecture in Fig. 6, skipping at Backing Storage
reduces operations happened at both Buffer and Compute).

5) Traffic Post-processing: As shown in Fig. 8, after the

analyzers evaluate the impact of their respective SAFs based

on per-tile traffic, sparse modeling performs post-processing

to first reflect the interactions between the SAFs (e.g., how

much format overhead is skipped due to a skipping SAF)

and then scale the per-tile breakdowns based on the number

of tiles transferred to derive the final sparse traffic.

D. Step Three: Micro-architectural Modeling

Micro-architecture modeling first evaluates the validity of

the provided mapping. A mapping is valid only if the largest

tiles, which are derived based on statistical tile densities

and format overheads, meet the capacity requirement of

their corresponding storage levels. If the mapping is valid,

micro-architecture modeling evaluates the impact of micro-

architecture on generated sparse traffic. The analysis focuses

on capturing general micro-architectural characteristics, e.g.,
segmented block accesses for storage levels, instead of the

design-specific micro-architectural analysis, e.g., impact of

an exact routing protocol.
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Micro-architectural modeling then evaluates the process-

ing speed and energy consumption. For processing speed,

cycles are spent for actual and gated storage accesses and

computes. The model considers available bandwidth at each

level in the architecture to account for bandwidth throttling.

For energy consumption, we use an energy estimation back

end (e.g., Accelergy [50]) to evaluate the cost of each fine-

grained action, which is combined with its corresponding

sparse traffic to derive accurate energy consumption.

VI. EVALUATIONS

We first introduce our experimental methodology and then

demonstrate that Sparseloop is fast and accurate.

A. Methodology

Sparseloop is implemented in C++ on top of

Timeloop[24], an analytical modeling framework for dense
tensor accelerators. Sparseloop reuses Timeloop’s dataflow

analysis, adds the new sparse modeling step, and improves

Timeloop’s micro-architectural analysis to account for the

impact of various fine-grained actions introduced by the

SAFs. As a result, Sparseloop allows modeling of both dense
and sparse tensor accelerators in one unified infrastructure.

We use Accelergy [50], [30] as the energy estimation back

end. For DNN workloads, Sparseloop performs per-layer

evaluations with the appropriate dataflow and SAFs, and

aggregates the results to derive the energy/latency for the

full network. This methodology is consistent with state-of-

the-art tensor accelerator modeling frameworks [24], [29],

[32], [47]. Experimental results in the next sections are all

evaluated on an Intel Xeon Gold 6252 CPU.

B. Simulation Speed

Fast modeling speed allows designers to quickly explore

each design’s large mapspace as well as various designs.

We evaluate Sparseloop’s modeling speed with the metric

computes simulated per host cycle (CPHC), which refers

to the number of accelerator computes simulated for each

cycle in the host machine that runs the modeling framework.

CPHC carries similar information as MIPS (million instruc-

tions per second), a popular metric for evaluating simulators

for conventional processors.

Detailed cycle-level simulators often have CPHCs that are

lower than 1. For example, STONNE [28] has CHPCs that

are less than 0.5 when running popular DNN layers with

various architecture configurations, e.g., number of rows and

columns in the compute array. The main reasons include: i)

instead of statistical analysis, cycle-level simulators iterate

through actual data to perform all computations, which

take significant time for large workloads with millions of

computations such as DNNs; ii) detailed control logic needs

to be simulated for every cycle and all the components (e.g.,
memory interface protocols, exact intersection checks).

Accelerator
Designs

Workloads
ResNet50 BERT-base VGG16 AlexNet

Eyeriss 5.2k 13.3k 53.8k 21.4k
Eyeriss V2 PE 2.7k 12.5k 20.4k 13.2k

SCNN 1.1k 4.3k 3.7k 5.2k

Table V: Computes simulated per host cycle (CPHC) for

designs modeled by Sparseloop. Compared to cycle-level

tensor accelerator simulator STONNE [28], which has less

than 0.5 CPHC, Sparseloop is over 2000× faster.

Sparseloop achieves much higher CPHCs with its analyt-

ical modeling approach since Sparseloop avoids performing

analysis on all computations by performing statistical anal-

ysis on transient and steady state design behaviors only; and

does not simulate detailed cycle-level control logic. Table V

shows Sparseloop’s CPHCs for example DNN accelera-

tors [9], [10], [11] running representative workloads [51],

[52], [53], [54]. The CPHCs are dependent on accelerator

architecture characteristics (e.g., SAFs complexity, number

of levels, etc.), employed dataflow, and DNN workload char-

acteristics (e.g., sparsity, tensor shapes, number of layers,

etc.). For example, compared to Eyeriss V2 and SCNN, Ey-

eriss’ less powerful SAF support (more details in Table III)

always introduces lower SAF modeling complexity and more

simulated computes, leading to a higher CPHC. Overall,

Sparseloop is over 2000× faster compared to STONNE [28].

C. Validation

High modeling accuracy, in terms of both absolute values

and relative trends, allows designers to correctly analyze de-

sign trade-offs at an early stage. To demonstrate Sparseloop’s

accuracy, we validate on five well-known accelerator de-

signs: SCNN [11], Eyeriss [9], Eyeriss V2 [10], and dual-

side sparse tensor core (DSTC) [21], and Sparse Tensor

Core (STC) [18]. Overall, Sparseloop maintains relative
trends and achieves 0.1% to 8% average error. Based

on available information from existing work, validations

are performed on baseline models that capture increasing

amount of design details: from analytical models based

on statistical sparsity patterns to cycle-level models/real

hardware designs based on actual sparsity patterns. At a

high-level, common sources of error include: 1) statistical

approximation of actual data 2) approximated component

characteristics 3) approximated impact of design-specific

micro-architectural implementations. Table VI summarizes

the validations.

In the next sections, we present more detailed validation

discussions. In order to validate our work against prior

works, we need to use the workloads reported in those

works, despite the reported workloads being old (though

popular at the time of the work’s publication) or different

across designs. This is mainly due to the fact that other

workloads are either not available in the reported results or

not directly supported by the available simulators.
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Accelerator
Design

Baseline Model Average
Accuracy Major Sources of Error

Source Type
Sparsity
Pattern

Output

SCNN Simulators obtained
from authors [11], [10]

Design-specific
Analytical

Statistical Runtime activities 99.9% None

Eyeriss V2 PE

Actual

Processing latency >98% Statistical approximations

Eyeriss
Results directly

from paper
or technical report

[9], [21], [18]

Real hardware
Compression rate
Energy savings

>95%
(1) Statistical approximations
(2) Approximated component
energy characterizations

DSTC
Cycle-level simulator

validated on
silicon [55]

Processing latency 92.4%
(1) Statistical approximations;
(2) Optimistic modeling
of microarchitectural details

STC Real hardware Processing latency 100%
None
(structured sparsity introduces
deterministic behaviors)

Table VI: High-level summary of performed validations based on available data from existing work. Overall,

Sparseloop achieves 0.1% to 8% average error across different designs. More details in Sections VI-C1, VI-C2, VI-C3,

VI-C4 and VI-C5.

Figure 11: Runtime activity validation for SCNN [11].

Achieves less than 1% error for all components.

1) SCNN: We first validate Sparseloop on SCNN [11]

with a customized simulator that was used in the paper: it

performs analytical modeling based on statistically charac-

terized data. SCNN baseline assumes uniform distribution

and captures the runtime activities of the components in

the architecture (e.g., the number of reads and writes to

various storage levels). Fig. 11 shows the error rate of the

runtime activities for each component in the architecture.

Sparseloop , running with a uniform density model, is able

to capture all runtime activities accurately with less than 1%

error for all components in the architecture.

2) Eyeriss V2 : Since Eyeriss V2’s SAFs are imple-

mented in its processing element (PE), we focus on val-

idating the PE based on a baseline model that performs

actual sparsity pattern based analytical modeling. To quan-

titatively demonstrate the sources of error, we validate

Sparseloop with both an actual-data density model and a

uniform density model.

Fig. 12 shows the validation on the number of cycle

counts. In terms of total cycle counts for processing the

entire MobileNet [56], Sparseloop achieves more than 99%

accuracy and is able to capture the relative trends across dif-

ferent layers with both density models. However, for layers

Figure 12: Processing latency validation for Eyeriss V2

processing element [10] running MobileNet [56]. We only

show total cycle counts and layers with more than 1% error.

with both sparse operands compressed, modeling based on a

uniform density model results in up to 7% error for layer27.

Fig. 12 shows the layers with more than 1% error. The

errors are mainly attributed to the statistical approximation

of the expected nonempty intersection ratio between two

sparse tensors, as the exact nonempty ratio deviates from

case to case, e.g., when both operands have identical nonzero

value locations, the intersection nonempty ratio is equal

to the tensor densities. With an actual-data density model,

Sparseloop accounts for the exact intersections, and thus

accurately captures the cycle counts (at the cost of a slower

modeling speed).

3) Dual-Side Sparse Tensor Core: For DSTC, the base-

lines are also obtained directly from the papers whose

reported results are based on a cycle-level simulator that

is validated on real hardware [55]. We validate on the

normalized processing latency running matrix multiplication

workloads with various operand tensor density degrees, as

shown in Fig. 13. We modeled the tensors with a uniform

density model, captured the performance trends across den-
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Figure 13: Processing latency of dual-side sparse tensor

core [21] running matrix multiplication workloads with vari-

ous operand tensor densities, normalized to dense processing

latency. Average error is 7.6%.

Conv1 Conv2 Conv3 Conv4 Conv5

Eyeriss[9] 1.2 1.4 1.7 1.8 1.9
Sparseloop 1.2 1.4 1.7 1.9 1.9

Table VII: Eyeriss[9] DRAM compression rate validation.

sity degrees, and obtained an average error of less than

8%. In addition to errors introduced by deviations from

the expected nonempty intersection ratio, Sparseloop also

performs optimistic modeling of micro-architectural details.

More specifically, Sparseloop assumes no storage bank

conflicts but DSTC’s baseline results contain bank conflicts

when operand tensors are relatively sparse (e.g., 30% den-

sity), thus introducing higher processing latency.

4) Eyeriss: We validate on Eyeriss [9] with baselines

obtained from the paper and based on taped-out silicon. We

first validate DRAM compression rates for AlexNet [54], as

shown in Table VII. Overall, we achieve 1% error on average

and the discrepancy could be due to imperfect compression

with the actual data. We also validate on the PE array energy

reduction ratio due to on-chip gating. Eyeriss claims that

the energy savings of the processing elements can achieve

45%. Our results show a max energy efficiency improvement

of 43%. The discrepancy could be due to not modeled PE

components with unknown energy characteristics.

5) Sparse Tensor Core: Finally, we validate the Ampere

GPU’s sparse tensor core accelerator (STC) based on pub-

licly available architecture descriptions [57], [58], [18]. STC

focuses on accelerating structured sparse workloads with a

2:4 sparsity structure, which demands at most two nonzero

values in every block of four values. Fig. 14 shows the

high-level STC architecture and an example processing flow

of a 2:4 structured sparse matrix multiplication workload

(algorithm defined in Fig. 6). We will discuss more details

about STC in Section VII-A.

To validate STC, we use the fixed structured density

model parameterized with the 2:4 structure along each chan-

nel to model the structured sparse weight tensor. Existing

Figure 14: Modeled sparse tensor core architecture (includ-

ing the SMEM in streaming processor for a more holistic

view) and example processing of a 2:4 structured workload.

work reports that STC achieves 2× speedup compared to

dense processing [18], [57], [58]. Because of the fully de-

fined behaviors with the structured sparsity, Sparseloop also

produces an exact 2× speedup (STC design in Fig. 15),

achieving 100% accuracy.

VII. CASE STUDIES

In this section, we demonstrate Sparseloop’s flexibility

with two case studies.

A. Investigating Next Generation Sparse Tensor Core

In recent years, various techniques have been proposed

to add sparsity support to tensor core (TC). In this case

study, we use Sparseloop to first compare two variations:

the commercialized NVIDIA STC [18] and a research-based

proposal DSTC [21]. Based on the comparison, we then dis-

cuss the potential opportunities for next-generation STC, and

showcase an example design flow that uses Sparseloop to

identify current STC design’s limitations and explore various

solutions to such limitations to unlock more potential.
1) DSTC vs. NVIDIA STC: We perform an apples-to-

apples comparison of the two designs. Since both designs

are TC-based, both architectures contain the SMEM-RF-
Compute hierarchy as shown in Fig. 14, and are controlled

on allocated hardware resources, including compute, storage

capacity, and memory bandwidth. To model realistic sys-

tems, we only provision a subset of a real GPU’s SMEM
bandwidth to the accelerators, since other processes running

on the GPU share the same SMEM storage. At a high-

level, DSTC employs complex sparsity support and a special

outer product dataflow to exploit arbitrary sparsity in both
operands to perform compression and skipping. In contrast,

STC ignores input sparsity and uses low-overhead sparsity

support to compress and perform skipping on weights with
2:4 structured sparsity only.

Fig. 15 compares the cycles spent and energy consumed

by DSTC and STC running ResNet50 [51] pruned to var-

ious sparsity degrees. ResNet50 contains sparse weights
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Figure 15: Sparseloop’s analysis on the normalized total

cycles spent and energy-delay product for various designs of

tensor core accelerator running representative ResNet50 [51]

layers pruned to various sparsity degrees. The accelerators

are controlled to have similar amount of hardware resources.

(if pruned) and sparse inputs. Compared to STC, DSTC’s

dataflow for supporting arbitrary sparsity incurs a significant

amount of data movement. As a result, when processing

denser workloads (e.g., unpruned ResNet50 in this example

or BERT-like networks with dense input activations), even

if DSTC is able to always introduce lower cycles counts,

the savings brought by SAFs cannot compensate for the

additional energy spent and thus the overall hardware effi-

ciency is low. However, STC provides very limited support

for different workloads. Furthermore, for sparser workloads,

e.g., 25% dense ResNet50 in Fig. 15(a), despite DSTC’s

overhead, it’s able to achieve a much higher overall effi-

ciency because of the speedup introduced by a significant

amount of skipping.

Opportunities for STC: only supporting 2:4 sparsity in
the current STC design leads to missed opportunities, as
many modern DNNs can be pruned to >50% sparsity
(structured [59] or unstructured [60]) while maintaining
reasonable accuracy. Thus, one possible feature for a
next generation STC to have is to efficiently exploit the
savings brought by more sparsity degrees but still keep
the sparsity structured to reduce SAF overhead.

2) Naive STC Extension To Support More Ratios: In

order to extend the existing STC to support more sparsity

degrees, we first introduce the existing high-level processing

of STC running matrix multiplication workloads (algorithm

defined in Fig. 6) with the default 2:4 structured sparsity. In

the case of a DNN, tensor A in Fig. 6 corresponds to the

structured sparse weights in Fig. 14.

As shown in Fig. 14, the weight tensor is compressed

with an offset-based coordinate payload format, where each

nonzero carries an offset coordinate to indicate its position

in the block of four values, e.g., the nonzero weight g is

the third element in its block, and thus carries a metadata

of 2. This format matches our CP format in earlier sections.

The compressed weight tensor and the uncompressed input

tensor are stored in SMEM. For each iteration of processing,

the weights, weight metadata, and dense inputs are fetched

out. However, since inputs are uncompressed, as shown in

Fig. 14, a tile with four weights corresponds to a tile with
eight inputs. Thus, to ensure correctness, a 4:2 selection

needs to be performed on the inputs for each block of four

weights. Since only nonzero weights need to be processed,

the 2:4 processing is 2× faster than dense processing.

Thus, naively supporting more sparsity degrees in STC

simply involves extending the above discussed sparsity sup-

port with input activation selection logic for more ratios,

e.g., 2:6 and 2:8. We name this naive extension as STC-
flexible. As shown in Fig. 15, Sparseloop’s modeling in-

dicates that STC-flexible does support and introduce extra

energy reductions for lower density workloads. However,

no desirable speedup is obtained with the higher sparsity,

e.g., theoretically, 2:6 structured sparsity should introduce

3× speedup. In fact, surprisingly, the baseline processing
barely brings any additional speedup with the naive
extension for 2:6 and 2:8 workloads.

3) Identify Design Limitations: STC-flexible’s approach

does not improve performance due to SMEM bandwidth lim-

itation. Fig. 16 shows Sparseloop’s analysis on the required

bandwidth for processing workloads with various sparsity

ratios. To ensure full utilization of the tensor core, the same

number of nonzero weights needs to be processed spatially

regardless of the workload sparsity, i.e., we always need

1× weights as shown in Fig. 16. As discussed above, STC

stores inputs in uncompressed format. Thus, the sparser

the weight tensor, the more inputs need to be fetched in

a cycle, e.g., in Fig. 16, 4× inputs need to be fetched

for workloads with 2:8 sparse weights. In addition to the

bandwidth pressure imposed by inputs, the metadata also

needs to be described with more bits as the block size

gets larger. The amount of additional metadata overhead

is dependent on the chosen representation format, e.g., run

length encoding (RLE) requires fewer bits than offset-based

CP for 2:6 sparse workloads. As a result, STC is bottle-
necked by the limited bandwidth, which is provisioned
for 2:4 structured sparsity, and thus cannot obtain the
theoretical speedup for sparser workloads.

4) Explore Solutions to Overcome Limitations: With

Sparseloop, we can perform early design stage exploration

on potential solutions. Without loss of generality and for

the ease of presentation, we discuss two example directions

with low-hanging fruit: 1) improve representation format

support to reduce metadata overhead; 2) introduce additional

compression SAFs for inputs.

First, we evaluate if a different representation (compres-
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Figure 16: Sparseloop’s analysis on bandwidth requirements

for getting ideal speedup for various operands and associated

metadata (if any).

sion) format can alleviate the overhead introduced by meta-

data, especially for 2:6 structured sparsity. Thus, as shown

in Fig. 15, we enabled RLE support for STC-flexible to form

STC-flexible-rle. At a high-level, compared to the STC’s

original CP support, RLE support does provide similar or

better processing speed. However, since the majority of the

overhead comes from transferring actual data, the benefits

are too insignificant to bring STC-flexible-rle over DSTC.

We then target the more important bottleneck: the uncom-

pressed input data traffic. To solve the problem, we added

bitmask-based compression to input such that both operands

are compressed to form STC-flexible-rle-dualCompress de-

sign in Fig. 15. To keep the compute easily synced, we did

not add input-based skipping. As a result, all of the obtained

speedups come from bandwidth requirement reduction. As

shown in Fig. 15, STC-flexible-rle-dualCompress can actu-

ally introduce similar speed even if it cannot exploit input

sparsity for skipping. This is because even if DSTC exploits

both operands for speedup, its dataflow has more frequent

streaming of operands, introducing additional pressure to

SMEM bandwidth as well. Thus, with this example, we
have demonstrated that exploiting more sparsity does
not guarantee more speedup, and it is very important to
make sure the dataflow and SAF overhead is reasonable.

Overall, as shown in Fig. 15, we derived STC-flexible-rle-
dualCompress that, compared to DSTC, always introduces

lower energy consumption and has similar processing speed

most of the time for the studied sparsity degrees.

B. Co-design of Dataflow, SAFs and Sparsity

Looking beyond the deep learning workloads and tensor

core accelerators discussed in the previous case study, this

section demonstrates how Sparseloop can model workloads

with more diverse sparsity degrees and accelerator designs

that employ various dataflows and SAFs. With a set of

small-scale experiments, we show various broad insights for

designing sparse tensor accelerators: (1) the best design for

one application domain might not be the best for another; (2)

combining more energy or latency saving features together

does not always make the design more efficient. Thus,

careful co-design of dataflow, SAFs and sparsity is necessary

for achieving desired latency/energy savings.

1) Design Choices: Workloads: We use matrix multi-

plication with sparse input tensors (spMspM) of various

(a)

Dataflow Choices Tensor Reuse
A B Z

ReuseABZ Innermost storage Shared buffer Innermost storage
ReuseAZ Innermost storage None Innermost storage

(b)

SAFs Choices Operand Intersection
Off-chip On-chip

InnermostSkip None SkipB ↔ A
HierarchicalSkip SkipB ↔ A SkipB ↔ A

Table VIII: Choices for different design aspects: (a)

dataflows (b) SAFs (representation formats and other minor

SAFs are identical and thus are not shown for simplicity)

Figure 17: Normalized energy-delay product of different

combinations of dataflow-SAFs running matrix multiplica-

tions with various density degrees, which are labeled with

relevant example workloads. Sparseloop shows (1) dataflow

and SAFs should be co-designed to ensure potential savings;

(2) the correct combination needs to be chosen for different

applications to realize the potential savings.

density degrees as example workloads. spMspM, represented

as Zm,n =
∑

k Am,k ×Bk,n as an Einsum, is an important

kernel in many popular applications, such as scientific sim-

ulations, graph algorithms and DNNs, each of which can

have different tensor density degrees.

Dataflows: Given a hardware budget of 256 compute units

and 128KB on-chip storage, we consider two choices shown

in Table VIII(a): (1) ReuseABZ that reuses all tensors on-

chip; (2) ReuseAZ that doesn’t have on-chip reuse for B.

SAFs: As shown in Table VIII(b), we consider two sets of

SAFs choices: (1) InnermostSkip that performs SkipB ↔ A
at the innermost on-chip storage (2) HierarchicalSkip that hi-

erarchically performs SkipB ↔ A at DRAM and innermost

storage to reduce both off-chip and on-chip data movement.

2) Interactions Among Design Choices: Fig. 17 com-

pares the energy-delay-product (EDP) of different dataflow-

SAF combinations running spMspM with various A tensor

density degrees. At each density degree, the EDPs are

normalized to ReuseABZ.InnermostSkip’s EDP.

We first make the observation that the best design for
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one application domain might not be the best for another.
For example, while ReuseABZ.InnermostSkip is the best

design for NN workloads (i.e., A density >6%), for sparser

workloads, such as scientific simulations or graph algorithm,

this design is sub-optimal due to its large off-chip bandwidth

requirement. On the other hand, ReuseAZ.HierarchicalSkip
performs the best with hyper-sparse workloads since this

design performs early off-chip traffic eliminations, but it fails

to reduce EDP with NN workloads due to its inability to per-

form effective off-chip intersections on denser operands and

its lack of on-chip B reuse. Thus, a design’s dataflow-SAFs

combinations need to be chosen based on target application’s

sparsity characteristics to realize potential savings.

We also show that combining more energy or latency sav-
ing features together does not always make the design more
efficient. For example, ReuseABZ.HierarchicalSkip combines

a dataflow that reuses all tensors with SAFs that skip

both off-chip and on-chip traffic to form a design with the

most number of latency/energy savings features. However,

as shown in Fig. 17, ReuseABZ.HierarchicalSkip is never

the best design in terms of EDP. This is because the

ReuseABZ dataflow prevents the off-chip skipping SAF from

eliminating B’s off-chip data movement. More specifically,

since ReuseABZ reuses each on-chip B tile for multiple

A tiles, B tile transfers can be eliminated by the off-chip

skipping SAF only when all values in its corresponding A

tiles are zeros, which rarely happens. Thus, dataflow and
SAFs need to be carefully co-designed to ensure there
exist opportunities for reasonable savings.

VIII. RELATED WORK

There is ample prior work in modeling frameworks for

tensor accelerator designs. These models can be classified

into two classes: cycle-level models and analytical models.

Cycle-level models evaluate the detailed cycle-level be-

haviors of potential designs. Many of them assume a spe-

cific target platform, such as ASIC [61] or FPGA [62],

[63], [64] and perform register-transfer-level (RTL) analysis,

which includes low-level hardware details (e.g., pipeline

stages). There are also platform-independent models, e.g.,
STONNE[28], which perform cycle-level architectural anal-

ysis without RTL implementations. While these cycle-level

models are very accurate, they hinder the exploration among

the vast number of dataflows due to their long simulation

time [22], [23], [24]. Furthermore, cycle-level models are of-

ten not well parameterized in terms of architecture topology,

employed SAFs, dataflow, etc. These assumptions adversely

limit the explorable designs.

Analytical models [24], [65], [27], [30], [29], [31], [32],

[33], [34] perform higher level analytical evaluations without

considering per-cycle processing details of the design. Since

these models work on abstracted hardware models, they

are usually well parameterized and modularized to support

a wider range of architecture designs. However, to the

authors’ knowledge, they either do not recognize the sparse

workloads or SAFs at all [24], [30], [29], [31], [32], [33],

[34], or only target design-specific SAFs [65], [27]. For

example, Procrustes[65] supports modeling of B format for

one operand only. That is, no prior work aims to flexibly

model general sparse tensor accelerators with various SAFs

applied. Since at each architecture level, different SAFs can

introduce different amounts of savings and overhead, the

lack of trade-off analysis for SAFs prevents designers from

using such analytical models for design space exploration.

IX. CONCLUSION

Sparse tensor accelerators are important for efficiently

processing many popular workloads. However, the lack of a

unified description language and a modeling infrastructure

to enable exploration of various designs impedes further

advances in this domain. This paper proposes a systematic

classification of sparsity-aware acceleration techniques into

three high-level sparse acceleration features (SAFs): repre-

sentation format, gating, and skipping. Exploiting this clas-

sification, we develop Sparseloop, an analytical modeling

framework for sparse tensor accelerators. We further observe

that the analyses of dataflow, SAFs, and micro-architecture

are orthogonal to each other. Based on the orthogonality,

we design Sparseloop’s internal analysis as three decoupled

steps to keep its modeling complexity tractable. To balance

modeling accuracy and simulation speed, Sparseloop uses

statistical characterizations of tensors.

Sparseloop is over 2000× faster than cycle-level simula-

tions, and models well-known sparse tensor accelerators with

accurate relative trends and 0.1% to 8% average error. With

case studies, we demonstrate that Sparseloop can be used in

accelerator design flows to help designers to compare and

explore various designs, identify performance bottlenecks

(e.g., memory bandwidth), and reveal broad design insights

(e.g., co-design of sparsity, SAF and dataflow).
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APPENDIX

A. Abstract

In this artifact, we provide the source code of Sparseloop,

its energy estimation backend based on Accelergy [50], and

input specifications to key experimental results presented

in the paper. To allow easy reproduction, we provide a

docker environment with all necessary dependencies, auto-

mated scripts, and a Jupyter notebook that includes detailed

instructions on running the evaluations. The artifact can be

executed with any X86-64 machine with docker support and

more than 10GB of disk space.

B. Artifact check-list (meta-information)
• Algorithm: Analytical modeling of sparse tensor accelerator

performance (energy and cycles).
• Program: C++, python.
• Run-time environment: Dockerfile.
• Hardware: Any X86-64 machine.
• Output: Plots or tables generated from scripts.
• Experiments: Analytical modeling of various sparse tensor

accelerators running various workloads.
• How much disk space required (approximately)?: 10GB
• How much time is needed to prepare workflow (approxi-

mately)?: Less than 30min if directly pulling docker image;
less than 2 hours if building docker from the source.

• How much time is needed to complete experiments
(approximately)?: Less than 1 hour to finish running all
experiments in the provided default mode.

• Publicly available?: Yes
• Code licenses (if publicly available)?: MIT
• Archived (provide DOI)?: Yes, DOI 10.5281/zen-

odo.7027215

C. Description

1) How to access: The artifact is hosted both

on github (https://github.com/Accelergy-Project/

micro22-sparseloop-artifact) and on an archival

repository with DOI 10.5281/zenodo.7027215

(https://doi.org/10.5281/zenodo.7027215).

D. Installation

Since we provide a docker, the installation process

mainly involves obtaining the docker image that

contains the dependencies, the compiled Sparseloop,

and the energy estimation backend. Please follow the

provided instructions (https://github.com/Accelergy-Project/

micro22-sparseloop-artifact/blob/main/README.md) to

obtain and start the docker.

E. Evaluation and expected results

We provide a jupyter notebook in workspace/2022.micro.
artifact/notebook/artifact evaluations.ipynb to guide

through the evaluations. Please navigate to the notebook in

your docker Jupyter notebook file structure GUI.

Each cell in the notebook provides the background,

instructions, and commands to run each evaluation with

provided scripts. The evaluations include the following key

results from the paper:

• Comparison of performance and energy for accelerators

supporting different representation formats (Fig. 1).

• Validations on various sparse tensor accelerators

(Fig. 12, Table VII, Fig. 13, and the STC design in

Fig. 15.)

• Example design flow using Sparseloop to perform

apples-to-apples comparison, identify design limita-

tions, and explore various solutions to the limitation

(Fig. 15).

The output of each evaluation will either produce a figure

or the content of a table. The easiest way to check validity

is to compare the generated figure/table with the ones in

the paper. However, raw results can also be accessed in the

workspace/evaluation setups folder. Please note that we had

to use energy estimation data based on public technology

node instead of our proprietary technology node, so the exact

data might not match for certain evaluation(s). We explicitly

point out such cases in the notebook.

F. Experiment customization

The input specifications in the

workspace/evaluation setups folder can be updated to

specify different hardware setups (e.g., different buffer

sizes). Moreover, we also provide options in the scripts

to enable map space search using Sparseloop (e.g., --
use mapper option can be enabled).

G. Methodology

Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/

artifact-review-badging

• http://cTuning.org/ae/submission-20201122.html

• http://cTuning.org/ae/reviewing-20201122.html
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